JP5204518B2 - Copper alloy sheet for electronic parts with low reflection anisotropy - Google Patents

Copper alloy sheet for electronic parts with low reflection anisotropy Download PDF

Info

Publication number
JP5204518B2
JP5204518B2 JP2008074202A JP2008074202A JP5204518B2 JP 5204518 B2 JP5204518 B2 JP 5204518B2 JP 2008074202 A JP2008074202 A JP 2008074202A JP 2008074202 A JP2008074202 A JP 2008074202A JP 5204518 B2 JP5204518 B2 JP 5204518B2
Authority
JP
Japan
Prior art keywords
average
copper alloy
directions
rsm
rolling direction
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008074202A
Other languages
Japanese (ja)
Other versions
JP2009226435A (en
Inventor
浩一 平
靖 真砂
良一 尾▲崎▼
洋介 三輪
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kobe Steel Ltd
Original Assignee
Kobe Steel Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kobe Steel Ltd filed Critical Kobe Steel Ltd
Priority to JP2008074202A priority Critical patent/JP5204518B2/en
Publication of JP2009226435A publication Critical patent/JP2009226435A/en
Application granted granted Critical
Publication of JP5204518B2 publication Critical patent/JP5204518B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lead Frames For Integrated Circuits (AREA)

Description

本発明は、半導体装置等の電子部品の製造に用いられる銅合金板、特に製造工程の一部において光反射型検出器の被検出物体となる電子部品の製造に用いられる銅合金板に関する。   The present invention relates to a copper alloy plate used for manufacturing an electronic component such as a semiconductor device, and more particularly to a copper alloy plate used for manufacturing an electronic component that becomes a detection object of a light reflection type detector in a part of the manufacturing process.

半導体装置等の電子部品の製造工程(組み立て工程)の中に、光反射型検出器を用いて被検出物体の正確な位置を検出しその位置決めを行うための検出位置決め工程がある。光反射型検出器は、光源から一定強度の入射光を被検出物体の表面に当て、被検出物体の表面で反射した光を受光部で受け、その強度(反射光強度)を検出して出力信号を得る(例えば特許文献1参照)。前記検出位置決め工程では、この出力信号に基づいて、被検出物体の正確な位置を検出し、その位置決めが行われる。
しかし、通常の電子部品用銅合金板の場合、光反射型検出器の検出ミスが起き、正確な位置決めができないことがしばしばある。
In the manufacturing process (assembly process) of an electronic component such as a semiconductor device, there is a detection positioning process for detecting and positioning an accurate position of an object to be detected using a light reflection type detector. The light-reflective detector applies incident light of a certain intensity from the light source to the surface of the object to be detected, receives the light reflected from the surface of the object to be detected by the light receiving unit, detects the intensity (reflected light intensity), and outputs it. A signal is obtained (see, for example, Patent Document 1). In the detection positioning step, an accurate position of the detected object is detected based on the output signal, and the positioning is performed.
However, in the case of a normal copper alloy plate for electronic parts, detection errors of the light reflection type detector often occur, and accurate positioning is often not possible.

特開平9−148620号公報JP-A-9-148620

反射光強度は、正反射と表面粗さに依存した指向性を持つ拡散反射の和で定義され、拡散反射は、圧延目や研磨目などで発現した材料の表面粗さに依存する値である。一方、通常の電子部品用銅合金板の表面には、圧延ロールによる圧延目や研磨目が存在し、例えば圧延方向に平行方向での反射光強度と、他の方向(例えば圧延方向に対し垂直方向)での反射光強度が異なっている。
本発明者らは、銅合金板表面にこのような反射の異方性(方向による反射光強度の差)があることが検出ミスの原因であり、銅合金板の表面粗さの異方性が小さければ拡散反射の異方性も小さく、反射光強度で示される反射の異方性が少なくなり、結果として光反射型検出器の検出ミスが減るものと推測した。
The reflected light intensity is defined as the sum of specular reflection and diffuse reflection with directivity depending on the surface roughness. Diffuse reflection is a value that depends on the surface roughness of the material developed in rolling and polishing eyes. . On the other hand, the surface of a normal copper alloy sheet for electronic parts has rolling marks and polishing marks by a rolling roll, for example, reflected light intensity in a direction parallel to the rolling direction and other directions (for example, perpendicular to the rolling direction). The reflected light intensity in the direction is different.
The inventors of the present invention have such a reflection anisotropy (difference in reflected light intensity depending on the direction) on the surface of the copper alloy plate, which is a cause of detection error, and anisotropy of the surface roughness of the copper alloy plate. Is small, the anisotropy of diffuse reflection is also small, and the anisotropy of reflection indicated by the reflected light intensity is reduced. As a result, it is assumed that detection errors of the light reflection type detector are reduced.

しかし、実操業レベルの銅合金板において、圧延目や研磨目に基づく銅合金板の表面粗さ及びその異方性が小さく、反射の異方性を低減させた銅合金板であっても、現実に光反射型検出器の検出ミスを防ぐことはできなかった。
本発明は、このような従来技術の問題点に鑑みてなされたもので、光反射型検出器の検出ミスを防止できる銅合金板を得ることを目的とする。
However, in the copper alloy plate at the actual operation level, the surface roughness of the copper alloy plate based on the rolling and polishing eyes and its anisotropy are small, even if it is a copper alloy plate with reduced reflection anisotropy, Actually, it was not possible to prevent detection errors of the light reflection type detector.
The present invention has been made in view of such problems of the prior art, and an object of the present invention is to obtain a copper alloy plate capable of preventing detection errors of a light reflection type detector.

実操業レベルで、圧延目や研磨目に基づく銅合金板の表面粗さ及びその異方性を、ロール表面を平滑にすることにより現在レベル以上に低減することは相当困難が伴う。そこで、本発明者らは、逆に、圧延目や研磨目に基づく銅合金板の表面粗さ及びその異方性を解消し得るほどの大きい凹凸を、銅合金板表面に均一に形成することにより、表面粗さ自体は大きくなってもその異方性が小さくなり、それにより反射の異方性が少なくなり、光反射型検出器の検出ミスを防ぐことができるのではないかと推測した。
本発明者らは、この推測を基に、銅合金板をダルロールで圧延して表面を粗面化したところ、銅合金板の表面粗さ自体は大きくなるが、確かに反射の異方性が少なく、また結果的に、この銅合金板により光反射型検出器の検出ミスが防げることを見出した。
It is considerably difficult to reduce the surface roughness and the anisotropy of the copper alloy plate based on the rolling and polishing marks to the current level or more by smoothing the roll surface at the actual operation level. Accordingly, the present inventors, on the contrary, uniformly form the copper alloy plate surface with large irregularities enough to eliminate the surface roughness and the anisotropy of the copper alloy plate based on the rolling and polishing marks. Therefore, it is speculated that even if the surface roughness itself increases, the anisotropy decreases, thereby reducing the anisotropy of reflection and preventing detection errors of the light reflection type detector.
Based on this assumption, the inventors of the present invention rolled the copper alloy plate with a dull roll to roughen the surface. As a result, the surface roughness of the copper alloy plate itself was increased, but the reflection anisotropy was certainly high. As a result, it was found that this copper alloy plate can prevent detection errors of the light reflection type detector.

本発明に係る電子部品用銅合金板は、ダルロールを用いて圧延された粗化表面を片面又は両面に有し、前記粗化表面の算術平均粗さRaが、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の全てで0.4〜0.7μm、最大高さ粗さRzが、前記3方向の全てで2〜5μm、さらに凹凸の平均間隔Rsmが、前記3方向の平均値で100〜200μm、かつ前記3方向の全てで前記平均値の±30%未満であることを特徴とする。
銅合金板をダルロールにより圧延して、表面を上記表面性状を有する粗化表面とすることにより、45°鏡面光沢度Gsが前記3方向の平均値で5.0〜15.0%、かつ前記3方向の全てで前記平均値の±25%未満の、反射異方性の少ない銅合金板が得られる。
The copper alloy plate for electronic parts according to the present invention has a roughened surface rolled using a dull roll on one side or both sides, and the arithmetic average roughness Ra of the roughened surface is parallel to the rolling direction, the rolling direction. With respect to the 45 ° direction and the vertical direction with respect to the rolling direction, 0.4 to 0.7 μm, the maximum height roughness Rz is 2 to 5 μm in all three directions, and the average interval Rsm of unevenness is The average value in three directions is 100 to 200 μm, and all of the three directions are less than ± 30% of the average value.
By rolling the copper alloy plate with a dull roll and making the surface a roughened surface having the above surface properties, the 45 ° specular gloss Gs is 5.0 to 15.0% as an average value in the three directions, and A copper alloy plate having less reflection anisotropy and less than ± 25% of the average value in all three directions is obtained.

半導体装置等の電子部品の製造工程(組み立て工程)において、光反射型検出器を用いて被検出物体の正確な位置を検出し、その位置決めを行う検出位置決め工程があるような場合、電子部品用材料として本発明に係る前記銅合金板を用いることで、光反射型検出器の検出ミス及び位置決めミスが生じるのを防止することができる。   In the manufacturing process (assembly process) of an electronic component such as a semiconductor device, when there is a detection positioning process for detecting the exact position of an object to be detected using a light reflection type detector, the electronic component is used. By using the copper alloy plate according to the present invention as a material, it is possible to prevent detection errors and positioning errors of the light reflection type detector.

本発明に係る銅合金板は、冷間圧延段階の仕上げにダルロールを用いるか、調質圧延をダル圧延で行い、板表面を均一に粗化することで製造できる。本発明では、粗化表面の算術平均粗さRaが、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の全てで0.4〜0.7μm、最大高さ粗さRzが、前記3方向の全てで2〜5μm、さらに凹凸の平均間隔Rsmが、前記3方向の平均値で100〜200μm、かつ前記3方向の全てで前記平均値の±30%未満である。
ダル圧延による銅合金板の粗化表面を上記の表面性状としたとき、45°鏡面光沢度Gsが前記3方向の平均値で5.0〜15.0%、かつ前記3方向の全てで前記平均値の±25%未満の反射異方性の少ない銅合金板が得られ、この銅合金板において光反射型検出器の誤作動が生じるのを防止することができる。このように、光反射型検出器の検出ミスを防止するには、反射異方性が小さいだけではなく、理由は未解明であるが45°鏡面光沢度Gsの数値が比較的小さいことも必要であることが分かった。
The copper alloy plate according to the present invention can be produced by using a dull roll for finishing in the cold rolling stage or by performing temper rolling by dull rolling and uniformly roughening the plate surface. In the present invention, the arithmetic average roughness Ra of the roughened surface is 0.4 to 0.7 μm in all directions parallel to the rolling direction, 45 ° to the rolling direction and perpendicular to the rolling direction, and has a maximum height roughness. The length Rz is 2 to 5 μm in all three directions, and the average interval Rsm of the unevenness is 100 to 200 μm in the average value in the three directions and less than ± 30% of the average value in all the three directions. .
When the roughened surface of the copper alloy sheet by dull rolling has the above-mentioned surface property, the 45 ° specular gloss Gs is 5.0 to 15.0% in the average value in the three directions, and the above in all the three directions. A copper alloy plate having a small reflection anisotropy of less than ± 25% of the average value is obtained, and it is possible to prevent malfunction of the light reflection type detector in this copper alloy plate. Thus, in order to prevent detection errors of the light-reflective detector, not only is the reflection anisotropy small, but the reason is unclear, but it is also necessary that the 45 ° specular gloss Gs is relatively small. It turns out that.

粗化表面の表面性状を表す算術平均粗さRa、最大高さ粗さRz及び凹凸の平均間隔Rsmは、いずれも表面粗さのパラメータとして一般的なものであり、本発明において、ダル圧延による粗化表面を通常圧延材や研磨材と比較して特徴付けるためのパラメータとして選択した。そして、前記パラメータの数値の規定範囲は、通常のダルロールで得られる範囲である。いずれのパラメータについても、下限値未満の場合、通常のダルロールで得ることが困難であり、上限値を超える場合、材料全体のうねりが大きくなって銅合金板に歪みが生じるとの観点から規定されている。また、凹凸の平均間隔Rsmが前記3方向の全てで前記平均値の±30%未満との規定は、ダル圧延により板表面に均一な異方性の少ない凹凸が形成されていることを意味し、これもダル圧延による粗化表面を通常圧延材や研磨材と比較して特徴付けるためのパラメータであり、かつ通常のダル圧延により得られる値である。
ダル圧延による銅合金板の粗化表面を表す前記各パラメータが、上記規定範囲において、前記45°鏡面光沢度Gs(前記3方向の平均値で5.0〜15.0%、かつ前記3方向の全てで前記平均値の±25%未満)を得ることができる。なお、前記3方向の全てで45°鏡面光沢度Gsが前記平均値の±25%未満ということは45°鏡面光沢度Gsの異方性が少ない(反射光強度の異方性が少ない)ことを意味する。
The arithmetic average roughness Ra, the maximum height roughness Rz, and the average interval Rsm of the unevenness representing the surface properties of the roughened surface are all general parameters of the surface roughness. The roughened surface was selected as a parameter to characterize compared to normal rolled material and abrasive. And the prescribed range of the numerical value of the parameter is a range obtained by normal dull roll. For any parameter, if it is less than the lower limit value, it is difficult to obtain with normal dull roll, and if it exceeds the upper limit value, it is specified from the viewpoint that the entire material swells and the copper alloy plate is distorted. ing. Further, the definition that the average interval Rsm of the unevenness is less than ± 30% of the average value in all the three directions means that unevenness with less uniform anisotropy is formed on the plate surface by dull rolling. This is also a parameter for characterizing the roughened surface by dull rolling in comparison with a normal rolled material or abrasive, and is a value obtained by normal dull rolling.
Each parameter representing the roughened surface of the copper alloy sheet by dull rolling is the 45 ° specular gloss Gs (5.0 to 15.0% as an average value in the three directions, and the three directions in the specified range). Can be obtained with less than ± 25% of the average value). Note that the 45 ° specular gloss Gs is less than ± 25% of the average value in all three directions means that the 45 ° specular gloss Gs has little anisotropy (the anisotropy of reflected light intensity is small). Means.

本発明において、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の3方向について、前記表面性状及び45°鏡面光沢度を規定したのは、圧延方向を基準としたこれら3方向で粗化表面の全方向の表面性状及び45°鏡面光沢度を実質的に代表し得ると考えられるからである。また、鏡面光沢度の入射(受光)角を45°に設定したのは、銅合金板の平均的な反射特性が得られると考えられるからである。   In the present invention, the surface property and the 45 ° specular glossiness were defined on the basis of the rolling direction for the three directions, ie, the direction parallel to the rolling direction, the direction 45 ° to the rolling direction and the direction perpendicular to the rolling direction. This is because it is considered that the surface properties in all directions of the roughened surface and the 45 ° specular glossiness can be substantially represented in these three directions. The reason why the incident (light reception) angle of the specular glossiness is set to 45 ° is that it is considered that the average reflection characteristic of the copper alloy plate can be obtained.

商品名SPKFC−3(Sn,Zn入りFe−P系銅合金)、CAC5(Sn入りNi−P系銅合金)及び70B(Cu−Zn系銅合金)の銅合金条を、各々定法に従って製造した。以下、これを通常圧延材と呼ぶ。続いて、通常圧延材の一部について、回転する一対のブラシ(砥粒埋め込み)の間を通過させて両面を研磨した。以下、これを研磨材と呼ぶ。また、通常圧延材の一部について、一対のダルロールにより調質圧延を行い、両面を粗面化した。以下、これをダル圧延材と呼ぶ。   Product names SPKFC-3 (Sn, Zn-containing Fe-P based copper alloy), CAC5 (Sn-containing Ni-P based copper alloy) and 70B (Cu-Zn based copper alloy) copper alloy strips were respectively produced according to the usual methods. . Hereinafter, this is usually called a rolled material. Subsequently, both sides of the normal rolled material were polished by passing between a pair of rotating brushes (embedding of abrasive grains). Hereinafter, this is called an abrasive. Further, a part of the normal rolled material was subjected to temper rolling with a pair of dull rolls to roughen both sides. Hereinafter, this is called a dull rolled material.

前記通常圧延材、研磨材及びダル圧延材からそれぞれ試料を採取し、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の3方向について、各方向に付き3カ所(n=3)、それぞれ表裏両面の算術平均粗さRa、最大高さ粗さRz及び凹凸の平均間隔Rsmを測定した。この測定は、株式会社東京精密製の表面粗さ形状測定機(サーフコムシリーズ)を用い、評価長さ4.0mm、カットオフ値0.8mmで、JISB0601の規定に準じて行った。
圧延方向に平行方向の凹凸の平均間隔RsmをRsm(0°)、圧延方向に対し45°方向の凹凸の平均間隔RsmをRsm(45°)、圧延方向に対し垂直方向の凹凸の平均間隔RsmをRsm(90°)とし(いずれもn=3の平均)、それらの平均値をRsm(平均)とし、Rsm(平均)を、Rsm(平均)={Rsm(0°)+Rsm(45°)+Rsm(90°)}/3の式により算出した。また、Rsm(0°)、Rsm(45°)及びRsm(90°)のRsm(平均)に対する割合、すなわち、Rsm(0°)/Rsm(平均)、Rsm(45°)/Rsm(平均)及びRsm(90°)/Rsm(平均)を百分率で算出した。
以上の測定結果及び算出結果を表1〜3に示す。
Samples were taken from the normal rolled material, abrasive material, and dull rolled material, respectively, in three directions in each direction in three directions parallel to the rolling direction, 45 ° to the rolling direction and perpendicular to the rolling direction ( n = 3), the arithmetic average roughness Ra, the maximum height roughness Rz, and the average interval Rsm between the top and bottom surfaces were measured. This measurement was performed according to JISB0601 regulations using a surface roughness and shape measuring machine (Surfcom series) manufactured by Tokyo Seimitsu Co., Ltd., with an evaluation length of 4.0 mm and a cutoff value of 0.8 mm.
Rsm (0 °) is the average spacing Rsm between the projections and depressions parallel to the rolling direction, Rsm is the average spacing Rsm (45 °) of the projections and depressions in the 45 ° direction relative to the rolling direction, and Rsm is the average spacing Rsm between the projections and depressions Is set to Rsm (90 °) (both are the average of n = 3), the average value is Rsm (average), and Rsm (average) is Rsm (average) = {Rsm (0 °) + Rsm (45 °) Calculated by the equation + Rsm (90 °)} / 3. Further, the ratio of Rsm (0 °), Rsm (45 °) and Rsm (90 °) to Rsm (average), that is, Rsm (0 °) / Rsm (average), Rsm (45 °) / Rsm (average) And Rsm (90 °) / Rsm (average) was calculated as a percentage.
The above measurement results and calculation results are shown in Tables 1-3.

また、前記通常圧延材、研磨材及びダル圧延材からそれぞれ試料を採取し、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の3方向について、各方向に付き3カ所(n=3)、それぞれ表裏両面の45°鏡面光沢度を測定した。この測定は、スガ試験機株式会社製のデジタル変角光沢計を用い、JISZ8741の方法4により行った。
圧延方向に平行方向の鏡面光沢度GsをGs(0°)、圧延方向に対し45°方向の鏡面光沢度GsをGs(45°)、圧延方向に対し垂直方向の鏡面光沢度GsをGs(90°)とし(いずれもn=3の平均)、それらの平均値をGs(平均)とし、Gs(平均)を、Gs(平均)={Gs(0°)+Gs(45°)+Gs(90°)}/3として算出した。また、Gs(0°)、Gs(45°)及びGs(90°)のGs(平均)に対する割合、すなわち、Gs(0°)/Gs(平均)、Gs(45°)/Gs(平均)及びGs(90°)/Gs(平均)を百分率で算出した。
以上の測定結果及び算出結果を表1〜3に示す。
Samples were taken from each of the normal rolled material, abrasive material, and dull rolled material, and each of the three directions, parallel to the rolling direction, 45 ° to the rolling direction and three directions perpendicular to the rolling direction, was attached to each direction. At 45 locations (n = 3), the 45 ° specular glossiness of both front and back surfaces was measured. This measurement was performed by the method 4 of JISZ8741 using a digital variable angle gloss meter manufactured by Suga Test Instruments Co., Ltd.
The mirror glossiness Gs in the direction parallel to the rolling direction is Gs (0 °), the mirror glossiness Gs in the 45 ° direction with respect to the rolling direction is Gs (45 °), and the mirror glossiness Gs in the direction perpendicular to the rolling direction is Gs ( 90 °) (both average of n = 3), the average value thereof is Gs (average), and Gs (average) is Gs (average) = {Gs (0 °) + Gs (45 °) + Gs (90 °)} / 3. Further, the ratio of Gs (0 °), Gs (45 °) and Gs (90 °) to Gs (average), that is, Gs (0 °) / Gs (average), Gs (45 °) / Gs (average) Gs (90 °) / Gs (average) was calculated as a percentage.
The above measurement results and calculation results are shown in Tables 1-3.

Figure 0005204518
Figure 0005204518

Figure 0005204518
Figure 0005204518

Figure 0005204518
Figure 0005204518

表1〜3に示すように、各合金系のダル圧延材は、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の全てにおいて、表裏の粗化表面の算術平均粗さRa、最大高さ粗さRz、凹凸の平均間隔Rsm(平均)、及び前記3方向の各RsmのRsm(平均)に対する割合が、全て本発明の規定範囲内である。
一方、各合金系の通常圧延材及び研磨材は、前記3方向における算術平均粗さRa、最大高さ粗さRz、凹凸の平均間隔Rsm(平均)、又は前記3方向の各RsmのRsm(平均)に対する割合のいずれか又は全部が本発明の規定を満たしていない。
なお、表1〜3に示すように、ダル圧延材は、通常圧延材及び研磨材に比べ、算術平均粗さRa及び最大高さ粗さRzが際だって大きい。また、凹凸の平均間隔Rsmの異方性が少ない。
図1〜図3に、SPKFC−3の通常圧延材(図1)、研磨材(図2)及びダル圧延材(図3)の、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の断面曲線の例を示す。ダル圧延材の断面曲線が通常圧延材や研磨材のものとは全く異なることが理解できる。
As shown in Tables 1-3, each alloy-based dull rolled material has an arithmetic average of rough surfaces on the front and back surfaces in all directions parallel to the rolling direction, 45 ° to the rolling direction, and perpendicular to the rolling direction. The roughness Ra, the maximum height roughness Rz, the average interval Rsm (average) of the irregularities, and the ratio of each Rsm in the three directions to Rsm (average) are all within the specified range of the present invention.
On the other hand, the normal rolled material and the abrasive of each alloy system include the arithmetic average roughness Ra, the maximum height roughness Rz, the average interval Rsm (average) of the unevenness in the three directions, or the Rsm of each Rsm in the three directions ( Any or all of the ratios to (average) do not meet the provisions of the present invention.
As shown in Tables 1 to 3, the dull rolled material has an extremely large arithmetic average roughness Ra and maximum height roughness Rz compared to the normal rolled material and the abrasive. Further, the anisotropy of the average interval Rsm of the unevenness is small.
1-3, SPKFC-3 normal rolled material (FIG. 1), abrasive material (FIG. 2) and dull rolled material (FIG. 3) parallel to the rolling direction, 45 ° direction relative to the rolling direction and rolled An example of a cross-sectional curve perpendicular to the direction is shown. It can be understood that the cross-sectional curve of the dull rolled material is completely different from that of the normal rolled material or abrasive.

また、表1〜3に示すように、各合金系のダル圧延材は、45°鏡面光沢度Gs(平均)、及び前記3方向の各GsのGs(平均)に対する割合が、本発明の規定範囲内である。
一方、各合金系の通常圧延材及び研磨材は、45°鏡面光沢度Gs(平均)、及び前記3方向の各GsのGs(平均)に対する割合のいずれかが、本発明の規定範囲外である。具体的にいえば、SPKFC−3は、45°鏡面の光沢度Gsの異方性は少ないが、45°鏡面の光沢度Gs(平均)の値が本発明の規定を満たさず、CAC5は、45°鏡面の光沢度Gs(平均)の値は本発明の規定を満たすが、45°鏡面の光沢度Gsの異方性が大きく、70Bは、45°鏡面の光沢度Gs(平均)の値が本発明の規定を満たさず、45°鏡面の光沢度Gsの異方性も大きい。
Further, as shown in Tables 1 to 3, each alloy-based dull rolled material has a 45 ° specular gloss Gs (average) and a ratio of each Gs in the three directions to Gs (average) as defined in the present invention. Within range.
On the other hand, the normal rolled material and the abrasive of each alloy system are either 45 ° specular gloss Gs (average) or the ratio of each Gs in the three directions to Gs (average) is outside the specified range of the present invention. is there. Specifically, SPKFC-3 has little anisotropy of glossiness Gs of 45 ° specular surface, but the value of glossiness Gs (average) of 45 ° specular surface does not satisfy the definition of the present invention, and CAC5 is The 45 ° specular glossiness Gs (average) satisfies the provisions of the present invention, but the 45 ° specular glossiness Gs has a large anisotropy, and 70B is the 45 ° specular glossiness Gs (average) value. However, it does not satisfy the provisions of the present invention, and the anisotropy of the glossiness Gs of the 45 ° mirror surface is large.

表1〜3に示す各合金系のダル圧延材、通常圧延材及び研磨材について、実際の半導体組み立て工程に用いたところ、通常圧延材及び研磨材は、光反射検出器による検出位置決め工程において、光反射型検出器による検出ミス及び位置決めミスが発生したが、ダル圧延材を用いた場合、光反射型検出器による検出ミス及び位置決めミスを防ぐことができた。   For each alloy-based dull rolled material, normal rolled material and abrasive shown in Tables 1 to 3, when used in the actual semiconductor assembly process, the normal rolled material and abrasive are in the detection positioning step by the light reflection detector, Although a detection error and a positioning error by the light reflection type detector occurred, when a dull rolled material was used, a detection error and a positioning error by the light reflection type detector could be prevented.

実施例で得られたSPKFC−3の通常圧延材の断面曲線である。It is a cross-sectional curve of the normal rolling material of SPKFC-3 obtained in the Example. 同じく研磨材の断面曲線である。Similarly, the cross-sectional curve of the abrasive. 同じくダル圧延材の断面曲線である。Similarly, it is a cross-sectional curve of a dull rolled material.

Claims (1)

ダルロールを用いて圧延された粗化表面を片面又は両面に有し、前記粗化表面の算術平均粗さRaが、圧延方向に平行方向、圧延方向に対し45°方向及び圧延方向に対し垂直方向の全てで0.4〜0.7μm、最大高さ粗さRzが、前記3方向の全てで2〜5μm、さらに凹凸の平均間隔Rsmが、前記3方向の平均値で130〜167μm、かつ前記3方向の全てで前記平均値の±30%未満であることを特徴とし、光反射型検出器の被検出物体とされる反射異方性の少ない電子部品用銅合金板。 A roughened surface rolled using a dull roll is provided on one side or both sides, and the arithmetic average roughness Ra of the roughened surface is parallel to the rolling direction, 45 ° to the rolling direction, and perpendicular to the rolling direction. 0.4 to 0.7 μm in all, the maximum height roughness Rz is 2 to 5 μm in all the three directions, and the average interval Rsm of the unevenness is 130 to 167 μm in average in the three directions, and A copper alloy plate for electronic parts having a small reflection anisotropy, which is a detected object of a light reflection type detector, being less than ± 30% of the average value in all three directions.
JP2008074202A 2008-03-21 2008-03-21 Copper alloy sheet for electronic parts with low reflection anisotropy Expired - Fee Related JP5204518B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008074202A JP5204518B2 (en) 2008-03-21 2008-03-21 Copper alloy sheet for electronic parts with low reflection anisotropy

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008074202A JP5204518B2 (en) 2008-03-21 2008-03-21 Copper alloy sheet for electronic parts with low reflection anisotropy

Publications (2)

Publication Number Publication Date
JP2009226435A JP2009226435A (en) 2009-10-08
JP5204518B2 true JP5204518B2 (en) 2013-06-05

Family

ID=41242473

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008074202A Expired - Fee Related JP5204518B2 (en) 2008-03-21 2008-03-21 Copper alloy sheet for electronic parts with low reflection anisotropy

Country Status (1)

Country Link
JP (1) JP5204518B2 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593988A (en) * 2017-10-03 2019-04-09 Jx金属株式会社 Cu-Ni-Sn series copper alloy foil, the camera model for stretching copper product, electronic equipment part and auto-focusing

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5676401B2 (en) * 2011-09-21 2015-02-25 Jx日鉱日石金属株式会社 Copper foil for flexible printed wiring boards
JP6623108B2 (en) * 2016-03-31 2019-12-18 古河電気工業株式会社 Lead frame material and manufacturing method thereof
WO2023195267A1 (en) * 2022-04-04 2023-10-12 古河電気工業株式会社 Lead frame material, method for producing same, and semiconductor package using lead frame material

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61115605A (en) * 1984-11-10 1986-06-03 Kobe Steel Ltd Copper and copper alloy plate for deep drawing
JP2563118B2 (en) * 1987-12-26 1996-12-11 日鉱金属株式会社 Copper or copper alloy material for flexible printed circuit board and manufacturing method thereof
JPH06269803A (en) * 1993-03-23 1994-09-27 Nippon Steel Corp Steel sheet excellent in image clarity of coating and press-workability
JPH08269742A (en) * 1995-03-30 1996-10-15 Nikko Kinzoku Kk Cold rolled metallic material for precision etching and its production
JPH09148620A (en) * 1995-09-20 1997-06-06 Sharp Corp Light reflecting type detector and manufacture thereof
JPH09308902A (en) * 1996-05-17 1997-12-02 Kawasaki Steel Corp Steel sheet for can having isotropic bright color tone

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109593988A (en) * 2017-10-03 2019-04-09 Jx金属株式会社 Cu-Ni-Sn series copper alloy foil, the camera model for stretching copper product, electronic equipment part and auto-focusing

Also Published As

Publication number Publication date
JP2009226435A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5204518B2 (en) Copper alloy sheet for electronic parts with low reflection anisotropy
US7471383B2 (en) Method of automated quantitative analysis of distortion in shaped vehicle glass by reflected optical imaging
US10267747B2 (en) Surface defect inspecting device and method for steel sheets
JP6027295B1 (en) Surface defect inspection apparatus and surface defect inspection method for hot dip galvanized steel sheet
JP5104004B2 (en) Surface defect inspection apparatus and surface defect inspection method
CN102859347A (en) Method for analysing the quality of a glass panel
JP2007180874A5 (en)
CN115100203A (en) Steel bar polishing and rust removing quality detection method
US7853429B2 (en) Curvature-based edge bump quantification
US9010614B2 (en) Welding target position measurement device
CN116993742B (en) Nickel alloy rolling defect detection method based on machine vision
CN109690237A (en) Method for controlling the consistency of the profile of the curved surface of turbine element
JP2018128436A (en) Surface roughness determination device and determination method
JP6822494B2 (en) Defect inspection equipment and defect inspection method for steel sheets
EP2311583A3 (en) Method for measuring the thickness of a workpiece with a bending machine and such bending machine
JP2018065190A (en) Steel plate shape correction device, correction method, and continuous acid cleaning device for steel plate
US20160110860A1 (en) Method and device for determining a three-dimensional distortion
KR100723215B1 (en) Apparatus and method for measuring warp and camber of rolled material
JP2017110949A (en) Film checkup method, and film checkup device
JP6140429B2 (en) Copper foil surface state evaluation apparatus, copper foil surface state evaluation program, computer-readable recording medium having the program recorded thereon, and copper foil surface state evaluation method
JPH07306161A (en) Method for detecting segregation of metallic material
WO2024190031A1 (en) Method for measuring shape of belt-like object, method for controlling shape of belt-like object, method for manufacturing belt-like object, method for controlling quality of belt-like object, device for measuring shape of belt-like object, and equipment for manufacturing belt-like object
CN118549467B (en) Automatic product quality detection system based on industrial vision
JP6286643B2 (en) Machining condition setting method to reduce machining error
KR101030857B1 (en) Method of measuring plate flatness

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110204

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121012

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130215

R150 Certificate of patent or registration of utility model

Ref document number: 5204518

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees