JP5194450B2 - Turbo molecular pump - Google Patents

Turbo molecular pump Download PDF

Info

Publication number
JP5194450B2
JP5194450B2 JP2006354876A JP2006354876A JP5194450B2 JP 5194450 B2 JP5194450 B2 JP 5194450B2 JP 2006354876 A JP2006354876 A JP 2006354876A JP 2006354876 A JP2006354876 A JP 2006354876A JP 5194450 B2 JP5194450 B2 JP 5194450B2
Authority
JP
Japan
Prior art keywords
exhaust port
screw
pump
housing
turbo
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006354876A
Other languages
Japanese (ja)
Other versions
JP2008163857A (en
Inventor
胤芳 中山
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Shimadzu Corp
Original Assignee
Shimadzu Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Shimadzu Corp filed Critical Shimadzu Corp
Priority to JP2006354876A priority Critical patent/JP5194450B2/en
Publication of JP2008163857A publication Critical patent/JP2008163857A/en
Application granted granted Critical
Publication of JP5194450B2 publication Critical patent/JP5194450B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/042Turbomolecular vacuum pumps

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Description

本発明は、ターボ分子ポンプに関する。   The present invention relates to a turbo molecular pump.

従来、動翼と静翼とから成るターボ分子ポンプ部と、ネジロータとネジステータネジとから成るネジポンプ部とを有する高ガス負荷対応型のターボ分子ポンプが知られている(例えば、特許文献1参照)。このようなターボ分子ポンプでは、ポンプ内部に反応生成物が堆積するのを避けるために、ネジステータが設けられるハウジングに排気口を配設し、ハウジングと排気口とを所定温度に加熱する加熱手段を備えている。   2. Description of the Related Art Conventionally, a turbo molecular pump compatible with a high gas load having a turbo molecular pump portion including a moving blade and a stationary blade and a screw pump portion including a screw rotor and a screw stator screw is known (see, for example, Patent Document 1) ). In such a turbo molecular pump, in order to avoid the accumulation of reaction products in the pump, an exhaust port is provided in a housing provided with a screw stator, and heating means for heating the housing and the exhaust port to a predetermined temperature is provided. I have.

特開2005−249068号公報JP 2005-249068 A

ところで、ネジポンプ部の性能向上を図ろうとすると、ネジステータの直径を拡大または排気口方向に伸延する等の必要がある。排気口方向に伸延する場合、ネジステータの下方への延長に伴う排気口の開口面積縮小を避けるため、ポンプ本体が軸方向に大きくなってしまうという問題があった。   By the way, in order to improve the performance of the screw pump section, it is necessary to enlarge the diameter of the screw stator or to extend it in the direction of the exhaust port. When extending in the direction of the exhaust port, there is a problem that the pump body becomes larger in the axial direction in order to avoid a reduction in the opening area of the exhaust port due to the downward extension of the screw stator.

請求項1の発明は、ターボポンプ部と、ネジポンプ部と、ネジポンプ部のネジステータが設けられた略円筒状のハウジングと、ハウジングの側面に形成され、ネジポンプ部の下流側空間とポンプ外部とを連通する所定長さの筒状孔から成り、ネジポンプ部の下端部により上部側が覆われた開口部を有する排気口と、筒状孔の排気口の両側面において排気口の開口部よりも排気口の長手方向に食い込んだ位置で排気口に連通し、下流側空間のガスを排気口の両側周から排気口へと導くガス通路とを備え、ガス通路は、ハウジングの内周面の一周にわたって形成され、排気口の側周の一部を切り欠くリング状の溝であり、ガス通路が筒状孔の排気口に連通する両側周の開口のコンダクタンスの合計は、排気口の開口部における、ネジポンプ部の下端部により覆われた部分のコンダクタンスと同程度であることを特徴とする。
請求項2の発明は、請求項1に記載のターボ分子ポンプにおいて、ネジステータを、ハウジングに一体に形成したものである。
請求項3の発明は、請求項1に記載のターボ分子ポンプにおいて、ネジステータは、ハウジングと別体に設けられ、ボルトによりハウジングに固定されたものである。
According to the first aspect of the present invention, a turbo pump portion, a screw pump portion, a substantially cylindrical housing provided with a screw stator of the screw pump portion, a side surface of the housing, and a downstream space of the screw pump portion and the outside of the pump communicate with each other. And an exhaust port having an opening that is covered with the lower end of the screw pump portion and having an upper portion covered by the lower end portion of the screw pump portion, and an exhaust port on both sides of the exhaust port of the cylindrical hole. A gas passage that communicates with the exhaust port at a position that bites in the longitudinal direction and guides the gas in the downstream space from both sides of the exhaust port to the exhaust port, and the gas passage is formed over the entire inner peripheral surface of the housing. , A ring-shaped groove that cuts out a part of the side circumference of the exhaust port, and the sum of the conductance of the openings on both sides where the gas passage communicates with the exhaust port of the cylindrical hole is the screw pump part at the opening part of the exhaust port Under Characterized in that it is comparable to the conductance of the covered part fractionated by parts.
According to a second aspect of the present invention, in the turbomolecular pump according to the first aspect, the screw stator is formed integrally with the housing.
According to a third aspect of the present invention, in the turbomolecular pump according to the first aspect, the screw stator is provided separately from the housing and is fixed to the housing by a bolt.

本発明によれば、下流側空間のガスを排気口の側周から排気口へと導くガス通路とを備えたので、ポンプの大型化を抑えつつ排気口の開口面積の拡大を図ることができる。   According to the present invention, since the gas passage for guiding the gas in the downstream space from the side periphery of the exhaust port to the exhaust port is provided, the opening area of the exhaust port can be increased while suppressing an increase in the size of the pump. .

以下、図を参照して本発明を実施するための最良の形態について説明する。図1は、本発明によるターボ分子ポンプの一実施の形態を示す図である。図1に示すターボ分子ポンプは高ガス負荷対応型のターボ分子ポンプであって、ロータ翼20とステータ翼30とから構成されるターボポンプ部と、ネジロータ部21とネジステータ部31とから構成されるネジポンプ部とを有している。   Hereinafter, the best mode for carrying out the present invention will be described with reference to the drawings. FIG. 1 is a diagram showing an embodiment of a turbo molecular pump according to the present invention. The turbo molecular pump shown in FIG. 1 is a turbo molecular pump compatible with a high gas load, and is composed of a turbo pump portion composed of rotor blades 20 and stator blades 30, a screw rotor portion 21, and a screw stator portion 31. And a screw pump unit.

ロータ翼20およびネジロータ部21はロータ2に形成されており、ステータ翼30およびネジステータ部31はハウジング3に設けられている。ロータ2は、スピンドル4に設けられたラジアル磁気軸受41,42およびスラスト磁気軸受43によって非接触支持されるとともに、モータ44によって回転駆動される。   The rotor blade 20 and the screw rotor portion 21 are formed in the rotor 2, and the stator blade 30 and the screw stator portion 31 are provided in the housing 3. The rotor 2 is supported in a non-contact manner by radial magnetic bearings 41 and 42 and a thrust magnetic bearing 43 provided on the spindle 4 and is driven to rotate by a motor 44.

ハウジング3上に積層された複数のステータ翼30間にはスペーサ32が配設されており、ケーシング5をハウジング3にボルト締結することにより、ステータ翼30およびスペーサ32がケーシング上端とハウジング3との間に挟持される。各ステータ翼30は、スペーサ32によって所定位置に位置決めされる。   Spacers 32 are disposed between the plurality of stator blades 30 stacked on the housing 3, and the stator blades 30 and the spacers 32 are connected to the upper end of the casing and the housing 3 by bolting the casing 5 to the housing 3. Sandwiched between. Each stator blade 30 is positioned at a predetermined position by a spacer 32.

ケーシング5の吸気口から流入したガス分子はターボポンプ部によって図示下方へと叩き飛ばされ、下流側に向かって圧縮排気される。その圧縮されたガス分子は、さらにネジポンプ部によって圧縮され、ハウジング5の下部に形成された下流側空間(以下では背圧空間と呼ぶ)Sに達する。背圧空間Sのガスは排気口33に接続された補助ポンプにより外部へと排気される。なお、図示していないが、排気口33には補助ポンプを接続するための排気フランジ35が取り付けられる(図2参照)。   Gas molecules that have flowed from the intake port of the casing 5 are blown down in the figure by the turbo pump unit, and are compressed and exhausted toward the downstream side. The compressed gas molecules are further compressed by the screw pump unit, and reach a downstream space (hereinafter referred to as a back pressure space) S formed in the lower portion of the housing 5. The gas in the back pressure space S is exhausted to the outside by an auxiliary pump connected to the exhaust port 33. Although not shown, an exhaust flange 35 for connecting an auxiliary pump is attached to the exhaust port 33 (see FIG. 2).

図2は、ネジポンプ部および排気口の部分を詳細に示す図である。図2(a)は、図1に示した本実施の形態の場合の断面図である。図2(b)は、ネジポンプ部の軸方向長さが図2(a)に示すものよりも短い従来の場合を示す。ネジステータ部31はハウジング3に形成されたネジ溝から成るので、図2(a)に示すように、ネジステータ部31の内周面を排気口33が設けられる背圧空間Sの内周面よりも突出させて、ネジ溝から背圧空間Sへのガスの流れを妨げないようにしている。   FIG. 2 is a diagram showing in detail the screw pump portion and the exhaust port portion. FIG. 2A is a cross-sectional view of the present embodiment shown in FIG. FIG. 2B shows a conventional case in which the axial length of the screw pump portion is shorter than that shown in FIG. Since the screw stator portion 31 is formed of a screw groove formed in the housing 3, as shown in FIG. 2A, the inner peripheral surface of the screw stator portion 31 is more than the inner peripheral surface of the back pressure space S in which the exhaust port 33 is provided. The gas flow from the thread groove to the back pressure space S is not hindered.

図2(b)の場合には、ハウジング3に形成されたネジステータ部31の下端とスピンドルの面との軸方向距離L、すなわち、ネジポンプ部の背圧空間(下流側空間)Sの軸方向寸法Lを、排気口33の内径Dよりも大きく設定することで、排気口33の断面積と同一の開口面積を背圧空間Sに対して確保している。なお、ハウジング3は、反応生成物の堆積を防止するためにヒータ50と冷却水パイプ51とにより温度制御される。   In the case of FIG. 2B, the axial distance L between the lower end of the screw stator portion 31 formed in the housing 3 and the surface of the spindle, that is, the axial dimension of the back pressure space (downstream space) S of the screw pump portion. By setting L to be larger than the inner diameter D of the exhaust port 33, the same opening area as the cross-sectional area of the exhaust port 33 is secured for the back pressure space S. The housing 3 is temperature-controlled by a heater 50 and a cooling water pipe 51 in order to prevent reaction products from accumulating.

図2(b)において、ネジポンプ部の性能向上のためにネジロータ部21およびネジステータ部31を二点鎖線で示すように下方に拡大すると、排気口33の開口部の符号Bで示す部分がネジステータ部31によって塞がれてしまう。その結果、排気口33の背圧空間S側の開口面積が小さくなり、コンダクタンス低下による排気性能への悪影響が生じる。例えば、拡大前の円形開口部のコンダクタンスをC1、拡大後の半円形状開口部のコンダクタンスをC2とすれば、図2(a)に示す状態ではC2はC1の半分程度となってしまう。   In FIG. 2B, when the screw rotor portion 21 and the screw stator portion 31 are expanded downward as indicated by a two-dot chain line in order to improve the performance of the screw pump portion, the portion indicated by the symbol B of the opening portion of the exhaust port 33 is the screw stator portion. It will be blocked by 31. As a result, the opening area on the back pressure space S side of the exhaust port 33 is reduced, and an adverse effect on the exhaust performance due to a decrease in conductance occurs. For example, if the conductance of the circular opening before enlargement is C1, and the conductance of the semicircular opening after enlargement is C2, C2 is about half of C1 in the state shown in FIG.

図2(a)に示すターボ分子ポンプでは、ネジステータ部31の下部に、ハウジング内周面から外周面方向に凹んだリング状の溝34を形成した。この溝34は、排気口33の背圧空間S側の開口から出口開口方向(図示右方向)へと食い込むように形成されている。図3(a)はハウジング3を底面側から見た図であり、図3(b)はC矢視図である。図3に示すように、溝34は内周面の一周にわたってリング状に形成されている。   In the turbo molecular pump shown in FIG. 2A, a ring-shaped groove 34 that is recessed from the inner peripheral surface of the housing toward the outer peripheral surface is formed in the lower portion of the screw stator portion 31. The groove 34 is formed so as to bite in from the opening on the back pressure space S side of the exhaust port 33 toward the outlet opening direction (right direction in the drawing). FIG. 3A is a view of the housing 3 as seen from the bottom side, and FIG. As shown in FIG. 3, the groove 34 is formed in a ring shape over the entire circumference of the inner peripheral surface.

図4は排気口33の部分を拡大して示した断面図である。排気口33の背圧空間側の開口は符号Bで示す部分がネジステータ部31によって塞がれており、この部分は図2(b)に示した従来のものと同様である。しかしながら、溝34が排気口33に食い込むように形成されているため、排気口33の周面の一部が切り欠かれ、溝34を介して背圧空間Sに連通する開口33aが2箇所形成されることになる。その結果、十分な開口面積を確保することができる。   FIG. 4 is an enlarged cross-sectional view of the exhaust port 33 portion. In the opening on the back pressure space side of the exhaust port 33, a portion indicated by a symbol B is closed by a screw stator portion 31, and this portion is the same as the conventional one shown in FIG. However, since the groove 34 is formed so as to bite into the exhaust port 33, a part of the peripheral surface of the exhaust port 33 is notched, and two openings 33 a communicating with the back pressure space S through the groove 34 are formed. Will be. As a result, a sufficient opening area can be ensured.

例えば、開口部33aのコンダクタンスをC3とすると、開口部33aが形成されたことにより、全体のコンダクタンスはほぼC2+C3+C3になると考えられる。そのため、C2+C3+C3=C1となるように溝34を設定すれば、図2(b)の場合と同程度のコンダクタンスを確保することができる。   For example, if the conductance of the opening 33a is C3, it is considered that the overall conductance is approximately C2 + C3 + C3 due to the formation of the opening 33a. Therefore, if the groove 34 is set so that C2 + C3 + C3 = C1, conductance comparable to that in the case of FIG. 2B can be ensured.

よって、背圧空間(下流側空間)Sの軸方向寸法Lが排気口33の内径Dよりも小さい場合であっても、溝34の形成で排気口33の開口面積が増加し、背圧空間Sから溝34を介して排気口33への流入するガスへのコンダクタンス低下を防止することができる。この場合、溝34は排気口33へのガス通路として機能する。その結果、ターボ分子ポンプの軸方向寸法の増加を抑えつつ、ネジポンプ部の排気性能を向上させることができる。また、溝34を形成しても、ハウジング底面36の形状は変化しないので、スピンドル4の固定には支障がない。   Therefore, even when the axial dimension L of the back pressure space (downstream space) S is smaller than the inner diameter D of the exhaust port 33, the opening area of the exhaust port 33 increases due to the formation of the groove 34, and the back pressure space. A decrease in conductance from S to the gas flowing into the exhaust port 33 through the groove 34 can be prevented. In this case, the groove 34 functions as a gas passage to the exhaust port 33. As a result, the exhaust performance of the screw pump unit can be improved while suppressing an increase in the axial dimension of the turbo molecular pump. Further, even if the groove 34 is formed, the shape of the housing bottom surface 36 does not change, so that there is no problem in fixing the spindle 4.

ここでは、溝34をリング状に形成したが、必ずしもリング状でなくてもよく、排気口33を含む左右方向に延びる所定長さの溝であっても構わない。背圧空間Sのガスは溝34に流れ込んだ後、排気口側面の開口部33aから排気口33に流入する。   Here, the groove 34 is formed in a ring shape, but may not necessarily be a ring shape, and may be a groove having a predetermined length extending in the left-right direction including the exhaust port 33. The gas in the back pressure space S flows into the groove 34 and then flows into the exhaust port 33 from the opening 33a on the side surface of the exhaust port.

ところで、上述した例ではネジステータ部31を下方に拡大した場合について説明したが、図2(b)に示すような従来のポンプのようにL>Dのような条件であっても、排気口33に食い込むように溝34を形成すれば、図2(a)の場合と同様に切り欠き開口が周面に形成されるので、コンダクタンスの向上を図ることができる。   By the way, in the above-described example, the case where the screw stator portion 31 is expanded downward has been described. However, even in the condition of L> D as in the conventional pump as shown in FIG. If the groove 34 is formed so as to bite into the groove, a notch opening is formed in the peripheral surface as in the case of FIG. 2A, so that the conductance can be improved.

なお、上述した実施の形態では、磁気軸受式のターボ分子ポンプを例に説明したが、本発明は磁気軸受式に限らず適用することができる。さらに、ハウジング3の内周面にネジ溝を形成してネジステータ31をハウジング3と一体で形成したが、図5に示すようにネジステータ部31をハウジング3と別体で設けても良い。ネジステータ31はボルト37によりハウジング3に固定されている。また、本発明は、磁気軸受式のターボ分子ポンプに限らず適用することができる。   In the above-described embodiment, the magnetic bearing type turbo molecular pump has been described as an example. However, the present invention is not limited to the magnetic bearing type and can be applied. Further, although the screw groove 31 is formed on the inner peripheral surface of the housing 3 and the screw stator 31 is formed integrally with the housing 3, the screw stator portion 31 may be provided separately from the housing 3 as shown in FIG. The screw stator 31 is fixed to the housing 3 by bolts 37. The present invention can be applied not only to the magnetic bearing type turbo molecular pump.

以上説明した実施の形態と特許請求の範囲の要素との対応において、背圧空間Sは下流側空間を、溝34はガス通路を、排気口33の内径Dは軸方向開口寸法をそれぞれ構成する。なお、以上の説明はあくまでも一例であり、発明を解釈する際、上記実施の形態の記載事項と特許請求の範囲の記載事項の対応関係に何ら限定も拘束もされない。   In the correspondence between the embodiment described above and the elements of the claims, the back pressure space S constitutes the downstream space, the groove 34 constitutes the gas passage, and the inner diameter D of the exhaust port 33 constitutes the axial opening size. . The above description is merely an example, and when interpreting the invention, there is no limitation or restriction on the correspondence between the items described in the above embodiment and the items described in the claims.

本発明によるターボ分子ポンプの一実施の形態を示す図である。It is a figure which shows one Embodiment of the turbo-molecular pump by this invention. ネジポンプ部および排気口の部分を詳細に示す図であり、(a)は本実施の形態の場合を示し、(b)は従来の場合を示す。It is a figure which shows the part of a screw pump part and an exhaust port in detail, (a) shows the case of this Embodiment, (b) shows the conventional case. ハウジング3を示す図であり、(a)は底面側から見た図であり、(b)はC矢視図である。It is a figure which shows the housing 3, (a) is the figure seen from the bottom face side, (b) is a C arrow line view. 排気口33の部分を拡大して示した断面図である。It is sectional drawing which expanded and showed the part of the exhaust port 33. FIG. ハウジング3と別体で設けられたネジステータ部31を示す図である。It is a figure which shows the screw stator part 31 provided separately from the housing.

符号の説明Explanation of symbols

2:ロータ、3:ハウジング、4:スピンドル、20:ロータ翼、21:ネジステータ部、30:ステータ翼、31:ネジロータ部、33:排気口、34:溝、36:ハウジング底面、S:背圧空間   2: Rotor, 3: Housing, 4: Spindle, 20: Rotor blade, 21: Screw stator section, 30: Stator blade, 31: Screw rotor section, 33: Exhaust port, 34: Groove, 36: Housing bottom surface, S: Back pressure space

Claims (3)

ターボポンプ部と、
ネジポンプ部と、
前記ネジポンプ部のネジステータが設けられた略円筒状のハウジングと、
前記ハウジングの側面に形成され、前記ネジポンプ部の下流側空間とポンプ外部とを連通する所定長さの筒状孔から成り、前記ネジポンプ部の下端部により上部側が覆われた開口部を有する排気口と、
前記筒状孔の排気口の両側面において前記排気口の開口部よりも前記排気口の長手方向に食い込んだ位置で前記排気口に連通し、前記下流側空間のガスを前記排気口の両側周から前記排気口へと導くガス通路とを備え、
前記ガス通路は、前記ハウジングの内周面の一周にわたって形成され、前記排気口の側周の一部を切り欠くリング状の溝であり、
前記ガス通路が前記筒状孔の排気口に連通する両側周の開口のコンダクタンスの合計は、前記排気口の開口部における、前記ネジポンプ部の下端部により覆われた部分のコンダクタンスと同程度であることを特徴とするターボ分子ポンプ。
A turbo pump section;
Screw pump,
A substantially cylindrical housing provided with a screw stator of the screw pump part;
An exhaust port that is formed on a side surface of the housing and includes a cylindrical hole having a predetermined length that communicates with the downstream space of the screw pump unit and the outside of the pump, and has an opening that is covered with the lower end of the screw pump unit. When,
The both sides of the exhaust port of the cylindrical hole communicate with the exhaust port at a position biting in the longitudinal direction of the exhaust port with respect to the opening of the exhaust port, and the gas in the downstream space is passed to both sides of the exhaust port. A gas passage that leads from the exhaust to the exhaust port,
The gas passage is a ring-shaped groove that is formed over the inner peripheral surface of the housing and cuts out a part of the side periphery of the exhaust port.
The total conductance of each side periphery of the opening communicating the gas passage outlet of the tubular hole, at the opening of the exhaust port, in parts of the conductance comparable covered by the lower end portion of the screw pump section A turbo molecular pump characterized by being.
請求項に記載のターボ分子ポンプにおいて、
前記ネジステータは、前記ハウジングに一体に形成されていることを特徴とするターボ分子ポンプ。
The turbo-molecular pump according to claim 1 ,
The turbomolecular pump, wherein the screw stator is formed integrally with the housing.
請求項1に記載のターボ分子ポンプにおいて、
前記ネジステータは、前記ハウジングと別体に設けられ、ボルトにより前記ハウジングに固定されていることを特徴とするターボ分子ポンプ。
The turbo-molecular pump according to claim 1,
The turbo-molecular pump, wherein the screw stator is provided separately from the housing and is fixed to the housing by a bolt.
JP2006354876A 2006-12-28 2006-12-28 Turbo molecular pump Active JP5194450B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006354876A JP5194450B2 (en) 2006-12-28 2006-12-28 Turbo molecular pump

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006354876A JP5194450B2 (en) 2006-12-28 2006-12-28 Turbo molecular pump

Publications (2)

Publication Number Publication Date
JP2008163857A JP2008163857A (en) 2008-07-17
JP5194450B2 true JP5194450B2 (en) 2013-05-08

Family

ID=39693650

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006354876A Active JP5194450B2 (en) 2006-12-28 2006-12-28 Turbo molecular pump

Country Status (1)

Country Link
JP (1) JP5194450B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5785494B2 (en) * 2009-08-28 2015-09-30 エドワーズ株式会社 Components used in vacuum pumps and vacuum pumps

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
DE3728154C2 (en) * 1987-08-24 1996-04-18 Balzers Pfeiffer Gmbh Multi-stage molecular pump
JPH09303289A (en) * 1996-05-14 1997-11-25 Osaka Shinku Kiki Seisakusho:Kk Surface treatment method for molecular pump
JP3011917B2 (en) * 1998-02-24 2000-02-21 株式会社ゼクセル Vane type compressor
DE10055057A1 (en) * 2000-11-07 2002-05-08 Pfeiffer Vacuum Gmbh Leak detector pump has high vacuum pump, gas analyzer, test object connector, gas outlet opening, gas inlet opening, valve bodies and gas connections in or forming parts of housing
JP2003269365A (en) * 2002-03-13 2003-09-25 Boc Edwards Technologies Ltd Vacuum pump

Also Published As

Publication number Publication date
JP2008163857A (en) 2008-07-17

Similar Documents

Publication Publication Date Title
JP6287475B2 (en) Vacuum pump
JP5433560B2 (en) Turbine scroll part structure
JP4980699B2 (en) Centrifugal compressor
JP6040928B2 (en) Turbocharger
JP5088610B2 (en) Centrifugal compressor casing
JP2006242184A (en) Air bleed manifold and compressor case assembly
US10443606B2 (en) Side-channel blower for an internal combustion engine
WO2016024409A1 (en) Centrifugal rotary machine
WO2021172144A1 (en) Vacuum pump and vacuum pump constituent component
US20140170000A1 (en) Side channel blower having a plurality of feed channels distributed over the circumference
JP2008175124A (en) Centrifugal compressor
JPWO2018109934A1 (en) Turbine housing, exhaust turbine, and turbocharger
WO2019131632A1 (en) Exhaust chamber and steam turbine
JP5194450B2 (en) Turbo molecular pump
US20180073520A1 (en) Charging device
JP5125718B2 (en) Centrifugal compressor
JP6398212B2 (en) Bearing structure and turbocharger
JP4935509B2 (en) Turbo molecular pump
EP3382209B1 (en) Centrifugal compressor and supercharger
JP2008196327A (en) Turbocharger
EP3633203B1 (en) Vacuum pump comprising a heating device
JP6827486B2 (en) Blower
JP2019044659A (en) Centrifugal compressor
JP2005083271A (en) Vacuum pump
JP2013189921A (en) Supercharger

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090305

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110527

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110531

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110801

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120214

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120413

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121016

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121205

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130121

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3

R151 Written notification of patent or utility model registration

Ref document number: 5194450

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R151

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160215

Year of fee payment: 3