JP5200613B2 - Non-aqueous electrolyte battery - Google Patents

Non-aqueous electrolyte battery Download PDF

Info

Publication number
JP5200613B2
JP5200613B2 JP2008077888A JP2008077888A JP5200613B2 JP 5200613 B2 JP5200613 B2 JP 5200613B2 JP 2008077888 A JP2008077888 A JP 2008077888A JP 2008077888 A JP2008077888 A JP 2008077888A JP 5200613 B2 JP5200613 B2 JP 5200613B2
Authority
JP
Japan
Prior art keywords
active material
battery
positive electrode
vanadium
present
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008077888A
Other languages
Japanese (ja)
Other versions
JP2009231206A (en
Inventor
有希子 藤野
明博 藤井
河本  真理子
裕江 中川
徳雄 稲益
敏之 温田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
GS Yuasa International Ltd
Original Assignee
GS Yuasa International Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by GS Yuasa International Ltd filed Critical GS Yuasa International Ltd
Priority to JP2008077888A priority Critical patent/JP5200613B2/en
Publication of JP2009231206A publication Critical patent/JP2009231206A/en
Application granted granted Critical
Publication of JP5200613B2 publication Critical patent/JP5200613B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解質電池に用いる正極活物質に関する。   The present invention relates to a positive electrode active material used for a nonaqueous electrolyte battery.

近年、高出力、高エネルギー密度の二次電池として、非水電解質を用い、リチウムイオンを正極と負極との間で移動させて充放電を行うようにした非水電解質電池が知られている。現在、小型携帯機器等に広く採用されている非水電解質電池は、正極活物質にLiCoOが、負極活物質にリチウムの吸蔵・放出が可能なカーボンが、非水電解質として、エチレンカーボネートやジエチルカーボネート等の有機溶媒にLiBFやLiPF等のリチウム塩からなる電解質を溶解させたものが使用されている。 In recent years, a non-aqueous electrolyte battery using a non-aqueous electrolyte as a secondary battery having a high output and a high energy density and performing charging / discharging by moving lithium ions between a positive electrode and a negative electrode has been known. At present, non-aqueous electrolyte batteries widely used in small portable devices and the like include LiCoO 2 as a positive electrode active material and carbon capable of occluding and releasing lithium as a negative electrode active material. obtained by dissolving an electrolyte consisting of a lithium salt such as LiBF 4 and LiPF 6 in an organic solvent such as carbonates are used.

しかし、正極活物質としてのLiCoOやLiNiOは、充電状態において、通常の使用状態では考えられないような高温下では、正極活物質の結晶内から酸素放出を伴う反応が生じるなど、熱的安定性に問題があった。 However, LiCoO 2 and LiNiO 2 as a positive electrode active material are thermally charged at a high temperature that cannot be considered in a normal use state in a charged state, such as a reaction accompanied by oxygen release from the crystal of the positive electrode active material. There was a problem with stability.

近年、高温においても結晶安定性及び熱的安定性に優れた正極活物質として、リン酸鉄リチウム(LiFePO)に代表されるポリアニオン系正極活物質が検討されている。LiFePOを正極活物質として用いた非水電解質電池は、電動工具用途に実用化されており、放電容量は160mAh/gと高く、正極活物質表面への電子電導性炭素質担持技術によりハイレート性能にも優れたものとなっている。 In recent years, a polyanionic positive electrode active material typified by lithium iron phosphate (LiFePO 4 ) has been studied as a positive electrode active material excellent in crystal stability and thermal stability even at high temperatures. Non-aqueous electrolyte batteries using LiFePO 4 as a positive electrode active material have been put into practical use for power tools, have a high discharge capacity of 160 mAh / g, and have a high rate performance due to the electron conductive carbonaceous support technology on the surface of the positive electrode active material. It is also excellent.

しかしながら、LiFePOの作動電位はLi/Li基準に対して3.42Vであり、汎用電池に用いられている正極活物質の作動電位に比べて低いため、エネルギー密度や出力特性の点で不十分である。 However, the operating potential of LiFePO 4 is 3.42 V with respect to the Li / Li + standard, which is lower than the operating potential of the positive electrode active material used in general-purpose batteries. It is enough.

そこで、LiFePOよりも作動電位の高いポリアニオン正極活物質として、LiMnPO、LiVOPO、Li(POなどが提案されている。 Therefore, LiMnPO 4 , LiVOPO 4 , Li 3 V 2 (PO 4 ) 3 and the like have been proposed as polyanion positive electrode active materials having a higher operating potential than LiFePO 4 .

LiMnPOを正極活物質として用いた非水電解質電池は、サイクルに伴う放電容量の低下が著しく、高温ではMnが溶解する等の問題があった。 The nonaqueous electrolyte battery using LiMnPO 4 as the positive electrode active material has a problem that the discharge capacity is significantly reduced with the cycle, and Mn dissolves at a high temperature.

この中で、LiVOPOを正極活物質として用いた非水電解質電池は、C/50という低レート放電においても、100mAh/g程度しか容量が得られないことが知られている。(例えば、特許文献1参照) Among these, it is known that a nonaqueous electrolyte battery using LiVOPO 4 as a positive electrode active material can obtain a capacity of only about 100 mAh / g even at a low rate discharge of C / 50. (For example, see Patent Document 1)

一方、Li(POを正極活物質として用いた非水電解質電池は、低レート放電において130mAh/gと大きな容量を示すことが知られている。(例えば、特許文献2〜3参照) On the other hand, it is known that a nonaqueous electrolyte battery using Li 3 V 2 (PO 4 ) 3 as a positive electrode active material exhibits a large capacity of 130 mAh / g in low rate discharge. (For example, see Patent Documents 2 to 3)

しかしながら、Li(POを正極活物質として用いた非水電解質電池は、高温での充放電サイクル特性に問題があった。
特開2003−68304号公報 特表2001−500665号公報 特表2002−530835号公報
However, the nonaqueous electrolyte battery using Li 3 V 2 (PO 4 ) 3 as a positive electrode active material has a problem in charge / discharge cycle characteristics at high temperatures.
JP 2003-68304 A Special Table 2001-2001655 gazette Japanese translation of PCT publication No. 2002-530835

本発明は、Li(POの上記問題点に鑑みてなされたものであり、高温での充放電サイクル特性に優れた非水電解質電池を提供することを目的とする。 The present invention has been made in view of the above problems of the Li 3 V 2 (PO 4) 3, and an object thereof is to provide a nonaqueous electrolyte battery excellent in charge-discharge cycle characteristics at high temperatures.

本発明の技術的構成及びその作用効果は以下の通りである。ただし、作用機構については推定を含んでおり、その正否は、本発明を制限するものではない。   The technical configuration and operational effects of the present invention are as follows. However, the action mechanism includes estimation, and its correctness does not limit the present invention.

本発明は、3価を超えるバナジウム化合物を表面に備えたLi(PO粒子からなる活物質を含有している正極と、負極と、非水電解質を備えた非水電解質電池である。 The present invention relates to a nonaqueous electrolyte battery including a positive electrode containing an active material composed of Li 3 V 2 (PO 4 ) 3 particles having a vanadium compound having a valence of more than 3 on its surface, a negative electrode, and a nonaqueous electrolyte. It is.

本発明において、Li(PO粒子の表面に備える3価を超えるバナジウム化合物としては、限定されるものではないが、例えば、斜方晶系のLiVOPOが挙げられる。なお、LiVOPOにおけるバナジウムの価数は4価である。 In the present invention, the vanadium compound having more than three valences provided on the surface of the Li 3 V 2 (PO 4 ) 3 particles is not limited, and examples thereof include orthorhombic LiVOPO 4 . Note that the valence of vanadium in LiVOPO 4 is tetravalent.

また、本発明は、Li(PO粒子を酸化処理して、3価を超えるバナジウム化合物を前記Li(PO粒子の表面に生成させる電池用活物質の製造方法である。 Further, the present invention, Li 3 V 2 (PO 4) 3 particles by oxidizing a active material for a battery to produce a vanadium compound in excess of trivalent to the Li 3 V 2 (PO 4) 3 surface of the particles It is a manufacturing method.

本発明に係る活物質は、リン酸バナジウムリチウム化合物からなり、バナジウムの価数が3価であるLi(POが主成分である。Li(POの結晶構造は単斜晶系である。そして、例えば、Li(POを酸化処理することにより、Li(PO粒子の表面付近が酸化され、バナジウムの価数が3価を超えるバナジウム化合物に変化する。表面にバナジウムの価数が3価を超えるバナジウム化合物を備えたLi(PO粒子を正極活物質として用いることにより、高温環境下におけるLi(PO)からのバナジウムの溶出を抑制できる。 The active material according to the present invention is composed of a lithium vanadium phosphate compound, and the main component is Li 3 V 2 (PO 4 ) 3 whose vanadium valence is trivalent. The crystal structure of Li 3 V 2 (PO 4 ) 3 is monoclinic. Then, for example, by oxidizing the Li 3 V 2 (PO 4) 3, Li 3 V 2 (PO 4) near the surface of the 3 particles is oxidized, changes in the vanadium compound valence of vanadium is greater than trivalent To do. By using Li 3 V 2 (PO 4 ) 3 particles having a vanadium compound having a vanadium valence of more than 3 on the surface as a positive electrode active material, vanadium from Li 3 V 2 (PO 4 ) in a high temperature environment is used. Elution can be suppressed.

Li(PO粒子が表面に3価を超えるバナジウム化合物を備えていることは、例えばESCAを用いて活物質粒子をエッチングしながらV元素のシフトを観察することにより、確認できる。 It can be confirmed that the Li 3 V 2 (PO 4 ) 3 particles have vanadium compounds having more than three valences on the surface, for example, by observing the shift of the V element while etching the active material particles using ESCA. .

本発明によれば、リン酸バナジウムリチウム化合物を活物質に用い、高温での充放電サイクル特性に優れた非水電解質電池を提供できる。また、高温での充放電サイクル特性に優れた非水電解質電池を提供することのできるリン酸バナジウムリチウム系活物質の製造方法を提供できる。   ADVANTAGE OF THE INVENTION According to this invention, the nonaqueous electrolyte battery excellent in the charge / discharge cycle characteristic at high temperature can be provided using a lithium vanadium phosphate compound as an active material. Moreover, the manufacturing method of the lithium vanadium phosphate type | system | group active material which can provide the nonaqueous electrolyte battery excellent in the charging / discharging cycling characteristics at high temperature can be provided.

以下に、本発明の実施の形態を例示するが、本発明は、これらの記述に限定されるものではない。   Embodiments of the present invention are illustrated below, but the present invention is not limited to these descriptions.

Li(POを合成するための原料としては、何ら限定されるものではないが、例えば、リチウム源としてLiOH、LiOH・HO、LiNO、LiCO、CHCOOLi・2HO、LiC等、バナジウム源として、金属バナジウム、V、V、V、NHVO、バナジウム(III)アセチルアセトネート、バナジウム(IV)オキシアセチルアセトナート等、リン酸源として、NHPO、(NHHPO、HPO、P等、リチウム及びリン酸源としてLiPO、LiHPO等を用いることができる。 The raw material for synthesizing Li 3 V 2 (PO 4 ) 3 is not limited at all. For example, LiOH, LiOH.H 2 O, LiNO 3 , Li 2 CO 3 , CH 3 can be used as a lithium source. COOLi · 2H 2 O, LiC 3 H 5 O 3, etc. As vanadium sources, metal vanadium, V 2 O 5 , V 2 O 3 , V 2 O 4 , NH 4 VO 3 , vanadium (III) acetylacetonate, vanadium (IV) NH 4 H 2 PO 4 , (NH 4 ) 2 HPO 4 , H 3 PO 4 , P 2 O 5, etc. as phosphoric acid sources such as oxyacetylacetonate, Li 3 PO 4 as lithium and phosphoric acid sources LiH 2 PO 4 or the like can be used.

本発明に係る活物質を構成するリン酸バナジウムリチウム化合物は、それ自体では電子伝導性が低いため、本発明を実施するにあたっては、活物質表面に炭素質材料等の導電補助材料が配された状態で用いることが強く推奨される。この場合の炭素質材料の原料としては、何ら限定されるものではないが、クエン酸、クエン酸・一水和物、アスコルビン酸、ポリビニルアルコール、ポリエチレングリコール、砂糖、グルコース、ショ糖、メタノール、エタノール、チオールなどの有機化合物を用いることができる。特に好ましくは、クエン酸、ポリビニルアルコール、ポリエチレングリコール、砂糖などを用いることができる。   The lithium vanadium phosphate compound constituting the active material according to the present invention itself has a low electronic conductivity. Therefore, in carrying out the present invention, a conductive auxiliary material such as a carbonaceous material is disposed on the surface of the active material. It is strongly recommended to use in the state. The raw material of the carbonaceous material in this case is not limited at all, but citric acid, citric acid / monohydrate, ascorbic acid, polyvinyl alcohol, polyethylene glycol, sugar, glucose, sucrose, methanol, ethanol Organic compounds such as thiol can be used. Particularly preferably, citric acid, polyvinyl alcohol, polyethylene glycol, sugar or the like can be used.

例えば、後述する実施例に示すように、リン酸バナジウムリチウム化合物を合成する原料水溶液の中に、バナジウム源、リン酸源、リチウム源と共に炭素源を加えておくことによっても、表面に炭素質材料が配されたLi(PO粒子を得ることができる。このように、炭素源を原料水溶液の中に加えておく方法を採用する場合に好適な炭素源としては、上記のうちクエン酸、クエン酸・一水和物、アスコルビン酸が挙げられる。 For example, as shown in Examples described later, a carbonaceous material is also formed on the surface by adding a carbon source together with a vanadium source, a phosphate source, and a lithium source into a raw material aqueous solution for synthesizing a vanadium lithium phosphate compound. Li 3 V 2 (PO 4 ) 3 particles can be obtained. As described above, citric acid, citric acid / monohydrate, and ascorbic acid are preferable as the carbon source when the method of adding the carbon source to the raw material aqueous solution is employed.

表面に3価を超えるバナジウム化合物を備えたLi(PO粒子を得る方法については、限定されるものではないが、例えば、後述する実施例に示すように、Li(PO粒子を酸化処理工程に供することによっても良い。該酸化処理は、常圧の空気中で行うことができる。酸化処理の温度は300〜400℃が好ましい。理論上、3価を超えるバナジウム化合物への酸化が過度に進むと、電池性能に影響を与えるが、このような酸化処理の条件では、酸化反応が過度に進行する虞が少なく、Li(POのおよそ数%が3価を超えるバナジウム化合物に変化する。なお、酸化処理後の材料のバナジウムの平均価数を測定することにより、Li(POと3価を超えるバナジウム化合物の存在比率を知ることができる。例えば、測定されたバナジウムの平均価数が3.05であり、3価を超えるバナジウム化合物をLiVOPOと仮定すれば、3価のLi3/2V(PO3/2と4価のLiVOPOとの比は9.5:0.5であることがわかる。 The method for obtaining Li 3 V 2 (PO 4 ) 3 particles having vanadium compounds having more than three valences on the surface is not limited. For example, as shown in the examples described later, Li 3 V 2 The (PO 4 ) 3 particles may be subjected to an oxidation treatment step. The oxidation treatment can be performed in air at normal pressure. The temperature of the oxidation treatment is preferably 300 to 400 ° C. Theoretically, if the oxidation to a vanadium compound exceeding trivalent proceeds excessively, battery performance is affected. Under such conditions of oxidation treatment, there is little possibility that the oxidation reaction proceeds excessively, and Li 3 V 2 Approximately several percent of (PO 4 ) 3 changes to a vanadium compound having a trivalence exceeding 3. By measuring the average valence of vanadium of the material after the oxidation treatment, the abundance ratio of Li 3 V 2 (PO 4 ) 3 and the vanadium compound exceeding the trivalence can be known. For example, if the measured vanadium average valence is 3.05 and the vanadium compound exceeding trivalent is assumed to be LiVOPO 4 , trivalent Li 3/2 V (PO 4 ) 3/2 and tetravalent It can be seen that the ratio to LiVOPO 4 is 9.5: 0.5.

このような酸化処理の条件では、Li(PO粒子表面に配された炭素質材料も一部減少するものの、Li(POの方が酸化されやすいため、粒子表面に配された炭素質材料の大部分を残存させることができる。このようにして得られる酸化処理後のLi(PO粒子は、表面に3価を超えるバナジウム化合物が備わり、炭素質材料はさらにその表面に配された構造となると考えられる。本願明細書では、多くの場合、粒子表面にはこのような炭素質材料が配されていることを前提として記載している。 Under such oxidation treatment conditions, the carbonaceous material disposed on the surface of the Li 3 V 2 (PO 4 ) 3 particles is also partially reduced, but Li 3 V 2 (PO 4 ) 3 is more easily oxidized. Most of the carbonaceous material arranged on the particle surface can be left. The oxidized Li 3 V 2 (PO 4 ) 3 particles obtained in this way are considered to have a structure in which the surface is provided with a vanadium compound exceeding trivalence, and the carbonaceous material is further arranged on the surface. In the specification of the present application, in many cases, description is made on the assumption that such a carbonaceous material is arranged on the particle surface.

本発明の非水電解質電池に用いる負極については、何ら限定されるものではないが、負極材料たる化合物としては、LiTi12、リチウムと他の金属(Al、Si、Pb、Sn、Zn、Cd等)との合金、LiFe、WO、MoO、SiO、CuO等の金属酸化物、グラファイト、カーボン等の炭素質材料、Li(LiN)等の窒化リチウム、もしくは金属リチウム、又はこれらの混合物等を用いることができる。 The negative electrode used in the nonaqueous electrolyte battery of the present invention is not limited in any way, but examples of the compound as the negative electrode material include Li 4 Ti 5 O 12 , lithium and other metals (Al, Si, Pb, Sn, Zn, Cd, etc.), metal oxides such as LiFe 2 O 3 , WO 2 , MoO 2 , SiO, CuO, carbonaceous materials such as graphite and carbon, lithium nitride such as Li 5 (Li 3 N), Alternatively, metallic lithium, a mixture thereof, or the like can be used.

非水電解質としては、電解液、ゲル電解質、固体電解質のいずれも使用することができる。   As the non-aqueous electrolyte, any of an electrolytic solution, a gel electrolyte, and a solid electrolyte can be used.

電解液又はゲル電解質に用いることのできる非水溶媒としては、何ら限定されるものではなく、例えば、エチレンカーボネート、プロピレンカーボネート、ジメチルカーボネート、エチルメチルカーボネート、ビニレンカーボネート、ジエチルカーボネート、γ−ブチロラクトン、スルホラン、ジメチルスルホキシド、1、2−ジメトキシエタン、1、2−ジエトキシエタン、2−メチルテトラヒドロフラン、ジオキソラン、メチルアセテート等の極性溶媒、もしくはこれらの混合物を使用してもよい。   The non-aqueous solvent that can be used for the electrolytic solution or the gel electrolyte is not limited at all. For example, ethylene carbonate, propylene carbonate, dimethyl carbonate, ethyl methyl carbonate, vinylene carbonate, diethyl carbonate, γ-butyrolactone, sulfolane. , Polar solvents such as dimethyl sulfoxide, 1,2-dimethoxyethane, 1,2-diethoxyethane, 2-methyltetrahydrofuran, dioxolane, methyl acetate, or a mixture thereof may be used.

また、電解液溶媒に溶解するリチウム塩としては、含フッ素リチウム塩が安全性や毒性の観点から好ましい。例えば、LiPF、LiBF、LiCFCO、LiCF(CF、LiCF(C、LiCFSO、LiN(SOCF、LiN(SOCFCF、LiN(COCF及びLiN(COCFCF、LiPF(CFCF含フッ素リチウム塩を1種又は2種以上混合して用いることができる。なかでも、LiPFを単独で、又は、LiPFと他の塩を混合して用いることが好ましい。LiPFと混合して用いる他の塩としてはLiN(SOCF、LiN(SOCFCFが好ましい。非水電解質における電解質塩の濃度としては、優れた高率放電特性を有する非水電解質電池を確実に得るために、0.1mol/l〜5mol/lが好ましく、さらに好ましくは、1mol/l〜2.0mol/lである。 Moreover, as a lithium salt which melt | dissolves in electrolyte solution solvent, a fluorine-containing lithium salt is preferable from a viewpoint of safety | security or toxicity. For example, LiPF 6 , LiBF 4 , LiCF 3 CO 2 , LiCF 3 (CF 3 ) 3 , LiCF 3 (C 2 F 5 ) 3 , LiCF 3 SO 3 , LiN (SO 2 CF 3 ) 2 , LiN (SO 2 CF 2 CF 3 ) 2 , LiN (COCF 3 ) 2, LiN (COCF 2 CF 3 ) 2 , LiPF 3 (CF 2 CF 3 ) 3 fluorinated lithium salt can be used alone or in combination. Among them, it is preferable to use LiPF 6 alone or in a mixture of LiPF 6 and other salts. Other salts used by mixing with LiPF 6 are preferably LiN (SO 2 CF 3 ) 2 and LiN (SO 2 CF 2 CF 3 ) 2 . The concentration of the electrolyte salt in the non-aqueous electrolyte is preferably 0.1 mol / l to 5 mol / l, more preferably 1 mol / l to obtain a non-aqueous electrolyte battery having excellent high rate discharge characteristics. 2.0 mol / l.

本発明に係る非水電解質電池のセパレータとしては、織布、不織布、合成樹脂微多孔膜等を用いることができ、特に、合成樹脂微多孔膜を好適に用いることができる。中でもポリエチレン、ポリプロピレン製微多孔膜、又はこれらを複合した微多孔膜等のポリオレフィン系微多孔膜が、厚さ、膜強度、膜抵抗等の面で好適に用いられる。   As the separator of the nonaqueous electrolyte battery according to the present invention, a woven fabric, a non-woven fabric, a synthetic resin microporous membrane or the like can be used, and in particular, a synthetic resin microporous membrane can be suitably used. Among these, polyolefin microporous membranes such as polyethylene, polypropylene microporous membranes, and microporous membranes composed of these are preferably used in terms of thickness, membrane strength, membrane resistance, and the like.

さらに、高分子固体電解質等の固体電解質を用いることで、セパレータを兼ねさせることもできる。この場合、高分子固体電解質として有孔性高分子固体電解質膜を用いてもよく、高分子固体電解質にさらに電解液を含有させてもよい。また、ゲル状の高分子固体電解質を用いてもよい。この場合、ゲルを構成する電解液と、細孔中等に含有されている電解液とは同じであってもよく、異なっていてもよい。さらに、合成樹脂微多孔膜と高分子固体電解質等を組み合わせて使用してもよい。   Furthermore, a separator can also be used by using a solid electrolyte such as a polymer solid electrolyte. In this case, a porous polymer solid electrolyte membrane may be used as the polymer solid electrolyte, and the polymer solid electrolyte may further contain an electrolytic solution. Further, a gel polymer solid electrolyte may be used. In this case, the electrolytic solution constituting the gel and the electrolytic solution contained in the pores may be the same or different. Further, a synthetic resin microporous membrane and a polymer solid electrolyte may be used in combination.

電池の形状は特に限定されるものではなく、本発明は、角形、楕円形、コイン形、ボタン形、シート形電池等の様々な形状の非水電解質電池に適用可能である。   The shape of the battery is not particularly limited, and the present invention can be applied to non-aqueous electrolyte batteries having various shapes such as a square, an ellipse, a coin, a button, and a sheet.

以下、本発明を適用した具体的な実施例について説明するが、本発明は本実施例により何ら限定されるものではなく、その主旨を変更しない範囲において適宜変更して実施することが可能である。   Hereinafter, specific embodiments to which the present invention is applied will be described. However, the present invention is not limited to the embodiments, and can be appropriately modified and implemented without departing from the scope of the present invention. .

(正極活物質の合成)
(比較例1)
10%過酸化水素水180mlにV(ナカライテスク社製、試薬)を4.5g加え、2時間撹拌し、オレンジ色の透明溶液を調製した。この溶液にさらにクエン酸一水和物、NHPO及びLiOH一水和物を加え溶解させた。原料の仕込み比は、モル比でV:クエン酸一水和物:NHPO:LiOH一水和物=1:1:3:3である。この溶液を60℃の水浴に入れ6時間保持した。青緑色の反応物を80℃のホットプレート上にて溶媒を除去し、前駆体を得た。これをよく粉砕し、窒素雰囲気下で350℃2時間半、続けて850℃8時間焼成し、Li(POを合成した。次に、自動乳鉢で1時間粉砕し、二次粒子径を50μm以下とした。この状態において、Li(PO粒子表面にはクエン酸に由来する炭素質材料が配されている。これを比較活物質b1とする。
(Synthesis of positive electrode active material)
(Comparative Example 1)
4.5 g of V 2 O 5 (manufactured by Nacalai Tesque, reagent) was added to 180 ml of 10% hydrogen peroxide solution and stirred for 2 hours to prepare an orange transparent solution. To this solution, citric acid monohydrate, NH 4 H 2 PO 4 and LiOH monohydrate were further added and dissolved. The raw material charge ratio is V 2 O 5 : citric acid monohydrate: NH 4 H 2 PO 4 : LiOH monohydrate = 1: 1: 3: 3 in molar ratio. This solution was placed in a 60 ° C. water bath and held for 6 hours. The solvent was removed from the blue-green reaction product on a hot plate at 80 ° C. to obtain a precursor. This was pulverized well and calcined under a nitrogen atmosphere at 350 ° C. for 2.5 hours and then at 850 ° C. for 8 hours to synthesize Li 3 V 2 (PO 4 ) 3 . Next, it grind | pulverized for 1 hour with the automatic mortar, and the secondary particle diameter was 50 micrometers or less. In this state, a carbonaceous material derived from citric acid is arranged on the surface of Li 3 V 2 (PO 4 ) 3 particles. This is referred to as a comparative active material b1.

(実施例1)
前記比較物質b1を平らなアルミナ板の上に薄く均等に広げ、空気気流下350℃で3時間熱処理することにより、Li(PO粒子表面の酸化処理を行った。これを本発明活物質a1とする。
Example 1
The comparative material b1 was thinly and evenly spread on a flat alumina plate, and the surface of the Li 3 V 2 (PO 4 ) 3 particles was oxidized by heat treatment at 350 ° C. for 3 hours in an air stream. This is designated as active material a1 of the present invention.

(結晶構造解析)
CuKα線を用いたエックス線回折測定を行ったところ、本発明活物質a1においては、LiVOPOと推定される物質の存在が確認された。図1に、本発明活物質a1(図上)及び前記比較活物質b1(図下)に対するエックス線回折図を示す。ここで、LiVOPOに帰属可能な回折ピークを▼印で示した。
(Crystal structure analysis)
When X-ray diffraction measurement using CuKα rays was performed, the presence of a substance presumed to be LiVOPO 4 was confirmed in the active material a1 of the present invention. FIG. 1 shows X-ray diffraction patterns for the active material a1 of the present invention (upper figure) and the comparative active material b1 (lower figure). Here, diffraction peaks that can be assigned to LiVOPO 4 are indicated by ▼.

(本発明電池A1、比較電池B1)
本発明活物質a1及び比較活物質b1をそれぞれ正極活物質として用いて、次の構成及び手順で非水電解質電池を作製した。
(Invention battery A1, comparative battery B1)
Using the active material a1 of the present invention and the comparative active material b1 as the positive electrode active material, a nonaqueous electrolyte battery was produced in the following configuration and procedure.

正極板は、結着剤であるポリフッ化ビニリデン10重量%と導電剤であるアセチレンブラック10重量%と正極活物質80重量%とを含有し、N−メチルピロリドンを溶剤とするペーストを厚さ20μmのアルミニウム箔集電体の両面に塗布、乾燥することによって作製した。   The positive electrode plate contains 10% by weight of polyvinylidene fluoride as a binder, 10% by weight of acetylene black as a conductive agent, and 80% by weight of a positive electrode active material, and has a thickness of 20 μm using N-methylpyrrolidone as a solvent. The aluminum foil current collector was applied to both surfaces and dried.

負極板は、グラファイト(黒鉛)95重量%とカルボキシメチルセルロース2重量%及びスチレンブタジエンゴム3重量%を含有する水性ペーストを厚さ14μmの銅箔集電体両面に塗布、乾燥することによって作製した。   The negative electrode plate was prepared by applying an aqueous paste containing 95% by weight of graphite (graphite), 2% by weight of carboxymethylcellulose and 3% by weight of styrene butadiene rubber to both surfaces of a copper foil current collector having a thickness of 14 μm and drying.

セパレータには、ポリエチレン微多孔膜を用い、非水電解質には、溶媒としてエチレンカーボネート(EC)とジメチルカーボネート(DMC)とエチルメチルカーボネート(EMC)の体積比:1/1/1の混合溶媒を用い、この溶媒中に1mol/LのLiPFを溶解させ、ビニレンカーボネートを1wt%加えたものを使用し、密閉後、初期充放電工程を経て、実施例に係る角形の非水電解質電池を作製した。本発明活物質a1を使用した正極板を備えた非水電解質電池を本発明電池A1、比較活物質b1を使用した正極板を備えた非水電解質電池を比較電池B1とする。 A polyethylene microporous membrane is used for the separator, and a mixed solvent of ethylene carbonate (EC), dimethyl carbonate (DMC) and ethyl methyl carbonate (EMC) in a volume ratio: 1/1/1 is used as the solvent for the non-aqueous electrolyte. 1 mol / L LiPF 6 was dissolved in this solvent, and 1 wt% of vinylene carbonate was used. After sealing, an initial charge / discharge process was performed to produce a rectangular nonaqueous electrolyte battery according to the example. did. The nonaqueous electrolyte battery including the positive electrode plate using the active material a1 of the present invention is referred to as the present invention battery A1, and the nonaqueous electrolyte battery including the positive electrode plate using the comparative active material b1 is referred to as the comparative battery B1.

本実施例に係る非水電解質電池の概略断面図を図2に示す。非水電解質電池1は、アルミニウム集電体に正極合材を塗布してなる正極3と、銅集電体に負極合材を塗布してなる負極4とがセパレータ5を介して巻回された扁平巻状電極群2と、非水電解質とを電池ケース6に収納してなる、幅34mm×高さ49mm×厚さ5.2mmのものである。電池ケース6には、安全弁8を設けた電池蓋7がレーザー溶接によって取り付けられ、負極端子9は負極リード11を介して負極4と接続され、正極3は正極リード10を介して電池蓋と接続されている。   A schematic cross-sectional view of the nonaqueous electrolyte battery according to this example is shown in FIG. In the nonaqueous electrolyte battery 1, a positive electrode 3 formed by applying a positive electrode mixture to an aluminum current collector and a negative electrode 4 formed by applying a negative electrode mixture to a copper current collector are wound through a separator 5. The flat wound electrode group 2 and the non-aqueous electrolyte are housed in a battery case 6 and have a width of 34 mm × a height of 49 mm × a thickness of 5.2 mm. A battery lid 7 provided with a safety valve 8 is attached to the battery case 6 by laser welding, a negative electrode terminal 9 is connected to the negative electrode 4 via a negative electrode lead 11, and a positive electrode 3 is connected to the battery lid via a positive electrode lead 10. Has been.

(高温充放電サイクル試験)
上記にて作製した本発明電池A1及び比較電池B1は、高温充放電サイクル試験に先立ち、25℃にて、充電電流50mA、充電電圧4.4V、充電時間15時間の定電流定電圧充電を1サイクル行った後、放電電流100mA、終止電圧2.5Vの定電流放電を行った。次に、電流100mA、終止電圧4.4Vで7.5時間の定電流定電圧充電した後、電流100mA、終止電圧2.5Vの定電流放電を2サイクル行った。次に、高温充放電サイクル試験として、温度60℃にて、充電電流500mA、充電電圧4.4V、充電時間3時間の定電流定電圧充電を行った後、放電電流500mA、終止電圧2.5Vの定電流放電を行う充放電を1000サイクル繰り返した。
(High-temperature charge / discharge cycle test)
The present invention battery A1 and comparative battery B1 prepared above were subjected to constant current and constant voltage charging at 25 ° C. with a charging current of 50 mA, a charging voltage of 4.4 V, and a charging time of 15 hours prior to the high temperature charge / discharge cycle test. After the cycle, a constant current discharge with a discharge current of 100 mA and a final voltage of 2.5 V was performed. Next, after constant current and constant voltage charging for 7.5 hours at a current of 100 mA and a final voltage of 4.4 V, a constant current discharge with a current of 100 mA and a final voltage of 2.5 V was performed for two cycles. Next, as a high-temperature charge / discharge cycle test, a charge current of 500 mA, a charge voltage of 4.4 V, and a constant current / constant voltage charge of 3 hours at a temperature of 60 ° C. were followed by a discharge current of 500 mA and a final voltage of 2.5 V. The charge / discharge for performing the constant current discharge was repeated 1000 cycles.

このときのサイクル経過に伴う放電容量推移を図3に示す。図3からわかるように、比較電池B1は充放電サイクルに伴って放電容量が直線的に低下しているのに対し、本発明電池A1は1000サイクル経過後も初期と同等の放電容量を維持している。   FIG. 3 shows the transition of the discharge capacity with the progress of the cycle at this time. As can be seen from FIG. 3, the discharge capacity of the comparative battery B1 decreases linearly with the charge / discharge cycle, whereas the battery A1 of the present invention maintains the discharge capacity equivalent to the initial state even after 1000 cycles. ing.

前記高温充放電サイクル試験後の本発明電池A1及び比較電池B1を解体し、電解液を回収したところ、本発明電池A1から回収した電解液は透明であったのに対し、比較電池B1から回収した電解液は明らかに青変していた。ICP分析により、本発明電池A1から回収した電解液からはバナジウムイオンがほとんど検出されなかったのに対し、比較電池B1から回収した電解液からはバナジウムイオンが検出された。この結果から、本発明電池A1においてはバナジウムの溶出が抑制されており、60℃充放電サイクル特性が良好であったこととの関連性が示唆される。   The present invention battery A1 and the comparative battery B1 after the high-temperature charge / discharge cycle test were disassembled and the electrolytic solution was recovered. The electrolytic solution recovered from the present invention battery A1 was transparent, whereas it was recovered from the comparative battery B1. The electrolyte was clearly blue. By ICP analysis, vanadium ions were hardly detected from the electrolytic solution recovered from the battery A1 of the present invention, whereas vanadium ions were detected from the electrolytic solution recovered from the comparative battery B1. From this result, in this invention battery A1, elution of vanadium was suppressed, and the relevance with 60 degreeC charging / discharging cycling characteristics was suggested.

(比較例2)
イオン交換水にLiNO、NHVO、NHPOを加え、加熱撹拌して溶解させた。原料の仕込み比は、モル比でLiOH一水和物:NHVO:NHPO=1:1:1である。この溶液を150℃のホットプレート上にて溶媒を除去し、前駆体を得た。これをよく粉砕し、大気雰囲気下で600℃12時間焼成し、LiVOPOを合成した。次に、自動乳鉢で1時間粉砕し、二次粒子径を50μm以下とした。この状態において、LiVOPO粒子表面にはクエン酸に由来する炭素質材料が配されている。これを比較活物質b2とする。
(Comparative Example 2)
LiNO 3 , NH 4 VO 3 , and NH 4 H 2 PO 4 were added to ion-exchanged water, and dissolved by heating and stirring. The charging ratio of the raw materials is LiOH monohydrate: NH 4 VO 3 : NH 4 H 2 PO 4 = 1: 1: 1 in molar ratio. The solvent was removed from this solution on a hot plate at 150 ° C. to obtain a precursor. This was pulverized well and fired at 600 ° C. for 12 hours in an air atmosphere to synthesize LiVOPO 4 . Next, it grind | pulverized for 1 hour with the automatic mortar, and the secondary particle diameter was 50 micrometers or less. In this state, a carbonaceous material derived from citric acid is arranged on the surface of the LiVOPO 4 particles. This is referred to as a comparative active material b2.

(比較電池B2〜B4)
Li(POからなる前記比較活物質b1と、LiVOPOからなる前記比較活物質b2を質量比で99:1、90:10、50:50の割合で混合し、それぞれを正極活物質として用い、上記実施例と同様の方法で非水電解質電池を作製した。これをそれぞれ比較電池B2,B3,B4とする。これらの電池に対して、上記実施例と同じ手順で高温充放電サイクル試験を行ったところ、比較電池B2,B3,B4のいずれも、サイクルに伴う放電容量推移は、比較電池B1と同様の傾向を示した。このことから、Li(PO粒子とLiVOPO粒子を単に混合して正極活物質として用いるだけでは、高温環境下におけるバナジウムの溶出が抑制されるという本発明の作用効果は奏されないことがわかった。
(Comparative batteries B2 to B4)
The comparative active material b1 made of Li 3 V 2 (PO 4 ) 3 and the comparative active material b2 made of LiVOPO 4 were mixed at a mass ratio of 99: 1, 90:10, and 50:50, respectively. Using it as a positive electrode active material, a nonaqueous electrolyte battery was produced in the same manner as in the above example. These are referred to as comparative batteries B2, B3, and B4, respectively. When these batteries were subjected to a high-temperature charge / discharge cycle test in the same procedure as in the above example, the discharge capacity transitions associated with the cycles of all of the comparative batteries B2, B3, and B4 were similar to those of the comparative battery B1. showed that. Therefore, the effect of the present invention that elution of vanadium in a high temperature environment is suppressed by simply mixing Li 3 V 2 (PO 4 ) 3 particles and LiVOPO 4 particles and using them as a positive electrode active material is achieved. I found out that it was not.

実施例及び比較例に係る正極活物質のエックス線回折図である。It is an X-ray diffraction pattern of the positive electrode active material which concerns on an Example and a comparative example. 実施例及び比較例に用いた非水電解質電池の縦断面図である。It is a longitudinal cross-sectional view of the nonaqueous electrolyte battery used for the Example and the comparative example. 実施例及び比較例に係る電池の高温充放電サイクル性能を示す図である。It is a figure which shows the high temperature charging / discharging cycle performance of the battery which concerns on an Example and a comparative example.

符号の説明Explanation of symbols

1 非水電解質電池
2 電極群
3 正極
4 負極
5 セパレータ
6 電池ケース
7 蓋
8 安全弁
9 負極端子
10 正極リード
11 負極リード
DESCRIPTION OF SYMBOLS 1 Nonaqueous electrolyte battery 2 Electrode group 3 Positive electrode 4 Negative electrode 5 Separator 6 Battery case 7 Lid 8 Safety valve 9 Negative electrode terminal 10 Positive electrode lead 11 Negative electrode lead

Claims (2)

LiVOPO を含むバナジウム化合物を表面に備えたLi(PO粒子からなる活物質を含有している正極と、負極と、非水電解質を備えた非水電解質電池。 A non-aqueous electrolyte battery comprising a positive electrode containing an active material composed of Li 3 V 2 (PO 4 ) 3 particles having a vanadium compound containing LiVOPO 4 on its surface, a negative electrode, and a non-aqueous electrolyte. Li(PO粒子を酸化処理して、LiVOPO を含むバナジウム化合物を前記Li(PO粒子の表面に生成させる電池用活物質の製造方法。 Li 3 V 2 (PO 4) 3 particles by oxidizing the said vanadium compound containing LiVOPO 4 Li 3 V 2 (PO 4) 3 production method of battery active material to be produced on the surface of the particles.
JP2008077888A 2008-03-25 2008-03-25 Non-aqueous electrolyte battery Expired - Fee Related JP5200613B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008077888A JP5200613B2 (en) 2008-03-25 2008-03-25 Non-aqueous electrolyte battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008077888A JP5200613B2 (en) 2008-03-25 2008-03-25 Non-aqueous electrolyte battery

Publications (2)

Publication Number Publication Date
JP2009231206A JP2009231206A (en) 2009-10-08
JP5200613B2 true JP5200613B2 (en) 2013-06-05

Family

ID=41246356

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008077888A Expired - Fee Related JP5200613B2 (en) 2008-03-25 2008-03-25 Non-aqueous electrolyte battery

Country Status (1)

Country Link
JP (1) JP5200613B2 (en)

Families Citing this family (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5365126B2 (en) * 2008-09-30 2013-12-11 Tdk株式会社 Active material for positive electrode of lithium ion secondary battery and method for producing active material for positive electrode of lithium ion secondary battery
JP5375446B2 (en) * 2009-08-28 2013-12-25 Tdk株式会社 Active material, electrode including the same, lithium secondary battery including the electrode, and method for producing active material
JP5489063B2 (en) * 2009-11-02 2014-05-14 株式会社Gsユアサ Positive electrode active material for lithium secondary battery, electrode for lithium secondary battery, and lithium secondary battery
JP5761617B2 (en) * 2010-02-17 2015-08-12 株式会社Gsユアサ Positive electrode active material for non-aqueous electrolyte secondary battery and non-aqueous electrolyte secondary battery
JP5612392B2 (en) * 2010-08-09 2014-10-22 日本化学工業株式会社 Method for producing lithium vanadium phosphate carbon composite
JP2012099361A (en) * 2010-11-02 2012-05-24 Tdk Corp Method of manufacturing active material, and lithium ion secondary battery
CN103503206B (en) 2011-04-22 2016-03-02 昭和电工株式会社 The manufacture method of positive active material for lithium secondary battery
JP2013073705A (en) 2011-09-27 2013-04-22 Fuji Heavy Ind Ltd Lithium ion secondary battery
JP5255143B2 (en) 2011-09-30 2013-08-07 富士重工業株式会社 Positive electrode material, lithium ion secondary battery using the same, and method for manufacturing positive electrode material
US9263736B2 (en) * 2012-03-27 2016-02-16 Tdk Corporation Positive electrode material for lithium ion secondary battery, positive electrode for lithium ion secondary battery, and lithium ion secondary battery
JP6262129B2 (en) * 2012-05-24 2018-01-17 株式会社村田製作所 All-solid battery and method for manufacturing the same
EP2869388A4 (en) * 2012-06-28 2016-03-30 Fuji Heavy Ind Ltd Lithium-ion secondary cell
WO2014051020A1 (en) * 2012-09-28 2014-04-03 Tdk株式会社 Lithium ion secondary battery
JP5648732B2 (en) * 2012-12-17 2015-01-07 Tdk株式会社 Positive electrode active material and lithium ion secondary battery
JP2016072031A (en) * 2014-09-29 2016-05-09 株式会社Gsユアサ Positive electrode for power storage element, power storage element using the same, and power storage device
US10312523B2 (en) 2016-02-25 2019-06-04 Tdk Corporation Lithium ion secondary battery
CN114497511B (en) * 2022-02-15 2024-01-02 中国科学院宁波材料技术与工程研究所 Lithium ion positive electrode composite material, preparation method thereof and lithium ion battery

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5871866A (en) * 1996-09-23 1999-02-16 Valence Technology, Inc. Lithium-containing phosphates, method of preparation, and use thereof
JP4314859B2 (en) * 2003-03-31 2009-08-19 祐作 滝田 Non-aqueous electrolyte secondary battery electrode active material, non-aqueous electrolyte secondary battery electrode, and non-aqueous electrolyte secondary battery
JP4926607B2 (en) * 2006-08-23 2012-05-09 住友大阪セメント株式会社 Electrode material manufacturing method, positive electrode material, and battery

Also Published As

Publication number Publication date
JP2009231206A (en) 2009-10-08

Similar Documents

Publication Publication Date Title
JP5200613B2 (en) Non-aqueous electrolyte battery
JP5463561B2 (en) COMPOUND HAVING ORIBIN STRUCTURE, PROCESS FOR PRODUCING THE SAME, POSITIVE ACTIVE MATERIAL USING COMPOUND HAVING ORIBIN STRUCTURE AND NON-AQUEOUS ELECTROLYTE BATTERY
CN101478041B (en) Positive pole active substance, positive pole and battery
JP5235282B2 (en) Cathode active material and battery for non-aqueous electrolyte secondary battery
JP6188158B2 (en) Negative electrode for lithium ion secondary battery, negative electrode slurry for lithium ion secondary battery, and lithium ion secondary battery
WO2017094416A1 (en) Positive electrode active material for lithium secondary batteries, positive electrode for lithium secondary batteries, lithium secondary battery, method for producing positive electrode active material for lithium secondary batteries, and method for manufacturing lithium secondary battery
JP5890886B1 (en) Lithium manganese iron phosphate positive electrode active material and method for producing the same
JP2011001254A (en) METHOD FOR PRODUCING NITRIDED Li-Ti COMPOUND OXIDE, NITRIDED Li-Ti COMPOUND OXIDE AND LITHIUM BATTERY
JP5621869B2 (en) Lithium ion secondary battery
WO2018083937A1 (en) Graphite material for lithium ion secondary batteries, method for producing same, negative electrode and lithium ion secondary battery
JP5610014B2 (en) Lithium ion secondary battery
CN103210528A (en) Non-aqueous electrolyte secondary battery
CN103367794B (en) Lithium rechargeable battery
JP5700346B2 (en) Method for producing lithium manganese phosphate positive electrode active material
JP4707950B2 (en) Method for producing positive electrode active material for lithium battery, positive electrode active material for lithium battery, electrode for lithium battery, and lithium battery
JP5890885B1 (en) Positive electrode active material for lithium secondary battery and method for producing the same
JP6498407B2 (en) Oxide composite and non-aqueous lithium ion secondary battery
JPWO2011096236A1 (en) Method for producing composite oxide, positive electrode active material for lithium ion secondary battery, and lithium ion secondary battery
JP5423495B2 (en) Nonaqueous electrolyte secondary battery
CN101740751B (en) Method for preparing anode active substance, anode active substance, anode and battery
JP2017188424A (en) Positive electrode active material for lithium ion secondary battery and lithium ion secondary battery positive electrode using the same, and lithium ion secondary battery
WO2019111958A1 (en) Liquid electrolyte for non-aqueous electrolyte cell, and non-aqueous electrolyte cell in which said liquid electrolyte for non-aqueous electrolyte cell is used
JP2002175836A (en) Nonaqueous electrolyte battery
US20190280300A1 (en) Electrode for lithium ion secondary battery and lithium ion secondary battery using the same
JP2012524379A (en) Electrode active material for secondary electrochemical cell

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20100507

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20101007

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121017

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121030

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121217

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130128

R150 Certificate of patent or registration of utility model

Ref document number: 5200613

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160222

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees