WO2016024409A1 - Centrifugal rotary machine - Google Patents

Centrifugal rotary machine Download PDF

Info

Publication number
WO2016024409A1
WO2016024409A1 PCT/JP2015/051049 JP2015051049W WO2016024409A1 WO 2016024409 A1 WO2016024409 A1 WO 2016024409A1 JP 2015051049 W JP2015051049 W JP 2015051049W WO 2016024409 A1 WO2016024409 A1 WO 2016024409A1
Authority
WO
WIPO (PCT)
Prior art keywords
diaphragm
rotating shaft
impeller
outer peripheral
centrifugal
Prior art date
Application number
PCT/JP2015/051049
Other languages
French (fr)
Japanese (ja)
Inventor
信頼 八木
Original Assignee
三菱重工業株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 三菱重工業株式会社 filed Critical 三菱重工業株式会社
Priority to US15/503,135 priority Critical patent/US20170226896A1/en
Priority to EP15831349.4A priority patent/EP3171037A4/en
Priority to CN201580042896.2A priority patent/CN106574635A/en
Publication of WO2016024409A1 publication Critical patent/WO2016024409A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • F01D25/246Fastening of diaphragms or stator-rings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • F04D17/12Multi-stage pumps
    • F04D17/122Multi-stage pumps the individual rotor discs being, one for each stage, on a common shaft and axially spaced, e.g. conventional centrifugal multi- stage compressors
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/16Arrangement of bearings; Supporting or mounting bearings in casings
    • F01D25/162Bearing supports
    • F01D25/164Flexible supports; Vibration damping means associated with the bearing
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/083Sealings especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/08Sealings
    • F04D29/16Sealings between pressure and suction sides
    • F04D29/161Sealings between pressure and suction sides especially adapted for elastic fluid pumps
    • F04D29/162Sealings between pressure and suction sides especially adapted for elastic fluid pumps of a centrifugal flow wheel
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/40Casings; Connections of working fluid
    • F04D29/42Casings; Connections of working fluid for radial or helico-centrifugal pumps
    • F04D29/4206Casings; Connections of working fluid for radial or helico-centrifugal pumps especially adapted for elastic fluid pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01DNON-POSITIVE DISPLACEMENT MACHINES OR ENGINES, e.g. STEAM TURBINES
    • F01D25/00Component parts, details, or accessories, not provided for in, or of interest apart from, other groups
    • F01D25/24Casings; Casing parts, e.g. diaphragms, casing fastenings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D17/00Radial-flow pumps, e.g. centrifugal pumps; Helico-centrifugal pumps
    • F04D17/08Centrifugal pumps
    • F04D17/10Centrifugal pumps for compressing or evacuating
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F05INDEXING SCHEMES RELATING TO ENGINES OR PUMPS IN VARIOUS SUBCLASSES OF CLASSES F01-F04
    • F05DINDEXING SCHEME FOR ASPECTS RELATING TO NON-POSITIVE-DISPLACEMENT MACHINES OR ENGINES, GAS-TURBINES OR JET-PROPULSION PLANTS
    • F05D2300/00Materials; Properties thereof
    • F05D2300/40Organic materials
    • F05D2300/43Synthetic polymers, e.g. plastics; Rubber
    • F05D2300/432PTFE [PolyTetraFluorEthylene]

Definitions

  • the present invention relates to a centrifugal rotating machine having a plurality of impellers.
  • This application claims priority in Japanese Patent Application No. 2014-164735 for which it applied on August 13, 2014, and uses the content here.
  • Centrifugal rotating machines such as centrifugal compressors generally have a gap between a rotating body such as a rotating shaft / impeller (impeller) and a stationary body such as a surrounding diaphragm. Therefore, in many cases, a sealing device that suppresses the inflow of the working fluid is provided in the gap between the rotating body and the stationary body.
  • the sealing device is provided at a cap portion at the inlet of the impeller, between each stage of the multistage impeller, and a balance piston portion provided at the final stage of the multistage impeller.
  • a damper seal or a labyrinth seal is used in such a sealing device.
  • the gap between the sealing member such as a sealing fin and the rotating body is set to a small dimension (for example, 0.1 mm to several mm) in order to suppress the leakage amount.
  • a small dimension for example, 0.1 mm to several mm.
  • internal components such as a diaphragm of the centrifugal compressor, an impeller, and the like are deformed by heat, stress, and centrifugal force. This causes contact between the rotating body and the stationary body depending on the size of the gap of the sealing device, which causes unstable vibration of the rotating shaft.
  • Patent Document 1 describes a centrifugal compressor including a ring that resists deformation of a sealing device in order to suppress deformation of the sealing device.
  • Patent Document 1 cannot suppress the deformation and displacement of the diaphragm. This may cause unstable vibration of the rotating shaft due to non-uniform gaps in the sealing device due to deformation or displacement of the diaphragm.
  • An object of the present invention is to provide a centrifugal rotating machine that can prevent deformation and displacement of the diaphragm and prevent unstable vibration of the rotating shaft of the centrifugal rotating machine.
  • the centrifugal rotating machine includes a rotor having a rotating shaft that rotates around an axis and an impeller that rotates together with the rotating shaft, a casing that surrounds the rotor from an outer peripheral side, the rotor, A plurality of layers stacked in the axial direction between the casing and a diaphragm defining a flow path of a fluid pumped by the impeller; and a restraining member for restraining the diaphragm from an outer peripheral side. It is characterized by.
  • the restraining member exhibits the function of suppressing the deformation and displacement of the diaphragm, thereby suppressing the change in the relative position between the stationary body and the rotating body due to the deformation and displacement of the diaphragm. And the rotating body can be prevented from contacting each other.
  • the constraining member is an annular ring fitted to the outer peripheral surface of the diaphragm, and the outer peripheral surface of the ring is formed so as to contact the inner peripheral surface of the casing. It is good.
  • the gap between the diaphragm and the casing can be kept constant.
  • the diaphragm can be prevented from being displaced in the radial direction.
  • the deformation of the diaphragm can also be suppressed.
  • the constraining member may be formed of resin. According to such a configuration, the slidability between the casing and the restraining member can be improved.
  • a concave groove formed at equal intervals in the circumferential direction may be formed on the outer peripheral surface of the restraining member. According to such a configuration, the slidability between the casing and the restraining member can be improved.
  • the constraining member may be a key groove formed continuously with the adjacent diaphragm and a key member fitted into the key groove.
  • the impeller In the centrifugal rotating machine, the impeller is disposed on a first side in the axial direction and circulates the fluid toward a central position in the axial direction of the rotary shaft, and the first impeller in the axial direction.
  • a second impeller group that is disposed on the second side opposite to the first side and circulates the fluid toward a central position in the axial direction of the rotating shaft, and is provided at both ends of the rotating shaft.
  • a bearing that rotatably supports the rotating shaft, and the restraining member may be provided in the vicinity of the center position of the diaphragm.
  • the restraining member exhibits the function of suppressing the deformation and displacement of the diaphragm, thereby suppressing the deformation and change of the relative position of the stationary body and the rotating body accompanying the displacement of the diaphragm, and rotating the stationary body and the stationary body. Contact with the body can be prevented.
  • centrifugal compressor 1 of the present embodiment is a single-shaft multi-stage centrifugal compressor including a plurality of impellers 3 (impellers).
  • the centrifugal compressor 1 includes a rotor 2 that rotates about an axis P, a cylindrical casing 7 that surrounds the rotor 2 from the outer peripheral side, and a plurality of layers stacked in the axial direction between the rotor 2 and the casing 7. And a plurality of diaphragms 6 that form a flow path of a process gas G (fluid) to be pumped by the impeller 3.
  • the rotor 2 includes a rotating shaft 4 and a plurality of impellers 3 that rotate together with the rotating shaft 4.
  • the impeller 3 is an impeller that is attached to the rotating shaft 4 and compresses the process gas G using centrifugal force.
  • the rotating shaft 4 is connected to a driving machine (not shown) such as a motor, and the rotor 2 is driven to rotate by this driving machine.
  • the rotary shaft 4 has a columnar shape and extends in the direction of the axis P.
  • the rotating shaft 4 is rotatably supported by bearings 16 at both ends in the direction of the axis P.
  • a sealing device 5 is appropriately provided between the rotating shaft 4 and the plurality of impellers 3 constituting the rotating body and the diaphragm 6.
  • the plurality of impellers 3 are arranged between the bearings 16 provided at both ends in the direction of the axis P of the rotating shaft 4.
  • the plurality of impellers 3 constitute two sets of three-stage impeller groups 3A and 3B in which the directions of the blades are opposite to each other in the direction of the axis P of the rotating shaft 4.
  • the first impeller group 3 ⁇ / b> A and the second impeller group 3 ⁇ / b> B are attached to the rotating shaft 4 with their rear surfaces facing the center position C in the direction of the axis P.
  • the first impeller group 3A is disposed on the first side in the axial direction (left side in FIG. 1).
  • the second impeller group 3B is disposed on the second side (the right side in FIG. 1) opposite to the first side in the axial direction.
  • Each impeller group 3A, 3B has three compressor stages corresponding to each impeller 3 arranged in the axial direction.
  • the impeller 3 has a substantially disk-shaped disk 8 that gradually expands radially outward of the axis P in the direction of the axis P of the rotary shaft 4 and a circumferential direction of the axis P on the disk 8.
  • a plurality of blades 9 provided radially at intervals, and a shroud 10 provided to face the disk 8 and cover the plurality of blades 9 are provided.
  • the process gas G is compressed by flowing through each of the first impeller group 3A and the second impeller group 3B toward the center position C in the direction of the axis P.
  • the bearings 16 are provided one by one at both ends of the rotating shaft 4, and support the rotating shaft 4 so as to be rotatable.
  • a journal bearing having a plurality of bearing pads can be employed as the bearing 16, for example.
  • the casing 7 is formed in a cylindrical shape, and its central axis coincides with the axis P.
  • the casing 7 accommodates a plurality of diaphragms 6 therein.
  • the plurality of diaphragms 6 are provided so as to be stacked in the axial direction.
  • the plurality of diaphragms 6 are provided corresponding to the respective compressor stages of the centrifugal compressor 1. Specifically, the plurality of diaphragms 6 includes a plurality of diaphragms 6A corresponding to the first impeller group 3A and a plurality of diaphragms 6B corresponding to the second impeller group 3B. The plurality of diaphragms 6A corresponding to the first impeller group 3A are connected via a stepped portion. A plurality of diaphragms 6B corresponding to the second impeller group 3B are also connected via a stepped portion. In addition, the diaphragm 6A and the diaphragm 6B which are adjacent in the vicinity of the center position C are in contact with each other, but are not connected via a stepped portion.
  • a predetermined gap S is formed between the cylindrical casing 7 and the plurality of diaphragms 6. That is, the inner peripheral surface of the casing 7 and the outer peripheral surfaces of the plurality of diaphragms 6 are separated from each other via a predetermined gap S.
  • the gap S is uniformly provided in the axial direction and the circumferential direction.
  • an annular suction port 11 ⁇ / b> A is formed at a position on the radially outer side of the end portion on the first side in the axial direction. Further, a connection flow path 12A is formed between the suction port 11A and the flow path of the impeller 3 located on one side of the three-stage impeller group 3A, and the flow path of the impeller 3 and the suction port 11A. And connected. Thereby, the process gas G can be introduced into the three-stage impeller group 3A from the outside.
  • connection flow path 14A that is connected to the flow path of the impeller 3 located on the second side of the three-stage impeller group 3A and extends outward in the radial direction.
  • annular discharge port 15 ⁇ / b> A is formed at a position that is connected to the connection flow path 14 ⁇ / b> A and is radially outside at the central position C in the axial direction.
  • a casing flow path 13B, a suction port 11B, connection flow paths 12B and 14B, and a discharge port 15B are formed inside the diaphragm 6. And these are arrange
  • a balance piston 17 for adjusting the thrust of the impeller 3 is provided on the outer peripheral surface of the rotating shaft 4 and between the three-stage impeller group 3A and the three-stage impeller group 3B.
  • the rotor 2 is constituted by the rotating shaft 4, the plurality of impellers 3, and the balance piston 17.
  • the process gas G that has been compressed in the three-stage impeller group 3A and reaches the vicinity of the central position C of the rotating shaft 4 is then introduced into the three-stage impeller group 3B and further compressed, and again near the central position C. (See dotted line in FIG. 1). Therefore, a pressure difference is generated between the three-stage impeller group 3A and the three-stage impeller group 3B, which are the central position C of the rotating shaft 4.
  • the centrifugal compressor 1 of the present embodiment is provided with three types of sealing devices 5.
  • the first sealing device 5 is a first sealing device 5 a that seals the gap between the outer peripheral surface of the balance piston 17 and the diaphragm 6.
  • the second sealing device 5 is a second sealing device 5 b that seals the gap between the outer peripheral surface of the shroud 10 of the impeller 3 and the diaphragm 6.
  • the third sealing device 5 is a third sealing device 5 c that seals the gap between the outer peripheral surface of the rotating shaft 4 and the diaphragm 6 during the break of the impeller 3.
  • the sealing device 5 of the present embodiment will be described using the first sealing device 5a.
  • the process gas G moves from the three-stage impeller group 3B to the three-stage impeller group 3A at the central position C due to the pressure difference between the three-stage impeller group 3A and the three-stage impeller group 3B. , So as to prevent circulation along the axis P.
  • the seal device 5 has a seal device body attached to the diaphragm 6 and a plurality of seal fins extending from the seal device body toward the rotor 2.
  • the plurality of seal fins extend toward the rotor 2 from the seal device main body to the inner peripheral side, and extend in the circumferential direction. These seal fins form a minute gap with the rotor 2 in the radial direction.
  • the sealing device 5 constitutes a so-called labyrinth seal by a plurality of seal fins.
  • the seal structure used in the seal device 5 is not limited to the labyrinth seal, and a damper seal (hole pattern seal, honeycomb seal) can also be used.
  • the centrifugal compressor 1 of this embodiment includes an annular deformation restraining ring 20 that restrains the diaphragm 6 from the outer peripheral side.
  • the deformation restraining ring 20 is a restraining member having a cylindrical shape having a predetermined thickness in the radial direction.
  • the deformation restraining ring 20 is formed so that the inner diameter of the deformation restraining ring 20 is substantially the same as or slightly smaller than the diameter of the diaphragm 6. That is, the deformation restraining ring 20 has an inner diameter that can be fitted to the outer peripheral surface of the diaphragm 6.
  • the deformation restriction ring 20 is formed so that the outer peripheral surface of the deformation restriction ring 20 abuts on the inner peripheral surface of the casing 7. That is, the deformation restraining ring 20 has an inner peripheral side fixed to the outer peripheral surface of the diaphragm 6 and an outer peripheral side in contact with the inner peripheral surface of the casing 7. Moreover, the deformation
  • the deformation restraining ring 20 is made of, for example, a resin having high slidability such as polytetrafluoroethylene (PTFE).
  • PTFE polytetrafluoroethylene
  • the material forming the deformation restraining ring 20 is not limited to this, and any material may be used as long as it has high slidability and lower rigidity than the material forming the casing 7.
  • a polyacetal resin can be used.
  • the deformation restraining ring 20 of the present embodiment is attached to two diaphragms 6 that are the farthest from the bearing 16 that is the support point of the rotating shaft 4 among the plurality of diaphragms 6. That is, the deformation restraining ring 20 is attached to the diaphragm 6 in the vicinity of the discharge ports 15A and 15B.
  • the deformation restraining ring 20 has the diaphragm A on the most central position C side among the plurality of diaphragms 6A corresponding to the first impeller group 3A and the centermost among the plurality of diaphragms 6B corresponding to the second impeller group 3B. It is attached to the diaphragm 6B on the position C side.
  • the deformation restraining ring 20 which is a restraining member disposed in the gap S exhibits a function of suppressing deformation and displacement of the diaphragm 6.
  • the restraining member is an annular deformation restraining ring 20 fitted to the outer peripheral surface of the diaphragm 6, and the outer peripheral surface of the deformation restraining ring 20 is formed so as to contact the inner peripheral surface of the casing 7.
  • the gap S between the diaphragm 6 and the casing 7 can be kept constant.
  • the deformation of the diaphragm 6 can be suppressed.
  • the diaphragm 6 can be prevented from being displaced in the radial direction. Thereby, the contact in the clearance gap between the sealing devices 5 can be prevented.
  • the deformation restraining ring 20 is formed of resin, the slidability between the casing 7 and the deformation restraining ring 20 can be improved.
  • the deformation restraining ring 20 in the vicinity of the center position C, it is possible to effectively suppress the displacement of the diaphragm 6 located in the vicinity of the center position C that is the farthest from the bearing 16 that is the support portion of the rotating shaft 4. it can.
  • the deformation restricting ring 20 along the ring groove 21 formed on the outer peripheral surface of the diaphragm 6, it is possible to prevent the deformation restricting ring 20 from being displaced in the axial direction.
  • transformation restraint ring 20 of the said embodiment shall have the same cross-sectional shape over the circumferential direction, it is not restricted to this.
  • the grooves 24 formed at equal intervals in the circumferential direction may be formed on the outer peripheral surface of the deformation restraining ring 20B.
  • the spacer 20 ⁇ / b> C can be disposed in the gap between the diaphragm 6 and the casing 7, for example, by adhering to the diaphragm 6. According to the modified example, the slidability between the casing 7 and the restraining members 20B and 20C can be improved.
  • the constraining member of the present embodiment is fitted in the key groove 22 and the key groove 22 formed continuously from the adjacent diaphragms 6 ⁇ / b> A and 6 ⁇ / b> B arranged closest to the center position C.
  • the key groove 22 and the key member 20 ⁇ / b> D of the present embodiment are provided at two locations on both sides of the diaphragm 6.
  • the key groove 22 is a groove having a rectangular cross-sectional shape extending in the axial direction.
  • the key member 20D is fitted into a key groove 22 formed continuously with the diaphragms 6A and 6B.
  • the key member 20D may be fixed to the diaphragm 6 using a fastening member such as a screw. Further, the key member 20D may employ not only a rectangular shape at both ends as shown in FIG. 5 but also a circular shape at least one of both ends.
  • the key groove 22 does not need to have the same shape as the key member 20D, and the length in the longitudinal direction may be longer than that of the key member 20D.
  • the key groove 22 and the key member 20D are provided at two locations on both sides of the diaphragm 6. However, the present invention is not limited to this and may be provided further upward. Moreover, it is good also as a structure which provides the key groove 22 and the key member 20D only in one place.
  • the coupling of the diaphragms 6 that are continuous in the axial direction can be strengthened by using the key member 20D. Therefore, it can suppress that the diaphragm 6 displaces, and when the sealing apparatus 5 is provided in the diaphragm 6, the contact in the clearance gap between the sealing apparatuses 5 can be prevented.
  • the constraining member is applied to a centrifugal compressor, but a rotor having an impeller, a casing that surrounds the rotor from the outer peripheral side, and a diaphragm that defines a flow path of fluid that is pumped by the impeller, Any centrifugal rotating machine may be used.
  • this centrifugal rotating machine it is possible to suppress a change in the relative position between the stationary body and the rotating body due to the deformation and displacement of the diaphragm, and to prevent contact between the stationary body and the rotating body.

Abstract

Provided is a centrifugal rotary machine that comprises: a rotor (2) that has a rotary shaft (4) that rotates around an axis (P), and impellers (3) that rotate together with the rotary shaft (4); a casing (7) that surrounds the rotor (2) from an outer peripheral side; diaphragms (6) that are provided such that a plurality thereof are stacked in a direction of the axis (P) between the rotor (2) and the casing (7), and that define a flow channel for a fluid (G) that is pressure fed by the impellers (3); and restraining members (20) that restrain the diaphragms (6) from an outer peripheral side.

Description

遠心回転機械Centrifugal rotating machine
 本発明は、複数の羽根車を有する遠心回転機械に関する。
 本願は、2014年8月13日に出願された特願2014-164735号について優先権を主張し、その内容をここに援用する。
The present invention relates to a centrifugal rotating machine having a plurality of impellers.
This application claims priority in Japanese Patent Application No. 2014-164735 for which it applied on August 13, 2014, and uses the content here.
 遠心圧縮機などの遠心回転機械は、一般に、回転軸・インペラ(羽根車)などの回転体と、その周囲のダイヤフラム等の静止体との間に隙間がある。そのため、回転体と静止体との間の隙間には、作動流体が流入することを抑制するシール装置が設けられている場合が多い。遠心圧縮機の場合、シール装置は、インペラの入口の口金部、多段インペラの各段間、および、多段インペラの最終段に設けられたバランスピストン部などに設けられている。そして、このようなシール装置には、例えば、ダンパーシールやラビリンスシール等が用いられている。 Centrifugal rotating machines such as centrifugal compressors generally have a gap between a rotating body such as a rotating shaft / impeller (impeller) and a stationary body such as a surrounding diaphragm. Therefore, in many cases, a sealing device that suppresses the inflow of the working fluid is provided in the gap between the rotating body and the stationary body. In the case of a centrifugal compressor, the sealing device is provided at a cap portion at the inlet of the impeller, between each stage of the multistage impeller, and a balance piston portion provided at the final stage of the multistage impeller. For example, a damper seal or a labyrinth seal is used in such a sealing device.
 シール装置においては、漏れ量を抑制するため、シールフィン等のシール部材と回転体との間の隙間は、僅かな寸法(例えば0.1mm~数mm)に設定されている。遠心圧縮機の運転時においては、遠心圧縮機のダイヤフラム等の内部品やインペラ等には、熱や応力、遠心力によって変形が生じる。これにより、シール装置の隙間の寸法によっては回転体と静止体とで接触が生じ、回転軸の不安定振動の要因となる。 In the sealing device, the gap between the sealing member such as a sealing fin and the rotating body is set to a small dimension (for example, 0.1 mm to several mm) in order to suppress the leakage amount. During operation of the centrifugal compressor, internal components such as a diaphragm of the centrifugal compressor, an impeller, and the like are deformed by heat, stress, and centrifugal force. This causes contact between the rotating body and the stationary body depending on the size of the gap of the sealing device, which causes unstable vibration of the rotating shaft.
 近年、例えばガス田向けの遠心圧縮機では、吐出圧力の高圧化が顕著となってきている。例えば、吐出圧力が20MPa以上である高圧圧縮機が要求されている。このため、静止体・回転体の変形が大きくなる傾向にある。
 また、遠心圧縮機の高圧化に伴い、例えば、ダイヤフラム等の内部品の周囲に発生する圧力分布の差圧の絶対値も大きくなる。これにより、内部品を変位させる可能性がある。このような変形・変位を考慮してシール装置の隙間を大きくして接触を防止すると、遠心圧縮機の性能の低下に繋がるため、シール装置の隙間の設定が難しくなっている。
In recent years, for example, in a centrifugal compressor for a gas field, an increase in discharge pressure has become remarkable. For example, a high pressure compressor having a discharge pressure of 20 MPa or more is required. For this reason, the deformation of the stationary body / rotating body tends to increase.
Further, with the increase in pressure of the centrifugal compressor, for example, the absolute value of the differential pressure of the pressure distribution generated around the inner parts such as a diaphragm also increases. Thereby, there is a possibility of displacing the inner part. If contact is prevented by enlarging the gap of the sealing device in consideration of such deformation / displacement, the performance of the centrifugal compressor will be reduced, so that it is difficult to set the gap of the sealing device.
 特許文献1には、シール装置の変形を抑制するために、シール装置の変形に抗するリングを備える遠心圧縮機が記載されている。 Patent Document 1 describes a centrifugal compressor including a ring that resists deformation of a sealing device in order to suppress deformation of the sealing device.
特開2011-32908号公報JP 2011-32908 A
 しかしながら、特許文献1に記載の構造では、ダイヤフラムの変形や変位を抑制することができない。これにより、ダイヤフラムの変形や変位によってシール装置の隙間が不均一になるなどして、回転軸の不安定振動が発生することがあった。 However, the structure described in Patent Document 1 cannot suppress the deformation and displacement of the diaphragm. This may cause unstable vibration of the rotating shaft due to non-uniform gaps in the sealing device due to deformation or displacement of the diaphragm.
 この発明は、ダイヤフラムの変形や変位を抑制して、遠心回転機械の回転軸の不安定振動を防止することのできる遠心回転機械を提供することを目的とする。 An object of the present invention is to provide a centrifugal rotating machine that can prevent deformation and displacement of the diaphragm and prevent unstable vibration of the rotating shaft of the centrifugal rotating machine.
 本発明の第一の態様によれば、遠心回転機械は、軸線回りに回転する回転軸及び前記回転軸とともに回転するインペラを有するロータと、前記ロータを外周側から囲むケーシングと、前記ロータと前記ケーシングとの間に軸線方向に複数が積層されるように設けられて、前記インペラによって圧送する流体の流路を画成するダイヤフラムと、前記ダイヤフラムを外周側から拘束する拘束部材と、を備えることを特徴とする。 According to the first aspect of the present invention, the centrifugal rotating machine includes a rotor having a rotating shaft that rotates around an axis and an impeller that rotates together with the rotating shaft, a casing that surrounds the rotor from an outer peripheral side, the rotor, A plurality of layers stacked in the axial direction between the casing and a diaphragm defining a flow path of a fluid pumped by the impeller; and a restraining member for restraining the diaphragm from an outer peripheral side. It is characterized by.
 このような構成によれば、拘束部材が、ダイヤフラムの変形や変位を抑制する機能を発揮することによって、ダイヤフラムの変形や変位に伴う静止体と回転体の相対位置の変化を抑制し、静止体と回転体との接触を防止することができる。 According to such a configuration, the restraining member exhibits the function of suppressing the deformation and displacement of the diaphragm, thereby suppressing the change in the relative position between the stationary body and the rotating body due to the deformation and displacement of the diaphragm. And the rotating body can be prevented from contacting each other.
 上記遠心回転機械において、前記拘束部材は、前記ダイヤフラムの外周面に嵌め合わされる環状のリングであって、前記リングの外周面は、前記ケーシングの内周面に当接するように形成されている構成としてもよい。 In the centrifugal rotating machine, the constraining member is an annular ring fitted to the outer peripheral surface of the diaphragm, and the outer peripheral surface of the ring is formed so as to contact the inner peripheral surface of the casing. It is good.
 このような構成によれば、ダイヤフラムとケーシングとの間の隙間の一定に保つことができる。換言すれば、ダイヤフラムが径方向に変位することを抑制することができる。また、ダイヤフラムの変形も抑制することができる。これにより、ダイヤフラムにシール装置を設けた場合には、シール装置の隙間での接触を防止することができる。 According to such a configuration, the gap between the diaphragm and the casing can be kept constant. In other words, the diaphragm can be prevented from being displaced in the radial direction. Moreover, the deformation of the diaphragm can also be suppressed. Thereby, when the sealing apparatus is provided in the diaphragm, the contact in the clearance gap between the sealing apparatuses can be prevented.
 上記遠心回転機械において、前記拘束部材は、樹脂によって形成されている構成としてもよい。
 このような構成によれば、ケーシングと拘束部材との間の摺動性を向上させることができる。
In the centrifugal rotating machine, the constraining member may be formed of resin.
According to such a configuration, the slidability between the casing and the restraining member can be improved.
 上記遠心回転機械において、前記拘束部材の外周面には周方向に等間隔に形成された凹溝が形成されている構成としてもよい。
 このような構成によれば、ケーシングと拘束部材との間の摺動性を向上させることができる。
In the centrifugal rotating machine, a concave groove formed at equal intervals in the circumferential direction may be formed on the outer peripheral surface of the restraining member.
According to such a configuration, the slidability between the casing and the restraining member can be improved.
 上記遠心回転機械において、前記拘束部材は、隣り合う前記ダイヤフラムに連続して形成されているキー溝と、前記キー溝に嵌合するキー部材であってよい。 In the centrifugal rotating machine, the constraining member may be a key groove formed continuously with the adjacent diaphragm and a key member fitted into the key groove.
 このような構成によれば、軸方向に連なるダイヤフラムの結合をキー部材を用いて強固にすることができる。これにより、ダイヤフラムが変位することを抑制することができ、ダイヤフラムにシール装置を設けた場合には、シール装置の隙間での接触を防止することができる。 According to such a configuration, it is possible to strengthen the coupling of the diaphragms continuous in the axial direction by using the key member. Thereby, it can suppress that a diaphragm displaces, and when the sealing apparatus is provided in the diaphragm, the contact in the clearance gap between sealing apparatuses can be prevented.
 上記遠心回転機械において、前記インペラは、軸線方向の第一の側に配置されて前記流体を前記回転軸の軸線方向の中央位置に向かって流通させる第一インペラ群と、軸線方向の前記第一の側とは反対の第二側に配置されて前記流体を前記回転軸の軸線方向の中央位置に向かって流通させる第二インペラ群と、から構成されており、前記回転軸の両端部に設けられ、前記回転軸を回転可能に支持する軸受を有し、前記拘束部材は、前記ダイヤフラムの前記中央位置近傍に設けられている構成としてもよい。 In the centrifugal rotating machine, the impeller is disposed on a first side in the axial direction and circulates the fluid toward a central position in the axial direction of the rotary shaft, and the first impeller in the axial direction. A second impeller group that is disposed on the second side opposite to the first side and circulates the fluid toward a central position in the axial direction of the rotating shaft, and is provided at both ends of the rotating shaft. A bearing that rotatably supports the rotating shaft, and the restraining member may be provided in the vicinity of the center position of the diaphragm.
 このような構成によれば、回転軸の支持部である軸受から最も離間する中央位置近傍に位置するダイヤフラムの変形や変位を効果的に抑制することができる。 According to such a configuration, it is possible to effectively suppress the deformation and displacement of the diaphragm located in the vicinity of the central position that is the farthest from the bearing that is the support portion of the rotating shaft.
 本発明によれば、拘束部材が、ダイヤフラムの変形や変位を抑制する機能を発揮することによって、ダイヤフラムの変位に伴う静止体と回転体の相対位置の変形や変化を抑制し、静止体と回転体との接触を防止することができる。 According to the present invention, the restraining member exhibits the function of suppressing the deformation and displacement of the diaphragm, thereby suppressing the deformation and change of the relative position of the stationary body and the rotating body accompanying the displacement of the diaphragm, and rotating the stationary body and the stationary body. Contact with the body can be prevented.
本発明の第一実施形態の遠心圧縮機の概略断面図である。It is a schematic sectional drawing of the centrifugal compressor of 1st embodiment of this invention. 本発明の第一実施形態の遠心圧縮機の一部拡大図である。It is a partial enlarged view of the centrifugal compressor of the first embodiment of the present invention. 本発明の第一実施形態の変形例の変形拘束リングの軸線方向から見た図である。It is the figure seen from the axial direction of the deformation | transformation restraint ring of the modification of 1st embodiment of this invention. 本発明の第一実施形態の変形例のスペーサの軸線方向から見た図である。It is the figure seen from the axial direction of the spacer of the modification of 1st embodiment of this invention. 本発明の第二実施形態の遠心圧縮機の一部拡大図である。It is a partially expanded view of the centrifugal compressor of the second embodiment of the present invention.
(第一実施形態)
 以下、本発明の第一実施形態に係る遠心回転機械である遠心圧縮機について説明する。
 図1に示すように、本実施形態の遠心圧縮機1は、複数のインペラ3(羽根車)を備える一軸多段式の遠心圧縮機である。
(First embodiment)
Hereinafter, a centrifugal compressor which is a centrifugal rotating machine according to a first embodiment of the present invention will be described.
As shown in FIG. 1, the centrifugal compressor 1 of the present embodiment is a single-shaft multi-stage centrifugal compressor including a plurality of impellers 3 (impellers).
 遠心圧縮機1は、軸線Pを中心として回転するロータ2と、ロータ2を外周側から囲む円筒形状のケーシング7と、ロータ2とケーシング7との間に軸線方向に複数が積層されるように設けられて、インペラ3によって圧送するプロセスガスG(流体)の流路を形成する複数のダイヤフラム6と、を有している。 The centrifugal compressor 1 includes a rotor 2 that rotates about an axis P, a cylindrical casing 7 that surrounds the rotor 2 from the outer peripheral side, and a plurality of layers stacked in the axial direction between the rotor 2 and the casing 7. And a plurality of diaphragms 6 that form a flow path of a process gas G (fluid) to be pumped by the impeller 3.
 ロータ2は、回転軸4と、回転軸4とともに回転する複数のインペラ3と、を有している。インペラ3は、回転軸4に取り付けられて遠心力を利用してプロセスガスGを圧縮する羽根車である。
 また、回転軸4には、モータ等の駆動機(図示せず)が連結されており、この駆動機によってロータ2が回転駆動されている。
The rotor 2 includes a rotating shaft 4 and a plurality of impellers 3 that rotate together with the rotating shaft 4. The impeller 3 is an impeller that is attached to the rotating shaft 4 and compresses the process gas G using centrifugal force.
The rotating shaft 4 is connected to a driving machine (not shown) such as a motor, and the rotor 2 is driven to rotate by this driving machine.
 回転軸4は、柱状をなして軸線Pの方向に延在している。回転軸4は、軸線Pの方向の両端で軸受16によって回転可能に支持されている。回転体を構成する回転軸4及び複数のインペラ3と、ダイヤフラム6との間には、適宜シール装置5が設けられている。 The rotary shaft 4 has a columnar shape and extends in the direction of the axis P. The rotating shaft 4 is rotatably supported by bearings 16 at both ends in the direction of the axis P. A sealing device 5 is appropriately provided between the rotating shaft 4 and the plurality of impellers 3 constituting the rotating body and the diaphragm 6.
 複数のインペラ3は、回転軸4の軸線Pの方向の両端に設けられた軸受16同士の間に配されている。また、複数のインペラ3は、回転軸4の軸線Pの方向において羽根の向きが互いに反対側を向く二組の三段式インペラ群3A,3Bを構成している。第一のインペラ群3A、第二のインペラ群3Bとは互いに背面側を軸線Pの方向の中央位置Cに向けた状態で回転軸4に取り付けられている。 The plurality of impellers 3 are arranged between the bearings 16 provided at both ends in the direction of the axis P of the rotating shaft 4. The plurality of impellers 3 constitute two sets of three- stage impeller groups 3A and 3B in which the directions of the blades are opposite to each other in the direction of the axis P of the rotating shaft 4. The first impeller group 3 </ b> A and the second impeller group 3 </ b> B are attached to the rotating shaft 4 with their rear surfaces facing the center position C in the direction of the axis P.
 第一のインペラ群3Aは、軸線方向の第一の側(図1における左側)に配置されている。第二のインペラ群3Bは、軸線方向の第一の側とは反対の第二の側(図1における右側)に配置されている。各々のインペラ群3A,3Bは、軸線方向に配列された各々のインペラ3に対応して、三段の圧縮機段を備えている。 The first impeller group 3A is disposed on the first side in the axial direction (left side in FIG. 1). The second impeller group 3B is disposed on the second side (the right side in FIG. 1) opposite to the first side in the axial direction. Each impeller group 3A, 3B has three compressor stages corresponding to each impeller 3 arranged in the axial direction.
 インペラ3は、それぞれ回転軸4における軸線Pの方向の中央位置Cに向かうに従って、軸線Pの径方向外側に漸次拡径する略円盤状のディスク8と、このディスク8に軸線Pの周方向に間隔をあけて放射状に設けられた複数のブレード9と、ディスク8に対向して設けられて複数のブレード9を覆うシュラウド10とを備えている。
 プロセスガスGは、第一インペラ群3A、第二インペラ群3Bの各々を軸線Pの方向の中央位置Cに向かって流通することで、圧縮されるようになっている。
The impeller 3 has a substantially disk-shaped disk 8 that gradually expands radially outward of the axis P in the direction of the axis P of the rotary shaft 4 and a circumferential direction of the axis P on the disk 8. A plurality of blades 9 provided radially at intervals, and a shroud 10 provided to face the disk 8 and cover the plurality of blades 9 are provided.
The process gas G is compressed by flowing through each of the first impeller group 3A and the second impeller group 3B toward the center position C in the direction of the axis P.
 軸受16は、回転軸4の両端部に一つずつ設けられ、回転軸4を回転可能に支持している。軸受16としては、例えば、複数の軸受パッドを有するジャーナル軸受を採用することができる。 The bearings 16 are provided one by one at both ends of the rotating shaft 4, and support the rotating shaft 4 so as to be rotatable. As the bearing 16, for example, a journal bearing having a plurality of bearing pads can be employed.
 ケーシング7は、円筒状に形成されたもので、その中心軸は軸線Pに一致している。ケーシング7は、内部に複数のダイヤフラム6を収容している。複数のダイヤフラム6は、軸線方向に複数が積層されるように設けられている。 The casing 7 is formed in a cylindrical shape, and its central axis coincides with the axis P. The casing 7 accommodates a plurality of diaphragms 6 therein. The plurality of diaphragms 6 are provided so as to be stacked in the axial direction.
 複数のダイヤフラム6は、遠心圧縮機1の各々の圧縮機段に対応して設けられている。具体的には、複数のダイヤフラム6は、第一インペラ群3Aに対応する複数のダイヤフラム6Aと、第二インペラ群3Bに対応する複数のダイヤフラム6Bとから構成されている。第一インペラ群3Aに対応する複数のダイヤフラム6Aは、段差部を介して接続されている。第二インペラ群3Bに対応する複数のダイヤフラム6Bもまた、段差部を介して接続されている。なお、中央位置C近傍で隣り合う、ダイヤフラム6Aとダイヤフラム6Bとは接触はしているが、段差部を介して接続されてはいない。 The plurality of diaphragms 6 are provided corresponding to the respective compressor stages of the centrifugal compressor 1. Specifically, the plurality of diaphragms 6 includes a plurality of diaphragms 6A corresponding to the first impeller group 3A and a plurality of diaphragms 6B corresponding to the second impeller group 3B. The plurality of diaphragms 6A corresponding to the first impeller group 3A are connected via a stepped portion. A plurality of diaphragms 6B corresponding to the second impeller group 3B are also connected via a stepped portion. In addition, the diaphragm 6A and the diaphragm 6B which are adjacent in the vicinity of the center position C are in contact with each other, but are not connected via a stepped portion.
 円筒形状のケーシング7と複数のダイヤフラム6との間には、所定の隙間Sが形成されている。即ち、ケーシング7の内周面と、複数のダイヤフラム6の外周面とは所定の隙間Sを介して離間している。隙間Sは軸線方向及び周方向に一様に設けられている。 A predetermined gap S is formed between the cylindrical casing 7 and the plurality of diaphragms 6. That is, the inner peripheral surface of the casing 7 and the outer peripheral surfaces of the plurality of diaphragms 6 are separated from each other via a predetermined gap S. The gap S is uniformly provided in the axial direction and the circumferential direction.
 積層されたダイヤフラム6の内部には、軸線方向の第一の側の端部の径方向外側となる位置で環状をなす吸込口11Aが形成されている。またこの吸込口11Aと、三段式インペラ群3Aのうちの一方側に位置するインペラ3の流路との間には接続流路12Aが形成されて、このインペラ3の流路と吸込口11Aとを接続している。これによって、プロセスガスGを外部から三段式インペラ群3Aへ導入可能としている。 In the laminated diaphragm 6, an annular suction port 11 </ b> A is formed at a position on the radially outer side of the end portion on the first side in the axial direction. Further, a connection flow path 12A is formed between the suction port 11A and the flow path of the impeller 3 located on one side of the three-stage impeller group 3A, and the flow path of the impeller 3 and the suction port 11A. And connected. Thereby, the process gas G can be introduced into the three-stage impeller group 3A from the outside.
 ダイヤフラム6の内部には、三段式インペラ群3Aのうちの第二の側に位置するインペラ3の流路に接続されて、径方向の外側に延びる接続流路14Aが形成されている。ダイヤフラム6の内部には、接続流路14Aに接続されるとともに、軸線方向の中央位置Cにおける径方向外側となる位置で、環状をなす排出口15Aが形成されている。 Inside the diaphragm 6, there is formed a connection flow path 14A that is connected to the flow path of the impeller 3 located on the second side of the three-stage impeller group 3A and extends outward in the radial direction. Inside the diaphragm 6, an annular discharge port 15 </ b> A is formed at a position that is connected to the connection flow path 14 </ b> A and is radially outside at the central position C in the axial direction.
 三段式インペラ群3Bが取り付けられた位置においても、ダイヤフラム6の内部にはケーシング流路13B、吸込口11B、接続流路12B、14B、排出口15Bが形成されている。そしてこれらは、軸線方向の中央位置Cを境に、ケーシング流路13A、吸込口11A、接続流路12A、14A、排出口15Aに対して、軸線方向に対称となる位置に配置されている。 Even at the position where the three-stage impeller group 3B is attached, a casing flow path 13B, a suction port 11B, connection flow paths 12B and 14B, and a discharge port 15B are formed inside the diaphragm 6. And these are arrange | positioned in the position symmetrical with respect to the axial direction with respect to the casing flow path 13A, the suction inlet 11A, the connection flow paths 12A and 14A, and the discharge outlet 15A with the central position C in the axial direction as a boundary.
 また、回転軸4の外周面であって三段式インペラ群3Aと三段式インペラ群3Bの間には、インペラ3のスラストを調整するためのバランスピストン17が設けられている。本実施形態の遠心圧縮機1では、回転軸4、複数のインペラ3、及びバランスピストン17でロータ2を構成している。 Further, a balance piston 17 for adjusting the thrust of the impeller 3 is provided on the outer peripheral surface of the rotating shaft 4 and between the three-stage impeller group 3A and the three-stage impeller group 3B. In the centrifugal compressor 1 of the present embodiment, the rotor 2 is constituted by the rotating shaft 4, the plurality of impellers 3, and the balance piston 17.
 三段式インペラ群3Aにおいて圧縮されて回転軸4の中央位置C付近に到達したプロセスガスGは、その後、三段式インペラ群3Bに導入されてさらに圧縮が行われ、再度中央位置C付近に到達する(図1の点線を参照)。従って、回転軸4の中央位置Cである三段式インペラ群3Aと三段式インペラ群3Bとの間には圧力差が生じている。 The process gas G that has been compressed in the three-stage impeller group 3A and reaches the vicinity of the central position C of the rotating shaft 4 is then introduced into the three-stage impeller group 3B and further compressed, and again near the central position C. (See dotted line in FIG. 1). Therefore, a pressure difference is generated between the three-stage impeller group 3A and the three-stage impeller group 3B, which are the central position C of the rotating shaft 4.
 本実施形態の遠心圧縮機1には、三種類のシール装置5が設けられている。
 第一のシール装置5は、バランスピストン17の外周面とダイヤフラム6との間隙をシールする第一シール装置5aである。第二のシール装置5は、インペラ3のシュラウド10の外周面とダイヤフラム6との間隙をシールする第二シール装置5bである。第三のシール装置5は、インペラ3の断間において、回転軸4の外周面とダイヤフラム6との間隙をシールする第三シール装置5cである。
The centrifugal compressor 1 of the present embodiment is provided with three types of sealing devices 5.
The first sealing device 5 is a first sealing device 5 a that seals the gap between the outer peripheral surface of the balance piston 17 and the diaphragm 6. The second sealing device 5 is a second sealing device 5 b that seals the gap between the outer peripheral surface of the shroud 10 of the impeller 3 and the diaphragm 6. The third sealing device 5 is a third sealing device 5 c that seals the gap between the outer peripheral surface of the rotating shaft 4 and the diaphragm 6 during the break of the impeller 3.
 ここで、本実施形態のシール装置5を第一シール装置5aを用いて説明する。第一シール装置5aは、三段式インペラ群3Aと三段式インペラ群3Bとの間の圧力差によって、プロセスガスGが中央位置Cにおいて三段式インペラ群3Bから三段式インペラ群3Aへ、軸線Pに沿って流通することを防止するように設けられている。 Here, the sealing device 5 of the present embodiment will be described using the first sealing device 5a. In the first sealing device 5a, the process gas G moves from the three-stage impeller group 3B to the three-stage impeller group 3A at the central position C due to the pressure difference between the three-stage impeller group 3A and the three-stage impeller group 3B. , So as to prevent circulation along the axis P.
 シール装置5は、ダイヤフラム6に取り付けられるシール装置本体と、シール装置本体からロータ2に向かって延びる複数のシールフィンと、を有している。複数のシールフィンは、それぞれロータ2に向けて、シール装置本体から内周側に延出しており、周方向に延びている。これらシールフィンは、ロータ2と微小隙間を径方向に形成している。 The seal device 5 has a seal device body attached to the diaphragm 6 and a plurality of seal fins extending from the seal device body toward the rotor 2. The plurality of seal fins extend toward the rotor 2 from the seal device main body to the inner peripheral side, and extend in the circumferential direction. These seal fins form a minute gap with the rotor 2 in the radial direction.
 シール装置5は、複数のシールフィンによって、所謂ラビリンスシールを構成している。なお、シール装置5に用いられるシール構造は、ラビリンスシールに限ることはなく、ダンパーシール(ホールパターンシール、ハニカムシール)の採用も可能である。 The sealing device 5 constitutes a so-called labyrinth seal by a plurality of seal fins. The seal structure used in the seal device 5 is not limited to the labyrinth seal, and a damper seal (hole pattern seal, honeycomb seal) can also be used.
 本実施形態の遠心圧縮機1は、ダイヤフラム6を外周側から拘束する環状の変形拘束リング20を備えている。換言すれば、変形拘束リング20は、径方向に所定の厚さを有する円筒形状をなしている拘束部材である。変形拘束リング20は、変形拘束リング20の内径がダイヤフラム6の直径と略同じか、やや小さく形成されている。即ち、変形拘束リング20は、ダイヤフラム6の外周面に嵌め合わされるような内径とされている。 The centrifugal compressor 1 of this embodiment includes an annular deformation restraining ring 20 that restrains the diaphragm 6 from the outer peripheral side. In other words, the deformation restraining ring 20 is a restraining member having a cylindrical shape having a predetermined thickness in the radial direction. The deformation restraining ring 20 is formed so that the inner diameter of the deformation restraining ring 20 is substantially the same as or slightly smaller than the diameter of the diaphragm 6. That is, the deformation restraining ring 20 has an inner diameter that can be fitted to the outer peripheral surface of the diaphragm 6.
 図2に示すように、変形拘束リング20は、変形拘束リング20の外周面がケーシング7の内周面に当接するように形成されている。即ち、変形拘束リング20は、内周側がダイヤフラム6の外周面に固定され、外周側がケーシング7の内周面に接触している。
 また、変形拘束リング20は、ダイヤフラム6の外周面に周方向に亘って形成されたリング用溝21に沿うように配置されている。リング用溝21の溝幅は、変形拘束リング20の幅に対応している。
As shown in FIG. 2, the deformation restriction ring 20 is formed so that the outer peripheral surface of the deformation restriction ring 20 abuts on the inner peripheral surface of the casing 7. That is, the deformation restraining ring 20 has an inner peripheral side fixed to the outer peripheral surface of the diaphragm 6 and an outer peripheral side in contact with the inner peripheral surface of the casing 7.
Moreover, the deformation | transformation restraint ring 20 is arrange | positioned so that the groove | channel 21 for rings formed in the outer peripheral surface of the diaphragm 6 over the circumferential direction may be followed. The groove width of the ring groove 21 corresponds to the width of the deformation restraining ring 20.
 変形拘束リング20は、例えば、ポリテトラフルオロエチレン(polytetrafluoroethylene, PTFE)のような摺動性の高い樹脂によって形成されている。変形拘束リング20を形成する材料としてはこれに限ることはなく、摺動性が高く、ケーシング7を形成する材料よりも低い剛性であればよい。例えば、ポリアセタール樹脂等の採用も可能である。 The deformation restraining ring 20 is made of, for example, a resin having high slidability such as polytetrafluoroethylene (PTFE). The material forming the deformation restraining ring 20 is not limited to this, and any material may be used as long as it has high slidability and lower rigidity than the material forming the casing 7. For example, a polyacetal resin can be used.
 本実施形態の変形拘束リング20は、複数のダイヤフラム6のうち、回転軸4の支持点である軸受16から最も離間する二つのダイヤフラム6に取り付けられている。即ち、変形拘束リング20は、排出口15A,15B近傍のダイヤフラム6に取り付けられている。換言すれば、変形拘束リング20は、第一インペラ群3Aに対応する複数のダイヤフラム6Aのうち最も中央位置C側のダイヤフラムAと、第二インペラ群3Bに対応する複数のダイヤフラム6Bのうち最も中央位置C側のダイヤフラム6Bとに取り付けられている。 The deformation restraining ring 20 of the present embodiment is attached to two diaphragms 6 that are the farthest from the bearing 16 that is the support point of the rotating shaft 4 among the plurality of diaphragms 6. That is, the deformation restraining ring 20 is attached to the diaphragm 6 in the vicinity of the discharge ports 15A and 15B. In other words, the deformation restraining ring 20 has the diaphragm A on the most central position C side among the plurality of diaphragms 6A corresponding to the first impeller group 3A and the centermost among the plurality of diaphragms 6B corresponding to the second impeller group 3B. It is attached to the diaphragm 6B on the position C side.
 上記実施形態によれば、隙間Sに配置された拘束部材である変形拘束リング20が、ダイヤフラム6の変形や変位を抑制する機能を発揮する。これにより、ダイヤフラム6の変位に伴う静止体とロータ2等の回転体の相対位置の変化を抑制し、静止体と回転体との接触を防止することができる。 According to the above embodiment, the deformation restraining ring 20 which is a restraining member disposed in the gap S exhibits a function of suppressing deformation and displacement of the diaphragm 6. Thereby, the change of the relative position of the stationary body and the rotating body such as the rotor 2 accompanying the displacement of the diaphragm 6 can be suppressed, and the contact between the stationary body and the rotating body can be prevented.
 また、拘束部材をダイヤフラム6の外周面に嵌め合わされる環状の変形拘束リング20とし、変形拘束リング20の外周面をケーシング7の内周面に当接するように形成した。これにより、ダイヤフラム6とケーシング7との間の隙間Sの一定に保つことができる。また、ダイヤフラム6の変形も抑制することができる。換言すれば、ダイヤフラム6が径方向に変位することを抑制することができる。これにより、シール装置5の隙間での接触を防止することができる。 Further, the restraining member is an annular deformation restraining ring 20 fitted to the outer peripheral surface of the diaphragm 6, and the outer peripheral surface of the deformation restraining ring 20 is formed so as to contact the inner peripheral surface of the casing 7. Thereby, the gap S between the diaphragm 6 and the casing 7 can be kept constant. Further, the deformation of the diaphragm 6 can be suppressed. In other words, the diaphragm 6 can be prevented from being displaced in the radial direction. Thereby, the contact in the clearance gap between the sealing devices 5 can be prevented.
 また、変形拘束リング20を樹脂によって形成したことによって、ケーシング7と変形拘束リング20との間の摺動性を向上させることができる。
 また、変形拘束リング20を中央位置C近傍に配置したことによって、回転軸4の支持部である軸受16から最も離間する中央位置C近傍に位置するダイヤフラム6の変位を効果的に抑制することができる。
 また、変形拘束リング20をダイヤフラム6の外周面に形成されたリング用溝21に沿って配置することによって、変形拘束リング20が軸方向にずれるのを防止することができる。
Further, since the deformation restraining ring 20 is formed of resin, the slidability between the casing 7 and the deformation restraining ring 20 can be improved.
In addition, by disposing the deformation restraining ring 20 in the vicinity of the center position C, it is possible to effectively suppress the displacement of the diaphragm 6 located in the vicinity of the center position C that is the farthest from the bearing 16 that is the support portion of the rotating shaft 4. it can.
Further, by disposing the deformation restricting ring 20 along the ring groove 21 formed on the outer peripheral surface of the diaphragm 6, it is possible to prevent the deformation restricting ring 20 from being displaced in the axial direction.
 なお、上記実施形態の変形拘束リング20は、周方向に亘って同じ断面形状を有するものとしたが、これに限ることはない。例えば、図3に示す変形例のように、変形拘束リング20Bの外周面に、周方向に等間隔に形成された凹溝24を形成してもよい。
 また、図4に示す変形例のように、周方向に断続的に複数のスペーサ20Cを配置する構成としてもよい。スペーサ20Cは、例えばダイヤフラム6に接着することによって、ダイヤフラム6とケーシング7との間の隙間に配置することができる。
 上記変形例によれば、ケーシング7と拘束部材20B,20Cとの間の摺動性を向上させることができる。
In addition, although the deformation | transformation restraint ring 20 of the said embodiment shall have the same cross-sectional shape over the circumferential direction, it is not restricted to this. For example, as in the modification shown in FIG. 3, the grooves 24 formed at equal intervals in the circumferential direction may be formed on the outer peripheral surface of the deformation restraining ring 20B.
Moreover, it is good also as a structure which arrange | positions the some spacer 20C intermittently in the circumferential direction like the modification shown in FIG. The spacer 20 </ b> C can be disposed in the gap between the diaphragm 6 and the casing 7, for example, by adhering to the diaphragm 6.
According to the modified example, the slidability between the casing 7 and the restraining members 20B and 20C can be improved.
(第二実施形態)
 以下、本発明の第二実施形態の拘束部材を図面に基づいて説明する。なお、本実施形態では、上述した第一実施形態との相違点を中心に述べ、同様の部分についてはその説明を省略する。
 図5に示すように、本実施形態の拘束部材は、最も中央位置C寄りに配置された隣り合うダイヤフラム6A,6Bに連続して形成されているキー溝22と、キー溝22に嵌合するキー部材20Dである。本実施形態のキー溝22とキー部材20Dとは、ダイヤフラム6の両側部の二ヶ所に設けられている。
(Second embodiment)
Hereinafter, the restraining member of the second embodiment of the present invention will be described with reference to the drawings. In the present embodiment, differences from the first embodiment described above will be mainly described, and description of similar parts will be omitted.
As shown in FIG. 5, the constraining member of the present embodiment is fitted in the key groove 22 and the key groove 22 formed continuously from the adjacent diaphragms 6 </ b> A and 6 </ b> B arranged closest to the center position C. This is a key member 20D. The key groove 22 and the key member 20 </ b> D of the present embodiment are provided at two locations on both sides of the diaphragm 6.
 キー溝22は、軸方向に延在する断面形状が矩形状をなす溝である。
 キー部材20Dは、ダイヤフラム6A,6Bに連続して形成されているキー溝22に嵌め込むものである。キー部材20Dをネジなどの締結部材を用いてダイヤフラム6に固定してもよい。また、キー部材20Dは、図5に示すような、両端が角型のもののみならず、両端のうち少なくとも一方が丸型のものを採用してもよい。キー溝22に関しても、キー部材20Dと形状が一致している必要はなく、長手方向の長さがキー部材20Dより長くてもよい。
 また、上記キー溝22及びキー部材20Dはダイヤフラム6の両側部の二ヶ所に設けられているが、これに限らず、更に上方に設けてもよい。また、キー溝22及びキー部材20Dを一ヶ所のみに設ける構成としてもよい。
The key groove 22 is a groove having a rectangular cross-sectional shape extending in the axial direction.
The key member 20D is fitted into a key groove 22 formed continuously with the diaphragms 6A and 6B. The key member 20D may be fixed to the diaphragm 6 using a fastening member such as a screw. Further, the key member 20D may employ not only a rectangular shape at both ends as shown in FIG. 5 but also a circular shape at least one of both ends. The key groove 22 does not need to have the same shape as the key member 20D, and the length in the longitudinal direction may be longer than that of the key member 20D.
The key groove 22 and the key member 20D are provided at two locations on both sides of the diaphragm 6. However, the present invention is not limited to this and may be provided further upward. Moreover, it is good also as a structure which provides the key groove 22 and the key member 20D only in one place.
 上記実施形態によれば、軸方向に連なるダイヤフラム6の結合をキー部材20Dを用いて強固にすることができる。これにより、ダイヤフラム6が変位することを抑制することができ、ダイヤフラム6にシール装置5を設けた場合には、シール装置5の隙間での接触を防止することができる。 According to the above embodiment, the coupling of the diaphragms 6 that are continuous in the axial direction can be strengthened by using the key member 20D. Thereby, it can suppress that the diaphragm 6 displaces, and when the sealing apparatus 5 is provided in the diaphragm 6, the contact in the clearance gap between the sealing apparatuses 5 can be prevented.
 なお、本発明の技術範囲は上記の実施形態に限定されるものではなく、本発明の趣旨を逸脱しない範囲において、種々の変更を加えることが可能である。
 例えば、上記各実施形態では、拘束部材を遠心圧縮機に適用したが、インペラを有するロータと、ロータを外周側から囲むケーシングと、インペラによって圧送する流体の流路を画成するダイヤフラムと、を有する遠心回転機械であればよい。例えば、上記各実施形態の拘束部材を遠心ポンプに適用してもよい。
The technical scope of the present invention is not limited to the above embodiment, and various modifications can be made without departing from the spirit of the present invention.
For example, in each of the above embodiments, the constraining member is applied to a centrifugal compressor, but a rotor having an impeller, a casing that surrounds the rotor from the outer peripheral side, and a diaphragm that defines a flow path of fluid that is pumped by the impeller, Any centrifugal rotating machine may be used. For example, you may apply the constraining member of said each embodiment to a centrifugal pump.
 この遠心回転機械によれば、ダイヤフラムの変形や変位に伴う静止体と回転体の相対位置の変化を抑制し、静止体と回転体との接触を防止することができる。 According to this centrifugal rotating machine, it is possible to suppress a change in the relative position between the stationary body and the rotating body due to the deformation and displacement of the diaphragm, and to prevent contact between the stationary body and the rotating body.
 1 遠心圧縮機
 2 ロータ
 3 インペラ
 4 回転軸
 5 シール装置
 6,6A,6B ダイヤフラム
 7 ケーシング
 8 ディスク
 9 ブレード
 10 シュラウド
 11A,11B 吸込口
 12A,12B,14A,14B 接続流路(流路)
 13A,13B ケーシング流路(流路)
 15A,15B 排出口
 16 軸受
 17 バランスピストン
 20,20B 変形拘束リング(拘束部材)
 20C スペーサ(拘束部材)
 20D キー部材
 21 リング用溝
 22 キー溝
 24 凹溝
 G プロセスガス(流体)
 P 軸線
 S 隙間
DESCRIPTION OF SYMBOLS 1 Centrifugal compressor 2 Rotor 3 Impeller 4 Rotating shaft 5 Sealing device 6, 6A, 6B Diaphragm 7 Casing 8 Disc 9 Blade 10 Shroud 11A, 11B Suction port 12A, 12B, 14A, 14B Connection flow path (flow path)
13A, 13B Casing channel (channel)
15A, 15B Discharge port 16 Bearing 17 Balance piston 20, 20B Deformation restraint ring (restraint member)
20C spacer (restraint member)
20D Key member 21 Ring groove 22 Key groove 24 Concave groove G Process gas (fluid)
P axis S S clearance

Claims (6)

  1.  軸線回りに回転する回転軸及び前記回転軸とともに回転するインペラを有するロータと、
     前記ロータを外周側から囲むケーシングと、
     前記ロータと前記ケーシングとの間に軸線方向に複数が積層されるように設けられて、前記インペラによって圧送する流体の流路を形成するダイヤフラムと、
     前記ダイヤフラムを外周側から拘束する拘束部材と、を備える遠心回転機械。
    A rotor having a rotating shaft that rotates around an axis and an impeller that rotates together with the rotating shaft;
    A casing surrounding the rotor from the outer peripheral side;
    A diaphragm that is provided so as to be stacked in the axial direction between the rotor and the casing, and forms a flow path of fluid to be pumped by the impeller;
    And a constraining member for constraining the diaphragm from the outer peripheral side.
  2.  前記拘束部材は、前記ダイヤフラムの外周面に嵌め合わされる環状のリングであって、前記リングの外周面は、前記ケーシングの内周面に当接するように形成されている請求項1に記載の遠心回転機械。 The centrifugal restraint according to claim 1, wherein the restraining member is an annular ring fitted to the outer peripheral surface of the diaphragm, and the outer peripheral surface of the ring is formed so as to abut on the inner peripheral surface of the casing. Rotating machine.
  3.  前記拘束部材は、樹脂によって形成されている請求項2に記載の遠心回転機械。 The centrifugal rotating machine according to claim 2, wherein the restraining member is made of resin.
  4.  前記拘束部材の外周面には周方向に等間隔に形成された凹溝が形成されている請求項2又は請求項3に記載の遠心回転機械。 The centrifugal rotating machine according to claim 2 or 3, wherein concave grooves formed at equal intervals in the circumferential direction are formed on the outer peripheral surface of the restraining member.
  5.  前記拘束部材は、隣り合う前記ダイヤフラムに連続して形成されているキー溝と、前記キー溝に嵌合するキー部材である請求項1に記載の遠心回転機械。 The centrifugal rotating machine according to claim 1, wherein the restraining member is a key groove formed continuously with the adjacent diaphragm and a key member fitted into the key groove.
  6.  前記インペラは、
     軸線方向の第一の側に配置されて前記流体を前記回転軸の軸線方向の中央位置に向かって流通させる第一インペラ群と、
     軸線方向の前記第一の側とは反対の第二側に配置されて前記流体を前記回転軸の軸線方向の中央位置に向かって流通させる第二インペラ群と、から構成されており、
     前記回転軸の両端部に設けられ、前記回転軸を回転可能に支持する軸受を有し、
     前記拘束部材は、前記ダイヤフラムの前記中央位置近傍に設けられている請求項1から請求項5のいずれか一項に記載の遠心回転機械。
    The impeller is
    A first impeller group arranged on the first side in the axial direction to circulate the fluid toward a central position in the axial direction of the rotating shaft;
    A second impeller group disposed on the second side opposite to the first side in the axial direction and configured to circulate the fluid toward a central position in the axial direction of the rotating shaft, and
    Provided at both ends of the rotating shaft, bearings that rotatably support the rotating shaft,
    The centrifugal rotating machine according to any one of claims 1 to 5, wherein the restraining member is provided in the vicinity of the center position of the diaphragm.
PCT/JP2015/051049 2014-08-13 2015-01-16 Centrifugal rotary machine WO2016024409A1 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
US15/503,135 US20170226896A1 (en) 2014-08-13 2015-01-16 Centrifugal rotary machine
EP15831349.4A EP3171037A4 (en) 2014-08-13 2015-01-16 Centrifugal rotary machine
CN201580042896.2A CN106574635A (en) 2014-08-13 2015-01-16 Centrifugal rotary machine

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2014164735A JP2016040461A (en) 2014-08-13 2014-08-13 Centrifugal rotary machine
JP2014-164735 2014-08-13

Publications (1)

Publication Number Publication Date
WO2016024409A1 true WO2016024409A1 (en) 2016-02-18

Family

ID=55304044

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2015/051049 WO2016024409A1 (en) 2014-08-13 2015-01-16 Centrifugal rotary machine

Country Status (5)

Country Link
US (1) US20170226896A1 (en)
EP (1) EP3171037A4 (en)
JP (1) JP2016040461A (en)
CN (1) CN106574635A (en)
WO (1) WO2016024409A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018162667A1 (en) * 2017-03-08 2018-09-13 Robert Bosch Gmbh A centrifugal turbo-compressor

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN108425859A (en) * 2018-01-29 2018-08-21 固耐重工(苏州)有限公司 Magnetic suspension Large-power High-Speed centrifuge multi-stage compression structure
JP7012616B2 (en) * 2018-08-06 2022-01-28 株式会社日立インダストリアルプロダクツ Centrifugal multi-stage compressor

Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044684A (en) * 1961-02-24 1962-07-17 Cooper Bessemer Corp Centrifugal compressor construction
JPS5954800A (en) * 1982-09-22 1984-03-29 Hitachi Ltd Horizontally separated casing
JP2013072356A (en) * 2011-09-28 2013-04-22 Mitsubishi Heavy Industries Compressor Corp Rotary machine and internal unit of rotary machine
JP2014109263A (en) * 2012-12-04 2014-06-12 Mitsubishi Heavy Ind Ltd Sealing device and rotary machine
JP2014129752A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Diaphragm connection structure, rotary machine, and method for manufacturing the rotary machine

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS61247897A (en) * 1985-04-25 1986-11-05 Mitsubishi Heavy Ind Ltd Vibration-proof structure for centrifugal compressor
US5087172A (en) * 1989-02-13 1992-02-11 Dresser-Rand Company, A General Partnership Compressor cartridge seal method
EP1860326A1 (en) * 2006-05-26 2007-11-28 Siemens Aktiengesellschaft Multistage turbocompressor
CN201428625Y (en) * 2009-05-27 2010-03-24 沈阳鼓风机集团有限公司 Single-axis multi-stage centrifugal blower
JP2011111990A (en) * 2009-11-27 2011-06-09 Mitsubishi Heavy Ind Ltd Centrifugal compressor
CN202946434U (en) * 2012-11-09 2013-05-22 沈阳透平机械股份有限公司 Sealing structure used for reducing centrifugal compressor gas excitation
US9303655B2 (en) * 2013-07-08 2016-04-05 Dresser-Rand Company Seal for a high-pressure turbomachine

Patent Citations (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3044684A (en) * 1961-02-24 1962-07-17 Cooper Bessemer Corp Centrifugal compressor construction
JPS5954800A (en) * 1982-09-22 1984-03-29 Hitachi Ltd Horizontally separated casing
JP2013072356A (en) * 2011-09-28 2013-04-22 Mitsubishi Heavy Industries Compressor Corp Rotary machine and internal unit of rotary machine
JP2014109263A (en) * 2012-12-04 2014-06-12 Mitsubishi Heavy Ind Ltd Sealing device and rotary machine
JP2014129752A (en) * 2012-12-28 2014-07-10 Mitsubishi Heavy Ind Ltd Diaphragm connection structure, rotary machine, and method for manufacturing the rotary machine

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
See also references of EP3171037A4 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2018162667A1 (en) * 2017-03-08 2018-09-13 Robert Bosch Gmbh A centrifugal turbo-compressor
FR3063778A1 (en) * 2017-03-08 2018-09-14 BD Kompressor GmbH CENTRIFUGAL TURBOCHARGER
CN110382875A (en) * 2017-03-08 2019-10-25 罗伯特·博世有限公司 Centrifugal turbo-compressor
US11242857B2 (en) 2017-03-08 2022-02-08 Robert Bosch Gmbh Centrifugal turbo-compressor

Also Published As

Publication number Publication date
EP3171037A1 (en) 2017-05-24
CN106574635A (en) 2017-04-19
US20170226896A1 (en) 2017-08-10
JP2016040461A (en) 2016-03-24
EP3171037A4 (en) 2017-08-09

Similar Documents

Publication Publication Date Title
US9347459B2 (en) Abradable seal with axial offset
US9909592B2 (en) Vacuum pump
JP5314256B2 (en) SEALING DEVICE FOR ROTARY FLUID MACHINE AND ROTARY FLUID MACHINE
JP5314255B2 (en) SEALING DEVICE FOR ROTARY FLUID MACHINE AND ROTARY FLUID MACHINE
WO2016024409A1 (en) Centrifugal rotary machine
JP6405590B2 (en) Compressor
JP7074442B2 (en) Compressor
WO2016051835A1 (en) Centrifugal compressor
WO2016043090A1 (en) Rotary machine
JP6151382B2 (en) Multistage electric centrifugal compressor
US9004857B2 (en) Barrel-shaped centrifugal compressor
JPWO2016038661A1 (en) Rotating machine
JP6655712B2 (en) Rotating machinery
WO2018074591A1 (en) Impeller and rotating machine
JP2020101169A (en) Centrifugal rotating machine
JP6589225B2 (en) Sealing device and rotating machine
EP3126678B1 (en) Damper seal for double flow compressor arrangement
JP2017160861A (en) Turbo machine
JP2006183475A (en) Centrifugal compressor
JPWO2017094159A1 (en) Centrifugal compressor rotor, centrifugal compressor, and method for manufacturing centrifugal compressor rotor
WO2018110695A1 (en) Shaft seal device and rotating machine
JP6681788B2 (en) Fluid machine with integrated motor
JP5931696B2 (en) Rotating machine
JP2019085957A (en) Rotating machine and diaphragm
JP7253936B2 (en) Squeeze film damper bearings and rotating machinery

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 15831349

Country of ref document: EP

Kind code of ref document: A1

REEP Request for entry into the european phase

Ref document number: 2015831349

Country of ref document: EP

WWE Wipo information: entry into national phase

Ref document number: 2015831349

Country of ref document: EP

NENP Non-entry into the national phase

Ref country code: DE