WO2021172144A1 - Vacuum pump and vacuum pump constituent component - Google Patents

Vacuum pump and vacuum pump constituent component Download PDF

Info

Publication number
WO2021172144A1
WO2021172144A1 PCT/JP2021/006004 JP2021006004W WO2021172144A1 WO 2021172144 A1 WO2021172144 A1 WO 2021172144A1 JP 2021006004 W JP2021006004 W JP 2021006004W WO 2021172144 A1 WO2021172144 A1 WO 2021172144A1
Authority
WO
WIPO (PCT)
Prior art keywords
purge gas
groove portion
rotor
gas
vacuum pump
Prior art date
Application number
PCT/JP2021/006004
Other languages
French (fr)
Japanese (ja)
Inventor
健吾 三枝
陽太 川口
Original Assignee
エドワーズ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エドワーズ株式会社 filed Critical エドワーズ株式会社
Publication of WO2021172144A1 publication Critical patent/WO2021172144A1/en

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D19/00Axial-flow pumps
    • F04D19/02Multi-stage pumps
    • F04D19/04Multi-stage pumps specially adapted to the production of a high vacuum, e.g. molecular pumps
    • F04D19/044Holweck-type pumps
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F04POSITIVE - DISPLACEMENT MACHINES FOR LIQUIDS; PUMPS FOR LIQUIDS OR ELASTIC FLUIDS
    • F04DNON-POSITIVE-DISPLACEMENT PUMPS
    • F04D29/00Details, component parts, or accessories
    • F04D29/58Cooling; Heating; Diminishing heat transfer
    • F04D29/5806Cooling the drive system

Definitions

  • the present invention relates to a vacuum pump such as a turbo molecular pump and its components.
  • a turbo molecular pump 110 as shown in FIG. 6 is known.
  • the rotor blades (rotary blades) 120 are rotated by energizing the motor in the pump body, and the gas molecules of the gas (process gas) entering from the intake port of the pump are directed in the direction of the arrow EG.
  • the gas is exhausted by flipping it off.
  • the direction of the process gas flow (vacuum exhaust flow) is indicated by the broken line arrow EG.
  • the process gas flows from the upper side to the lower side (intake side to exhaust side) in the drawing while being compressed by the rotor blade 120 and the stator blade 119.
  • the temperature of the bearing portion, the rotor blade 120, the parts supporting the rotor blade (rotor cylindrical portion 123, etc.) and the like rises during high-speed rotation, resulting in a high temperature. Therefore, as shown by the arrow PG in FIG. 6, the purge gas is flowed through the bearing portion and the gap 143 between the stator column 126 and the rotor cylindrical portion 123.
  • a gas having high thermal conductivity for example, nitrogen (N2) gas
  • N2 gas a gas having high thermal conductivity
  • heat is dissipated by heat conduction by flowing the purge gas, and cooling of the portion facing the gap 143 is promoted.
  • the cooling effect can be enhanced by using a large amount of the purge gas.
  • the use of a large amount of purge gas increases the cost for operating the turbo molecular pump 101. Therefore, in order to reduce the cost, it is desirable to dissipate heat with a smaller flow rate of purge gas.
  • An object of the present invention is to provide a vacuum pump capable of dissipating heat with a small flow rate of purge gas, and a vacuum pump component.
  • the present invention uses a stator and A rotor that rotates with a gap between the stator and the rotor is provided.
  • a vacuum pump that flows exhaust gas from the upstream side to the downstream side on the outside of the rotor by the rotation of the rotor.
  • Purge gas is flowed through the gap,
  • At least one of the stator and the rotor is formed with a screw groove portion facing the gap and guiding the purge gas as the rotor rotates.
  • the thread groove portion is A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
  • the vacuum pump has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
  • the vacuum pump is characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
  • another invention is characterized in that the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow (1). ) Is in the vacuum pump.
  • the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) ⁇ (transportation amount of the second thread groove portion).
  • another invention is characterized in that the size of the first range is twice or more the size of the second range (1) to (1). It is in the vacuum pump according to any one of 3).
  • another invention is characterized in that the exhaust gas passage is provided on the outside of the rotor and the gap is provided on the inside of the rotor (1) to (1). It is in the vacuum pump according to any one of 4).
  • another invention of the present invention includes a stator and the like. It is one of the rotors that rotate with a gap between them and the stator. The rotation of the rotor causes the exhaust gas to flow from the upstream side to the downstream side on the outside of the rotor.
  • a screw groove portion that faces the gap and guides the purge gas as the rotor rotates is formed.
  • the thread groove portion is A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
  • the vacuum pump component has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
  • the vacuum pump component is characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
  • another invention is characterized in that the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow (6).
  • the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) ⁇ (transportation amount of the second thread groove portion).
  • another invention is characterized in that the size of the first range is twice or more the size of the second range (6) to (6). It is in the vacuum pump component according to any one of 8).
  • FIG. 1 schematically shows a turbo molecular pump 10 as a vacuum pump according to the present embodiment longitudinally.
  • the turbo molecular pump 10 is connected to a vacuum chamber (not shown) of a target device (exhaust target device) such as a semiconductor manufacturing device, an electron microscope, a mass spectrometer, or the like.
  • a target device exhaust target device
  • a semiconductor manufacturing device such as a semiconductor manufacturing device, an electron microscope, a mass spectrometer, or the like.
  • the turbo molecular pump 10 integrally includes a cylindrical pump body 11 and a box-shaped electrical case (not shown). Of these, the pump main body 11 has an intake unit 12 connected to the upper side of FIG. 1 with the intake port facing the target device side, and an exhaust unit 13 connected to the auxiliary pump or the like on the lower side.
  • the turbo molecular pump 10 can be used not only in the vertical posture as shown in FIG. 1 but also in an inverted posture, a horizontal posture, and an inclined posture.
  • the electrical case (not shown) houses a power supply circuit unit for supplying electric power to the pump body 11 and a control circuit unit for controlling the pump body 11. Is omitted.
  • the pump main body 11 includes a main body casing 14 as a casing that is a substantially cylindrical housing.
  • the main body casing 14 is configured by connecting the intake side casing 14a located at the upper part in FIG. 1 and the exhaust side casing 14b located at the lower side in FIG. 1 in series in the axial direction.
  • the intake side casing 14a may be referred to as, for example, a casing
  • the exhaust side casing 14b may be referred to as, for example, a base or the like.
  • the intake side casing 14a constitutes the intake side portion of the main body casing 14, and the exhaust side casing 14b constitutes the exhaust side portion of the main body casing 14.
  • the intake side casing 14a and the exhaust side casing 14b are overlapped in the radial direction (left-right direction in FIG. 1). Further, the intake side casing 14a has an inner peripheral surface at one end in the axial direction (lower end in FIG. 1) facing the outer peripheral surface at the upper end 29 of the exhaust side casing 14b.
  • the intake side casing 14a and the exhaust side casing 14b are hermetically coupled to each other by a plurality of casing bolts 14c (hexagon socket head bolts) with the O-ring 36 accommodated in the groove portion interposed therebetween.
  • FIG. 1 shows only a part of the plurality of casing bolts 14c.
  • An exhaust mechanism unit 15 and a rotary drive unit (hereinafter referred to as a "motor") 16 are provided in the main body casing 14 configured in this way.
  • the exhaust mechanism portion 15 is a composite type composed of a turbo molecular pump mechanism portion 17 as a pump mechanism portion and a thread groove pump mechanism portion 18 as a thread groove exhaust mechanism portion.
  • turbo molecular pump mechanism unit 17 and the thread groove pump mechanism unit 18 are arranged so as to be continuous in the axial direction of the pump main body 11, and in FIG. 1, the turbo molecular pump mechanism unit 17 is arranged on the upper side in FIG. , The thread groove pump mechanism portion 18 is arranged on the lower side in FIG.
  • the basic structures of the turbo molecular pump mechanism portion 17 and the thread groove pump mechanism portion 18 will be schematically described.
  • the turbo molecular pump mechanism 17 arranged on the upper side in FIG. 1 transfers exhaust gas (process gas, cleaning gas, etc.) by a large number of turbine blades, has a predetermined inclination or curved surface, and radiates. It includes a fixed blade (hereinafter referred to as a "stator blade”) 19 and a rotary blade (hereinafter referred to as a "rotor blade”) 20 formed.
  • the stator blades 19 and the rotor blades 20 are arranged so as to be alternately arranged in about ten stages.
  • the stator blade 19 is integrally provided in the main body casing 14, and the rotor blade 20 is inserted between the upper and lower stator blades 19.
  • the rotor blade 20 is integrated with the tubular rotor 28, and the rotor 28 is concentrically fixed to the rotor shaft (also referred to as “rotor shaft” or the like) 21 so as to cover the outside of the rotor shaft 21.
  • the rotor 28 is fixed to the rotor shaft 21 by using a plurality of rotor fixing bolts 22 (only two are shown) on one end side (upper end side in FIG. 1) of the rotor shaft 21 in the axial direction. ..
  • the rotor shaft 21 is supported by a hollow stator column 26 as a stator via a magnetic bearing (described later).
  • the stator column 26 is coaxially bolted to the exhaust side casing 14b described above to support the motor 16 and the rotor shaft 21.
  • the rotor shaft 21 is processed into a stepped columnar shape, and reaches from the turbo molecular pump mechanism portion 17 to the lower thread groove pump mechanism portion 18. Further, a motor 16 is arranged at the center of the rotor shaft 21 in the axial direction. The motor 16 will be described later.
  • the thread groove pump mechanism portion 18 includes a rotor cylindrical portion 23 and a screw stator 24.
  • the screw stator 24 is also called a "soto screw” or the like, and aluminum is used as the material of the screw stator 24.
  • An exhaust port 25 for connecting to the exhaust pipe is arranged at the rear stage of the thread groove pump mechanism portion 18, and the inside of the exhaust port 25 and the screw groove pump mechanism portion 18 are spatially connected.
  • purge gas (protective gas) is supplied to the gap between the rotor 28 and the stator column 26.
  • This purge gas is used for protecting the bearing portion described later and the rotor blade 20 described above, and is used for preventing corrosion due to the process gas, cooling the rotor blade 20, and the like.
  • a purge gas introduction pipe 41 is attached to a predetermined portion of the exhaust side casing 14b.
  • the purge gas introduction pipe 41 extends linearly in the radial direction of the exhaust side casing 14b to form a purge gas flow path 42.
  • the purge gas flows through the gap 43 between the stator column 26 and the rotor cylindrical portion 23, and in FIG. 1, a screw groove portion 45 is formed on the lower side of the gap 43. ..
  • the details of the threaded groove portion 45 will be described later, but in the present embodiment, the threaded groove portion 45 is formed by processing a spiral groove having a predetermined shape along the outer peripheral surface of the stator column 26. There is.
  • the above-mentioned motor 16 has a rotor fixed to the outer circumference of the rotor shaft 21 (reference numeral omitted) and a stator (reference numeral omitted) arranged so as to surround the rotor.
  • the power supply for operating the motor 16 is performed by the power supply circuit unit and the control circuit unit housed in the above-mentioned electrical case (not shown).
  • the material of the main parts aluminum alloy or stainless steel is adopted as the material of the main parts.
  • the material of the exhaust side casing 14b, the stator blade 19, the rotor 28, and the like is an aluminum alloy.
  • the material of the rotor shaft 21 and the rotor fixing bolt 22 is stainless steel.
  • FIG. 1 the description of the hatching showing the cross section of the component in the pump main body 11 is omitted in order to avoid complicating the drawing.
  • a magnetic bearing which is a non-contact type bearing by magnetic levitation, is used to support the rotor shaft 21.
  • the magnetic bearings include two sets of radial magnetic bearings (radial magnetic bearings) 30 arranged above and below the motor 16 and one set of axial magnetic bearings (axial magnetic bearings) 31 arranged below the rotor shaft 21. And are used.
  • each radial magnetic bearing 30 is composed of a radial electromagnet target 30A formed on the rotor shaft 21, a plurality of (for example, two) radial electromagnets 30B facing the target, a radial direction displacement sensor 30C, and the like.
  • the radial displacement sensor 30C detects the radial displacement of the rotor shaft 21. Then, the exciting current of the radial electromagnet 30B is controlled based on the output of the radial direction displacement sensor 30C, and the rotor shaft 21 is levitated and supported so that it can rotate around the axial center at a predetermined position in the radial direction.
  • the axial magnetic bearing 31 is slightly separated from the disk-shaped armature disk 31A attached to the lower end side of the rotor shaft 21, the axial electromagnet 31B facing up and down with the armature disk 31A in between, and the lower end surface of the rotor shaft 21. It is composed of an axial displacement sensor 31C or the like installed at a vertical position. The axial displacement sensor 31C detects the axial displacement of the rotor shaft 21. Then, based on the output of the axial displacement sensor 31C, the exciting currents of the upper and lower axial electromagnets 31B are controlled, and the rotor shaft 21 is levitated and supported so that it can rotate around the axial center at a predetermined position in the axial direction. Twice
  • the rotor shaft 21 does not wear when rotating at high speed, has a long life, and does not require lubricating oil. Has been realized. Further, in the present embodiment, by using the radial direction displacement sensor 30C and the axial direction displacement sensor 31C, only the rotation direction ( ⁇ z) around the axial direction (Z direction) of the rotor shaft 21 is freed, and the other 5 Position control is performed in the axial directions of X, Y, Z, ⁇ x, and ⁇ y.
  • radial protection bearings also referred to as “protection bearings”, “touchdown (T / D) bearings”, “backup bearings”, etc.
  • These protective bearings 32 and 33 do not significantly change the position and orientation of the rotor shaft 21 even in the unlikely event of a trouble in the electrical system or intrusion into the atmosphere, and the rotor blade 20 and its peripheral portions. Is not damaged.
  • the motor 16 described above is driven and the rotor blade 20 rotates.
  • the process gas is sucked from the intake unit 12 shown on the upper side in FIG. 1, and the gas molecules collide with the stator blade 19 and the rotor blade 20 toward the screw groove pump mechanism unit 18.
  • the gas is transferred. Further, the gas is compressed in the thread groove pump mechanism unit 18, the compressed gas enters the exhaust port 25 from the exhaust unit 13, and is discharged from the pump main body 11 through the exhaust port 25.
  • the rotor shaft 21, the rotor blade 20 that rotates integrally with the rotor shaft 21, the rotor cylindrical portion 23, the rotor (reference numeral omitted) of the motor 16, and the like are, for example, the "rotor portion” or the “rotating portion”. , Etc. can be collectively referred to.
  • the direction of the process gas flow (vacuum exhaust flow) is indicated by the broken line arrow EG.
  • the process gas flows from the upper side to the lower side (from the intake side to the exhaust side) in the drawing while being compressed by the rotor blade 20 and the stator blade 19.
  • the flow of the purge gas is shown by the solid arrow PG.
  • the purge gas is supplied to the purge gas flow path 42 described above from the outside of the exhaust side casing 14b via a purge gas cylinder, a flow rate controller (valve device), or the like. Then, the purge gas introduced into the purge gas flow path 42 directs the bearing portion and the motor portion from the lower side to the upper side (exhaust side to the intake side) in the drawing along the axial direction (rotational axis direction of the rotating part). Flows.
  • the purge gas flows through the protective bearing 32 and through the gap (space) between the stator column 26 and the rotor cylindrical portion 23. Further, the purge gas flows toward the lower side in the drawing, passes through the thread groove portion 45, and reaches the exhaust portion 13. Although not shown, the purge gas is discharged to the outside of the main body casing 14 through the exhaust port 25 in the same manner as the process gas (arrow EG).
  • a gap (a gap intended for the flow of process gas) formed on the outside of the rotor 28, such as a space between the stator blade 19 and the rotor blade 20, is referred to as a “passage”. And. This is to clearly distinguish between the gap (passage) intended for the flow of process gas and the above-mentioned gap 43 (gap intended for flow of purge gas) formed inside the rotor 28.
  • purge gas various general purging gases can be adopted.
  • hydrogen (H2) gas, helium (He) gas, nitrogen (N2) gas, argon (Ar) gas and the like can be exemplified.
  • a screw groove portion 45 is provided in the flow path of the purge gas (indicated by the arrow PG in FIG. 1) as described above.
  • the threaded groove portion 45 is configured by combining two threaded groove portions, a first threaded groove portion 51A and a second threaded groove portion 51B.
  • FIG. 2 schematically shows the configuration of the thread groove portion 45 in a plane.
  • FIG. 2 schematically shows a cylindrical portion of the stator column 26 (another portion provided with a screw groove portion 45) that is schematically developed and flattened in a rectangular frame. Further, in FIG. 2, the direction of rotation of the rotor 28 is indicated by an arrow C.
  • the upper part of FIG. 2 corresponds to the upstream side (the side of the intake portion 12 and the upper side of FIG. 1) in the axial direction of the rotating portion, and the lower part corresponds to the downstream side (exhaust portion 13) of the rotating portion in the axial direction. Side, lower side of FIG. 1).
  • the thread groove portion 45 has a first thread groove portion 51A on the upstream side and a second thread groove portion 51B on the downstream side.
  • the first screw groove portion 51A has a screw groove 52A formed continuously so as to rise to the left in the developed view of FIG.
  • the second screw groove portion 51B has a screw groove 52B formed continuously so as to be downward to the left in the developed view of FIG.
  • the thread groove 52A of the first thread groove portion 51A may be continuous as a single thread (one) from the start point side end portion indicated by reference numeral 53A in FIG. 2 to the end point side end portion 54A. , Multiple threads (plural) may be present. Then, as the rotor 28 rotates (arrow C), the screw groove 52A spirals purge gas from the start point side end portion 53A to the end point side end portion 54A, as shown by arrow D (only a part of which is indicated by a reference numeral). It is possible to guide you to.
  • the other second thread groove portion 51B is formed in the opposite direction to the first thread groove portion 51A. Further, the second thread groove portion 51B is formed so as to be substantially line-symmetrically downward to the left with the first thread groove portion 51A in the developed view of FIG.
  • the screw groove 52B may be continuous as one (one) thread groove from the start point side end portion indicated by reference numeral 53B in FIG. 2 to the end point side end portion 54B, or may have a plurality of threads (plural lines). Threaded grooves may be present. Then, the screw groove 52B can guide the purge gas from the start point side end portion 53B to the end point side end portion 54B as shown by an arrow E (only a part of which is indicated by a reference numeral) in FIG.
  • the linear raised portions (convex portions) that partition the screw grooves 52A and 52B (recessed portions) are hatched to clarify the illustration.
  • the hatched portion in FIG. 2 does not show a cross section.
  • the start point side end 53A of the screw groove 52A in the first thread groove 51A and the start point side end 53B of the screw groove 52B in the second thread groove 51B are spatially connected.
  • the purge gas that flows through the gap 43 between the stator column 26 and the rotor cylindrical portion 23 (the overall flow indicated by the arrow PG in FIG. 1) and flows into the thread groove portion 45 is upstream by the first thread groove portion 51A.
  • the flow returned to the side (reverse direction) (indicated by arrow D in FIGS. 1 and 2) and the flow sent to the downstream side (forward direction) by the second thread groove 51B (indicated by arrow E in FIGS. 1 and 2). ) And occur.
  • the overall gas flow in the thread groove portion 45 (indicated by the arrow PG in FIG. 1) is formed by a purge gas, a process gas mixed in the gap 43, or the like.
  • the process gas mixed in the gap 43 becomes a mixed gas with the purge gas (hereinafter, simply referred to as "gas").
  • the purge gas also has a function of pushing back the process gas that enters the gap 43 (a function of preventing the backflow of the process gas). That is, it can be said that the backflow of the process gas into the gap 43 is prevented by the pressure difference between the pressure of the purge gas itself and the E portion of FIG. 1 and the flow generated by the second thread groove portion 51B.
  • reference numeral A indicates a range in which the first thread groove portion 51A is formed
  • reference numeral B indicates a range in which the second thread groove portion 51B is formed. ..
  • first range the range in which the first thread groove portion 51A is formed
  • second range the range in which the second thread groove portion 51B is formed.
  • FIG. 2 is a developed view
  • the above-mentioned first range A and second range B directly cover the entire length of the thread groove 52A of the first thread groove portion 51A and the total length of the thread groove 52B of the second thread groove portion 51B. It is not something to represent.
  • the magnitude relationship between the first range A and the second range B is that both screws are used. It almost corresponds to the magnitude relationship of the length (total length) of the grooves 52A and 52B. Therefore, in the present embodiment, the first range A and the second range B are used as one of the indexes representing the characteristics related to the length of the first thread groove portion 51A and the second thread groove portion 51B.
  • the characteristics of the first thread groove portion 51A and the second thread groove portion 51B can be expressed by using the actual total length of each of the thread grooves 52A and 52B without being limited to this. Further, it is also possible to form the first thread groove portion 51A and the second thread groove portion 51B non-axisymmetrically, and in this case as well, the characteristics can be determined based on the actual total length of each of the thread grooves 52A and 52B. It is possible.
  • conditions relating to elements such as the width and depth of the thread grooves 52A and 52B, the cross-sectional shape, the flow path area (cross-sectional area), and the volume per unit length are set. It is the same.
  • the present invention is not limited to this, and for example, factors such as the width and depth of the thread grooves 52A and 52B, the cross-sectional shape, the flow path area (cross-sectional area), the inclination angle of the screw, and the volume per unit length. It is also possible to make at least one of them different.
  • the purge gas exerts the function of a dynamic seal (dynamic seal) that prevents the process gas (arrow EG in FIG. 1) from flowing back toward the gap 43.
  • the flow rate of the purge gas used can be reduced by providing the thread groove portion 45 having the first thread groove portion 51A.
  • the upstream side is the high pressure side and the downstream side is the low pressure side.
  • the pressure on the high pressure side of the gas (mixed gas) is represented by P2
  • the pressure on the low pressure side is represented by P1.
  • FIGS. 3 (a) and 3 (b) show the first thread groove portion 51A in a more simplified manner.
  • FIG. 3A shows the gas (arrow F) flowing downward in the gap 43 (particularly the portion facing the first thread groove 51A) between the stator column 26 and the rotor cylindrical portion 23.
  • the gas flowing upward (arrow G) can be generated.
  • the arrow F indicates the direction of the flow generated by the pressure difference (P2-P1) between the pressure P2 on the high pressure side and the pressure P1 on the low pressure side.
  • the arrow G represents the direction of the flow generated when the rotor rotates.
  • FIG. 3B shows the first thread groove portion 51A in an expanded manner. Further, in FIG. 3B, the upper side of the figure is the high pressure side (P2) and the lower side is the low pressure side (P1) with reference to the gas (arrow F) flowing downward. Then, the gas flow (arrow G) in the first thread groove portion 51A is generated by the rotation of the rotor 28 as shown by the arrow C.
  • FIG. 3 (c) shows the flow rate of the downward gas (arrow F) with respect to the pressure difference (horizontal axis, P2-P1) on the high pressure side and the low pressure side for the models shown in FIGS. 3 (a) and 3 (b).
  • (Reference H) and the tendency of the flow rate (reference numeral I) of the upward gas (arrow G) generated when the rotor rotates are shown.
  • the pressure difference (P2-P1) on the horizontal axis increases as the number of rotations in the rotating parts of the motor 16, rotor 28, etc. increases. Further, as the pressure difference (P2-P1) increases, the downward gas flow (corresponding to the arrow F in FIG. 2) increases as shown by the straight line H in the figure.
  • the rotating portions such as the motor 16 and the rotor 28 are in a state of rated rotation.
  • the curve indicated by reference numeral I in FIG. 3C is the flow rate of the gas flowing upward as described above (corresponding to the arrow G in FIG. 3A).
  • the upward gas flow rate represents the flow rate of the first thread groove portion 51A from the low pressure side (here, the lower side of FIG. 2) to the high pressure side (here, the upper side of FIG. 2). There is.
  • the flow rate of the curve I in FIG. 3C shows a state of being substantially constant (flow rate R) until the pressure difference (P2-P1) of the downward flow increases to a certain magnitude (FIG. 3C). Horizontal portion with reference numeral I1).
  • the curve I showing the flow rate of the upward flow intersects the straight line H with a predetermined pressure difference, but at this intersection Q, the flow rates of each other match (balance).
  • This intersection Q can be referred to as a "balance point at a purge flow rate of 0 (zero)" or the like.
  • the curve I exceeds the intersection Q with the straight line H in a substantially constant (horizontal) state, and drops sharply when the pressure difference (P2-P1) reaches a certain size.
  • a reference numeral I2 is attached to this rapidly descending portion. That is, in the state where the gas flows upward (the portion of reference numeral I1), the effect of the thread groove portion is almost the same when the pressure difference (P2-P1) passes through the straight line H and then the pressure difference (P2-P1) increases to some extent. It will not appear.
  • the turbo molecular pump 10 is in the pressure difference (P2-P1) range in which the gas amount indicated by the curve I does not drop sharply. It is necessary to use.
  • the amount of purge gas can be reduced by providing the screw groove portion 45 as in the present embodiment.
  • heat conduction can be promoted with a small amount of purge gas, and sufficient heat conduction can be performed while reducing the amount of purge gas.
  • a small amount of purge gas makes it possible to prevent the intrusion of process gas.
  • FIG. 5 is a graph of this from a viewpoint different from that of FIG. 3 (c).
  • H'in the figure is the amount that flows due to the pressure difference, and corresponds to the straight line H in FIG. 3 (c).
  • the curve I'in FIG. 5 is the amount (transportation capacity of the screw groove) that the screw groove flows during rotation, and corresponds to the curve I in FIG. 3 (c). That is, FIG. 5 shows the curve I of FIG. 3 (c) turned to the fourth quadrant. Then, the curve L obtained by adding the curve H'and the curve I'is the net purge gas flow rate flowing through the gap of FIG. 3 (a). Further, J', K', and T'in FIG. 5 correspond to J, K, and T in FIG. 3 (c). Then, according to the example of FIG. 5, the amount obtained by subtracting the amount of T'from the amount of K'is the amount of purge gas reduction during rotor rotation.
  • the threaded groove 45 is not provided with the first threaded groove 51A and is composed of only the second threaded groove 51B, only downward gas (arrow F) is generated with respect to the purge gas. .. Then, the second thread groove portion 51B functions to lower the pressure P2 on the high pressure side described above. Therefore, when the thread groove portion 45 is composed of only the second thread groove portion 51B, it is necessary to supply a larger amount of purge gas in order to sufficiently increase P2.
  • the flow rate of the purge gas can be reduced by providing the thread groove portion 45, but the straight line H related to the downward gas (arrow F) and the curve I related to the upward gas (arrow G) described above can be reduced.
  • the mode changes depending on the type of various gases.
  • the slope of the straight line HH becomes relatively small as shown in FIG. 4A in the flow generated by the pressure difference.
  • the slope of the straight line HL becomes relatively large.
  • the upward (arrow G) flow generated in the first thread groove portion 51A when the rotor rotates has a curve IH as shown in FIG. 4A when a gas having a relatively large molecular weight is used as the purge gas.
  • the position of the portion (the portion of the symbol IH2) in which the horizontal portion (the portion of the symbol IH1) becomes long and sharply decreases does not appear until the pressure difference (P2-P1) becomes relatively large. That is, for many types of purge gas, since the viscosity of the gas becomes high, it is easy to maintain the upward flow of the purge gas even if the pressure difference (P2-P1) increases.
  • the horizontal portion (the portion of the symbol IL1) on the curve IL becomes shorter, and the position of the portion (the portion of the symbol IL2) that sharply decreases becomes It appears in a situation where the pressure difference (P2-P1) is relatively small. That is, for many types of purge gas, the viscosity of the gas becomes low, so that when the pressure difference (P2-P1) increases, it becomes difficult to maintain the upward flow of the purge gas.
  • the upward flow rate of the first thread groove 51A is not reduced by a small pressure difference (P2-P1) with respect to the molecular weight of the gas that causes a downward flow due to the pressure difference (P2-P1). , It is desirable to select the type of purge gas.
  • the shape of the thread groove in the thread groove portion 45 (particularly the shape and length of the screw groove 52A in the first thread groove portion 51A) also determines FIG. Changes appear as shown in b).
  • the horizontal portion (the portion of reference numeral I1) is on the side where the pressure difference (P2-P1) is large, as shown by the broken line.
  • the descending portion also moves to the side where the pressure difference (P2-P1) is large. That is, by lengthening the screw groove 52A, even if the pressure difference (P2-P1) becomes large and the amount of gas downward (arrow F in FIG. 2) increases, the necessary purge gas can be secured more reliably, which is good. It is possible to carry out heat conduction.
  • the inclination angle (screw angle) of the screw may be expressed as an upward angle with respect to the horizontal direction (diameter direction of the stator column 26), for example, as shown by adding a reference numeral ⁇ to FIG. 3 (b). It is possible.
  • the amount of purge gas transported in the entire thread groove portion 45 and the amount of purge gas transported in each of the first thread groove portion 51A and the second thread groove portion 51B should be considered. Can be done.
  • the first threaded groove 51A (or the first threaded groove 51A (or downward in the second threaded groove 51B) depends on the type of purge gas.
  • the above-mentioned first range A in which the first thread groove portion 51A is formed is made larger than the above-mentioned second range B in which the second thread groove portion 51B is formed. Is possible.
  • the width, depth, cross-sectional shape, and cross-sectional shape of the respective screw grooves 52A and 52B are formed.
  • Factors such as the flow path area (cross-sectional area) are almost the same.
  • the inclination angles of the screws differ only in positive and negative values with the boundary between the first thread groove portion 51A and the second thread groove portion 51B in between, and the magnitudes (absolute values) of the angles are almost the same.
  • the transport capacity of the first thread groove portion 51A is made larger than the transport capacity of the second thread groove portion 51B. It can be said that it is a thing.
  • the specific relationship between the size of the first range A related to the first threaded groove portion 51A and the size of the second range B related to the second threaded groove portion 51B cannot always be freely determined, and is required. It is limited to some extent by factors such as the ability of heat conduction to be performed and the size of the stator column 26. Therefore, it is necessary to provide the first range A and the second range B in a limited area with an appropriate magnitude relationship.
  • the first range A: the second range B is determined within the range of about 1: 1 to 10: 1.
  • the function of the first thread groove portion 51A can be more clearly exhibited by setting the first range A to twice or more (2: 1 or more) of the second range B.
  • the action of the flow and heat conduction of the purge gas as described here occurs better when the flow of the purge gas is an intermediate flow or a viscous flow than in the case of a molecular flow. It is a thing. Therefore, it is desirable to determine the type of purge gas and the structure of the first thread groove portion 51A (and the second thread groove portion 51B) so that the flow of the purge gas becomes an intermediate flow or a viscous flow.
  • the second thread groove portion 51B also functions to prevent the process gas from flowing back. Therefore, for example, by designing the second thread groove portion 51B so as to satisfy the relationship of (reverse flow rate of the process gas) ⁇ (transportation amount of the second thread groove portion 51B), the sealing function of the process gas is more reliable. It becomes possible to.
  • the purge gas is compressed in the screw groove portion 45 by reducing the cross-sectional area of the screw groove 52A (thread groove 52B) by forming the first screw groove portion 51A (and the second screw groove portion 51B) shallowly (purge gas). It is possible to increase its own pressure).
  • the flow rate of the purge gas can be reduced, it becomes possible to adopt a more expensive gas (for example, helium (He) gas).
  • a more expensive gas for example, helium (He) gas.
  • the threaded groove portion 45 is provided, and the threaded groove portion 45 is further configured by a combination of the first threaded groove portion 51A and the second threaded groove portion 51B having a reverse screw relationship with each other. Therefore, it is possible to reduce the flow rate of the purge gas. As a result, the cost of purging gas can be reduced.
  • the thread groove portion 45 of the present embodiment corresponds to a difference in the type of purge gas by changing the formation range of the first thread groove portion 51A and the length of the screw groove (L: here, the first range A). It is something that can be done. Therefore, by appropriately selecting factors such as the formation range of the first thread groove portion 51A, the length of the thread groove (L: here, the first range A), the type of process gas, and the type of purge gas, the optimum conditions can be obtained. Heat conduction is possible.
  • the present invention is not limited to the present embodiment, and can be variously modified without departing from the gist.
  • the shape of the gas flow path (screw groove 52A, 52B) in the screw groove portion 45 is not limited to a rectangle (FIG. 3A), but may be a semicircular shape, a triangular shape, or a polygonal shape of a pentagon or more. It may be.
  • the thread groove portion 45 can be formed not only on the outer peripheral surface of the stator column but also on the inner peripheral surface of the rotor 28.
  • the present invention is applicable not only to turbo molecular pumps but also to other types of vacuum pumps.

Landscapes

  • Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • General Engineering & Computer Science (AREA)
  • Physics & Mathematics (AREA)
  • Thermal Sciences (AREA)
  • Non-Positive Displacement Air Blowers (AREA)

Abstract

[Problem]To provide a vacuum pump with which heat can be dissipated at a small purge gas flow rate. [Solution]Exhaust gas is made to flow from an upstream side to a downstream side on the outside of a rotor 28 by rotation of the rotor 28, and a purge gas flows through a gap 43. A threaded groove part 45 that faces the gap 43 and guides the purge gas is formed in a stator column 26. The threaded groove part 45 has a first threaded groove section, which is located on the upstream side of the flow path of the purge gas, and guides the purge gas in the direction of the upstream side of the flow path of the purge gas, and a second threaded groove section, which is located on the downstream side of the flow path of the purge gas, and guides the purge gas in the direction of the downstream side of the flow path of the purge gas, and a first area, which is the area occupied by the first threaded groove section, is larger than a second area, which is the area occupied by the second threaded groove section.

Description

真空ポンプ、及び、真空ポンプ構成部品Vacuum pumps and vacuum pump components
 本発明は、例えばターボ分子ポンプ等の真空ポンプやその構成部品に関する。 The present invention relates to a vacuum pump such as a turbo molecular pump and its components.
 一般に、真空ポンプの一種として、図6に示すようなターボ分子ポンプ110が知られている。このターボ分子ポンプ110においては、ポンプ本体内のモータへの通電によりロータ翼(回転翼)120を回転させ、ポンプの吸気口から入ってきたガス(プロセスガス)の気体分子を矢印EGの方向へ弾き飛ばすことによりガスを排気するようになっている。 Generally, as a type of vacuum pump, a turbo molecular pump 110 as shown in FIG. 6 is known. In this turbo molecular pump 110, the rotor blades (rotary blades) 120 are rotated by energizing the motor in the pump body, and the gas molecules of the gas (process gas) entering from the intake port of the pump are directed in the direction of the arrow EG. The gas is exhausted by flipping it off.
 図6には、プロセスガスの流れ(真空排気の流れ)の方向を、破線の矢印EGにより示している。実際には、プロセスガスは、ロータ翼120とステータ翼119で圧縮されながら、図中の上側から下側(吸気側から排気側)へ向かって流れる。 In FIG. 6, the direction of the process gas flow (vacuum exhaust flow) is indicated by the broken line arrow EG. Actually, the process gas flows from the upper side to the lower side (intake side to exhaust side) in the drawing while being compressed by the rotor blade 120 and the stator blade 119.
 また、ターボ分子ポンプ110においては、高速回転中に、軸受部分や、ロータ翼120、ロータ翼を支持する部品(ロータ円筒部123など)等が温度上昇して高温となる。このため、図6に矢印PGで示すように、軸受部分や、ステータコラム126とロータ円筒部123との間の隙間143に、パージガスを流すことが行われている。 Further, in the turbo molecular pump 110, the temperature of the bearing portion, the rotor blade 120, the parts supporting the rotor blade (rotor cylindrical portion 123, etc.) and the like rises during high-speed rotation, resulting in a high temperature. Therefore, as shown by the arrow PG in FIG. 6, the purge gas is flowed through the bearing portion and the gap 143 between the stator column 126 and the rotor cylindrical portion 123.
 このパージガスとしては、熱伝導率の高いもの(例えば窒素(N2)ガスなど)が用いられる。そして、パージガスを流すことで熱伝導による放熱が行われ、隙間143に面した部分の冷却が促進される。 As this purge gas, a gas having high thermal conductivity (for example, nitrogen (N2) gas) is used. Then, heat is dissipated by heat conduction by flowing the purge gas, and cooling of the portion facing the gap 143 is promoted.
特許第4156830号公報Japanese Patent No. 4156830
 ところで、上述のようなパージガスを用いた冷却方法は、パージガスを大量に使用することで冷却効果を高めることができる。しかし、パージガスを大量に使用することにより、ターボ分子ポンプ101の運転のためのコストが増大する。したがって、低コスト化を図るためには、より少ないパージガスの流量で放熱を行うことが望ましい。 By the way, in the cooling method using the purge gas as described above, the cooling effect can be enhanced by using a large amount of the purge gas. However, the use of a large amount of purge gas increases the cost for operating the turbo molecular pump 101. Therefore, in order to reduce the cost, it is desirable to dissipate heat with a smaller flow rate of purge gas.
 本発明の目的とするところは、少ないパージガスの流量で放熱を行うことが可能な真空ポンプ、及び、真空ポンプ構成部品を提供することにある。 An object of the present invention is to provide a vacuum pump capable of dissipating heat with a small flow rate of purge gas, and a vacuum pump component.
(1)上記目的を達成するために本発明は、ステータと、
 前記ステータとの間に隙間を介在させて回転するロータと、を備え、
 前記ロータの回転によりロータの外側を上流側から下流側へ排気ガスを流動させる真空ポンプにおいて、
 前記隙間にパージガスが流され、
 前記ステータ及び前記ロータのうちの少なくとも一方に、前記隙間に面し、前記ロータの回転に伴って前記パージガスを案内するネジ溝部が形成され、
 前記ネジ溝部は、
 前記パージガスの流路の上流側に位置し、前記パージガスを前記パージガスの流路の上流側の向きに案内する第1ネジ溝部と、
 前記パージガスの流路の下流側に位置し、前記パージガスを前記パージガスの流路の下流側の向きに案内する第2ネジ溝部と、を有し、
 前記第1ネジ溝部の占める範囲である第1範囲が、前記第2ネジ溝部が占める範囲である第2範囲よりも大きいことを特徴とする真空ポンプにある。
(2)また、上記目的を達成するために他の本発明は、前記第1範囲の大きさが、前記パージガスの流れを中間流から粘性流にする大きさであることを特徴とする(1)に記載の真空ポンプにある。
(3)また、上記目的を達成するために他の本発明は、前記第2範囲の大きさが、(前記排気ガスの逆流量)<(第2ネジ溝部の輸送量)の関係を満たすことを特徴とする(1)又は(2)に記載の真空ポンプにある。
(4)また、上記目的を達成するために他の本発明は、前記第1範囲の大きさが、前記第2範囲の大きさの2倍以上であることを特徴とする(1)~(3)のいずれか1項に記載の真空ポンプにある。
(5)また、上記目的を達成するために他の本発明は、前記ロータの外側に排気ガスの通路を持ち、かつ前記ロータの内側に前記隙間を持つことを特徴とする(1)~(4)のいずれか1項に記載の真空ポンプにある。
(6)また、上記目的を達成するために他の本発明は、ステータと、
 前記ステータとの間に隙間を介在させて回転するロータとのうちのいずれかであり、
 前記ロータの回転によりロータの外側を上流側から下流側へ排気ガスを流動させ、
 前記隙間にパージガスが流される真空ポンプに備えられる真空ポンプ構成部品において、
 前記隙間に面し、前記ロータの回転に伴って前記パージガスを案内するネジ溝部が形成され、
 前記ネジ溝部は、
 前記パージガスの流路の上流側に位置し、前記パージガスを前記パージガスの流路の上流側の向きに案内する第1ネジ溝部と、
 前記パージガスの流路の下流側に位置し、前記パージガスを前記パージガスの流路の下流側の向きに案内する第2ネジ溝部と、を有し、
 前記第1ネジ溝部の占める範囲である第1範囲が、前記第2ネジ溝部が占める範囲である第2範囲よりも大きいことを特徴とする真空ポンプ構成部品にある。
(7)また、上記目的を達成するために他の本発明は、前記第1範囲の大きさが、前記パージガスの流れを中間流から粘性流にする大きさであることを特徴とする(6)に記載の真空ポンプ構成部品にある。
(8)また、上記目的を達成するために他の本発明は、前記第2範囲の大きさが、(前記排気ガスの逆流量)<(第2ネジ溝部の輸送量)の関係を満たすことを特徴とする(6)又は(7)に記載の真空ポンプ構成部品にある。
(9)また、上記目的を達成するために他の本発明は、前記第1範囲の大きさが、前記第2範囲の大きさの2倍以上であることを特徴とする(6)~(8)のいずれか1項に記載の真空ポンプ構成部品にある。
(10)前記ロータの外側に排気ガスの通路を持ち、かつ前記ロータの内側に前記隙間を持つ真空ポンプに備えられることを特徴とする(6)~(9)のいずれか1項に記載の真空ポンプ構成部品にある。
(1) In order to achieve the above object, the present invention uses a stator and
A rotor that rotates with a gap between the stator and the rotor is provided.
In a vacuum pump that flows exhaust gas from the upstream side to the downstream side on the outside of the rotor by the rotation of the rotor.
Purge gas is flowed through the gap,
At least one of the stator and the rotor is formed with a screw groove portion facing the gap and guiding the purge gas as the rotor rotates.
The thread groove portion is
A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
It has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
The vacuum pump is characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
(2) Further, in order to achieve the above object, another invention is characterized in that the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow (1). ) Is in the vacuum pump.
(3) Further, in order to achieve the above object, in another invention, the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) <(transportation amount of the second thread groove portion). The vacuum pump according to (1) or (2).
(4) Further, in order to achieve the above object, another invention is characterized in that the size of the first range is twice or more the size of the second range (1) to (1). It is in the vacuum pump according to any one of 3).
(5) Further, in order to achieve the above object, another invention is characterized in that the exhaust gas passage is provided on the outside of the rotor and the gap is provided on the inside of the rotor (1) to (1). It is in the vacuum pump according to any one of 4).
(6) Further, in order to achieve the above object, another invention of the present invention includes a stator and the like.
It is one of the rotors that rotate with a gap between them and the stator.
The rotation of the rotor causes the exhaust gas to flow from the upstream side to the downstream side on the outside of the rotor.
In a vacuum pump component provided in a vacuum pump in which purge gas flows through the gap,
A screw groove portion that faces the gap and guides the purge gas as the rotor rotates is formed.
The thread groove portion is
A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
It has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
The vacuum pump component is characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
(7) Further, in order to achieve the above object, another invention is characterized in that the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow (6). ) In the vacuum pump components.
(8) Further, in order to achieve the above object, in another invention, the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) <(transportation amount of the second thread groove portion). The vacuum pump component according to (6) or (7).
(9) Further, in order to achieve the above object, another invention is characterized in that the size of the first range is twice or more the size of the second range (6) to (6). It is in the vacuum pump component according to any one of 8).
(10) The item according to any one of (6) to (9), wherein the vacuum pump has an exhaust gas passage on the outside of the rotor and the gap on the inside of the rotor. Located in the vacuum pump components.
 上記発明によれば、少ないパージガスの流量で放熱を行うことが可能な真空ポンプ、及び、真空ポンプ構成部品を提供することができる。 According to the above invention, it is possible to provide a vacuum pump capable of dissipating heat with a small flow rate of purge gas, and a vacuum pump component.
本発明の最良の実施形態に係るターボ分子ポンプにプロセスガスの流れとパージガスの流れを単純化して付加した縦断面である。It is a vertical cross section in which the flow of process gas and the flow of purge gas are simplified and added to the turbo molecular pump according to the best embodiment of the present invention. ネジ溝部を展開して模式的に示す説明図である。It is explanatory drawing which shows by expanding the thread groove part. (a)は第1ネジ溝部に面した隙間における各種のガスの流れを模式的に示す説明図、(b)は第1ネジ溝部を展開して模式的に示す説明図、(c)は(a)に係る各種のガスの流量特性を模式的に示すグラフである。(A) is an explanatory diagram schematically showing the flow of various gases in the gap facing the first thread groove portion, (b) is an explanatory view schematically showing the first thread groove portion expanded, and (c) is (c). It is a graph which shows typically the flow rate characteristic of various gases which concerns on a). (a)はガスの種類による流量特性の違いを模式的に示すグラフ、(b)はネジ溝の形態による流量特性の違いを模式的に示すグラフである。(A) is a graph schematically showing the difference in flow rate characteristics depending on the type of gas, and (b) is a graph schematically showing the difference in flow rate characteristics depending on the shape of the thread groove. 図3(c)の流量特性を別な観点で模式的に示すグラフである。It is a graph which shows typically the flow rate characteristic of FIG. 3C from another viewpoint. 従来のターボ分子ポンプにおけるプロセスガスの流れとパージガスの流れを単純化して示す説明図である。It is explanatory drawing which simplifies the flow of process gas and the flow of purge gas in a conventional turbo molecular pump.
 以下、本発明の最良の実施形態に係る真空ポンプについて、図面に基づき説明する。図1は、本実施形態に係る真空ポンプとしてのターボ分子ポンプ10を縦断して概略的に示している。このターボ分子ポンプ10は、例えば、半導体製造装置、電子顕微鏡、質量分析装置などといった対象機器(排気対象機器)の真空チャンバ(図示略)に接続されるようになっている。 Hereinafter, the vacuum pump according to the best embodiment of the present invention will be described with reference to the drawings. FIG. 1 schematically shows a turbo molecular pump 10 as a vacuum pump according to the present embodiment longitudinally. The turbo molecular pump 10 is connected to a vacuum chamber (not shown) of a target device (exhaust target device) such as a semiconductor manufacturing device, an electron microscope, a mass spectrometer, or the like.
 ターボ分子ポンプ10は、円筒状のポンプ本体11と、箱状の電装ケース(図示略)とを一体に備えている。これらのうちのポンプ本体11は、図1中の上側が対象機器の側に吸気口を向けて繋がる吸気部12となっており、下側が補助ポンプ等に繋がる排気部13となっている。そして、ターボ分子ポンプ10は、図1に示すような鉛直方向の垂直姿勢のほか、倒立姿勢や水平姿勢、傾斜姿勢でも用いることが可能となっている。 The turbo molecular pump 10 integrally includes a cylindrical pump body 11 and a box-shaped electrical case (not shown). Of these, the pump main body 11 has an intake unit 12 connected to the upper side of FIG. 1 with the intake port facing the target device side, and an exhaust unit 13 connected to the auxiliary pump or the like on the lower side. The turbo molecular pump 10 can be used not only in the vertical posture as shown in FIG. 1 but also in an inverted posture, a horizontal posture, and an inclined posture.
 電装ケース(図示略)には、ポンプ本体11に電力供給を行うための電源回路部や、ポンプ本体11を制御するための制御回路部が収容されているが、ここでは、これらについての詳しい説明は省略する。 The electrical case (not shown) houses a power supply circuit unit for supplying electric power to the pump body 11 and a control circuit unit for controlling the pump body 11. Is omitted.
 ポンプ本体11は、略円筒状の筐体となるケーシングとしての本体ケーシング14を備えている。本体ケーシング14は、図1中の上部に位置する吸気側ケーシング14aと、図1中の下側に位置する排気側ケーシング14bとを軸方向に直列に繋げて構成されている。ここで、吸気側ケーシング14aを例えばケーシングなどと称し、排気側ケーシング14bを例えばベースなどと称することも可能である。 The pump main body 11 includes a main body casing 14 as a casing that is a substantially cylindrical housing. The main body casing 14 is configured by connecting the intake side casing 14a located at the upper part in FIG. 1 and the exhaust side casing 14b located at the lower side in FIG. 1 in series in the axial direction. Here, the intake side casing 14a may be referred to as, for example, a casing, and the exhaust side casing 14b may be referred to as, for example, a base or the like.
 吸気側ケーシング14aは、本体ケーシング14の吸気側の部位を構成しており、排気側ケーシング14bは、本体ケーシング14の排気側の部位を構成している。吸気側ケーシング14aと排気側ケーシング14bは、径方向(図1中の左右方向)に重ねられている。さらに、吸気側ケーシング14aは、軸方向一端部(図1中の下端部)における内周面を、排気側ケーシング14bの上端部29における外周面に対向させている。そして、吸気側ケーシング14aと排気側ケーシング14bは、溝部に収容されたOリング36を挟んで、複数のケーシング用ボルト14c(六角穴付きボルト)により、互いに気密的に結合されている。ここで、図1では、複数のケーシング用ボルト14cのうちの一部のみを示している。 The intake side casing 14a constitutes the intake side portion of the main body casing 14, and the exhaust side casing 14b constitutes the exhaust side portion of the main body casing 14. The intake side casing 14a and the exhaust side casing 14b are overlapped in the radial direction (left-right direction in FIG. 1). Further, the intake side casing 14a has an inner peripheral surface at one end in the axial direction (lower end in FIG. 1) facing the outer peripheral surface at the upper end 29 of the exhaust side casing 14b. The intake side casing 14a and the exhaust side casing 14b are hermetically coupled to each other by a plurality of casing bolts 14c (hexagon socket head bolts) with the O-ring 36 accommodated in the groove portion interposed therebetween. Here, FIG. 1 shows only a part of the plurality of casing bolts 14c.
 このように構成された本体ケーシング14内には、排気機構部15と回転駆動部(以下では「モータ」と称する)16とが設けられている。これらのうち、排気機構部15は、ポンプ機構部としてのターボ分子ポンプ機構部17と、ネジ溝排気機構部としてのネジ溝ポンプ機構部18とにより構成された複合型のものとなっている。 An exhaust mechanism unit 15 and a rotary drive unit (hereinafter referred to as a "motor") 16 are provided in the main body casing 14 configured in this way. Of these, the exhaust mechanism portion 15 is a composite type composed of a turbo molecular pump mechanism portion 17 as a pump mechanism portion and a thread groove pump mechanism portion 18 as a thread groove exhaust mechanism portion.
 ターボ分子ポンプ機構部17とネジ溝ポンプ機構部18は、ポンプ本体11の軸方向に連続するよう配置されており、図1においては、図1中の上側にターボ分子ポンプ機構部17が配置され、図1中の下側にネジ溝ポンプ機構部18が配置されている。以下に、ターボ分子ポンプ機構部17やネジ溝ポンプ機構部18の基本構造について概略的に説明する。 The turbo molecular pump mechanism unit 17 and the thread groove pump mechanism unit 18 are arranged so as to be continuous in the axial direction of the pump main body 11, and in FIG. 1, the turbo molecular pump mechanism unit 17 is arranged on the upper side in FIG. , The thread groove pump mechanism portion 18 is arranged on the lower side in FIG. Hereinafter, the basic structures of the turbo molecular pump mechanism portion 17 and the thread groove pump mechanism portion 18 will be schematically described.
 図1中の上側に配置されたターボ分子ポンプ機構部17は、多数のタービンブレードにより排気ガス(プロセスガスやクリーニングガスなど)の移送を行うものであり、所定の傾斜や曲面を有し放射状に形成された固定翼(以下では「ステータ翼」と称する)19と回転翼(以下では「ロータ翼」と称する)20とを備えている。ターボ分子ポンプ機構部17において、ステータ翼19とロータ翼20は十段程度に亘って交互に並ぶよう配置されている。 The turbo molecular pump mechanism 17 arranged on the upper side in FIG. 1 transfers exhaust gas (process gas, cleaning gas, etc.) by a large number of turbine blades, has a predetermined inclination or curved surface, and radiates. It includes a fixed blade (hereinafter referred to as a "stator blade") 19 and a rotary blade (hereinafter referred to as a "rotor blade") 20 formed. In the turbo molecular pump mechanism portion 17, the stator blades 19 and the rotor blades 20 are arranged so as to be alternately arranged in about ten stages.
 ステータ翼19は、本体ケーシング14に一体的に設けられており、上下のステータ翼19の間に、ロータ翼20が入り込んでいる。ロータ翼20は、筒状のロータ28に一体化されており、ロータ28はロータシャフト(「ロータ軸」などともいう)21に、ロータシャフト21の外側を覆うよう同心的に固定されている。 The stator blade 19 is integrally provided in the main body casing 14, and the rotor blade 20 is inserted between the upper and lower stator blades 19. The rotor blade 20 is integrated with the tubular rotor 28, and the rotor 28 is concentrically fixed to the rotor shaft (also referred to as “rotor shaft” or the like) 21 so as to cover the outside of the rotor shaft 21.
 ロータシャフト21に対するロータ28の固定は、ロータシャフト21の軸方向における一端部側(図1中の上端部側)において、複数のロータ固定ボルト22(2つのみ図示)を用いて行われている。 The rotor 28 is fixed to the rotor shaft 21 by using a plurality of rotor fixing bolts 22 (only two are shown) on one end side (upper end side in FIG. 1) of the rotor shaft 21 in the axial direction. ..
 ロータシャフト21は、ステータとしての中空状のステータコラム26に、磁気軸受(後述する)を介して支持されている。ステータコラム26は、前述した排気側ケーシング14bに、同軸的にボルト止めされ、モータ16やロータシャフト21等の支持を担っている。 The rotor shaft 21 is supported by a hollow stator column 26 as a stator via a magnetic bearing (described later). The stator column 26 is coaxially bolted to the exhaust side casing 14b described above to support the motor 16 and the rotor shaft 21.
 ロータシャフト21は、段付きの円柱状に加工されており、ターボ分子ポンプ機構部17から下側のネジ溝ポンプ機構部18に達している。さらに、ロータシャフト21における軸方向の中央部には、モータ16が配置されている。このモータ16については後述する。 The rotor shaft 21 is processed into a stepped columnar shape, and reaches from the turbo molecular pump mechanism portion 17 to the lower thread groove pump mechanism portion 18. Further, a motor 16 is arranged at the center of the rotor shaft 21 in the axial direction. The motor 16 will be described later.
 ネジ溝ポンプ機構部18は、ロータ円筒部23とネジステータ24を備えている。
 このネジステータ24は「ソトネジ」などとも呼ばれているものであり、ネジステータ24の材質として、アルミニウムが採用されている。ネジ溝ポンプ機構部18の後段には排気パイプに接続する為の排気口25が配置されており、排気口25の内部とネジ溝ポンプ機構部18が空間的に繋がっている。
The thread groove pump mechanism portion 18 includes a rotor cylindrical portion 23 and a screw stator 24.
The screw stator 24 is also called a "soto screw" or the like, and aluminum is used as the material of the screw stator 24. An exhaust port 25 for connecting to the exhaust pipe is arranged at the rear stage of the thread groove pump mechanism portion 18, and the inside of the exhaust port 25 and the screw groove pump mechanism portion 18 are spatially connected.
 また、ターボ分子ポンプ10においては、ロータ28とステータコラム26との隙間にパージガス(保護ガス)が供給されるようになっている。このパージガスは、後述する軸受部分や、前述のロータ翼20等の保護のために使用され、プロセスガスに因る腐食の防止や、ロータ翼20の冷却等を行うものである。 Further, in the turbo molecular pump 10, purge gas (protective gas) is supplied to the gap between the rotor 28 and the stator column 26. This purge gas is used for protecting the bearing portion described later and the rotor blade 20 described above, and is used for preventing corrosion due to the process gas, cooling the rotor blade 20, and the like.
 このパージガスの供給のため、本実施形態においては、排気側ケーシング14bの所定の部位にパージガス導入管41を取り付けている。そして、パージガス導入管41は、排気側ケーシング14bの径方向に直線状に延びてパージガス流路42を構成している。 In order to supply this purge gas, in this embodiment, a purge gas introduction pipe 41 is attached to a predetermined portion of the exhaust side casing 14b. The purge gas introduction pipe 41 extends linearly in the radial direction of the exhaust side casing 14b to form a purge gas flow path 42.
 また、後述するように、パージガスは、ステータコラム26とロータ円筒部23との間の隙間43を流れるが、図1中において、この隙間43の下方側には、ネジ溝部45が形成されている。ネジ溝部45の詳細についても後述するが、本実施形態においては、ネジ溝部45は、ステータコラム26の外周面に沿って、所定の形状で凹んだ螺旋状の溝を加工することにより形成されている。 Further, as will be described later, the purge gas flows through the gap 43 between the stator column 26 and the rotor cylindrical portion 23, and in FIG. 1, a screw groove portion 45 is formed on the lower side of the gap 43. .. The details of the threaded groove portion 45 will be described later, but in the present embodiment, the threaded groove portion 45 is formed by processing a spiral groove having a predetermined shape along the outer peripheral surface of the stator column 26. There is.
 前述のモータ16は、ロータシャフト21の外周に固定された回転子(符号省略)と、回転子を取り囲むように配置された固定子(符号省略)とを有している。モータ16を作動させるための電力の供給は、前述の電装ケース(図示略)に収容された電源回路部や制御回路部により行われる。 The above-mentioned motor 16 has a rotor fixed to the outer circumference of the rotor shaft 21 (reference numeral omitted) and a stator (reference numeral omitted) arranged so as to surround the rotor. The power supply for operating the motor 16 is performed by the power supply circuit unit and the control circuit unit housed in the above-mentioned electrical case (not shown).
 ここで、ターボ分子ポンプ10のポンプ本体11においては、主だった部品の材質としてアルミニウム合金やステンレス鋼が採用されている。例えば、排気側ケーシング14b、ステータ翼19、ロータ28などの材質はアルミニウム合金である。さらに、ロータシャフト21やロータ固定ボルト22などの材質はステンレス鋼である。また、図1では、ポンプ本体11における部品の断面を示すハッチングの記載は、図面が煩雑になるのを避けるため省略している。 Here, in the pump body 11 of the turbo molecular pump 10, aluminum alloy or stainless steel is adopted as the material of the main parts. For example, the material of the exhaust side casing 14b, the stator blade 19, the rotor 28, and the like is an aluminum alloy. Further, the material of the rotor shaft 21 and the rotor fixing bolt 22 is stainless steel. Further, in FIG. 1, the description of the hatching showing the cross section of the component in the pump main body 11 is omitted in order to avoid complicating the drawing.
 ロータシャフト21の支持には、磁気浮上による非接触式の軸受である磁気軸受が用いられている。磁気軸受としては、モータ16の上下に配置された2組のラジアル磁気軸受(径方向磁気軸受)30と、ロータシャフト21の下部に配置された1組のアキシャル磁気軸受(軸方向磁気軸受)31とが用いられている。 A magnetic bearing, which is a non-contact type bearing by magnetic levitation, is used to support the rotor shaft 21. The magnetic bearings include two sets of radial magnetic bearings (radial magnetic bearings) 30 arranged above and below the motor 16 and one set of axial magnetic bearings (axial magnetic bearings) 31 arranged below the rotor shaft 21. And are used.
  これらのうち各ラジアル磁気軸受30は、ロータシャフト21に形成されたラジアル電磁石ターゲット30A、これに対向する複数(例えば2つ)のラジアル電磁石30B、およびラジアル方向変位センサ30Cなどにより構成されている。ラジアル方向変位センサ30Cはロータシャフト21の径方向変位を検出する。そして、ラジアル方向変位センサ30Cの出力に基づいて、ラジアル電磁石30Bの励磁電流が制御され、ロータシャフト21が、径方向の所定位置で軸心周りに回転できるよう浮上支持される。 Of these, each radial magnetic bearing 30 is composed of a radial electromagnet target 30A formed on the rotor shaft 21, a plurality of (for example, two) radial electromagnets 30B facing the target, a radial direction displacement sensor 30C, and the like. The radial displacement sensor 30C detects the radial displacement of the rotor shaft 21. Then, the exciting current of the radial electromagnet 30B is controlled based on the output of the radial direction displacement sensor 30C, and the rotor shaft 21 is levitated and supported so that it can rotate around the axial center at a predetermined position in the radial direction.
  アキシャル磁気軸受31は、ロータシャフト21の下端側の部位に取り付けられた円盤形状のアーマチュアディスク31Aと、アーマチュアディスク31Aを挟んで上下に対向するアキシャル電磁石31Bと、ロータシャフト21の下端面から少し離れた位置に設置したアキシャル方向変位センサ31Cなどにより構成されている。アキシャル方向変位センサ31Cはロータシャフト21の軸方向変位を検出する。そして、アキシャル方向変位センサ31Cの出力に基づいて、上下のアキシャル電磁石31Bの励磁電流が制御され、ロータシャフト21が、軸方向の所定位置で軸心周りに回転できるよう浮上支持される。  The axial magnetic bearing 31 is slightly separated from the disk-shaped armature disk 31A attached to the lower end side of the rotor shaft 21, the axial electromagnet 31B facing up and down with the armature disk 31A in between, and the lower end surface of the rotor shaft 21. It is composed of an axial displacement sensor 31C or the like installed at a vertical position. The axial displacement sensor 31C detects the axial displacement of the rotor shaft 21. Then, based on the output of the axial displacement sensor 31C, the exciting currents of the upper and lower axial electromagnets 31B are controlled, and the rotor shaft 21 is levitated and supported so that it can rotate around the axial center at a predetermined position in the axial direction. Twice
  そして、これらのラジアル磁気軸受30やアキシャル磁気軸受31を用いることにより、ロータシャフト21(及びロータ翼20)が高速回転を行うにあたって摩耗がなく、寿命が長く、且つ、潤滑油を不要とした環境が実現されている。また、本実施形態においては、ラジアル方向変位センサ30Cやアキシャル方向変位センサ31Cを用いることにより、ロータシャフト21について、軸方向(Z方向)周りの回転の方向(θz)のみ自由とし、その他の5軸方向であるX、Y、Z、θx、θyの方向についての位置制御が行われている。 By using these radial magnetic bearings 30 and axial magnetic bearings 31, the rotor shaft 21 (and rotor blades 20) does not wear when rotating at high speed, has a long life, and does not require lubricating oil. Has been realized. Further, in the present embodiment, by using the radial direction displacement sensor 30C and the axial direction displacement sensor 31C, only the rotation direction (θz) around the axial direction (Z direction) of the rotor shaft 21 is freed, and the other 5 Position control is performed in the axial directions of X, Y, Z, θx, and θy.
 さらに、ロータシャフト21の上部及び下部の周囲には、所定間隔をおいて半径方向の保護ベアリング(「保護軸受」、「タッチダウン(T/D)軸受」、「バックアップ軸受」などともいう)32、33が配置されている。これらの保護ベアリング32、33により、例えば万が一電気系統のトラブルや大気突入等のトラブルが生じた場合であっても、ロータシャフト21の位置や姿勢を大きく変化させず、ロータ翼20やその周辺部が損傷しないようになっている。 Further, around the upper part and the lower part of the rotor shaft 21, radial protection bearings (also referred to as "protection bearings", "touchdown (T / D) bearings", "backup bearings", etc.) 32 at predetermined intervals. , 33 are arranged. These protective bearings 32 and 33 do not significantly change the position and orientation of the rotor shaft 21 even in the unlikely event of a trouble in the electrical system or intrusion into the atmosphere, and the rotor blade 20 and its peripheral portions. Is not damaged.
 このような構造のターボ分子ポンプ10の運転時には、前述のモータ16が駆動され、ロータ翼20が回転する。ロータ翼20の回転に伴い、図1中の上側に示す吸気部12からプロセスガスが吸引され、ステータ翼19とロータ翼20とに気体分子を衝突させながら、ネジ溝ポンプ機構部18の側へガスの移送が行われる。さらに、ネジ溝ポンプ機構部18においてガスが圧縮され、圧縮されたガスが排気部13から排気口25へ進入し、排気口25を介してポンプ本体11から排出される。 When the turbo molecular pump 10 having such a structure is operated, the motor 16 described above is driven and the rotor blade 20 rotates. As the rotor blade 20 rotates, the process gas is sucked from the intake unit 12 shown on the upper side in FIG. 1, and the gas molecules collide with the stator blade 19 and the rotor blade 20 toward the screw groove pump mechanism unit 18. The gas is transferred. Further, the gas is compressed in the thread groove pump mechanism unit 18, the compressed gas enters the exhaust port 25 from the exhaust unit 13, and is discharged from the pump main body 11 through the exhaust port 25.
 なお、ロータシャフト21や、ロータシャフト21と一体的に回転するロータ翼20、ロータ円筒部23、及び、モータ16の回転子(符号省略)等を、例えば「ロータ部」、或は「回転部」等と総称することが可能である。 The rotor shaft 21, the rotor blade 20 that rotates integrally with the rotor shaft 21, the rotor cylindrical portion 23, the rotor (reference numeral omitted) of the motor 16, and the like are, for example, the "rotor portion" or the "rotating portion". , Etc. can be collectively referred to.
 図1には、プロセスガスの流れ(真空排気の流れ)の方向を、破線の矢印EGにより示している。実際には、プロセスガスは、ロータ翼20とステータ翼19で圧縮されながら、図中の上側から下側(吸気側から排気側)へ向かって流れる。 In FIG. 1, the direction of the process gas flow (vacuum exhaust flow) is indicated by the broken line arrow EG. Actually, the process gas flows from the upper side to the lower side (from the intake side to the exhaust side) in the drawing while being compressed by the rotor blade 20 and the stator blade 19.
 また、図1には、パージガスの流れを、実線の矢印PGにより示している。パージガスは、前述したパージガス流路42に対し、排気側ケーシング14bの外側から、パージガスボンベや流量調節器(弁装置)などを介して供給されるようになっている。そして、パージガス流路42に導入されたパージガスは、軸受部分やモータ部分を、軸方向(回転部の回転軸方向)に沿って、図中の下側から上側(排気側から吸気側)へ向かって流れる。 Further, in FIG. 1, the flow of the purge gas is shown by the solid arrow PG. The purge gas is supplied to the purge gas flow path 42 described above from the outside of the exhaust side casing 14b via a purge gas cylinder, a flow rate controller (valve device), or the like. Then, the purge gas introduced into the purge gas flow path 42 directs the bearing portion and the motor portion from the lower side to the upper side (exhaust side to the intake side) in the drawing along the axial direction (rotational axis direction of the rotating part). Flows.
 さらに、パージガスは、保護ベアリング32を通って、ステータコラム26とロータ円筒部23との間の隙間(空間)を流れる。さらに、パージガスは、図中の下側に向かって流れ、ネジ溝部45を通って排気部13に至る。そして、パージガスは、図示は省略するが、プロセスガス(矢印EG)と同様に、排気口25を通って本体ケーシング14の外へ排出される。 Further, the purge gas flows through the protective bearing 32 and through the gap (space) between the stator column 26 and the rotor cylindrical portion 23. Further, the purge gas flows toward the lower side in the drawing, passes through the thread groove portion 45, and reaches the exhaust portion 13. Although not shown, the purge gas is discharged to the outside of the main body casing 14 through the exhaust port 25 in the same manner as the process gas (arrow EG).
 ここで、ステータコラム26とロータ円筒部23との間の隙間43以外に、例えばステータ翼19とロータ翼20との間などにも空間が存在する。そして、このような空間を「隙間」と称することも可能である。しかし、本実施形態では、ステータ翼19とロータ翼20との間の空間のように、ロータ28の外側に形成された隙間(プロセスガスの流動を目的としている隙間)を「通路」と称することとする。これは、プロセスガスの流動を目的としている隙間(通路)と、ロータ28の内側に形成された上述の隙間43(パージガスの流動を目的としている隙間)との区別を明確に行うためである。 Here, in addition to the gap 43 between the stator column 26 and the rotor cylindrical portion 23, there is also a space between the stator blade 19 and the rotor blade 20, for example. And it is also possible to call such a space a "gap". However, in the present embodiment, a gap (a gap intended for the flow of process gas) formed on the outside of the rotor 28, such as a space between the stator blade 19 and the rotor blade 20, is referred to as a “passage”. And. This is to clearly distinguish between the gap (passage) intended for the flow of process gas and the above-mentioned gap 43 (gap intended for flow of purge gas) formed inside the rotor 28.
 また、前述のパージガスボンベや流量調節器としては一般的な種々のものを採用することが可能である。さらに、パージガスとしても、一般的な種々のものを採用することが可能である。例えば、パージガスとして、水素(H2)ガス、ヘリウム(He)ガス、窒素(N2)ガス、アルゴン(Ar)ガスなどを例示できる。 In addition, it is possible to adopt various general purge gas cylinders and flow rate controllers as described above. Further, as the purge gas, various general purging gases can be adopted. For example, as the purge gas, hydrogen (H2) gas, helium (He) gas, nitrogen (N2) gas, argon (Ar) gas and the like can be exemplified.
 パージガスの流動経路(図1に矢印PGで示す)中には、前述したようにネジ溝部45が設けられている。このネジ溝部45は、図2に示すように、第1ネジ溝部51Aと、第2ネジ溝部51Bの2つのネジ溝部を組み合わせて構成されている。ここで、図2は、ネジ溝部45の構成を、平面に展開して模式的に示しているものである。 A screw groove portion 45 is provided in the flow path of the purge gas (indicated by the arrow PG in FIG. 1) as described above. As shown in FIG. 2, the threaded groove portion 45 is configured by combining two threaded groove portions, a first threaded groove portion 51A and a second threaded groove portion 51B. Here, FIG. 2 schematically shows the configuration of the thread groove portion 45 in a plane.
 つまり、図2は、ステータコラム26における円筒状の部分(ネジ溝部45が設けられ他部分)を模式的に展開し、長方形状の枠内に平面化して描いているものである。また、図2には、矢印Cにより、ロータ28の回転方向を示している。そして、図2の上方が、回転部の軸方向における上流側(吸気部12の側、図1の上側)に対応しており、下方が、同じく回転部の軸方向における下流側(排気部13の側、図1の下側)に対応している。 That is, FIG. 2 schematically shows a cylindrical portion of the stator column 26 (another portion provided with a screw groove portion 45) that is schematically developed and flattened in a rectangular frame. Further, in FIG. 2, the direction of rotation of the rotor 28 is indicated by an arrow C. The upper part of FIG. 2 corresponds to the upstream side (the side of the intake portion 12 and the upper side of FIG. 1) in the axial direction of the rotating portion, and the lower part corresponds to the downstream side (exhaust portion 13) of the rotating portion in the axial direction. Side, lower side of FIG. 1).
 また、ネジ溝部45は、上流側が第1ネジ溝部51Aとなっており、下流側が第2ネジ溝部51Bとなっている。これらのうち、第1ネジ溝部51Aは、図2の展開図において、左上がりとなるように連続して形成されたネジ溝52Aを有している。また、第2ネジ溝部51Bは、図2の展開図において、左下がりとなるように連続して形成されたネジ溝52Bを有している。 Further, the thread groove portion 45 has a first thread groove portion 51A on the upstream side and a second thread groove portion 51B on the downstream side. Of these, the first screw groove portion 51A has a screw groove 52A formed continuously so as to rise to the left in the developed view of FIG. Further, the second screw groove portion 51B has a screw groove 52B formed continuously so as to be downward to the left in the developed view of FIG.
 これらのうち第1ネジ溝部51Aのネジ溝52Aは、図2中に符号53Aで示す始点側端部から、終点側端部54Aまで一条(1本)のネジ溝として連続していても良いし、複数条(複数本)のネジ溝が存在していても良い。そして、ネジ溝52Aは、ロータ28の回転(矢印C)に伴い、矢印D(一部のみ符号を付す)で示すように、始点側端部53Aから終点側端部54Aへ、パージガスを螺旋状に案内できるようになっている。 Of these, the thread groove 52A of the first thread groove portion 51A may be continuous as a single thread (one) from the start point side end portion indicated by reference numeral 53A in FIG. 2 to the end point side end portion 54A. , Multiple threads (plural) may be present. Then, as the rotor 28 rotates (arrow C), the screw groove 52A spirals purge gas from the start point side end portion 53A to the end point side end portion 54A, as shown by arrow D (only a part of which is indicated by a reference numeral). It is possible to guide you to.
 これに対し、他方の第2ネジ溝部51Bは、第1ネジ溝部51Aとは逆向きに形成されている。さらに、第2ネジ溝部51Bは、図2の展開図において、第1ネジ溝部51Aとほぼ線対称に左下がりとなるように形成されている。 On the other hand, the other second thread groove portion 51B is formed in the opposite direction to the first thread groove portion 51A. Further, the second thread groove portion 51B is formed so as to be substantially line-symmetrically downward to the left with the first thread groove portion 51A in the developed view of FIG.
 このネジ溝52Bは、図2中に符号53Bで示す始点側端部から、終点側端部54Bまで一条(1本)のネジ溝として連続していても良いし、複数条(複数本)のネジ溝が存在していても良い。そして、ネジ溝52Bは、図2中に矢印E(一部のみ符号を付す)で示すように、始点側端部53Bから終点側端部54Bへパージガスを案内できるようになっている。 The screw groove 52B may be continuous as one (one) thread groove from the start point side end portion indicated by reference numeral 53B in FIG. 2 to the end point side end portion 54B, or may have a plurality of threads (plural lines). Threaded grooves may be present. Then, the screw groove 52B can guide the purge gas from the start point side end portion 53B to the end point side end portion 54B as shown by an arrow E (only a part of which is indicated by a reference numeral) in FIG.
 ここで、図2では、ネジ溝52A、52B(凹部)を区画する直線状の隆起部分(凸部)に対し、図示を明確化するためハッチングを施している。この図2におけるハッチング部分は、断面を示すものではない。 Here, in FIG. 2, the linear raised portions (convex portions) that partition the screw grooves 52A and 52B (recessed portions) are hatched to clarify the illustration. The hatched portion in FIG. 2 does not show a cross section.
 図2に示すように、第1ネジ溝部51Aにおけるネジ溝52Aの始点側端部53Aと、第2ネジ溝部51Bにおけるネジ溝52Bの始点側端部53Bとは、空間的に繋がっている。そして、ステータコラム26とロータ円筒部23との間の隙間43を流れ(図1に矢印PGで示す全体的な流れ)、ネジ溝部45内に流入したパージガスについては、第1ネジ溝部51Aによって上流側(逆方向)に戻される流れ(図1及び図2に矢印Dで示す)と、第2ネジ溝部51Bによって下流側(順方向)に送られる流れ(図1及び図2に矢印Eで示す)とが発生する。 As shown in FIG. 2, the start point side end 53A of the screw groove 52A in the first thread groove 51A and the start point side end 53B of the screw groove 52B in the second thread groove 51B are spatially connected. Then, the purge gas that flows through the gap 43 between the stator column 26 and the rotor cylindrical portion 23 (the overall flow indicated by the arrow PG in FIG. 1) and flows into the thread groove portion 45 is upstream by the first thread groove portion 51A. The flow returned to the side (reverse direction) (indicated by arrow D in FIGS. 1 and 2) and the flow sent to the downstream side (forward direction) by the second thread groove 51B (indicated by arrow E in FIGS. 1 and 2). ) And occur.
 ネジ溝部45における全体的なガスの流れ(図1に矢印PGで示す)は、パージガスや、隙間43に混入したプロセスガスなどによって形成される。そして、隙間43に混入したプロセスガスは、パージガスとの混合ガス(以下では単に「ガス」と称する)となる。 The overall gas flow in the thread groove portion 45 (indicated by the arrow PG in FIG. 1) is formed by a purge gas, a process gas mixed in the gap 43, or the like. The process gas mixed in the gap 43 becomes a mixed gas with the purge gas (hereinafter, simply referred to as "gas").
 また、パージガスは、隙間43に入り込むプロセスガスを押し戻す機能(プロセスガスの逆流を防ぐ機能)も有している。つまり、パージガス自身の圧力と図1のE部との圧力差、および第2ネジ溝部51Bによって生じる流れにより、プロセスガスの隙間43への逆流を防いでいるといえる。 The purge gas also has a function of pushing back the process gas that enters the gap 43 (a function of preventing the backflow of the process gas). That is, it can be said that the backflow of the process gas into the gap 43 is prevented by the pressure difference between the pressure of the purge gas itself and the E portion of FIG. 1 and the flow generated by the second thread groove portion 51B.
 また、図2の展開図において、符号Aで示すのは、第1ネジ溝部51Aが形成されている範囲であり、符号Bで示すのは、第2ネジ溝部51Bが形成されている範囲である。以下では、第1ネジ溝部51Aが形成されている範囲について「第1範囲」と称し、符号「A」を付す。また、第2ネジ溝部51Bが形成されている範囲について「第2範囲」と称し、符号「B」を付す。 Further, in the developed view of FIG. 2, reference numeral A indicates a range in which the first thread groove portion 51A is formed, and reference numeral B indicates a range in which the second thread groove portion 51B is formed. .. Hereinafter, the range in which the first thread groove portion 51A is formed is referred to as a “first range” and is designated by a reference numeral “A”. Further, the range in which the second thread groove portion 51B is formed is referred to as a "second range" and is designated by a reference numeral "B".
 図2は展開図であるため、上述の第1範囲Aや第2範囲Bは、第1ネジ溝部51Aのネジ溝52Aの全長や、第2ネジ溝部51Bのネジ溝52Bの全長を直接的に表すようなものではない。しかし、本実施形態では、第1ネジ溝部51Aと第2ネジ溝部51Bがほぼ同じ溝幅で線対称に形成されていることから、第1範囲Aと第2範囲Bの大小関係は、両ネジ溝52A、52Bの長さ(全長)の大小関係にほぼ対応したものとなる。このため、本実施形態では、第1範囲Aと第2範囲Bを、第1ネジ溝部51Aや第2ネジ溝部51Bの長さに係る特性を表す指標の1つとして利用する。 Since FIG. 2 is a developed view, the above-mentioned first range A and second range B directly cover the entire length of the thread groove 52A of the first thread groove portion 51A and the total length of the thread groove 52B of the second thread groove portion 51B. It is not something to represent. However, in the present embodiment, since the first thread groove portion 51A and the second thread groove portion 51B are formed line-symmetrically with substantially the same groove width, the magnitude relationship between the first range A and the second range B is that both screws are used. It almost corresponds to the magnitude relationship of the length (total length) of the grooves 52A and 52B. Therefore, in the present embodiment, the first range A and the second range B are used as one of the indexes representing the characteristics related to the length of the first thread groove portion 51A and the second thread groove portion 51B.
 なお、これに限定されるものではなく、各ネジ溝52A、52Bの実際の全長を用いて、第1ネジ溝部51Aや第2ネジ溝部51Bの特性を表すことも可能である。また、第1ネジ溝部51Aと第2ネジ溝部51Bを非線対称に形成することも可能であり、この場合にも、各ネジ溝52A、52Bの実際の全長に基づいて特性を決定することが可能である。 The characteristics of the first thread groove portion 51A and the second thread groove portion 51B can be expressed by using the actual total length of each of the thread grooves 52A and 52B without being limited to this. Further, it is also possible to form the first thread groove portion 51A and the second thread groove portion 51B non-axisymmetrically, and in this case as well, the characteristics can be determined based on the actual total length of each of the thread grooves 52A and 52B. It is possible.
 また、本実施形態では、説明を簡略化するため、各ネジ溝52A、52Bの幅や深さ、断面形状、流路面積(断面積)、単位長さあたりの容積などの要素に係る条件を同じものとしている。しかし、これに限定されず、例えば、各ネジ溝52A、52Bに係る幅や深さ、断面形状、流路面積(断面積)、ねじの傾斜角度、或いは、単位長さあたりの容積などの要素のうちの少なくとも1つを異ならせることも可能である。 Further, in the present embodiment, in order to simplify the description, conditions relating to elements such as the width and depth of the thread grooves 52A and 52B, the cross-sectional shape, the flow path area (cross-sectional area), and the volume per unit length are set. It is the same. However, the present invention is not limited to this, and for example, factors such as the width and depth of the thread grooves 52A and 52B, the cross-sectional shape, the flow path area (cross-sectional area), the inclination angle of the screw, and the volume per unit length. It is also possible to make at least one of them different.
 続いて、このようなネジ溝部45を設けたことによるパージガスの流れの変化について説明する。パージガスは、全体として、プロセスガス(図1中の矢印EG)が隙間43の側へ逆流するのを防ぐ動的シール(ダイナミックシール)の機能を発揮するものである。これに加えて本実施形態では、第1ネジ溝部51Aを有するネジ溝部45を設けることにより、使用されるパージガスの流量の低減を可能としている。 Next, the change in the flow of the purge gas due to the provision of the thread groove portion 45 will be described. As a whole, the purge gas exerts the function of a dynamic seal (dynamic seal) that prevents the process gas (arrow EG in FIG. 1) from flowing back toward the gap 43. In addition to this, in the present embodiment, the flow rate of the purge gas used can be reduced by providing the thread groove portion 45 having the first thread groove portion 51A.
 ここで、上述のガス(混合ガス)やパージガスについては、いずれも上流側が高圧側であり、下流側が低圧側となる。そして、本実施形態では、ガス(混合ガス)についての高圧側の圧力をP2で表し、低圧側の圧力をP1で表すこととする。 Here, regarding the above-mentioned gas (mixed gas) and purge gas, the upstream side is the high pressure side and the downstream side is the low pressure side. In the present embodiment, the pressure on the high pressure side of the gas (mixed gas) is represented by P2, and the pressure on the low pressure side is represented by P1.
 図3(a)、(b)には、第1ネジ溝部51Aをより簡略化して示している。これらの図のうちの図3(a)は、ステータコラム26とロータ円筒部23との間の隙間43(特に第1ネジ溝部51Aに面した箇所)に、下向きに流れるガス(矢印F)と、上向きに流れるガス(矢印G)が発生し得ることを模式的に示している。 FIGS. 3 (a) and 3 (b) show the first thread groove portion 51A in a more simplified manner. Of these figures, FIG. 3A shows the gas (arrow F) flowing downward in the gap 43 (particularly the portion facing the first thread groove 51A) between the stator column 26 and the rotor cylindrical portion 23. , It is schematically shown that the gas flowing upward (arrow G) can be generated.
 これらのうち、矢印Fは、高圧側の圧力P2と低圧側の圧力P1との圧力差(P2-P1)により発生する流れの方向を表す。また、矢印Gは、ロータ回転時に生じる流れの方向を表す。 Of these, the arrow F indicates the direction of the flow generated by the pressure difference (P2-P1) between the pressure P2 on the high pressure side and the pressure P1 on the low pressure side. Further, the arrow G represents the direction of the flow generated when the rotor rotates.
 続いて、図3(b)は、第1ネジ溝部51Aを展開して示している。さらに、図3(b)においては、上述の下向きに流れるガス(矢印F)を基準として、図の上側が高圧側(P2)となっており、下側が低圧側(P1)となっている。そして、第1ネジ溝部51Aにおけるガスの流れ(矢印G)は、矢印Cで示すように、ロータ28の回転により発生する。 Subsequently, FIG. 3B shows the first thread groove portion 51A in an expanded manner. Further, in FIG. 3B, the upper side of the figure is the high pressure side (P2) and the lower side is the low pressure side (P1) with reference to the gas (arrow F) flowing downward. Then, the gas flow (arrow G) in the first thread groove portion 51A is generated by the rotation of the rotor 28 as shown by the arrow C.
 さらに、図3(c)は、図3(a)、(b)に示すモデルについて、高圧側と低圧側の圧力差(横軸、P2-P1)に対する、下向きのガス(矢印F)の流量(符号H)と、ロータ回転時に生じる上向きのガス(矢印G)の流量(符号I)の傾向を示している。 Further, FIG. 3 (c) shows the flow rate of the downward gas (arrow F) with respect to the pressure difference (horizontal axis, P2-P1) on the high pressure side and the low pressure side for the models shown in FIGS. 3 (a) and 3 (b). (Reference H) and the tendency of the flow rate (reference numeral I) of the upward gas (arrow G) generated when the rotor rotates are shown.
 これらのうち、横軸の圧力差(P2-P1)は、モータ16やロータ28等の回転部における回転数が上がるのに従って増大するものである。また、圧力差(P2-P1)が増大するのにほぼ比例して、図中に直線Hで示すように、下向きのガス(図2の矢印Fに対応する)の流れが増大する。ここで、図3(c)のグラフに係る原点Oでは、モータ16やロータ28などの回転部が定格回転している状態となっている。 Of these, the pressure difference (P2-P1) on the horizontal axis increases as the number of rotations in the rotating parts of the motor 16, rotor 28, etc. increases. Further, as the pressure difference (P2-P1) increases, the downward gas flow (corresponding to the arrow F in FIG. 2) increases as shown by the straight line H in the figure. Here, at the origin O according to the graph of FIG. 3C, the rotating portions such as the motor 16 and the rotor 28 are in a state of rated rotation.
 また、図3(c)に符号Iで示す曲線は、上述したように上向きに流れるガス(図3(a)の矢印Gに対応する)の流量である。この上向きのガスの流量は、前述したように、第1ネジ溝部51Aを、低圧側(ここでは図2の下側)から高圧側(ここでは図2の上側)に向かって流れる流量を表している。 Further, the curve indicated by reference numeral I in FIG. 3C is the flow rate of the gas flowing upward as described above (corresponding to the arrow G in FIG. 3A). As described above, the upward gas flow rate represents the flow rate of the first thread groove portion 51A from the low pressure side (here, the lower side of FIG. 2) to the high pressure side (here, the upper side of FIG. 2). There is.
 この上向きの流れについて、前述の下向きのガスに係る圧力P2、P1を用いて説明を行うと、この流れは、P1からP2の向きに流れるガスであるということができる。そして、このガスの流量(曲線I)は、第1ネジ溝部51Aにおける、上向きの流れ(P1からP2の向き)の輸送能力を示しているということができる。 When this upward flow is explained using the pressures P2 and P1 related to the downward gas described above, it can be said that this flow is the gas flowing in the direction from P1 to P2. Then, it can be said that the flow rate of this gas (curve I) indicates the transport capacity of the upward flow (directions from P1 to P2) in the first thread groove portion 51A.
 図3(c)における曲線Iの流量は、下向きの流れの圧力差(P2-P1)がある程度の大きさに増大するまで、ほぼ一定(流量R)の状態を示す(図3(c)で符号I1を付した水平部分)。 The flow rate of the curve I in FIG. 3C shows a state of being substantially constant (flow rate R) until the pressure difference (P2-P1) of the downward flow increases to a certain magnitude (FIG. 3C). Horizontal portion with reference numeral I1).
 上向きの流れの流量を示す曲線Iは、所定の圧力差で直線Hと交差するが、この交点Qでは、互いの流量が一致(バランス)することとなる。この交点Qを、「パージ流量0(ゼロ)でのバランス点」などと称することが可能である。 The curve I showing the flow rate of the upward flow intersects the straight line H with a predetermined pressure difference, but at this intersection Q, the flow rates of each other match (balance). This intersection Q can be referred to as a "balance point at a purge flow rate of 0 (zero)" or the like.
 さらに、曲線Iは、ほぼ一定な(水平な)状態で直線Hとの交点Qを超え、圧力差(P2-P1)がある程度の大きさに達したところで、急激に降下する。この急激に降下する部分については、符号I2を付す。つまり、ガスを上向きに流す状態(符号I1の部分)は、圧力差(P2-P1)の直線Hを通過し、その後にある程度圧力差(P2-P1)が増大したところでネジ溝部の効果はほとんど現れなくなる。 Further, the curve I exceeds the intersection Q with the straight line H in a substantially constant (horizontal) state, and drops sharply when the pressure difference (P2-P1) reaches a certain size. A reference numeral I2 is attached to this rapidly descending portion. That is, in the state where the gas flows upward (the portion of reference numeral I1), the effect of the thread groove portion is almost the same when the pressure difference (P2-P1) passes through the straight line H and then the pressure difference (P2-P1) increases to some extent. It will not appear.
 したがって、パージガスの供給量を減らして熱伝導に必要なP2圧力を維持するためには、曲線Iが示すガス量が急激に下がることのない圧力差(P2-P1)範囲で、ターボ分子ポンプ10を使用することが必要である。 Therefore, in order to reduce the supply amount of purge gas and maintain the P2 pressure required for heat conduction, the turbo molecular pump 10 is in the pressure difference (P2-P1) range in which the gas amount indicated by the curve I does not drop sharply. It is necessary to use.
 また、曲線Iの水平な部分(符号I1部分)が続く圧力差の範囲ができるだけ大きくなるように、パージガスを選定したり、ネジ溝部45の設計を行ったりすることで、良好な熱伝導を行うことが可能となる。 Further, good heat conduction is performed by selecting the purge gas and designing the thread groove portion 45 so that the range of the pressure difference in which the horizontal portion (reference numeral I1 portion) of the curve I continues is as large as possible. It becomes possible.
 このようなネジ溝部45(特に第1ネジ溝部51A)を設けた場合の流量特性(曲線I)に対し、図3(c)中に符号J、Kで示すのは、ネジ溝部45(第1ネジ溝部51A及び第2ネジ溝部51Bの両方)を設けなかった場合に、十分な熱伝導を行うのに必要となる圧力差とパージガス流量である。 With respect to the flow rate characteristic (curve I) when such a thread groove portion 45 (particularly the first thread groove portion 51A) is provided, the threads J and K in FIG. The pressure difference and the purge gas flow rate required for sufficient heat conduction when the thread groove portion 51A and the second thread groove portion 51B) are not provided.
 それに対し、ネジ溝部45を設けた場合は、熱伝導に必要な圧力差Jを達成する(隙間43にKのパージガス流量を流す)には、第1ネジ溝部51Aにより上向きにRの流量があるため、Tのパージガス量を追加すれば良い(K=R+T)。 On the other hand, when the thread groove portion 45 is provided, in order to achieve the pressure difference J required for heat conduction (the flow rate of the purge gas of K is passed through the gap 43), there is an upward R flow rate due to the first thread groove portion 51A. Therefore, the purge gas amount of T may be added (K = R + T).
 したがって、本実施形態のように、ネジ溝部45を設けることにより、パージガス量を低減できる。そして、全体として、少ないパージガス量で熱伝導を促進でき、パージガス量を減らしながらも十分な熱伝導を行わせることが可能となる。さらに、全体として、少ないパージガス量によって、プロセスガスの侵入を防止することが可能となる。 Therefore, the amount of purge gas can be reduced by providing the screw groove portion 45 as in the present embodiment. As a whole, heat conduction can be promoted with a small amount of purge gas, and sufficient heat conduction can be performed while reducing the amount of purge gas. Further, as a whole, a small amount of purge gas makes it possible to prevent the intrusion of process gas.
 図5は、このことを図3(c)とは別な観点でグラフ化したものである。図中のH′は圧力差で流れる量であり、図3(c)の直線Hに対応している。また、図中のQ′がパージガス流量=0でのバランス点であり、図3(c)のグラフのQに対応している。 FIG. 5 is a graph of this from a viewpoint different from that of FIG. 3 (c). H'in the figure is the amount that flows due to the pressure difference, and corresponds to the straight line H in FIG. 3 (c). Further, Q'in the figure is a balance point when the purge gas flow rate = 0, and corresponds to Q in the graph of FIG. 3 (c).
 また、図5の曲線I′は、回転時にネジ溝が流す量(ネジ溝の輸送能力)であり、図3(c)における曲線Iに対応したものである。つまり、図5は、図3(c)の曲線Iを第4象限に向きを変えて記載したものになる。そして、曲線H′と曲線I′を足し合わせた曲線Lが図3(a)の隙間を流れる正味のパージガス流量となる。また、図5のJ´、K´、T´は、図3(c)のJ、K、Tに対応している。そして、図5の例によれば、K′の量からT′の量を差し引いた量がロータ回転時のパージガス削減量となる。 Further, the curve I'in FIG. 5 is the amount (transportation capacity of the screw groove) that the screw groove flows during rotation, and corresponds to the curve I in FIG. 3 (c). That is, FIG. 5 shows the curve I of FIG. 3 (c) turned to the fourth quadrant. Then, the curve L obtained by adding the curve H'and the curve I'is the net purge gas flow rate flowing through the gap of FIG. 3 (a). Further, J', K', and T'in FIG. 5 correspond to J, K, and T in FIG. 3 (c). Then, according to the example of FIG. 5, the amount obtained by subtracting the amount of T'from the amount of K'is the amount of purge gas reduction during rotor rotation.
 なお、ネジ溝部45を、第1ネジ溝部51Aを設けず、第2ネジ溝部51Bのみで構成されるものとした場合には、パージガスに関して、下向きのガス(矢印F)のみが発生することとなる。そして、第2ネジ溝部51Bは、前述した高圧側の圧力P2を下げるように機能する。このため、ネジ溝部45を第2ネジ溝部51Bのみで構成した場合、P2を十分に高めるには、より多くのパージガスを供給することが必要となる。 If the threaded groove 45 is not provided with the first threaded groove 51A and is composed of only the second threaded groove 51B, only downward gas (arrow F) is generated with respect to the purge gas. .. Then, the second thread groove portion 51B functions to lower the pressure P2 on the high pressure side described above. Therefore, when the thread groove portion 45 is composed of only the second thread groove portion 51B, it is necessary to supply a larger amount of purge gas in order to sufficiently increase P2.
 前述したように、ネジ溝部45を設けることにより、パージガスの流量を減らすことができるが、前述した下向きのガス(矢印F)に係る直線Hや、上向きのガス(矢印G)に係る曲線Iの態様については、各種のガスの種類によって変化が表れる。 As described above, the flow rate of the purge gas can be reduced by providing the thread groove portion 45, but the straight line H related to the downward gas (arrow F) and the curve I related to the upward gas (arrow G) described above can be reduced. The mode changes depending on the type of various gases.
 例えば、パージガスとして分子量が相対的に大きいガスを用いた場合、圧力差によって生じる流れは、図4(a)に示すように、直線HHの傾きは相対的に小さくなる。しかし、分子量が相対的に小さいガスを用いた場合には、直線HLの傾きは相対的に大きくなる。 For example, when a gas having a relatively large molecular weight is used as the purge gas, the slope of the straight line HH becomes relatively small as shown in FIG. 4A in the flow generated by the pressure difference. However, when a gas having a relatively small molecular weight is used, the slope of the straight line HL becomes relatively large.
 つまり、分子量が大きいと、一般に多くの種類のガスについては粘性が高まり、ガスの流速が遅くなる。このため、圧力差(P2-P1)の増加分に対する流量の増加分は小さくなり、図4(a)に示すように、ガス量を示す直線HHの勾配は小さくなる。 In other words, when the molecular weight is large, the viscosity of many types of gas generally increases, and the flow velocity of the gas slows down. Therefore, the increase in the flow rate with respect to the increase in the pressure difference (P2-P1) becomes small, and as shown in FIG. 4A, the gradient of the straight line HH indicating the amount of gas becomes small.
 これに対し、分子量の小さいガスを用いた場合には、一般に多くの種類のガスについては粘性が低くなり、ガスの流速が速くなる。このため、圧力差(P2-P1)の増加分に対する流量の増加分は大きくなり、図4(a)に示すように、ガス量を示す直線HLの勾配は、上述の直線HHに比べて大きくなる。つまり、分子量の小さいガスを用いた場合には、分子量が大きい場合に比べて、少ない圧力差(P2-P1)でガス流量が増大することとなる。 On the other hand, when a gas having a small molecular weight is used, the viscosity of many types of gas is generally low, and the flow velocity of the gas is high. Therefore, the increase in the flow rate with respect to the increase in the pressure difference (P2-P1) becomes large, and as shown in FIG. 4A, the gradient of the straight line HL indicating the amount of gas is larger than the above-mentioned straight line HH. Become. That is, when a gas having a small molecular weight is used, the gas flow rate increases with a small pressure difference (P2-P1) as compared with the case where the molecular weight is large.
 また、ロータ回転時に第1ネジ溝部51Aに生じる上向き(矢印G)の流れは、パージガスとして分子量が相対的に大きいガスを用いた場合には、図4(a)に示すように、曲線IHにおける水平部分(符号IH1の部分)が長くなり、急激に低下する部分(符号IH2の部分)の位置は、圧力差(P2-P1)が相対的に大きくなるまで現れない。つまり、多くの種類のパージガスについては、ガスの粘性が高くなることから、圧力差(P2-P1)が増えてもパージガスの上向きの流れを維持し易い。 Further, the upward (arrow G) flow generated in the first thread groove portion 51A when the rotor rotates has a curve IH as shown in FIG. 4A when a gas having a relatively large molecular weight is used as the purge gas. The position of the portion (the portion of the symbol IH2) in which the horizontal portion (the portion of the symbol IH1) becomes long and sharply decreases does not appear until the pressure difference (P2-P1) becomes relatively large. That is, for many types of purge gas, since the viscosity of the gas becomes high, it is easy to maintain the upward flow of the purge gas even if the pressure difference (P2-P1) increases.
 これに対し、パージガスとして分子量が相対的に小さいガスを用いた場合には、曲線ILにおける水平部分(符号IL1の部分)が短くなり、急激に低下する部分(符号IL2の部分)の位置は、圧力差(P2-P1)が相対的に小さい状況で現れる。つまり、多くの種類のパージガスについては、ガスの粘性が低くなることから、圧力差(P2-P1)が増えると、パージガスの上向きの流れを維持し難くなる。 On the other hand, when a gas having a relatively small molecular weight is used as the purge gas, the horizontal portion (the portion of the symbol IL1) on the curve IL becomes shorter, and the position of the portion (the portion of the symbol IL2) that sharply decreases becomes It appears in a situation where the pressure difference (P2-P1) is relatively small. That is, for many types of purge gas, the viscosity of the gas becomes low, so that when the pressure difference (P2-P1) increases, it becomes difficult to maintain the upward flow of the purge gas.
 これらのことから、圧力差(P2-P1)による下向きの流れを生じるガスの分子量に対し、小さい圧力差(P2-P1)で、第1ネジ溝部51Aの上向きの流量が低下してしまわないよう、パージガスの種類を選定することが望ましい。 From these facts, the upward flow rate of the first thread groove 51A is not reduced by a small pressure difference (P2-P1) with respect to the molecular weight of the gas that causes a downward flow due to the pressure difference (P2-P1). , It is desirable to select the type of purge gas.
 また、パージガスに係る曲線I(図3(c))の態様に関しては、ネジ溝部45におけるネジ溝の形態(特に第1ネジ溝部51Aにおけるネジ溝52Aの形状や長さ)によっても、図4(b)に示すように変化が表れる。 Further, regarding the aspect of the curve I (FIG. 3 (c)) relating to the purge gas, the shape of the thread groove in the thread groove portion 45 (particularly the shape and length of the screw groove 52A in the first thread groove portion 51A) also determines FIG. Changes appear as shown in b).
 例えば、第1ネジ溝部51Aにおけるネジ溝52Aの長さを相対的に長くした場合には、水平部分(符号I1の部分)が、破線で示すように、圧力差(P2-P1)が大きい側へ伸び、降下部分(符号I2の部分)も、圧力差(P2-P1)が大きい側へ移動する。つまり、ネジ溝52Aを長くすることで、圧力差(P2-P1)が大きくなって下向き(図2の矢印F)のガス量が増えても、必要なパージガスをより確実に確保でき、良好な熱伝導を行うことが可能である。 For example, when the length of the screw groove 52A in the first screw groove portion 51A is relatively long, the horizontal portion (the portion of reference numeral I1) is on the side where the pressure difference (P2-P1) is large, as shown by the broken line. The descending portion (the portion of reference numeral I2) also moves to the side where the pressure difference (P2-P1) is large. That is, by lengthening the screw groove 52A, even if the pressure difference (P2-P1) becomes large and the amount of gas downward (arrow F in FIG. 2) increases, the necessary purge gas can be secured more reliably, which is good. It is possible to carry out heat conduction.
 また、同じく図4(b)に示すように、ネジ溝52Aの深さや、ねじの傾斜角度(ネジ角度)を小さくすることにより、流量は減少するものの、降下部分(符号I2の部分)が、圧力差(P2-P1)が大きくなる側へ移動する。このため、圧力差(P2-P1)が高まっても、パージガスの上向きの流れを確保することができる。そして、パージガスの流量を減らしつつも、大きい圧力差に抗してパージガスの上向きの流れを維持することが可能である。 Further, as also shown in FIG. 4B, by reducing the depth of the screw groove 52A and the inclination angle (screw angle) of the screw, the flow rate is reduced, but the descending portion (the portion of reference numeral I2) is formed. It moves to the side where the pressure difference (P2-P1) becomes large. Therefore, even if the pressure difference (P2-P1) increases, the upward flow of the purge gas can be ensured. Then, it is possible to maintain the upward flow of the purge gas against a large pressure difference while reducing the flow rate of the purge gas.
 ここで、ねじの傾斜角度(ネジ角度)については、例えば、図3(b)に符号θを付して示すように、水平方向(ステータコラム26の径方向)に対する上向きの角度として表すことが可能である。 Here, the inclination angle (screw angle) of the screw may be expressed as an upward angle with respect to the horizontal direction (diameter direction of the stator column 26), for example, as shown by adding a reference numeral θ to FIG. 3 (b). It is possible.
 また、これまでに説明したようなネジ溝部45の特性に基づき、ネジ溝部45の全体におけるパージガスの輸送量や、第1ネジ溝部51Aや第2ネジ溝部51Bの個々におけるパージガスの輸送量を考えることができる。 Further, based on the characteristics of the thread groove portion 45 as described above, the amount of purge gas transported in the entire thread groove portion 45 and the amount of purge gas transported in each of the first thread groove portion 51A and the second thread groove portion 51B should be considered. Can be done.
 例えば、第1ネジ溝部51A(又は第2ネジ溝部51B)における上向き(第2ネジ溝部51Bにおいては下向き)の輸送量を多くしようとする場合は、パージガスの種類に応じて第1ネジ溝部51A(又は第2ネジ溝部51B)の構造設計を行ったり、流れ易くなる特性のパージガスを選定したりすることが考えられる。そして、これらの構造設計や、パージガスの選定にあたり、気体分子の平均自由工程や、ガスの流路の断面積、及び、ガスの流路の長さなどの要素を最適化することが重要となる。 For example, when trying to increase the amount of upward transportation (downward in the second threaded groove 51B) in the first threaded groove 51A (or the second threaded groove 51B), the first threaded groove 51A (or the first threaded groove 51A (or downward in the second threaded groove 51B) depends on the type of purge gas. Alternatively, it is conceivable to design the structure of the second thread groove portion 51B) or select a purge gas having characteristics that facilitate the flow. In designing these structures and selecting purge gas, it is important to optimize factors such as the mean free path of gas molecules, the cross-sectional area of the gas flow path, and the length of the gas flow path. ..
 そして、これらの要素の最適化のため、例えば、第1ネジ溝部51Aが形成された前述の第1範囲Aを、第2ネジ溝部51Bが形成された前述の第2範囲Bよりも大きくすることが可能である。 Then, in order to optimize these elements, for example, the above-mentioned first range A in which the first thread groove portion 51A is formed is made larger than the above-mentioned second range B in which the second thread groove portion 51B is formed. Is possible.
 本実施形態では、前述したように、第1ネジ溝部51Aと第2ネジ溝部51Bを線対称に形成していることから、各ネジ溝52A、52Bに係る幅や深さ、断面形状、及び、流路面積(断面積)などの要素は、いずれもほぼ一致している。さらに、ねじの傾斜角度は、第1ネジ溝部51Aと第2ネジ溝部51Bの境界部を間にして正負が異なっているのみで、角度の大きさ(絶対値)はほぼ一致している。 In the present embodiment, as described above, since the first thread groove portion 51A and the second thread groove portion 51B are formed line-symmetrically, the width, depth, cross-sectional shape, and cross-sectional shape of the respective screw grooves 52A and 52B are formed. Factors such as the flow path area (cross-sectional area) are almost the same. Further, the inclination angles of the screws differ only in positive and negative values with the boundary between the first thread groove portion 51A and the second thread groove portion 51B in between, and the magnitudes (absolute values) of the angles are almost the same.
 このため、上述のように第1範囲Aを第2範囲Bよりも大とすることについては、例えば、第1ネジ溝部51Aの輸送能力を第2ネジ溝部51Bの輸送能力よりも大きくしているものであるということができる。 Therefore, regarding making the first range A larger than the second range B as described above, for example, the transport capacity of the first thread groove portion 51A is made larger than the transport capacity of the second thread groove portion 51B. It can be said that it is a thing.
 さらに、第1ネジ溝部51Aに係る第1範囲Aの大きさと、第2ネジ溝部51Bに係る第2範囲Bの大きさとの具体的な関係については、必ずしも自由に決定できるというものではなく、要求される熱伝導の能力や、ステータコラム26の大きさなどの要素によって、ある程度の制限を受けるものである。このため、限られた領域に適正な大小関係で第1範囲Aと第2範囲Bを設けることが必要である。 Further, the specific relationship between the size of the first range A related to the first threaded groove portion 51A and the size of the second range B related to the second threaded groove portion 51B cannot always be freely determined, and is required. It is limited to some extent by factors such as the ability of heat conduction to be performed and the size of the stator column 26. Therefore, it is necessary to provide the first range A and the second range B in a limited area with an appropriate magnitude relationship.
 そして、最適な大小関係としては、例えば、第1範囲A:第2範囲Bを、1:1~10:1程度の範囲内で決定することを例示できる。特に、発明者らの知見では、第1範囲Aを第2範囲Bの2倍以上(2:1以上)とすることで、第1ネジ溝部51Aの機能をより明確に発揮することができる。 And, as an optimum magnitude relationship, for example, it can be exemplified that the first range A: the second range B is determined within the range of about 1: 1 to 10: 1. In particular, according to the findings of the inventors, the function of the first thread groove portion 51A can be more clearly exhibited by setting the first range A to twice or more (2: 1 or more) of the second range B.
 また、ここで説明しているようなパージガスの流動や熱伝導の作用は、パージガスの流れが、分子流の場合よりも、中間流、又は、粘性流となっている場合において、良好に発生するものである。このため、パージガスの種類や、第1ネジ溝部51A(及び第2ネジ溝部51B)の構造の決定を、パージガスの流れが中間流、又は、粘性流となるように行うことが望ましい。 Further, the action of the flow and heat conduction of the purge gas as described here occurs better when the flow of the purge gas is an intermediate flow or a viscous flow than in the case of a molecular flow. It is a thing. Therefore, it is desirable to determine the type of purge gas and the structure of the first thread groove portion 51A (and the second thread groove portion 51B) so that the flow of the purge gas becomes an intermediate flow or a viscous flow.
 さらに、前述したように、第2ネジ溝部51Bは、プロセスガスが逆流してくるのを防ぐ機能も果たしている。このため、例えば、(プロセスガスの逆流量)<(第2ネジ溝部51Bの輸送量)の関係を満たすように第2ネジ溝部51Bを設計することで、プロセスガスのシール機能をより確実なものとすることが可能となる。 Further, as described above, the second thread groove portion 51B also functions to prevent the process gas from flowing back. Therefore, for example, by designing the second thread groove portion 51B so as to satisfy the relationship of (reverse flow rate of the process gas) <(transportation amount of the second thread groove portion 51B), the sealing function of the process gas is more reliable. It becomes possible to.
 また、第1ネジ溝部51A(及び第2ネジ溝部51B)を浅く形成するなどして、ネジ溝52A(ネジ溝52B)の断面積を小さくすることで、ネジ溝部45においてパージガスを圧縮する(パージガス自体の圧力を高める)ことが可能である。 Further, the purge gas is compressed in the screw groove portion 45 by reducing the cross-sectional area of the screw groove 52A (thread groove 52B) by forming the first screw groove portion 51A (and the second screw groove portion 51B) shallowly (purge gas). It is possible to increase its own pressure).
 また、パージガスの流量を減らせることから、より高価なガス(例えばヘリウム(He)ガスなど)を採用することが可能となる。 Further, since the flow rate of the purge gas can be reduced, it becomes possible to adopt a more expensive gas (for example, helium (He) gas).
 以上説明したようなターボ分子ポンプ10によれば、ネジ溝部45を設け、更にネジ溝部45を、互いに逆ねじの関係にある第1ネジ溝部51Aと第2ネジ溝部51Bとの組み合わせにより構成することで、パージガスの流量を削減することが可能となる。この結果、パージガスに係るコストの削減が可能となる。 According to the turbo molecular pump 10 as described above, the threaded groove portion 45 is provided, and the threaded groove portion 45 is further configured by a combination of the first threaded groove portion 51A and the second threaded groove portion 51B having a reverse screw relationship with each other. Therefore, it is possible to reduce the flow rate of the purge gas. As a result, the cost of purging gas can be reduced.
 また、本実施形態のネジ溝部45は、第1ネジ溝部51Aの形成範囲や、ネジ溝の長さ(L:ここでは第1範囲A)を変更することで、パージガスの種類の違いに対応することができるものである。したがって、第1ネジ溝部51Aの形成範囲や、ネジ溝の長さ(L:ここでは第1範囲A)、プロセスガスの種類、パージガスの種類などの要素を適宜選択することで、最適な条件での熱伝導が可能となる。 Further, the thread groove portion 45 of the present embodiment corresponds to a difference in the type of purge gas by changing the formation range of the first thread groove portion 51A and the length of the screw groove (L: here, the first range A). It is something that can be done. Therefore, by appropriately selecting factors such as the formation range of the first thread groove portion 51A, the length of the thread groove (L: here, the first range A), the type of process gas, and the type of purge gas, the optimum conditions can be obtained. Heat conduction is possible.
 なお、本発明は、本実施形態に限定されず、要旨を逸脱しない範囲で種々に変形することが可能なものである。例えば、ネジ溝部45におけるガスの流路(ネジ溝52A、52B)の形状は、矩形(図3(a))に限らず、半円状や三角形状、或いは、5角形以上の多角形状などあってもでもよい。さらに、ネジ溝部45は、ステータコラムの外周面に限らず、ロータ28の内周面に形成することも可能である。また、本発明は、ターボ分子ポンプに限らず、他のタイプの真空ポンプにも適用が可能である。 The present invention is not limited to the present embodiment, and can be variously modified without departing from the gist. For example, the shape of the gas flow path (screw groove 52A, 52B) in the screw groove portion 45 is not limited to a rectangle (FIG. 3A), but may be a semicircular shape, a triangular shape, or a polygonal shape of a pentagon or more. It may be. Further, the thread groove portion 45 can be formed not only on the outer peripheral surface of the stator column but also on the inner peripheral surface of the rotor 28. Further, the present invention is applicable not only to turbo molecular pumps but also to other types of vacuum pumps.
 10 ターボ分子ポンプ(真空ポンプ)
 26 ステータコラム(ステータ、真空ポンプ構成部品)
 28 ロータ(真空ポンプ構成部品)
 43 隙間(パージガスの流路)
 45 ネジ溝部
 51A 第1ネジ溝部
 51B 第2ネジ溝部
 A 第1範囲
 B 第2範囲
10 Turbo molecular pump (vacuum pump)
26 Stator column (stator, vacuum pump components)
28 Rotor (vacuum pump component)
43 Gap (Purge gas flow path)
45 Thread groove 51A 1st thread groove 51B 2nd thread groove A 1st range B 2nd range

Claims (10)

  1.  ステータと、
     前記ステータとの間に隙間を介在させて回転するロータと、を備え、
     前記ロータの回転によりロータの外側を上流側から下流側へ排気ガスを流動させる真空ポンプにおいて、
     前記隙間にパージガスが流され、
     前記ステータ及び前記ロータのうちの少なくとも一方に、前記隙間に面し、前記ロータの回転に伴って前記パージガスを案内するネジ溝部が形成され、
     前記ネジ溝部は、
     前記パージガスの流路の上流側に位置し、前記パージガスを前記パージガスの流路の上流側の向きに案内する第1ネジ溝部と、
     前記パージガスの流路の下流側に位置し、前記パージガスを前記パージガスの流路の下流側の向きに案内する第2ネジ溝部と、を有し、
     前記第1ネジ溝部の占める範囲である第1範囲が、前記第2ネジ溝部が占める範囲である第2範囲よりも大きいことを特徴とする真空ポンプ。
    With the stator
    A rotor that rotates with a gap between the stator and the rotor is provided.
    In a vacuum pump that flows exhaust gas from the upstream side to the downstream side on the outside of the rotor by the rotation of the rotor.
    Purge gas is flowed through the gap,
    At least one of the stator and the rotor is formed with a screw groove portion facing the gap and guiding the purge gas as the rotor rotates.
    The threaded groove is
    A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
    It has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
    A vacuum pump characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
  2.  前記第1範囲の大きさが、前記パージガスの流れを中間流から粘性流にする大きさであることを特徴とする請求項1に記載の真空ポンプ。 The vacuum pump according to claim 1, wherein the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow.
  3.  前記第2範囲の大きさが、(前記排気ガスの逆流量)<(第2ネジ溝部の輸送量)の関係を満たすことを特徴とする請求項1又は2に記載の真空ポンプ。 The vacuum pump according to claim 1 or 2, wherein the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) <(transportation amount of the second screw groove portion).
  4.  前記第1範囲の大きさが、前記第2範囲の大きさの2倍以上であることを特徴とする請求項1~3のいずれか1項に記載の真空ポンプ。 The vacuum pump according to any one of claims 1 to 3, wherein the size of the first range is at least twice the size of the second range.
  5.  前記ロータの外側に排気ガスの通路を持ち、かつ前記ロータの内側に前記隙間を持つことを特徴とする請求項1~4のいずれか1項に記載の真空ポンプ。 The vacuum pump according to any one of claims 1 to 4, wherein the exhaust gas passage is provided on the outside of the rotor and the gap is provided on the inside of the rotor.
  6.  ステータと、
     前記ステータとの間に隙間を介在させて回転するロータとのうちのいずれかであり、
     前記ロータの回転によりロータの外側を上流側から下流側へ排気ガスを流動させ、
     前記隙間にパージガスが流される真空ポンプに備えられる真空ポンプ構成部品において、
     前記隙間に面し、前記ロータの回転に伴って前記パージガスを案内するネジ溝部が形成され、
     前記ネジ溝部は、
     前記パージガスの流路の上流側に位置し、前記パージガスを前記パージガスの流路の上流側の向きに案内する第1ネジ溝部と、
     前記パージガスの流路の下流側に位置し、前記パージガスを前記パージガスの流路の下流側の向きに案内する第2ネジ溝部と、を有し、
     前記第1ネジ溝部の占める範囲である第1範囲が、前記第2ネジ溝部が占める範囲である第2範囲よりも大きいことを特徴とする真空ポンプ構成部品。
    With the stator
    It is one of the rotors that rotate with a gap between them and the stator.
    The rotation of the rotor causes the exhaust gas to flow from the upstream side to the downstream side on the outside of the rotor.
    In a vacuum pump component provided in a vacuum pump in which purge gas flows through the gap,
    A screw groove portion that faces the gap and guides the purge gas as the rotor rotates is formed.
    The thread groove portion is
    A first thread groove portion located on the upstream side of the flow path of the purge gas and guiding the purge gas toward the upstream side of the flow path of the purge gas.
    It has a second thread groove portion that is located on the downstream side of the flow path of the purge gas and guides the purge gas toward the downstream side of the flow path of the purge gas.
    A vacuum pump component characterized in that the first range occupied by the first threaded groove portion is larger than the second range occupied by the second threaded groove portion.
  7.  前記第1範囲の大きさが、前記パージガスの流れを中間流から粘性流にする大きさであることを特徴とする請求項6に記載の真空ポンプ構成部品。 The vacuum pump component according to claim 6, wherein the size of the first range is a size that changes the flow of the purge gas from an intermediate flow to a viscous flow.
  8.  前記第2範囲の大きさが、(前記排気ガスの逆流量)<(第2ネジ溝部の輸送量)の関係を満たすことを特徴とする請求項6又は7に記載の真空ポンプ構成部品。 The vacuum pump component according to claim 6 or 7, wherein the size of the second range satisfies the relationship of (reverse flow rate of the exhaust gas) <(transportation amount of the second screw groove portion).
  9.  前記第1範囲の大きさが、前記第2範囲の大きさの2倍以上であることを特徴とする請求項6~8のいずれか1項に記載の真空ポンプ構成部品。 The vacuum pump component according to any one of claims 6 to 8, wherein the size of the first range is at least twice the size of the second range.
  10.  前記ロータの外側に排気ガスの通路を持ち、かつ前記ロータの内側に前記隙間を持つ真空ポンプに備えられることを特徴とする請求項6~9のいずれか1項に記載の真空ポンプ構成部品。 The vacuum pump component according to any one of claims 6 to 9, wherein the vacuum pump is provided with an exhaust gas passage on the outside of the rotor and the gap on the inside of the rotor.
PCT/JP2021/006004 2020-02-26 2021-02-17 Vacuum pump and vacuum pump constituent component WO2021172144A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2020-030360 2020-02-26
JP2020030360A JP7377130B2 (en) 2020-02-26 2020-02-26 Vacuum pumps and vacuum pump components

Publications (1)

Publication Number Publication Date
WO2021172144A1 true WO2021172144A1 (en) 2021-09-02

Family

ID=77491504

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2021/006004 WO2021172144A1 (en) 2020-02-26 2021-02-17 Vacuum pump and vacuum pump constituent component

Country Status (2)

Country Link
JP (1) JP7377130B2 (en)
WO (1) WO2021172144A1 (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586392A (en) * 2021-09-10 2021-11-02 北京中科科仪股份有限公司 Vacuum pump
US20230096958A1 (en) * 2021-09-29 2023-03-30 Shimadzu Corporation Vacuum pump
GB2621854A (en) * 2022-08-24 2024-02-28 Edwards Korea Ltd Apparatus and method for delivering purge gas to a vacuum pump

Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143298A (en) * 1984-08-06 1986-03-01 Osaka Shinku Kiki Seisakusho:Kk Gas purge device for molecular pump
JP2002147385A (en) * 2000-11-08 2002-05-22 Osaka Vacuum Ltd Seal structure of turbo-molecular pump

Patent Citations (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6143298A (en) * 1984-08-06 1986-03-01 Osaka Shinku Kiki Seisakusho:Kk Gas purge device for molecular pump
JP2002147385A (en) * 2000-11-08 2002-05-22 Osaka Vacuum Ltd Seal structure of turbo-molecular pump

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN113586392A (en) * 2021-09-10 2021-11-02 北京中科科仪股份有限公司 Vacuum pump
US20230096958A1 (en) * 2021-09-29 2023-03-30 Shimadzu Corporation Vacuum pump
US11732722B2 (en) * 2021-09-29 2023-08-22 Shimadzu Corporation Vacuum pump
GB2621854A (en) * 2022-08-24 2024-02-28 Edwards Korea Ltd Apparatus and method for delivering purge gas to a vacuum pump

Also Published As

Publication number Publication date
JP2021134697A (en) 2021-09-13
JP7377130B2 (en) 2023-11-09

Similar Documents

Publication Publication Date Title
WO2021172144A1 (en) Vacuum pump and vacuum pump constituent component
US8066495B2 (en) Turbo vacuum pump and semiconductor manufacturing apparatus having the same
US7535150B1 (en) Centrifugal turbine blower with gas foil bearings
US6910850B2 (en) Vacuum pump
JP5088610B2 (en) Centrifugal compressor casing
JP2005042709A (en) Vacuum pump
JP2019178655A (en) Vacuum pump
KR20000062974A (en) Turbo-molecular pump
JP5066065B2 (en) Turbo vacuum pump and semiconductor manufacturing apparatus equipped with the turbo vacuum pump
US9157443B2 (en) Turbo molecular pump device
JP6792086B2 (en) Turbo compressor and how to operate the turbo compressor
JP6944853B2 (en) Electric compressor
JP5263562B2 (en) Centrifugal compressor casing
JP2006509952A (en) Vacuum pump discharge device
US6619911B1 (en) Friction vacuum pump with a stator and a rotor
US5451147A (en) Turbo vacuum pump
WO2021230209A1 (en) Vacuum pump, and stator component
JP2008286179A (en) Turbo type vacuum pump, and semiconductor manufacturing device equipped therewith
EP3875769A1 (en) Vacuum pump, and vacuum pump constituent component
JP2011027101A (en) Turbo pump
US11846298B2 (en) Vacuum pump and vacuum pump component part
KR102669881B1 (en) Turbo molecular pump comprising buffer chamber
JP2525848Y2 (en) Vacuum pump
US20050169744A1 (en) Gas friction pump
KR20230096983A (en) vacuum pump

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 21760296

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 21760296

Country of ref document: EP

Kind code of ref document: A1