JP5202250B2 - Film forming apparatus and film forming method - Google Patents

Film forming apparatus and film forming method Download PDF

Info

Publication number
JP5202250B2
JP5202250B2 JP2008301516A JP2008301516A JP5202250B2 JP 5202250 B2 JP5202250 B2 JP 5202250B2 JP 2008301516 A JP2008301516 A JP 2008301516A JP 2008301516 A JP2008301516 A JP 2008301516A JP 5202250 B2 JP5202250 B2 JP 5202250B2
Authority
JP
Japan
Prior art keywords
film
chamber
forming
film forming
sides
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008301516A
Other languages
Japanese (ja)
Other versions
JP2010126756A (en
Inventor
栄一 飯島
倉内  利春
宗人 箱守
雅斗 中塚
佳樹 磯
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Ulvac Inc
Original Assignee
Ulvac Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Ulvac Inc filed Critical Ulvac Inc
Priority to JP2008301516A priority Critical patent/JP5202250B2/en
Publication of JP2010126756A publication Critical patent/JP2010126756A/en
Application granted granted Critical
Publication of JP5202250B2 publication Critical patent/JP5202250B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は化合物膜を成膜する技術にかかり、特にプラズマディスプレイパネルの保護膜に適したMgO膜等を成膜する成膜装置と、その成膜方法に関する。   The present invention relates to a technique for forming a compound film, and more particularly to a film forming apparatus for forming an MgO film suitable for a protective film of a plasma display panel and a film forming method therefor.

従来より、プラズマディスプレイパネルに用いられるガラス基板には、保護膜としてMgO等の金属酸化膜が形成されている。
真空槽内に酸素ガスを導入しておき、真空槽内にMgOの蒸発源を配置してMgOの蒸気を放出させ、ガラス基板を搬入し、このガラス基板を移動させながら、ガラス基板表面にMgO膜の成膜を行っている。
特開2004-055180号公報
Conventionally, a metal oxide film such as MgO is formed as a protective film on a glass substrate used in a plasma display panel.
An oxygen gas is introduced into the vacuum chamber, an MgO evaporation source is arranged in the vacuum chamber to release MgO vapor, a glass substrate is carried in, and the glass substrate is moved while MgO is moved to the glass substrate surface. A film is formed.
JP 2004-055180 A

しかしながら、ガラス基板上に成膜されたMgO膜は、ガラス基板が搬送機構によって移動される方向(搬送方向)と平行である両側辺の(111)結晶配向強度が低く、また、膜密度にもばらつきが生じ、分布が悪いことがわかった。   However, the MgO film formed on the glass substrate has low (111) crystal orientation strength on both sides parallel to the direction in which the glass substrate is moved by the transport mechanism (transport direction), and the film density is also low. Variations occurred and the distribution was poor.

上記課題を解決するために本発明は、成膜室と、前記成膜室に接続され、内部が開口で連通した成膜材料室と、前記成膜材料室内に配置された蒸発源と、前記成膜室内に反応ガスを導入する反応ガス導入系とを有し、前記蒸発源から放出された蒸気を前記開口から前記成膜室内に侵入させ、矩形の成膜対象物の一辺を先頭にして前記成膜室内で前記開口と対面しながら移動させ、前記成膜対象物表面に化合物膜を形成する成膜装置であって、前記成膜室内には、前記成膜対象物を加熱する成膜室内ヒーターが設けられ、前記成膜室内ヒーターは、前記開口と対面している前記成膜対象物の四辺のうち、前記先頭の一辺と直角な二辺よりも、前記二で挟まれた中央を高温に加熱する成膜装置である。
また、本発明は、真空バルブを介して前記成膜室に接続された加熱室を有し、前記真空バルブを開けて、前記加熱室から前記成膜室に前記成膜対象物が移動されるように構成された成膜装置であって、前記加熱室内には、前記成膜対象物を加熱する加熱室内ヒーターが設けられ、前記加熱室内ヒーターは、前記成膜対象物の前記二側辺よりも、前記二側辺で挟まれた中央を高温に加熱するように構成された成膜装置である。
また、本発明は成膜装置であって、前記蒸発源は、MgO蒸気を放出するように構成され、前記反応ガスには酸素ガスが含まれる成膜装置である。
また、本発明は、真空槽内部に反応ガスを導入し、蒸発源から放出した成膜材料蒸気を開口から前記真空槽内部に侵入させ、矩形の成膜対象物の一辺を先頭にして前記真空槽内部を移動させ、前記成膜対象物表面に前記成膜材料蒸気を到達させて化合物膜を形成する成膜方法であって、前記開口と対面している前記成膜対象物の四辺のうち、前記先頭の一辺と直角な二辺よりも、前記二で挟まれた中央を高温に加熱しながら前記成膜材料蒸気を到達させて成膜する成膜方法である。
また、本発明は成膜方法であって、前記成膜対象物に前記成膜材料蒸気が到達する前に、予め、前記成膜対象物の四辺のうち、前記二側辺よりも、前記二側辺で挟まれた中央を高温に加熱する成膜方法である。
また、本発明は成膜方法であって、前記蒸発源からMgO蒸気を放出させ、酸素ガスが含まれた前記反応ガスを用いる成膜方法である。
In order to solve the above problems, the present invention provides a film forming chamber, a film forming material chamber connected to the film forming chamber and communicated with the inside through an opening, an evaporation source disposed in the film forming material chamber, A reaction gas introduction system for introducing a reaction gas into the film formation chamber, allowing vapor released from the evaporation source to enter the film formation chamber through the opening , with one side of the rectangular film formation target as the head A film forming apparatus that moves while facing the opening in the film forming chamber and forms a compound film on the surface of the film forming object, wherein the film forming object heats the film forming object in the film forming chamber. room heater is provided, the deposition chamber heater, among four sides of the film-forming target that faces the opening, than the top of one side perpendicular double sides, sandwiched between the two sides This is a film forming apparatus for heating the center to a high temperature.
The present invention further includes a heating chamber connected to the film formation chamber via a vacuum valve, and the film formation target is moved from the heating chamber to the film formation chamber by opening the vacuum valve. In the film forming apparatus configured as described above, a heating chamber heater for heating the film forming object is provided in the heating chamber, and the heating chamber heater is provided from the two sides of the film forming object. Is a film forming apparatus configured to heat the center sandwiched between the two sides to a high temperature.
Further, the present invention is a film forming apparatus, wherein the evaporation source is configured to release MgO vapor, and the reactive gas includes oxygen gas.
Further, the present invention introduces a reactive gas into the vacuum chamber, allows film forming material vapor released from an evaporation source to enter the vacuum chamber through an opening , and makes the vacuum with one side of a rectangular film-forming target at the top. moving the internal vessel, the a film forming method for forming a compound film allowed to reach the film-forming material vapor deposition target surface, among four sides of the film-forming target that facing the opening , than the top of one side perpendicular double sides, is a film forming method for forming a central sandwiched between the two sides allowed to reach the film forming material vapor while heating to a high temperature.
Further, the present invention is a film formation method, before the film-forming material vapor on the film-forming target is reached in advance, out of four sides of the film-forming target, than before Symbol two sides, the In this film forming method, the center sandwiched between two sides is heated to a high temperature.
In addition, the present invention is a film forming method that releases MgO vapor from the evaporation source and uses the reaction gas containing oxygen gas.

成膜対象物の先頭の一辺と直角な二辺の縁部分よりも、前記二辺の中央を高温に加熱し、また、成膜対象物の前記二辺の縁部分に中央部より多くの反応ガスを吹き付けながら成膜を行うことで、(111)結晶配向強度が向上し、MgO膜の(111)結晶配向強度の差が小さくなることで分布のばらつきが減り、さらに、MgOの膜密度分布も改善された。   The center of the two sides is heated to a higher temperature than the edge part of two sides perpendicular to the first side of the film formation target, and more reaction to the edge part of the two sides of the film formation target than the center part. By performing the film formation while blowing the gas, the (111) crystal orientation strength is improved, the difference in the (111) crystal orientation strength of the MgO film is reduced, and the dispersion in distribution is reduced. Further, the film density distribution of MgO Was also improved.

以下、本発明の実施の形態を図に基づいて説明する。図1は本発明の実施形態におけるパネル製造装置(成膜装置)の概略構成図である。
このパネル製造装置1は、搬入室11と、加熱室12と、プロセス室13と、冷却室15と、搬出室16とを有している。
搬入室11と、加熱室12と、プロセス室13と、冷却室15と、搬出室16とは、真空バルブ18を介して、この順序で連結されており、内部には搬送機構が設けられている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings. FIG. 1 is a schematic configuration diagram of a panel manufacturing apparatus (film forming apparatus) according to an embodiment of the present invention.
The panel manufacturing apparatus 1 includes a carry-in chamber 11, a heating chamber 12, a process chamber 13, a cooling chamber 15, and a carry-out chamber 16.
The carry-in chamber 11, the heating chamber 12, the process chamber 13, the cooling chamber 15, and the carry-out chamber 16 are connected in this order via a vacuum valve 18, and a transfer mechanism is provided inside. Yes.

ここで、本発明の加熱室12及びプロセス室13の構造を図2と図3に示す。
図2に示すとおり、加熱室12とプロセス室13はそれぞれ真空槽21で構成されている。プロセス室13は、成膜室22と成膜材料室23とを有している。
成膜室22は、細長い形状をしており、一端と他端には真空バルブ18による入口と出口がある。成膜材料室23は成膜室22の下方に位置していて、成膜材料室23の天井と成膜室22の底面は接続されている。
Here, the structure of the heating chamber 12 and the process chamber 13 of this invention is shown in FIG. 2 and FIG.
As shown in FIG. 2, the heating chamber 12 and the process chamber 13 are each composed of a vacuum chamber 21. The process chamber 13 has a film forming chamber 22 and a film forming material chamber 23.
The film forming chamber 22 has an elongated shape, and has an inlet and an outlet by a vacuum valve 18 at one end and the other end. The film forming material chamber 23 is located below the film forming chamber 22, and the ceiling of the film forming material chamber 23 and the bottom surface of the film forming chamber 22 are connected.

成膜材料室23内の底面上で、成膜材料室23と成膜室22とが接続された部分の真下位置には、MgO蒸発源31が配置されている。MgO蒸発源31は坩堝を有しており、この坩堝の内部には粒状のMgOが配置されている。
成膜材料室23には電子銃32が設けられている。電子銃32を動作させると、坩堝内のMgOに電子線が照射され、MgOの蒸気が放出されるように構成されている。
On the bottom surface in the film forming material chamber 23, an MgO evaporation source 31 is arranged at a position directly below a portion where the film forming material chamber 23 and the film forming chamber 22 are connected. The MgO evaporation source 31 has a crucible, and granular MgO is disposed inside the crucible.
An electron gun 32 is provided in the film forming material chamber 23. When the electron gun 32 is operated, MgO in the crucible is irradiated with an electron beam and MgO vapor is emitted.

成膜室22と成膜材料室23との接続部分には制限板27が配置されており、制限板27の、MgO蒸発源31の真上位置には開口28が形成されている。したがって、MgO蒸発源31から放出されたMgOの蒸気は、開口28を通って成膜室22内に侵入するようになっている。   A restricting plate 27 is disposed at a connection portion between the film forming chamber 22 and the film forming material chamber 23, and an opening 28 is formed in the restricting plate 27 at a position directly above the MgO evaporation source 31. Accordingly, the vapor of MgO released from the MgO evaporation source 31 enters the film forming chamber 22 through the opening 28.

成膜室22には搬送機構29が設けられており、搬送機構29には保持手段30が取り付けられている。保持手段30により保持された処理対象物であるガラス基板10は、開口28の真上位置を通り、開口28と対面しながら、入口から出口に向かって移動されるように構成されている。
プロセス室13は、2つのガス噴出管を有している。
The film forming chamber 22 is provided with a transport mechanism 29, and a holding unit 30 is attached to the transport mechanism 29. The glass substrate 10, which is a processing object held by the holding means 30, is configured to move from the inlet toward the outlet while passing through the position directly above the opening 28 and facing the opening 28.
The process chamber 13 has two gas ejection pipes.

図2及び図3の符号33a、33bは、それぞれガス噴出管を示している。
各ガス噴出管33a、33bは、成膜室22内の搬送機構29よりも成膜材料室23側に設けられている。また、各ガス噴出管33a、33bは開口28よりも外側、かつ、搬送機構29によるガラス基板10の搬送経路上で、開口28の上流側の端部よりも上流側と、下流側の端部よりも下流側にそれぞれ配置されており、開口28から放出されるMgOの蒸気が成膜室22内部に侵入するのを妨げないようになっている。
Reference numerals 33a and 33b in FIGS. 2 and 3 denote gas ejection pipes, respectively.
The gas ejection pipes 33 a and 33 b are provided closer to the film forming material chamber 23 than the transport mechanism 29 in the film forming chamber 22. Further, the gas ejection pipes 33a and 33b are located outside the opening 28 and on the upstream side and the downstream side of the upstream end of the opening 28 on the transport path of the glass substrate 10 by the transport mechanism 29. Further, they are arranged on the downstream side, so that the vapor of MgO released from the opening 28 is not prevented from entering the film forming chamber 22.

各ガス噴出管33a、33bはパイプ状で、ガラス基板10が搬送機構29によって移動される方向(搬送方向)と垂直な方向に向けられている。
各ガス噴出管33a、33bは反応ガス導入系35に接続されており、また、各ガス噴出管33a、33bには、ここでは、搬送方向と垂直な方向に複数のガス噴出孔34が列設されている。反応ガス導入系35から各ガス噴出管33a、33bに導入された反応ガスは、ガス噴出孔34より噴出されるように構成されている。
Each gas ejection pipe 33a, 33b is pipe-shaped and is directed in a direction perpendicular to the direction (conveyance direction) in which the glass substrate 10 is moved by the conveyance mechanism 29.
The gas ejection pipes 33a and 33b are connected to the reaction gas introduction system 35, and the gas ejection pipes 33a and 33b are each provided here with a plurality of gas ejection holes 34 arranged in a direction perpendicular to the transport direction. Has been. The reaction gas introduced from the reaction gas introduction system 35 into the gas ejection pipes 33 a and 33 b is configured to be ejected from the gas ejection holes 34.

また、各ガス噴出管33a、33bは、搬送機構29によって移動されるガラス基板10と開口28との間に位置しており、各ガス噴出孔34は、移動されるガラス基板10と対面するように構成されている。各ガス噴出孔34より噴出された反応ガスは、移動されるガラス基板10に吹き付けられる。   Each gas ejection pipe 33a, 33b is positioned between the glass substrate 10 moved by the transport mechanism 29 and the opening 28, and each gas ejection hole 34 faces the glass substrate 10 to be moved. It is configured. The reaction gas ejected from each gas ejection hole 34 is blown to the glass substrate 10 to be moved.

ここで、ガラス基板10は四角形状であり、その四辺のうち、二辺は搬送方向と平行、かつ、二辺は搬送方向と垂直に向けられている。搬送方向と平行となる二辺を側辺としたとき、ガラス基板10の両側辺の縁部分には中央部に対し相対的に多くの反応ガスを吹き付けられるように設定されている。また、開口28はガラス基板10よりも大きく構成されている。   Here, the glass substrate 10 has a quadrangular shape, and among the four sides, two sides are parallel to the transport direction and two sides are oriented perpendicular to the transport direction. When the two sides parallel to the transport direction are defined as the sides, the edge portions on both sides of the glass substrate 10 are set so that a relatively large amount of reaction gas can be sprayed onto the central portion. The opening 28 is configured to be larger than the glass substrate 10.

よって、ガラス基板10が開口28と対面している間、ガラス基板10の両側辺の縁部分に、より多くの反応ガスを吹き付けることで、ガラス基板10の両側辺の縁部分にはMgOの蒸気と中央部よりも多くの反応ガスが到達し、他方、ガラス基板10の中央部は反応ガス雰囲気の中、MgOの蒸気が到達する。よって、ガラス基板10の両側辺の縁部分で、MgOの結晶性が改善される。   Therefore, while the glass substrate 10 is facing the opening 28, more reactive gas is blown onto the edge portions on both sides of the glass substrate 10, so that the MgO vapor is applied to the edge portions on both sides of the glass substrate 10. More reactive gas than the central portion reaches, while the central portion of the glass substrate 10 reaches MgO vapor in the reactive gas atmosphere. Therefore, the crystallinity of MgO is improved at the edge portions on both sides of the glass substrate 10.

加熱室12と、プロセス室13内の、搬送機構29によって移動されるガラス基板10の裏面側には、ヒーター36が設けられており、ヒーター36は、複数の細長ヒーター36aを有している。ここでは、各細長ヒーター36aが搬送方向と平行な方向に向けられており、搬送方向と直交する方向に並べられている。   A heater 36 is provided on the back side of the glass substrate 10 that is moved by the transport mechanism 29 in the heating chamber 12 and the process chamber 13, and the heater 36 has a plurality of elongated heaters 36 a. Here, the elongated heaters 36a are oriented in a direction parallel to the transport direction, and are arranged in a direction orthogonal to the transport direction.

また、細長ヒーター36aの長手方向の長さは、開口28と同じかそれより大きくされており、両端の細長ヒーター36aは、移動するガラス基板10より外側に位置するよう配置されている。
また、加熱室12のヒーター36には、図示しないが、ガラス基板10を静止させて加熱し、温度分布を制御するために補助ヒーターを設置している。
The length of the elongated heater 36a in the longitudinal direction is the same as or larger than that of the opening 28, and the elongated heaters 36a at both ends are arranged outside the moving glass substrate 10.
Moreover, although not shown in figure, the heater 36 of the heating chamber 12 is provided with an auxiliary heater in order to heat and heat the glass substrate 10 and control the temperature distribution.

各細長ヒーター36aは均一な温度分布となっており、搬送方向と直交する方向の両端部の細長ヒーター36aは、中央部の細長ヒーター36aに比べて相対的に低い温度となるよう設定されている。したがって、ガラス基板10の両側辺部の温度が中央部の温度に対して相対的に低くなるように、温度差をつけてガラス基板10を加熱するようになっている。   Each elongate heater 36a has a uniform temperature distribution, and the elongate heaters 36a at both ends in the direction orthogonal to the transport direction are set to have a relatively lower temperature than the elongate heater 36a at the center. . Therefore, the glass substrate 10 is heated with a temperature difference so that the temperature of both side portions of the glass substrate 10 is relatively lower than the temperature of the central portion.

このパネル製造装置1を用いてMgO膜を形成する工程について説明する。
パネル製造装置1の各室11〜13、15、16は真空排気系19に接続されており、この真空排気系19を作動させ、搬入室11を除いた各室12、13、15、16の排気を行い、内部を真空雰囲気にしておく。また、加熱室12及びプロセス室13内のヒーター36を、所定温度に昇温させておく。
保持手段30にガラス基板10を取り付けて、搬入室11に搬入した後、搬入室11内を所定圧力まで真空排気する。
A process of forming the MgO film using the panel manufacturing apparatus 1 will be described.
The chambers 11 to 13, 15, and 16 of the panel manufacturing apparatus 1 are connected to an evacuation system 19. The evacuation system 19 is operated and the chambers 12, 13, 15, and 16 other than the carry-in chamber 11 are operated. Evacuate and leave a vacuum atmosphere inside. Further, the heaters 36 in the heating chamber 12 and the process chamber 13 are heated to a predetermined temperature.
After the glass substrate 10 is attached to the holding means 30 and carried into the carry-in chamber 11, the inside of the carry-in chamber 11 is evacuated to a predetermined pressure.

次に、真空バルブ18を開き、ガラス基板10を保持した状態の保持手段30を搬送機構29によって加熱室12内に移動させる。
加熱室12内に移動されたガラス基板10は静止され、ガラス基板10の両側辺の温度が中央部の温度に対して相対的に低くなるように、温度差をつけてガラス基板10の加熱を行い、内部の昇温を行う。
Next, the vacuum valve 18 is opened, and the holding means 30 holding the glass substrate 10 is moved into the heating chamber 12 by the transport mechanism 29.
The glass substrate 10 moved into the heating chamber 12 is stopped, and the glass substrate 10 is heated with a temperature difference so that the temperature on both sides of the glass substrate 10 is relatively lower than the temperature of the central portion. And raise the temperature inside.

ガラス基板10の内部が所定温度に到達した後、真空バルブ18を開き、ガラス基板10を保持した状態の保持手段30を搬送機構29によってプロセス室13に移動させる。
また、反応ガス導入系35より各ガス噴出管33a、33bに酸素及び水(H2O)の反応ガスを導入し、ガス噴出孔34から反応ガスを噴出させ、成膜室22及び成膜材料室23内部を反応ガスの雰囲気にしておく。
After the inside of the glass substrate 10 reaches a predetermined temperature, the vacuum valve 18 is opened, and the holding means 30 holding the glass substrate 10 is moved to the process chamber 13 by the transport mechanism 29.
In addition, a reaction gas of oxygen and water (H 2 O) is introduced from the reaction gas introduction system 35 into the gas ejection pipes 33a and 33b, and the reaction gas is ejected from the gas ejection holes 34, thereby forming the film forming chamber 22 and the film forming material. The inside of the chamber 23 is kept in an atmosphere of reaction gas.

所定温度に昇温されたガラス基板10を、搬送機構29によって成膜室22内部に移動させ、MgO蒸発源31の上方位置へ移動させる間、ヒーター36でガラス基板10の加熱を行う。
MgO蒸発源31からはMgOの蒸気を放出させる。
成膜室22内に搬入されたガラス基板10は、搬送機構29によって移動され、開口28と対面するようになっている。
While the glass substrate 10 heated to a predetermined temperature is moved into the film forming chamber 22 by the transport mechanism 29 and moved to a position above the MgO evaporation source 31, the glass substrate 10 is heated by the heater 36.
MgO vapor is released from the MgO evaporation source 31.
The glass substrate 10 carried into the film forming chamber 22 is moved by the transport mechanism 29 so as to face the opening 28.

ガラス基板10と開口28とが対面している間、ガラス基板10にはガス噴出孔34から噴出された反応ガスが吹き付けられ、また、MgO蒸発源31より放出され開口28より成膜室22内に侵入したMgOの蒸気は、ガラス基板10の表面に到達し、ガラス基板10の表面にMgO膜が成膜される。ガラス基板10は移動しながら開口28と対面し、MgOの蒸気はガラス基板10の全面に到達する。このとき、ガラス基板10は、ヒーター36によってガラス基板10の両側辺部の温度が中央部の温度に対して相対的に低くなるように、温度差をつけた状態で加熱される。このプロセス室13においてMgO膜の成膜を行った結果、ガラス基板10に形成されたMgO膜の(111)結晶配向強度の平均値は高くなり、さらに、(111)結晶配向の強度分布及び膜密度分布が従来よりも改善された。   While the glass substrate 10 and the opening 28 are facing each other, the reaction gas ejected from the gas ejection hole 34 is blown onto the glass substrate 10, and is also discharged from the MgO evaporation source 31 and from the opening 28 into the film forming chamber 22. The MgO vapor that has entered the glass reaches the surface of the glass substrate 10, and an MgO film is formed on the surface of the glass substrate 10. The glass substrate 10 faces the opening 28 while moving, and the vapor of MgO reaches the entire surface of the glass substrate 10. At this time, the glass substrate 10 is heated by the heater 36 in a state where a temperature difference is provided so that the temperature of both side portions of the glass substrate 10 is relatively lower than the temperature of the central portion. As a result of forming the MgO film in the process chamber 13, the average value of the (111) crystal orientation strength of the MgO film formed on the glass substrate 10 is increased, and the strength distribution and film of the (111) crystal orientation are further increased. The density distribution was improved compared to the conventional one.

ガラス基板10の表面に所定膜厚のMgO膜が形成されると、ガラス基板10は、搬送機構29によって冷却室15に移動され、冷却された後、搬出室16に移動される。
ガラス基板10が搬出室16内に搬入されると、冷却室15との間の真空バルブ18を閉じ、搬出室16の排気を停止し、大気を導入して内部を大気雰囲気とする。その後、搬出室16から大気中に取り出すと、MgO膜を形成されたガラス基板10を得ることができる。
When the MgO film having a predetermined thickness is formed on the surface of the glass substrate 10, the glass substrate 10 is moved to the cooling chamber 15 by the transport mechanism 29, cooled, and then moved to the carry-out chamber 16.
When the glass substrate 10 is carried into the carry-out chamber 16, the vacuum valve 18 between the cooling chamber 15 is closed, the exhaust of the carry-out chamber 16 is stopped, and the atmosphere is introduced to make the inside an atmospheric atmosphere. Then, when it takes out from the carrying-out chamber 16 in air | atmosphere, the glass substrate 10 in which the MgO film | membrane was formed can be obtained.

なお、ガラス基板10に吹き付けられる反応ガスについて、酸素及び水(H2O)を各ガス噴出管33a、33bに導入しガス噴出孔34から噴出させるようにしたが、ガス噴出管を制限板27の下部にも設けて、制限板27の上部のガス噴出管と制限板27の下部のガス噴出管とで、一方からは酸素を導入し、他方からは水を導入するようにしてもよい。 As for the reaction gas blown to the glass substrate 10, oxygen and water (H 2 O) of each gas jet pipe 33a, is introduced into 33b was to be ejected from the gas ejection holes 34, limits the gas jet pipe plate 27 Further, oxygen may be introduced from one side and water from the other side may be introduced by the gas ejection pipe above the restriction plate 27 and the gas ejection pipe below the restriction plate 27.

また、本実施の形態では、各ガス噴出管33a、33bを搬送方向と直交する方向に設けたが、図4及び図5に示すように搬送方向と平行な方向に2つのガス噴出管33a、33bを設け、ガラス基板10の両側辺の縁部分に反応ガスを吹き付けるようにしてもよいし、ガス噴出管を4つ用いて、搬送方向と直交する方向と搬送方向と平行な方向の両方に配置してもよい。また、各ガス噴出管33a、33bに複数のガス噴出孔34を形成したが、ガラス基板10の両側辺部に反応ガスが吹き付けられればよく、上記実施の形態に限定されるものではない。   Further, in the present embodiment, each gas ejection pipe 33a, 33b is provided in a direction orthogonal to the transport direction, but as shown in FIGS. 4 and 5, two gas ejection pipes 33a, 33b may be provided, and reactive gas may be sprayed to the edge portions on both sides of the glass substrate 10, or four gas ejection pipes may be used in both the direction orthogonal to the transport direction and the direction parallel to the transport direction. You may arrange. Moreover, although the several gas ejection hole 34 was formed in each gas ejection pipe | tube 33a, 33b, the reactive gas should just be sprayed on the both sides of the glass substrate 10, and it is not limited to the said embodiment.

また、加熱室12においてヒーター36を裏面側にのみ設けたが、ガラス基板10の表面側にも併せて設けてもよい。
また、本実施の形態では電子銃32を用いて蒸着を行ったが、イオンプレーティングなどの方法を用いてもよい。
Further, although the heater 36 is provided only on the back side in the heating chamber 12, it may be provided on the front side of the glass substrate 10.
In this embodiment, the electron gun 32 is used for vapor deposition, but a method such as ion plating may be used.

<ガス導入実験>
図2及び図3のプロセス室13を用い、有効膜厚範囲1300mm×1100mmのPDP用ガラス基板にMgO膜を約800nm(8000Å)真空蒸着法により成膜した。
このとき、電子銃32は2台使用して各10kW投入、ダイナミックレートは400nm・m/min(4000Å・m/min)、ガラス基板10の温度は約250℃、成膜室22の圧力は4.0×10-2Paであった。
<Gas introduction experiment>
2 and 3, an MgO film was formed on a glass substrate for PDP having an effective film thickness range of 1300 mm × 1100 mm by a vacuum deposition method of about 800 nm (8000 mm).
At this time, two electron guns 32 are used and charged at 10 kW each, the dynamic rate is 400 nm · m / min (4000 mm · m / min), the temperature of the glass substrate 10 is about 250 ° C., and the pressure in the film forming chamber 22 is 4. 0.0 × 10 −2 Pa.

反応ガスは酸素ガスであり、反応ガス導入系35から酸素を135sccm導入した。ガス噴出孔34の直径は0.5mmとし、15mm間隔で配置した。また、ガラス基板10へ反応ガスを吹き付ける角度は45°とした。
吹き付けられる反応ガスの流量とガラス基板10の位置との関係を図6に示す。横軸は、搬送方向と垂直な方向の、ガラス基板10上の位置を示しており、縦軸は、反応ガスの吹きつけられた量が一番多い地点を1.0としたときの反応ガスの流量比を示している。
The reaction gas was oxygen gas, and 135 sccm of oxygen was introduced from the reaction gas introduction system 35. The diameter of the gas ejection holes 34 was 0.5 mm, and they were arranged at 15 mm intervals. The angle at which the reactive gas was sprayed onto the glass substrate 10 was 45 °.
The relationship between the flow rate of the reactive gas sprayed and the position of the glass substrate 10 is shown in FIG. The horizontal axis indicates the position on the glass substrate 10 in the direction perpendicular to the transport direction, and the vertical axis indicates the reactive gas when the point where the amount of reactive gas blown is the largest is 1.0. The flow rate ratio is shown.

図6に示すとおり、ガラス基板10の両側辺部の方が、中央部に比べて相対的に多くの反応ガスを吹き付けられている。
上記の条件で成膜したMgO膜の(111)結晶配向強度をX線回折により調べた。その(111)結晶配向強度分布を図7に示す。
As shown in FIG. 6, a relatively larger amount of reaction gas is sprayed on both side portions of the glass substrate 10 than on the central portion.
The (111) crystal orientation strength of the MgO film formed under the above conditions was examined by X-ray diffraction. The (111) crystal orientation strength distribution is shown in FIG.

また、上記の条件で成膜したMgO膜の屈折率を測定し、膜密度を求めた。その膜密度分布を図8に示す。
比較例として、上記条件でガラス基板10に反応ガスを吹き付けないようにプロセス室13内に酸素ガスを導入してMgO膜の成膜を行った。これにより成膜されたMgO膜の(111)結晶配向強度分布を図12に、膜密度分布を図13にそれぞれ示す。
Further, the refractive index of the MgO film formed under the above conditions was measured to obtain the film density. The film density distribution is shown in FIG.
As a comparative example, an MgO film was formed by introducing oxygen gas into the process chamber 13 so that no reactive gas was blown onto the glass substrate 10 under the above conditions. FIG. 12 shows the (111) crystal orientation strength distribution of the MgO film thus formed, and FIG. 13 shows the film density distribution.

図7と図12とを比較し、比較例の(111)結晶配向強度分布は2784cps±28.3%であったが、本実施例の(111)結晶配向強度分布は、3484cps±16.3%となり、比較例に比べてMgO膜の(111)結晶配向強度が向上し、なおかつ、ガラス基板10の両側辺部の(111)結晶配向強度が向上したことで、(111)結晶配向強度の差が小さくなり、分布のばらつきが改善された。   7 and FIG. 12, the (111) crystal orientation strength distribution of the comparative example was 2784 cps ± 28.3%, but the (111) crystal orientation strength distribution of this example was 3484 cps ± 16.3. The (111) crystal orientation strength of the MgO film is improved as compared with the comparative example, and the (111) crystal orientation strength of both side portions of the glass substrate 10 is improved. Differences were reduced and distribution variation was improved.

また、図8と図13とを比較し、比較例の膜密度は最も高いところで85.9%、最も低いところで82.3%であり3.6ポイントの差があったが、本実施例の膜密度は最も高いところで82.9%、最も低いところで81.9%となり、差は2.0ポイントに改善できた。   8 and FIG. 13, the film density of the comparative example was 85.9% at the highest and 82.3% at the lowest, which was a difference of 3.6 points. The film density was 82.9% at the highest and 81.9% at the lowest, and the difference was improved to 2.0 points.

<加熱温度差実験>
次に、図2及び図3のプロセス室13を用い、ガラス基板10に反応ガスを吹き付けないようにプロセス室13内に酸素ガスを導入して、かつ、細長ヒーター36aの温度をガラス基板10の位置により変化させてMgO膜の成膜を行った。細長ヒーター36aは11本設けられ、ガラス基板10の温度分布が図9のように、MgO膜成膜中のガラス基板10の両側辺部の温度を200℃とし、最高温度部が250℃となるよう、各細長ヒーター36aの温度設定を行った。
<Heating temperature difference experiment>
Next, using the process chamber 13 of FIGS. 2 and 3, oxygen gas is introduced into the process chamber 13 so that the reaction gas is not blown onto the glass substrate 10, and the temperature of the elongated heater 36 a is set to the temperature of the glass substrate 10. The MgO film was formed by changing the position. Eleven elongated heaters 36a are provided, and the temperature distribution of the glass substrate 10 is 200 ° C. on the both sides of the glass substrate 10 during the MgO film formation, and the maximum temperature portion is 250 ° C. as shown in FIG. As described above, the temperature of each elongated heater 36a was set.

細長ヒーター36aの両側辺部の温度を低く設定すること及び反応ガスをガラス基板10に吹き付けないように導入すること以外の条件は、上記ガス導入実験の条件と同じとした。
上記条件で成膜したMgO膜の(111)結晶配向強度分布を図10に、膜密度分布を図11にそれぞれ示す。
The conditions other than setting the temperature on both sides of the elongated heater 36a low and introducing the reactive gas so as not to blow on the glass substrate 10 were the same as the conditions of the gas introduction experiment.
FIG. 10 shows the (111) crystal orientation strength distribution of the MgO film formed under the above conditions, and FIG. 11 shows the film density distribution.

本実験においても、各細長ヒーター36aを均一に同じ温度とし、かつ、反応ガスをガラス基板10に吹き付けないように導入し、他の条件は本実施例と同じ条件で成膜したMgO膜を比較例として用い、比較する。   Also in this experiment, each of the elongated heaters 36a is uniformly set to the same temperature and introduced so as not to spray the reaction gas onto the glass substrate 10, and other conditions are compared with the MgO film formed under the same conditions as in this embodiment. Use as an example to compare.

図10と図12とを比較し、比較例の(111)結晶配向強度分布は2784cps±28.3%であったが、本実施例の(111)結晶配向強度分布は、3047cps±13.7%となり、比較例に比べてMgO膜の(111)結晶配向強度が向上し、なおかつ、(111)結晶配向強度の差が小さくなり、分布のばらつきが改善された。   10 and FIG. 12, the (111) crystal orientation strength distribution of the comparative example was 2784 cps ± 28.3%, but the (111) crystal orientation strength distribution of this example was 3047 cps ± 13.7. %, The (111) crystal orientation strength of the MgO film was improved as compared with the comparative example, and the difference in (111) crystal orientation strength was reduced, thereby improving the distribution variation.

また、図11と図13を比較し、比較例の膜密度は最も高いところで85.9%、最も低いところで82.3%であり3.6ポイントの差があったが、本実施例の膜密度は最も高いところで84.3%、最も低いところで82.1%となり、差は2.2ポイントに改善できた。   Further, comparing FIG. 11 and FIG. 13, the film density of the comparative example was 85.9% at the highest and 82.3% at the lowest, and there was a difference of 3.6 points. The density was 84.3% at the highest and 82.1% at the lowest, and the difference was improved to 2.2 points.

これらの実験結果から、成膜時のガラス基板10に反応ガスを吹き付けた場合、また、成膜時に加熱を行う両端の細長ヒーター36aの温度を中央部より相対的に低く設定した場合のそれぞれにおいて、比較例に比べガラス基板10上に成膜されたMgO膜の(111)結晶配向強度が向上し、(111)結晶配向強度の差が小さくなることで分布のばらつきが減り、さらに、MgO膜の膜密度分布も改善された。   From these experimental results, in the case where the reaction gas was sprayed on the glass substrate 10 during film formation, and in the case where the temperature of the elongated heater 36a at both ends for heating during film formation was set relatively lower than the central portion, Compared to the comparative example, the (111) crystal orientation strength of the MgO film formed on the glass substrate 10 is improved, and the difference in the (111) crystal orientation strength is reduced, thereby reducing the variation in distribution. The film density distribution was also improved.

このことから、成膜時のガラス基板10に反応ガスを吹き付け、かつ、成膜時に加熱を行う両端の細長ヒーター36aの温度を中央部より相対的に低く設定することで、より効果的にMgO膜の(111)結晶配向強度の向上及びMgO膜の膜密度分布の改善がされると考えられる。   From this, it is more effective to spray MgO on the glass substrate 10 at the time of film formation, and to set the temperature of the elongated heater 36a at both ends for heating at the time of film formation relatively lower than the central part, thereby making MgO more effective. It is considered that the (111) crystal orientation strength of the film and the film density distribution of the MgO film are improved.

また、本実施例では成膜材料としてMgO単結晶を用いたが、MgOを含む材料及びその他の金属酸化膜の成膜にも適用できる。   In this embodiment, an MgO single crystal is used as a film forming material, but the present invention can also be applied to film formation of a material containing MgO and other metal oxide films.

本発明のパネル製造装置の構造を説明するための図The figure for demonstrating the structure of the panel manufacturing apparatus of this invention 本発明の加熱室及びプロセス室の構造を説明するための断面図Sectional drawing for demonstrating the structure of the heating chamber of this invention, and a process chamber 本発明の加熱室及びプロセス室の構造を説明するための上面図The top view for demonstrating the structure of the heating chamber of this invention, and a process chamber 本発明の他の例の加熱室及びプロセス室の構造を説明するための断面図Sectional drawing for demonstrating the structure of the heating chamber of another example of this invention, and a process chamber 本発明の他の例の加熱室及びプロセス室の構造を説明するための上面図The top view for demonstrating the structure of the heating chamber of another example of this invention, and a process chamber ガス導入実験において、ガラス基板上の位置に対する吹き付けられた反応ガスの流量を示すグラフIn the gas introduction experiment, a graph showing the flow rate of the sprayed reaction gas to the position on the glass substrate ガス導入実験における(111)結晶配向強度分布を示すグラフGraph showing (111) crystal orientation strength distribution in gas introduction experiment ガス導入実験における膜密度分布を示すグラフGraph showing film density distribution in gas introduction experiment 加熱温度差実験において、成膜室内のガラス基板の温度分布を示すグラフGraph showing temperature distribution of glass substrate in film formation chamber in heating temperature difference experiment 加熱温度差実験における(111)結晶配向強度分布を示すグラフGraph showing (111) crystal orientation strength distribution in heating temperature difference experiment 加熱温度差実験における膜密度分布を示すグラフGraph showing film density distribution in heating temperature difference experiment 比較例の(111)結晶配向強度分布を示すグラフThe graph which shows (111) crystal orientation intensity distribution of a comparative example 比較例の膜密度分布を示すグラフGraph showing film density distribution of comparative example

符号の説明Explanation of symbols

10……ガラス基板
12……加熱室
13……プロセス室
22……成膜室
23……成膜材料室
31……MgO蒸発源
33a、33b……ガス噴出管
34……ガス噴出孔
35……反応ガス導入系
36……ヒーター
36a……細長ヒーター
DESCRIPTION OF SYMBOLS 10 ... Glass substrate 12 ... Heating chamber 13 ... Process chamber 22 ... Deposition chamber 23 ... Deposition material chamber 31 ... MgO evaporation source 33a, 33b ... Gas ejection pipe 34 ... Gas ejection hole 35 ... ... Reactive gas introduction system 36 ... Heater 36a ... Elongated heater

Claims (6)

成膜室と、
前記成膜室に接続され、内部が開口で連通した成膜材料室と、
前記成膜材料室内に配置された蒸発源と、
前記成膜室内に反応ガスを導入する反応ガス導入系とを有し、
前記蒸発源から放出された蒸気を前記開口から前記成膜室内に侵入させ、
矩形の成膜対象物の一辺を先頭にして前記成膜室内で前記開口と対面しながら移動させ、前記成膜対象物表面に化合物膜を形成する成膜装置であって、
前記成膜室内には、前記成膜対象物を加熱する成膜室内ヒーターが設けられ
前記成膜室内ヒーターは、前記開口と対面している前記成膜対象物の四辺のうち、前記先頭の一辺と直角な二辺よりも、前記二で挟まれた中央を高温に加熱する成膜装置。
A deposition chamber;
A film forming material chamber connected to the film forming chamber and communicating with the inside through an opening;
An evaporation source disposed in the film forming material chamber;
A reaction gas introduction system for introducing a reaction gas into the film forming chamber;
Allowing the vapor released from the evaporation source to enter the film formation chamber through the opening;
One side of the rectangular film-forming target in the head is moved while facing the opening in said deposition chamber, a deposition apparatus for forming a compound film on the film-forming target surface,
In the film formation chamber, a film formation chamber heater for heating the film formation target is provided ,
The deposition chamber heater, among four sides of the film-forming target which faces the said aperture than said top of one side perpendicular double sides, heated central sandwiched between the two sides to a high temperature A film forming apparatus.
真空バルブを介して前記成膜室に接続された加熱室を有し、前記真空バルブを開けて、前記加熱室から前記成膜室に前記成膜対象物が移動されるように構成された成膜装置であって、A heating chamber connected to the film forming chamber via a vacuum valve is provided, and the film forming object is moved from the heating chamber to the film forming chamber by opening the vacuum valve. A membrane device,
前記加熱室内には、前記成膜対象物を加熱する加熱室内ヒーターが設けられ、In the heating chamber, a heating chamber heater for heating the film formation target is provided,
前記加熱室内ヒーターは、前記成膜対象物の前記二側辺よりも、前記二側辺で挟まれた中央を高温に加熱するように構成された請求項1記載の成膜装置。  2. The film forming apparatus according to claim 1, wherein the heating chamber heater is configured to heat a center sandwiched between the two sides to a higher temperature than the two sides of the film formation target.
前記蒸発源は、MgO蒸気を放出するように構成され、The evaporation source is configured to emit MgO vapor;
前記反応ガスには酸素ガスが含まれる請求項1又は請求項2のいずれか1項記載の成膜装置。The film forming apparatus according to claim 1, wherein the reaction gas includes oxygen gas.
真空槽内部に反応ガスを導入し、蒸発源から放出した成膜材料蒸気を開口から前記真空槽内部に侵入させ、
矩形の成膜対象物の一辺を先頭にして前記真空槽内部を移動させ、前記成膜対象物表面に前記成膜材料蒸気を到達させて化合物膜を形成する成膜方法であって、
前記開口と対面している前記成膜対象物の四辺のうち、前記先頭の一辺と直角な二辺よりも、前記二で挟まれた中央を高温に加熱しながら前記成膜材料蒸気を到達させて成膜する成膜方法。
Introduce reaction gas into the vacuum chamber, let the film forming material vapor released from the evaporation source enter the vacuum chamber through the opening ,
One side of the rectangular film-forming target in the first moving inside said vacuum chamber, said a deposition method for forming a compound film allowed to reach the film-forming material vapor deposition surface of the object,
Among four sides of the film-forming target which faces the said aperture than said top of one side perpendicular double sides, the film-forming material vapor while heating the central sandwiched between the two sides to a high temperature A film forming method for forming a film by reaching the surface.
前記成膜対象物に前記成膜材料蒸気が到達する前に、予め、前記成膜対象物の四辺のうち、前記二側辺よりも、前記二側辺で挟まれた中央を高温に加熱する請求項記載の成膜方法。 Heated prior to the film forming material vapor reaches the film-forming target in advance of the four sides of the film-forming target, than before Symbol two sides, the middle sandwiched by the two sides to a high temperature The film forming method according to claim 4 . 前記蒸発源からMgO蒸気を放出させ、Releasing MgO vapor from the evaporation source;
酸素ガスが含まれた前記反応ガスを用いる請求項4又は請求項5のいずれか1項記載の成膜方法。The film forming method according to claim 4, wherein the reaction gas containing oxygen gas is used.
JP2008301516A 2008-11-26 2008-11-26 Film forming apparatus and film forming method Active JP5202250B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008301516A JP5202250B2 (en) 2008-11-26 2008-11-26 Film forming apparatus and film forming method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008301516A JP5202250B2 (en) 2008-11-26 2008-11-26 Film forming apparatus and film forming method

Publications (2)

Publication Number Publication Date
JP2010126756A JP2010126756A (en) 2010-06-10
JP5202250B2 true JP5202250B2 (en) 2013-06-05

Family

ID=42327351

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008301516A Active JP5202250B2 (en) 2008-11-26 2008-11-26 Film forming apparatus and film forming method

Country Status (1)

Country Link
JP (1) JP5202250B2 (en)

Family Cites Families (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4197204B2 (en) * 1998-10-23 2008-12-17 キヤノンアネルバ株式会社 Magnesium oxide production equipment
JP2002129325A (en) * 2000-10-25 2002-05-09 Matsushita Electric Ind Co Ltd Apparatus and method for forming thin film
JP4969832B2 (en) * 2005-10-27 2012-07-04 株式会社アルバック Film forming apparatus and panel manufacturing method
JP5078903B2 (en) * 2006-10-27 2012-11-21 株式会社アルバック Method and apparatus for manufacturing plasma display panel

Also Published As

Publication number Publication date
JP2010126756A (en) 2010-06-10

Similar Documents

Publication Publication Date Title
KR20080007110A (en) Deposition apparatus
JP5424972B2 (en) Vacuum deposition equipment
KR101128747B1 (en) Process for producing thin organic film
KR102137181B1 (en) Depositing arrangement, deposition apparatus and methods of operation thereof
US10262838B2 (en) Deposition system with integrated cooling on a rotating drum
JPS6173332A (en) Optical treating device
JP3836184B2 (en) Method for manufacturing magnesium oxide film
JP2005054244A (en) Substrate tray of film deposition system
KR100544407B1 (en) Protective film forming apparatus and protective film forming method for plasma display
JP5202250B2 (en) Film forming apparatus and film forming method
JP5202249B2 (en) Film forming apparatus and film forming method
CZ306980B6 (en) A method of controlling the rate of deposition of thin layers in a vacuum multi-nozzle plasma system and a device for implementing this method
JP4969832B2 (en) Film forming apparatus and panel manufacturing method
KR101025324B1 (en) Etching method
JP4645448B2 (en) Vacuum film forming apparatus, vacuum film forming method, and solar cell material
JP5171679B2 (en) Deposition method, panel manufacturing equipment, annealing equipment
JP5546276B2 (en) CVD device for carbon nanotube formation
JP2007314844A (en) Vacuum vapor-deposition apparatus
JP2009174060A (en) Substrate tray of film deposition apparatus
CZ30018U1 (en) Device to control deposition of thin layers in vacuum multijet plasma system
JP4791540B2 (en) Panel manufacturing method
JP6975972B2 (en) Method for manufacturing YF3 film-forming body
JP4242114B2 (en) Formation method of vapor deposition film
EP3899085A1 (en) Vapor deposition apparatus and method for coating a substrate in a vacuum chamber
US20140166206A1 (en) Non-plasma dry etching apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110629

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121107

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121113

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20130110

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20130110

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130205

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130212

R150 Certificate of patent or registration of utility model

Ref document number: 5202250

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250