JP5191410B2 - High temperature fluid heating device - Google Patents

High temperature fluid heating device Download PDF

Info

Publication number
JP5191410B2
JP5191410B2 JP2009019089A JP2009019089A JP5191410B2 JP 5191410 B2 JP5191410 B2 JP 5191410B2 JP 2009019089 A JP2009019089 A JP 2009019089A JP 2009019089 A JP2009019089 A JP 2009019089A JP 5191410 B2 JP5191410 B2 JP 5191410B2
Authority
JP
Japan
Prior art keywords
temperature
side portion
induction coil
resistant material
conductive heat
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009019089A
Other languages
Japanese (ja)
Other versions
JP2010177069A (en
Inventor
壮次郎 木村
孝 古吟
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dai Ichi High Frequency Co Ltd
Original Assignee
Dai Ichi High Frequency Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dai Ichi High Frequency Co Ltd filed Critical Dai Ichi High Frequency Co Ltd
Priority to JP2009019089A priority Critical patent/JP5191410B2/en
Publication of JP2010177069A publication Critical patent/JP2010177069A/en
Application granted granted Critical
Publication of JP5191410B2 publication Critical patent/JP5191410B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Induction Heating (AREA)

Description

この発明は、流体を加熱して高温にする高温流体加熱装置に関し、詳しくは、導電性管体を誘導加熱して発熱させることにより、管体内を流れる流体を管体からの伝熱によって加熱する高温流体加熱装置に関する。
更に詳しくは、発熱用管体を成す磁性耐熱材のキュリー温度(磁気変態点)を超える高温まで流体を加熱するのに好適な高温流体加熱装置に関する。
水蒸気等の飽和蒸気を更に加熱して過熱蒸気を発生する過熱蒸気発生装置は、高温流体加熱装置の典型例である。
The present invention relates to a high-temperature fluid heating apparatus that heats a fluid to raise the temperature, and more specifically, heats a fluid flowing in a tubular body by heat transfer from the tubular body by inductively heating a conductive tubular body to generate heat. The present invention relates to a high-temperature fluid heating apparatus.
More specifically, the present invention relates to a high-temperature fluid heating apparatus suitable for heating a fluid to a high temperature exceeding the Curie temperature (magnetic transformation point) of the magnetic heat-resistant material forming the heat generating tube.
A superheated steam generator that further heats saturated steam such as steam to generate superheated steam is a typical example of a high-temperature fluid heating apparatus.

高温流体を連続して発生させる高温流体加熱装置は、管体の中空に流体を通しながら管体中の流体を加熱するようになっている。加熱手段としてはガス加熱と電磁誘導加熱とが多用されているが、電磁誘導を利用するものに限っても、管体に電磁誘導発熱体を採用しておいて管外の電磁コイルへの高周波通電で管体を発熱させる言わば管体発熱タイプと(例えば特許文献1参照)、管体には電磁誘導非発熱体を採用するとともに管体中に電磁誘導発熱体を内挿しておいて管外の電磁コイルへの高周波通電で管体中の内挿物を発熱させる言わば管内発熱タイプとに分けられる(例えば特許文献2,3参照)。   A high-temperature fluid heating device that continuously generates a high-temperature fluid heats the fluid in the tube while passing the fluid through the hollow of the tube. Gas heating and electromagnetic induction heating are frequently used as heating means. However, even when using electromagnetic induction, an induction heating element is used for the tube, and high frequency is applied to the electromagnetic coil outside the tube. The so-called tube heat generation type that heats the tube body by energization (see, for example, Patent Document 1), adopts an electromagnetic induction non-heat generation body for the tube body, and inserts the electromagnetic induction heating element in the tube body to the outside of the tube. In other words, it is divided into a so-called in-tube heat generation type that heats the insert in the tube body by high-frequency energization of the electromagnetic coil (see, for example, Patent Documents 2 and 3).

電磁誘導非発熱体は非磁性非導電性耐熱材から作られ、非磁性非導電性耐熱材は、磁性が全く無いか弱いために磁気変態が判然としないという意味で非磁性を示し、電磁波に関して吸収する割合よりも通過させる割合の方が多いという意味で非導電性を示し、熱ストレスの生じる部位への使用に適していると一般に分類されているといった程度の意味で耐熱性を示し、例えば、セラミックや,FRP,フッ素樹脂(特許文献2段落0012参照)が挙げられる。   An electromagnetic induction non-heating element is made of a non-magnetic non-conductive heat-resistant material, and the non-magnetic non-conductive heat-resistant material exhibits non-magnetism in the sense that the magnetic transformation is not obvious because it has no or no magnetism and absorbs electromagnetic waves. It shows non-conductivity in the sense that there are more proportions to pass than it does, shows heat resistance in the sense that it is generally classified as suitable for use in areas where heat stress occurs, for example, Examples thereof include ceramic, FRP, and fluororesin (see Patent Document 2, paragraph 0012).

電磁誘導発熱体は、非磁性導電性耐熱材か磁性導電性耐熱材から作られ、コイル形状や高周波印加条件を整合させれば電磁波を吸収して発熱体の働きを果たせるという意味で導電性を示すものである。非磁性や耐熱性は上述したのと同じ意味であり、磁性は、磁気変態の発現やキュリー温度が明確になっているという意味である。非磁性導電性耐熱材には、例えば、オーステナイト系ステンレス(特許文献1段落0011)や、炭素セラミックス複合材料(特許文献2段落0019参照)、炭素,グラファイト,白金,ニッケル,ニモニック鋼(特許文献3第5頁左下欄参照)、インコネル(登録商標),ハステロイ(登録商標)、が挙げられる。磁性導電性耐熱材には、例えば、マルテンサイト系ステンレス(特許文献2段落0012参照)や、炭素鋼(特許文献1段落0011)、カンタル(登録商標)その他のクロム・アルミニウム鋼(Fe-Cr-Al)、が挙げられる。   The electromagnetic induction heating element is made of non-magnetic conductive heat-resistant material or magnetic conductive heat-resistant material, and if it matches the coil shape and high-frequency application conditions, it can absorb the electromagnetic wave and act as a heating element. It is shown. Non-magnetism and heat resistance have the same meaning as described above, and magnetism means that the onset of magnetic transformation and the Curie temperature are clear. Nonmagnetic conductive heat-resistant materials include, for example, austenitic stainless steel (Patent Document 1, paragraph 0011), carbon ceramic composite material (see Patent Document 2, paragraph 0019), carbon, graphite, platinum, nickel, mnemonic steel (Patent Document 3). (See the lower left column on page 5), Inconel (registered trademark), Hastelloy (registered trademark). Examples of the magnetic conductive heat-resistant material include martensitic stainless steel (see Patent Document 2, paragraph 0012), carbon steel (Patent Document 1, paragraph 0011), Kanthal (registered trademark) and other chromium / aluminum steel (Fe-Cr-). Al).

図8(a)〜(d)は、管体発熱タイプの過熱蒸気発生装置10を示し、(a)が左側面図、(b)が断熱材を外したところの正面図、(c)が温度制御回路や他の連携装置も含めた全体ブロック図、(d)が温度制御回路のブロック図である、
この過熱蒸気発生装置10は特許文献1の背景技術欄に記載されたものであり、その本体部・機構部は(図8(a),(b)参照)、飽和蒸気を導入する導入部11と、その飽和蒸気を加熱して過熱蒸気にする加熱部12と、その過熱蒸気を吐出する吐出部16とからなる。
8A to 8D show a tubular body heat generation type superheated steam generator 10, where FIG. 8A is a left side view, FIG. 8B is a front view where a heat insulating material is removed, and FIG. Overall block diagram including temperature control circuit and other cooperating devices, (d) is a block diagram of the temperature control circuit,
This superheated steam generator 10 is described in the background art column of Patent Document 1, and its main body / mechanism (see FIGS. 8A and 8B) is an introduction section 11 for introducing saturated steam. And a heating unit 12 that heats the saturated steam to superheated steam, and a discharge unit 16 that discharges the superheated steam.

導入部11及び吐出部16は、蒸気流路径を変えるため、ロート状・ラッパ状の筒体からなる。加熱部12は、平行に配置された複数の管体13と、図示しない断熱材を介して管体13の群に包括的に捲回された誘導コイル17とを具えている。管体13は、誘導コイル17への高周波通電によって誘導加熱される導電材からなり、一端が導入部11に連通接続され、他端が吐出部16に連通接続されて、中空部が蒸気流路になっている。   The introduction part 11 and the discharge part 16 are formed of a funnel-like or trumpet-like cylinder in order to change the diameter of the steam flow path. The heating unit 12 includes a plurality of tube bodies 13 arranged in parallel and an induction coil 17 that is comprehensively wound around a group of tube bodies 13 via a heat insulating material (not shown). The tubular body 13 is made of a conductive material that is induction-heated by high-frequency energization to the induction coil 17, one end is connected to the introduction portion 11, the other end is connected to the discharge portion 16, and the hollow portion is a steam channel. It has become.

このような過熱蒸気発生装置10は、過熱蒸気の利用が拡大しつつある例えば廃油や,廃プラスチック,生ゴミ,食品,器材等を対象とした乾燥や,減容,調理,殺菌等の処理のための過熱蒸気源として使用され、多くの場合、使用目的に適した温度の過熱蒸気を供給するために温度制御回路が付設される。温度制御は、制御対象が単一のときに使い易いPID演算(比例・積分・微分)によるフィードバック制御が行われ、制御対象の温度を検出してその検出温度が目標温度になるように誘導コイル17の通電制御を行うようになっている。上記温度制御の対象は、大抵は、吐出蒸気温度か、吐出部の後段に設置される処理部の温度である。   Such superheated steam generator 10 is used for drying, volume reduction, cooking, sterilization and the like for waste oil, waste plastic, garbage, food, equipment, etc., for which the use of superheated steam is expanding. In many cases, a temperature control circuit is provided to supply superheated steam having a temperature suitable for the purpose of use. In the temperature control, feedback control is performed by PID calculation (proportional / integral / derivative), which is easy to use when there is a single control object, and the induction coil is set so that the detected temperature becomes the target temperature. 17 energization control is performed. The target of the temperature control is usually the discharge steam temperature or the temperature of the processing unit installed at the subsequent stage of the discharge unit.

吐出蒸気温度をフィードバック制御する場合の一例を示すと(図8(c)参照)、過熱蒸気発生装置10には発熱体温度計21と吐出蒸気温度計22と温度制御回路23とが付設される。発熱体温度計21は、例えば熱電対からなり、発熱体である管体13の外周面に対して軸方向のほぼ中央位置に取り付けられて、発熱体の温度を検出し、この検出温度Taを温度制御回路23に送出する。吐出蒸気温度計22も例えば熱電対からなり、これは、吐出部16に取り付けられて或いはその直ぐ下流の過熱蒸気供給管等に取り付けられて、過熱蒸気発生装置10から吐出される過熱蒸気の温度を検出し、この検出温度Tbを温度制御回路23に送出するようになっている。   An example of feedback control of the discharge steam temperature is shown (see FIG. 8C). The superheated steam generator 10 is provided with a heating element thermometer 21, a discharge steam thermometer 22, and a temperature control circuit 23. . The heating element thermometer 21 is made of, for example, a thermocouple, and is attached to a substantially central position in the axial direction with respect to the outer peripheral surface of the tube body 13 serving as a heating element, detects the temperature of the heating element, and detects the detected temperature Ta. It is sent to the temperature control circuit 23. The discharge steam thermometer 22 is also composed of, for example, a thermocouple, which is attached to the discharge unit 16 or attached to a superheated steam supply pipe or the like immediately downstream thereof, and the temperature of the superheated steam discharged from the superheated steam generator 10. The detected temperature Tb is sent to the temperature control circuit 23.

温度制御回路23は(図8(c))、発報用の比較演算回路(CMP.)と追従制御用のPID演算回路(PID)とがワンパッケージに組み込まれた温度調節器(例えば市販の電子温度調節器)を用いて簡便に具現化されている。この温度調節器は、手動の基準温度設定手段と外部信号の入力手段とを二個ずつ具えており、一つの設定値と一つの外部信号とを比較演算回路に入力し、他の設定値と他の外部信号とをPID演算回路に入力するようになっている。PID演算回路のPID定数すなわち比例係数・積分項の係数・微分項の係数も手動で又は自動(オートチューニング)で設定できるようになっている。   The temperature control circuit 23 (FIG. 8C) is a temperature controller (for example, commercially available) in which a comparison operation circuit (CMP.) For reporting and a PID operation circuit (PID) for tracking control are incorporated in one package. It is simply implemented using an electronic temperature controller. This temperature controller comprises two manual reference temperature setting means and two external signal input means, and inputs one set value and one external signal to the comparison operation circuit, and sets the other set values and Other external signals are input to the PID arithmetic circuit. The PID constant of the PID arithmetic circuit, that is, the proportional coefficient, the integral term coefficient, and the differential term coefficient can also be set manually or automatically (auto-tuning).

そして、これを採用した温度制御回路23は、比較演算回路への設定温度(設定値)を発熱体上限温度Saとし、比較演算回路への外部信号を発熱体温度計21の検出温度Taとして、検出温度Taが発熱体上限温度Saを超えると比較演算回路から警報信号Aaが出力されるようになっている。また、温度制御回路23は、PID演算回路への設定温度を吐出蒸気目標温度Gbとし、PID演算回路への外部信号を吐出蒸気温度計22の検出温度Tbとして、検出温度Tbを吐出蒸気目標温度Gbに近づけるようなコイル電流Ibを高周波電源24に出力させる通電指令Iaが比較演算回路から出力されるようになっている。   Then, the temperature control circuit 23 adopting this is set with the set temperature (set value) for the comparison calculation circuit as the heating element upper limit temperature Sa, and the external signal to the comparison calculation circuit as the detection temperature Ta of the heating element thermometer 21. When the detected temperature Ta exceeds the heating element upper limit temperature Sa, an alarm signal Aa is output from the comparison operation circuit. The temperature control circuit 23 uses the set temperature for the PID calculation circuit as the discharge steam target temperature Gb, the external signal to the PID calculation circuit as the detection temperature Tb of the discharge steam thermometer 22, and the detection temperature Tb as the discharge steam target temperature. An energization command Ia for causing the high frequency power supply 24 to output a coil current Ib that approaches Gb is output from the comparison operation circuit.

通電指令Ia及び警報信号Aaは、温度制御回路23から高周波電源24に送出され、高周波電源24は、通電指令Iaに応じたコイル電流Ibを過熱蒸気発生装置10の加熱部12の誘導コイル17に出力するとともに、警報信号Aaが有意になったときにはコイル電流Ibの出力を強制的に停止するようになっている。
その他(図8(c)参照)、過熱蒸気発生装置10の上流には飽和蒸気を供給してくれる飽和蒸気発生装置25が設置され、過熱蒸気発生装置10の下流には過熱蒸気を用いて処理を行う過熱蒸気処理装置の処理部26が設置される。
The energization command Ia and the alarm signal Aa are sent from the temperature control circuit 23 to the high frequency power supply 24, and the high frequency power supply 24 applies the coil current Ib corresponding to the energization command Ia to the induction coil 17 of the heating unit 12 of the superheated steam generator 10. In addition to outputting, when the alarm signal Aa becomes significant, the output of the coil current Ib is forcibly stopped.
In addition (see FIG. 8C), a saturated steam generator 25 that supplies saturated steam is installed upstream of the superheated steam generator 10, and processing is performed using superheated steam downstream of the superheated steam generator 10. The processing part 26 of the superheated steam processing apparatus which performs is installed.

このような過熱蒸気発生装置10等を作動させるときには、先ず温度制御回路23に発熱体上限温度Saと吐出蒸気目標温度GbとPID定数を設定する。発熱体上限温度Saは、管体13の材質等で決まり、汎用のオーステナイト系ステンレスや炭素鋼を用いた場合、例えば600℃〜650℃程度に設定される。吐出蒸気目標温度Gbは、過熱蒸気処理装置26の要求仕様で決まり、発熱体上限温度Saよりは低い範囲内で、利用目的や使用状況に応じて、例えば200℃〜500℃程度に設定される。PID定数は、基本的には加熱部12や高周波電源24の動作特性に基づいて決まるが、飽和蒸気発生装置25の蒸気供給量や過熱蒸気処理装置26への吐出蒸気温度の影響も受けるので、現場でも調整される。   When operating such a superheated steam generator 10 or the like, first, the heating element upper limit temperature Sa, the discharge steam target temperature Gb, and the PID constant are set in the temperature control circuit 23. The heating element upper limit temperature Sa is determined by the material of the tube body 13 and is set to, for example, about 600 ° C. to 650 ° C. when general-purpose austenitic stainless steel or carbon steel is used. The discharge steam target temperature Gb is determined by the required specifications of the superheated steam processing device 26, and is set to, for example, about 200 ° C. to 500 ° C. within a range lower than the heating element upper limit temperature Sa, depending on the purpose of use and use conditions. . The PID constant is basically determined based on the operating characteristics of the heating unit 12 and the high-frequency power source 24, but is also affected by the amount of steam supplied from the saturated steam generator 25 and the temperature of the discharged steam to the superheated steam processing device 26. It is also adjusted on site.

そして、過熱蒸気発生装置10等を作動させると、飽和蒸気が飽和蒸気発生装置25から過熱蒸気発生装置10へ供給され、その飽和蒸気が過熱蒸気発生装置10の加熱部12で加熱されて過熱蒸気になり、その過熱蒸気が過熱蒸気発生装置10から過熱蒸気処理装置26に供給され、過熱蒸気処理装置26で所望の過熱蒸気処理が行われる。
そのとき、PID定数が適切に設定され且つ蒸気量が適正範囲であれば、温度制御回路23から高周波電源24に適切な通電指令Iaが出され、高周波電源24から過熱蒸気発生装置10の誘導コイル17に適度なコイル電流Ibが流されて、吐出蒸気温度計22の検出温度Tbが吐出蒸気目標温度Gbになり、吐出蒸気目標温度Gbに無理のない限り、発熱体温度計21の検出温度Taは発熱体上限温度Sa未満にとどまる。
When the superheated steam generator 10 or the like is operated, saturated steam is supplied from the saturated steam generator 25 to the superheated steam generator 10, and the saturated steam is heated by the heating unit 12 of the superheated steam generator 10 to be superheated steam. Then, the superheated steam is supplied from the superheated steam generation device 10 to the superheated steam processing device 26, and a desired superheated steam treatment is performed in the superheated steam processing device 26.
At that time, if the PID constant is appropriately set and the amount of steam is in an appropriate range, an appropriate energization command Ia is issued from the temperature control circuit 23 to the high frequency power supply 24, and the induction coil of the superheated steam generator 10 is output from the high frequency power supply 24. 17, an appropriate coil current Ib is caused to flow, the detected temperature Tb of the discharge steam thermometer 22 becomes the discharge steam target temperature Gb, and the detected temperature Ta of the heating element thermometer 21 is satisfactory unless the discharge steam target temperature Gb is unreasonable. Remains below the heating element upper limit temperature Sa.

図8(e)〜(f)は、管体発熱タイプの他の過熱蒸気発生装置30を示し、(e)が左側面図、(f)が断熱材を外したところの正面図である。
この過熱蒸気発生装置30は、特許文献1の実施例欄に記載されたものであり、上述した過熱蒸気発生装置10と相違するのは誘導コイル17が捲回状態の異なる誘導コイル31になった点である。
8 (e) to 8 (f) show another superheated steam generator 30 of a tubular body heat generation type, (e) is a left side view, and (f) is a front view of a place where a heat insulating material is removed.
This superheated steam generator 30 is described in the Example column of Patent Document 1, and differs from the superheated steam generator 10 described above in that the induction coil 17 is an induction coil 31 having a different winding state. Is a point.

誘導コイル31は、やはり水冷可能な銅管などからなり、加熱部12において管体13の外周に捲回されているが、その捲回密度が、均一でなくなり、導入部11寄りでは粗に吐出部16寄りでは密になっている。その比は、飽和蒸気と過熱蒸気の温度差等にもよるが、例えば[1:2]〜[1:4]程度が好適である。
この場合、誘導コイル31の捲回の粗密に基づいて、誘導加熱による入熱量が導入部11寄りで少なく吐出部16寄りで多くなり、そのため管体13から中空部14の蒸気への伝熱効率が向上して、加熱部12全体の加熱効率が良くなる。
The induction coil 31 is also made of a water-coolable copper tube or the like, and is wound around the outer periphery of the tube body 13 in the heating unit 12. However, the winding density is not uniform, and the coil is discharged roughly toward the introduction unit 11. It is dense near the part 16. The ratio depends on the temperature difference between the saturated steam and the superheated steam, but is preferably about [1: 2] to [1: 4], for example.
In this case, based on the density of the winding of the induction coil 31, the amount of heat input by induction heating is small near the introduction part 11 and large near the discharge part 16, so that the heat transfer efficiency from the tube 13 to the steam of the hollow part 14 is improved. The heating efficiency of the entire heating unit 12 is improved.

特開2007−024336号公報JP 2007-024336 A 特開2000−065312号公報JP 2000-065312 A 特開平02−192687号公報Japanese Patent Laid-Open No. 02-192687

ところで、このような管体発熱タイプの過熱蒸気発生装置10,30は現在のところ700℃以下の蒸気発生に用いられているが、それを超える高温加熱たとえば800℃や1000℃を超える温度へ流体を加熱することに対する要求が高まっており、それに応える方策として、管内発熱タイプの過熱蒸気発生装置において内挿発熱体を複数段にしたうえで前段の発熱体には非磁性導電性耐熱材を採用し後段の発熱体には特殊な炭素セラミックス複合材料を採用することが提案されている(特許文献2参照)。ただし、特殊な炭素セラミックス複合材料は高温における耐久性が悪いうえ、管内発熱タイプの管体に用いられている非磁性非導電性耐熱材も耐衝撃性が低く、更に高温でのシール性が悪い。   By the way, such superheated steam generators 10 and 30 of the tube exothermic type are currently used for steam generation of 700 ° C. or less, but high temperature heating exceeding that, for example, fluids to temperatures exceeding 800 ° C. or 1000 ° C. As a measure to meet this demand, a non-magnetic conductive heat-resistant material is used for the former heating element after multiple stages of the internal heating element in the superheated steam generator of the pipe heating type. However, it has been proposed to use a special carbon ceramic composite material for the heating element at the latter stage (see Patent Document 2). However, special carbon ceramic composite materials have poor durability at high temperatures, and non-magnetic non-conductive heat-resistant materials used in pipe heat generation type pipes also have low impact resistance and poor sealing performance at high temperatures. .

これに対し、管体発熱タイプの過熱蒸気発生装置では管体に非磁性非導電性耐熱材でなく非磁性導電性耐熱材や磁性導電性耐熱材が用いられるので、非磁性非導電性耐熱材の使用に起因する不都合は回避できる。また、高周波印加条件を一つに絞り込むことで高周波電源のコストアップを回避することができる。さらに、非磁性導電性耐熱材や磁性導電性耐熱材には耐久性に優れているばかりか比較的安価で入手も容易なものがある。例えば、非磁性導電性耐熱材ではSUS310やインコネル600などが使い易く、磁性導電性耐熱材ではカンタルなどが使い易い。そこで、管体発熱タイプの過熱蒸気発生装置を高温まで使用できるよう改良することが望まれる。   On the other hand, in the tube heating type superheated steam generator, the non-magnetic non-conductive heat-resistant material or magnetic conductive heat-resistant material is used for the tube, not the non-magnetic non-conductive heat-resistant material. Inconvenience due to the use of can be avoided. Moreover, the cost increase of a high frequency power supply can be avoided by narrowing the high frequency application condition to one. Furthermore, nonmagnetic conductive heat-resistant materials and magnetic conductive heat-resistant materials are not only excellent in durability but also relatively inexpensive and easily available. For example, SUS310 or Inconel 600 is easy to use for nonmagnetic conductive heat-resistant materials, and Kanthal is easy to use for magnetic conductive heat-resistant materials. Therefore, it is desired to improve the tube heating type superheated steam generator so that it can be used up to a high temperature.

しかしながら、上述の使い易い非磁性導電性耐熱材の場合、実用的な上限温度である長期耐熱温度が800℃程度であり、それを超える高温では耐久性が不足する。また、上述の使い易い磁性導電性耐熱材の場合、1000℃といった高温やそれを超える高温でも耐久性は良いが、常温から800℃までの間に存在するキュリー温度で磁気変態が発現するため、キュリー温度より低温側に誘導コイルや高周波電源の電磁誘導条件を整合させるとキュリー温度より高温側で不都合が生じ、キュリー温度より高温側に誘導コイルや高周波電源の電磁誘導条件を整合させるとキュリー温度より低温側で不都合が生じる。   However, in the case of the above-described non-magnetic conductive heat-resistant material that is easy to use, the long-term heat-resistant temperature, which is a practical upper limit temperature, is about 800 ° C., and the durability is insufficient at a temperature higher than that. In addition, in the case of the above-described easy-to-use magnetic conductive heat-resistant material, durability is good even at a high temperature such as 1000 ° C. or higher, but magnetic transformation occurs at a Curie temperature existing between normal temperature and 800 ° C. If the electromagnetic induction conditions of the induction coil and the high frequency power supply are matched to the lower temperature side than the Curie temperature, inconvenience occurs on the higher temperature side than the Curie temperature, and if the electromagnetic induction conditions of the induction coil and the high frequency power supply are matched to the higher temperature side than the Curie temperature, the Curie temperature Inconvenience occurs at lower temperatures.

図9は、それらの不都合を具体的に対比説明するために管体発熱タイプの過熱蒸気発生装置の昇温特性をグラフにしたものであり、(a)〜(c)何れも横軸に経過時間を採り縦軸に温度を採っている。(a)が電磁誘導発熱体に非磁性導電性耐熱材を用いた場合の昇温特性グラフ、(b)が電磁誘導発熱体に磁性導電性耐熱材を用い且つキュリー温度より低い温度の物性に電磁誘導条件を適合させた場合の昇温特性グラフ、(c)が電磁誘導発熱体に磁性導電性耐熱材を用い且つキュリー温度より高い温度の物性に電磁誘導条件を適合させた場合の昇温特性グラフである。なお、この図や他の図における昇温特性グラフに関して、Aは例えば600℃のキュリー温度を示し、Bは例えば760℃に設定された低めの制御目標温度を示し、Cは例えば800℃の非磁性導電性耐熱材上限温度を示し、Dは例えば1000℃に設定された高めの制御目標温度を示している。   FIG. 9 is a graph showing the temperature rise characteristics of a tubular body heating type superheated steam generator in order to specifically explain these inconveniences, and (a) to (c) all show on the horizontal axis. Time is taken and temperature is taken on the vertical axis. (A) is a temperature rise characteristic graph when a non-magnetic conductive heat-resistant material is used for the electromagnetic induction heating element, and (b) is a physical property at a temperature lower than the Curie temperature using the magnetic conductive heat-resistant material for the electromagnetic induction heating element. Graph of temperature rise when the electromagnetic induction conditions are adapted, (c) shows the temperature rise when the magnetic induction heat generating material is made of a magnetic conductive heat-resistant material and the electromagnetic induction conditions are adapted to physical properties higher than the Curie temperature. It is a characteristic graph. Regarding the temperature rise characteristic graph in this figure and other figures, A indicates a Curie temperature of, for example, 600 ° C., B indicates a lower control target temperature set at, for example, 760 ° C., and C indicates, for example, a non-temperature of 800 ° C. The upper limit temperature of the magnetic conductive heat-resistant material is indicated, and D indicates a higher control target temperature set to 1000 ° C., for example.

電磁誘導発熱体である管体13にSUS310やインコネル600といった非磁性導電性耐熱材を用いた場合(図9(a)参照)、誘導コイル17の形状や高周波電源24の出力設定などの電磁誘導条件は非磁性導電性耐熱材上限温度Cより低い温度の物性に適合させられ、通電開始時刻T0から時間T1経過後に非磁性導電性耐熱材上限温度Cに達するが、非磁性導電性耐熱材上限温度Cより低い制御目標温度Bでしか使用されない(図中の実線グラフを参照)。なお、耐久性や損傷を無視して、非磁性導電性耐熱材上限温度Cより高い制御目標温度Dを温度制御回路23に設定すれば、時間T1より数割ほど長い時間T2(=T1×(1.2〜1.3))経過後に制御目標温度Dに達する(図中の破線グラフを参照)。   When a nonmagnetic conductive heat-resistant material such as SUS310 or Inconel 600 is used for the tubular body 13 which is an electromagnetic induction heating element (see FIG. 9A), electromagnetic induction such as the shape of the induction coil 17 and the output setting of the high frequency power supply 24 is performed. The condition is adapted to the physical properties at a temperature lower than the upper limit temperature C of the nonmagnetic conductive heat-resistant material and reaches the upper limit temperature C of the nonmagnetic conductive heat-resistant material after the time T1 has elapsed from the start time T0. It is used only at the control target temperature B lower than the temperature C (see the solid line graph in the figure). If the control target temperature D higher than the nonmagnetic conductive heat-resistant material upper limit temperature C is set in the temperature control circuit 23 ignoring the durability and damage, the time T2 (= T1 × ( 1.2 to 1.3)) After the passage, the control target temperature D is reached (see the broken line graph in the figure).

また、管体13にカンタル等の磁性導電性耐熱材を用いるとともにキュリー温度Aより低い温度の物性にコイル17形状や高周波印加条件を適合させた場合(図9(b)参照)、キュリー温度Aまでは非磁性導電性耐熱材のときと同じく速やかに昇温するが、キュリー温度Aを超えてからは、管体13の物性変化によって電磁誘導条件が適合しなくなるため、加熱効率が低下して、制御目標温度Dに達するのが、時間T2の数倍も長い時間T3(=T2×(3〜6))経過後に制御目標温度Dに達する(図中の実線グラフを参照)。なお、磁性導電性耐熱材の材種や電磁誘導条件によってはキュリー温度Aより高くならないこともあり(図中の破線グラフを参照)、材種選定や条件設定を工夫することでキュリー温度Aを超えて昇温するようにはできるが、制御目標温度Dへの到達時間T3の長期化は避けられない。この場合、キュリー温度Aを超える高温域での温度制御性も、加熱効率の低下によって、悪化する。   Further, when a magnetic conductive heat-resistant material such as Kanthal is used for the tube body 13 and the shape of the coil 17 and the high-frequency application conditions are adapted to the physical properties lower than the Curie temperature A (see FIG. 9B), the Curie temperature A The temperature rises as quickly as in the case of the non-magnetic conductive heat-resistant material, but after exceeding the Curie temperature A, the electromagnetic induction conditions will not be met due to the change in physical properties of the tube 13, so the heating efficiency is reduced. The control target temperature D reaches the control target temperature D after the time T3 (= T2 × (3 to 6)) that is several times longer than the time T2 has elapsed (see the solid line graph in the figure). Note that the Curie temperature A may not be higher than the Curie temperature A depending on the type of magnetic conductive heat-resistant material and electromagnetic induction conditions (refer to the broken line graph in the figure). Although it is possible to raise the temperature exceeding this, it is inevitable that the time T3 to reach the control target temperature D is prolonged. In this case, the temperature controllability in a high temperature range exceeding the Curie temperature A is also deteriorated due to a decrease in heating efficiency.

これに対し、管体13にカンタル等の磁性導電性耐熱材を用いるとともにキュリー温度Aより高い温度の物性にコイル17形状や高周波印加条件を適合させるために例えば誘導コイル17と管体13との距離を縮めたり高周波電源24の出力の周波数を変更した場合(図9(c)参照)、キュリー温度Aを超える高温域では昇温特性も温度制御性も比較的良好なので、一応は実用になるが、通電開始からキュリー温度Aに達するまでの時間が長期化するため、制御目標温度Dに達するのは、やはり時間T2の数倍も長い時間T4(=T4×(3〜6))を経過した後になってしまう(図中の実線グラフを参照)。   In contrast, in order to use a magnetic conductive heat-resistant material such as Kanthal for the tube body 13 and to adapt the shape of the coil 17 and the high-frequency application conditions to the physical properties higher than the Curie temperature A, for example, the induction coil 17 and the tube body 13 When the distance is shortened or the frequency of the output of the high frequency power supply 24 is changed (see FIG. 9C), the temperature rise characteristic and the temperature controllability are relatively good in the high temperature range exceeding the Curie temperature A, so that it becomes practical. However, since it takes a long time to reach the Curie temperature A from the start of energization, the time T4 (= T4 × (3 to 6)), which is several times longer than the time T2, elapses to reach the control target temperature D. (See the solid line graph in the figure).

その改善策としては、キュリー温度Aに届かない低温域とキュリー温度Aを超える高温域とで電磁誘導条件を切り替えることによって制御目標温度Dへの到達時間を短縮することが思い浮かぶ。
しかしながら、コイル17の巻き径を可変にするのは技術面からもコスト面からも難があるうえ、高周波電源24の出力の周波数の切り替えは可能であっても高周波電源24のコストアップを招くので望ましくない。
そこで、誘導コイル径を固定したまま又は誘導コイル径および印加電力周波数を固定したままでも昇温時間が短縮されるよう、管体発熱タイプの高温流体加熱装置における発熱管体の構成に工夫を凝らすことが、技術的な課題となる。
As an improvement measure, it can be imagined that the time to reach the control target temperature D is shortened by switching the electromagnetic induction condition between a low temperature range that does not reach the Curie temperature A and a high temperature range that exceeds the Curie temperature A.
However, making the winding diameter of the coil 17 variable is difficult from the technical and cost viewpoints, and even if the output frequency of the high frequency power supply 24 can be switched, the cost of the high frequency power supply 24 is increased. Not desirable.
Therefore, the structure of the heating tube in the tube heating type high-temperature fluid heating device is devised so that the temperature rise time can be shortened even with the induction coil diameter fixed or with the induction coil diameter and applied power frequency fixed. This is a technical issue.

本発明の高温流体加熱装置は(解決手段1)、このような課題を解決するために創案されたものであり、加熱対象の流体を導入する導入部と、その加熱流体を吐出する吐出部と、一端が前記導入部に連結され他端が前記吐出部に連結されて中空が流路をなす発熱体兼用の管体と、この管体の外周部を囲むところに配置されて通電時には前記管体を誘導加熱する誘導コイルとを備えた高温流体加熱装置において、前記管体のうち前記導入部に連なる導入側部分が非磁性導電性耐熱材からなり、前記管体のうち前記吐出部に連なる吐出側部分が磁性導電性耐熱材からなり、前記非磁性導電性耐熱材の上限温度が前記磁性導電性耐熱材のキュリー温度より高くなっていることを特徴とする。   The high-temperature fluid heating apparatus of the present invention (Solution means 1) was devised to solve such a problem, and an introduction part for introducing a fluid to be heated, a discharge part for discharging the heating fluid, , One end connected to the introduction portion and the other end connected to the discharge portion, and a hollow heat-generating tube body that forms a flow path, and a tube that surrounds the outer peripheral portion of the tube body and energizes the tube when energized In the high-temperature fluid heating apparatus including an induction coil for induction heating the body, an introduction side portion connected to the introduction portion of the tube is made of a nonmagnetic conductive heat-resistant material, and is connected to the discharge portion of the tube. The discharge side portion is made of a magnetic conductive heat resistant material, and the upper limit temperature of the nonmagnetic conductive heat resistant material is higher than the Curie temperature of the magnetic conductive heat resistant material.

また、本発明の高温流体加熱装置は(解決手段2)、上記解決手段1の高温流体加熱装置であって、前記誘導コイルが前記管体の前記導入側部分も前記管体の前記吐出側部分も囲む状態で固定されていることを特徴とする。   The high-temperature fluid heating device of the present invention is (the solution means 2), the high-temperature fluid heating device of the solution means 1, wherein the induction coil includes the introduction side portion of the tube body and the discharge side portion of the tube body. Is also fixed in a surrounding state.

さらに、本発明の高温流体加熱装置は(解決手段3)、上記解決手段1の高温流体加熱装置であって、前記誘導コイルを軸方向に移動させる移動機構と、前記管体の前記吐出側部分の温度を検出する温度計とが設けられ、その検出温度が前記磁性導電性耐熱材のキュリー温度より低いときには前記誘導コイルを前記移動機構にて前記管体の前記導入側部分に寄せて前記吐出側部分から外すが、前記検出温度が前記磁性導電性耐熱材のキュリー温度より高いときには前記非磁性導電性耐熱材の上限温度より低いうちに前記移動機構にて前記誘導コイルを前記管体の前記吐出側部分の方へ寄せて前記誘導コイルに前記吐出側部分を囲わせるようになっていることを特徴とする。   Furthermore, the high-temperature fluid heating apparatus of the present invention (Solution means 3) is the high-temperature fluid heating apparatus of the above-described solution means 1, wherein the induction coil is moved in the axial direction, and the discharge side portion of the tubular body When the detected temperature is lower than the Curie temperature of the magnetic conductive heat-resistant material, the induction coil is moved toward the introduction side portion of the tubular body by the moving mechanism. When the detected temperature is higher than the Curie temperature of the magnetic conductive heat-resistant material, the induction coil is moved by the moving mechanism while the detected temperature is lower than the upper limit temperature of the non-magnetic conductive heat-resistant material. The discharge side portion is moved toward the discharge side portion so that the induction coil surrounds the discharge side portion.

また、本発明の高温流体加熱装置は(解決手段4)、上記解決手段3の高温流体加熱装置であって、前記移動機構が前記誘導コイルを長さ固定のまま移動させるものであることを特徴とする。   The high-temperature fluid heating device of the present invention (solution 4) is the high-temperature fluid heating device of the solution 3, wherein the moving mechanism moves the induction coil with a fixed length. And

また、本発明の高温流体加熱装置は(解決手段5)、上記解決手段3の高温流体加熱装置であって、前記移動機構が前記誘導コイルを伸縮させて移動させるものであることを特徴とする。   The high-temperature fluid heating apparatus according to the present invention (Solution means 5) is the high-temperature fluid heating apparatus according to Solution 3, wherein the moving mechanism moves the induction coil by expanding and contracting. .

このような本発明の高温流体加熱装置にあっては(解決手段1,当初請求項1)、基本構成に管体発熱タイプを引き継ぎつつも、管体のうち導入側部分には非磁性導電性耐熱材を採用し、管体のうち吐出側部分には磁性導電性耐熱材を採用したことにより、誘導コイル径を含む電磁誘導条件を管体の吐出側部分の磁性導電性耐熱材のキュリー温度超の物性に適合させれば、この電磁誘導条件が磁性喪失後の物性に適合するものであるため管体の導入側部分の非磁性導電性耐熱材の物性にも概ね適合するので、昇温時の初期には、管体の吐出側部分は磁気浸透深さが浅いために電気抵抗が高く、投入電力の大部分が集中することになり、速やかに昇温するとともに、導入部側部分も加熱に貢献する電力はその長さに比して弱いものの、吐出側部分からの伝熱もあり順調に昇温する。そして、吐出側部分の温度がキュリー温度を超えると、管体全体の電気・磁気特性が概ね一定となるため、効率的に管全体が加熱され、一層迅速に昇温する。   In such a high-temperature fluid heating apparatus of the present invention (Solution 1, first claim 1), while the tube body heat generation type is taken over as the basic structure, the introduction side portion of the tube body is nonmagnetic conductive. By adopting a heat-resistant material and adopting a magnetic conductive heat-resistant material for the discharge side part of the tube, the electromagnetic induction conditions including the induction coil diameter are set to the Curie temperature of the magnetic conductive heat-resistant material on the discharge side of the tube. If it is adapted to the super physical properties, the electromagnetic induction conditions are compatible with the physical properties after loss of magnetism, so the physical properties of the non-magnetic conductive heat-resistant material on the introduction side of the tube are generally compatible. At the beginning of the time, the discharge side portion of the tube has a high magnetic resistance due to the shallow magnetic penetration depth, and most of the input power is concentrated, so that the temperature rises quickly and the introduction side portion also Although the power that contributes to heating is weak compared to its length, the discharge side part There is also steadily raising the temperature heat transfer from. When the temperature of the discharge side portion exceeds the Curie temperature, the electrical and magnetic characteristics of the entire tube body are substantially constant, so that the entire tube is efficiently heated and the temperature is increased more rapidly.

また、昇温と共に又は昇温の後期に流体の供給も行えば、それによって管体の導入側部分の温度は吐出側部分の温度より低く抑えられるので、管体の導入側部分の温度が非磁性導電性耐熱材の上限温度を超えないという制約条件下でも、管体の吐出側部分は非磁性導電性耐熱材の上限温度を超える高い温度まで加熱することができる。
これにより、管体を非磁性導電性耐熱材だけにしたときより高温まで使用が可能となるうえ、管体を磁性導電性耐熱材だけにしたときより昇温時間が短縮される。
したがって、この発明によれば、誘導コイル径を固定したままでも速やかに昇温するような管体発熱タイプの高温流体加熱装置を実現することができる。
Further, if the fluid is supplied together with the temperature rise or at a later stage of the temperature rise, the temperature of the introduction side portion of the tube body can be kept lower than the temperature of the discharge side portion. Even under the constraint that the upper limit temperature of the magnetic conductive heat-resistant material is not exceeded, the discharge side portion of the tubular body can be heated to a high temperature exceeding the upper limit temperature of the non-magnetic conductive heat-resistant material.
As a result, the tube can be used up to a higher temperature than when only the non-magnetic conductive heat-resistant material is used, and the temperature rise time is shortened compared to when the tube is made only of the magnetic conductive heat-resistant material.
Therefore, according to the present invention, it is possible to realize a tubular body heat generation type high-temperature fluid heating apparatus capable of rapidly raising the temperature even when the induction coil diameter is fixed.

さらに、管体の導入側部分も吐出側部分も囲む状態で誘導コイルを固定しておくことにより、構成簡素という利点が管体発熱タイプから引き継がれるが、この場合、流体の流量が小さいと、管体の導入側部分に対する温度抑制能力が弱まって、管体の導入側部分の温度が非磁性導電性耐熱材上限温度を超えて過熱しやすくなるため、小流量域では使用し難い。また、吐出蒸気温度がキュリー温度近辺のときには、管体の吐出側部分の温度がキュリー温度以上の部分とキュリー温度未満の部分が混在することとなり、電気制御が難しく、加熱効率も最善ではない。   Furthermore, by fixing the induction coil in a state surrounding the introduction side portion and the discharge side portion of the tubular body, the advantage of simple configuration is inherited from the tubular heating type, but in this case, if the fluid flow rate is small, Since the temperature suppression capability for the introduction side portion of the tubular body is weakened and the temperature of the introduction side portion of the tubular body easily exceeds the nonmagnetic conductive heat-resistant material upper limit temperature, it is difficult to use in a small flow rate region. Further, when the discharge steam temperature is near the Curie temperature, the temperature of the discharge side portion of the tube body is a mixture of the temperature equal to or higher than the Curie temperature and the temperature lower than the Curie temperature, so that electric control is difficult and heating efficiency is not optimal.

これに対し、本発明の高温流体加熱装置にあっては(解決手段2,当初請求項3)、誘導コイルを軸方向に移動させる移動機構を導入したうえで、低温域では、誘導コイルを磁性導電性耐熱材から外して非磁性導電性耐熱材に集中させるようにしたことにより、誘導コイル全長に対向する部分全体に渡って好適な加熱を行うことが容易となる。また、高温域では、誘導コイルを磁性導電性耐熱材の方へ寄せるようにしたことにより、管体の導入側部分に使用している非磁性導電性導電性耐熱材の耐久性と強度が充分維持される温度の上限内での運転が容易に可能になる。
したがって、この発明によれば、誘導コイル径を固定したままでも、高温域でも低温域でも温度制御能力が高く安定するとともに、大流量でも小流量でも過熱することなく長期使用に耐え、より迅速に昇温するような管体発熱タイプの高温流体加熱装置を実現することができる。
On the other hand, in the high-temperature fluid heating apparatus of the present invention (Solution means 2, initial claim 3), after introducing a moving mechanism for moving the induction coil in the axial direction, the induction coil is magnetic in the low temperature range. By removing from the conductive heat-resistant material and concentrating on the non-magnetic conductive heat-resistant material, it becomes easy to perform suitable heating over the entire portion facing the entire length of the induction coil. In addition, in the high temperature range, the induction coil is moved closer to the magnetic conductive heat-resistant material, so that the durability and strength of the non-magnetic conductive conductive heat-resistant material used for the introduction side of the tube are sufficient. Operation within the upper limit of the maintained temperature can be easily performed.
Therefore, according to the present invention, even if the induction coil diameter is fixed, the temperature control capability is high and stable in both high and low temperature ranges, and withstands long-term use without overheating even at high or low flow rates, and more quickly. It is possible to realize a tubular body heat generation type high-temperature fluid heating apparatus that raises the temperature.

本発明の実施例1について、高温流体加熱装置の構造や動作特性を示し、(a)が断熱材や支持脚などを外した要部の縦断正面図、(b)が回路ブロック図、(c)が横軸に経過時間を採り縦軸に温度を採った昇温特性グラフ、(d)が横軸に管体上の位置を採り縦軸に温度を採った温度分布グラフである。Example 1 of the present invention shows the structure and operating characteristics of the high-temperature fluid heating device, (a) is a longitudinal front view of the main part with the heat insulating material and support legs removed, (b) is a circuit block diagram, (c) ) Is a temperature rise characteristic graph in which elapsed time is taken on the horizontal axis and temperature is taken on the vertical axis, and (d) is a temperature distribution graph in which the position on the tube is taken on the horizontal axis and the temperature is taken on the vertical axis. 本発明の実施例2について、高温流体加熱装置の構造を示し、(a)が左側面図、(b)が断熱材を外したところの正面図、(c)が他の高温流体加熱装置の左側面図、(d)が断熱材を外したところの正面図である。About Example 2 of this invention, the structure of a high temperature fluid heating apparatus is shown, (a) is a left view, (b) is the front view of the place which removed the heat insulating material, (c) is another high temperature fluid heating apparatus. The left side view, (d) is a front view of the place where the heat insulating material is removed. 小流量時の課題を示し、横軸に管体上の位置を採り縦軸に温度を採った温度分布グラフである。It is the temperature distribution graph which showed the subject at the time of small flow volume, took the position on a tubular body on the horizontal axis, and took temperature on the vertical axis | shaft. 本発明の実施例3について、高温流体加熱装置の構造を示し、(a)が断熱材や支持脚などを外した要部の縦断正面図、(b)が回路ブロック図、(c)が断熱材や支持脚などを外した要部の縦断正面図である。About Example 3 of this invention, the structure of a high temperature fluid heating apparatus is shown, (a) is a longitudinal front view of the principal part which removed the heat insulating material, the support leg, etc., (b) is a circuit block diagram, (c) is heat insulation. It is a vertical front view of the principal part which removed the material, the support leg, etc. その動作特性を示し、(a)が横軸に経過時間を採り縦軸に温度を採った昇温特性グラフ、(b)〜(d)が何れも横軸に管体上の位置を採り縦軸に温度を採った温度分布グラフであり、(b)がコイル移動前の温度分布、(c)がコイル移動後の温度分布、(d)が流量の影響も反映したコイル移動後の温度分布である。The operating characteristics are shown, (a) is a temperature rise characteristic graph with elapsed time on the horizontal axis and temperature on the vertical axis, and (b) to (d) are vertical positions with the position on the tube taken on the horizontal axis. It is the temperature distribution graph which took temperature on the axis | shaft, (b) is the temperature distribution before coil movement, (c) is the temperature distribution after coil movement, (d) is the temperature distribution after coil movement which also reflected the influence of flow volume. It is. 本発明の実施例4について、移動制御の他の構成例を示し、(a)〜(b)何れも横軸に非磁性耐熱材部の温度を採り縦軸に誘導コイルの位置を採った制御特性グラフであり、(a)が単純ヒステリシス特性の場合、(b)が比例制御にヒステリシスを組み合わせた特性の場合である。About Example 4 of this invention, the other structural example of a movement control is shown, and (a)-(b) all take the temperature of the nonmagnetic heat-resistant material part on the horizontal axis, and take the position of the induction coil on the vertical axis It is a characteristic graph, (a) is a simple hysteresis characteristic, (b) is the case of the characteristic which combined hysteresis with proportional control. 本発明の実施例5について、高温流体加熱装置の構造を示し、(a)〜(c)何れも断熱材や支持脚などを外した要部の縦断正面図であり、(a)がコイル移動前の状態、(b)がコイル移動中の状態、(c)がコイル移動後の状態である。About Example 5 of this invention, the structure of a high-temperature fluid heating apparatus is shown, (a)-(c) are all the vertical front views of the principal part which removed the heat insulating material, the support leg, etc., (a) is a coil movement The previous state, (b) is the state during coil movement, and (c) is the state after coil movement. 従来の過熱蒸気発生装置を示し、(a)が左側面図、(b)が断熱材を外したところの正面図、(c)が温度制御回路や他の連携装置も含めた全体ブロック図、(d)が温度制御回路のブロック図、(e)が他の過熱蒸気発生装置の左側面図、(f)が断熱材を外したところの正面図である。The conventional superheated steam generator is shown, (a) is a left side view, (b) is a front view where the heat insulating material is removed, (c) is an overall block diagram including a temperature control circuit and other cooperating devices, (D) is a block diagram of a temperature control circuit, (e) is a left side view of another superheated steam generator, and (f) is a front view of a place where a heat insulating material is removed. 従来の過熱蒸気発生装置の昇温特性を示し、(a)〜(c)何れも横軸が経過時間で縦軸が温度のグラフであり、(a)が電磁誘導発熱体に非磁性導電性耐熱材を用いた場合の昇温特性グラフ、(b)が電磁誘導発熱体に磁性導電性耐熱材を用い且つキュリー温度より低い温度の物性に電磁誘導条件を適合させた場合の昇温特性グラフ、(c)が電磁誘導発熱体に磁性導電性耐熱材を用い且つキュリー温度より高い温度の物性に電磁誘導条件を適合させた場合の昇温特性グラフである。The temperature rise characteristics of a conventional superheated steam generator are shown, and in each of (a) to (c), the horizontal axis is the elapsed time and the vertical axis is the temperature, and (a) is a non-magnetic conductive material for the electromagnetic induction heating element. Temperature rise characteristic graph when heat-resistant material is used, and (b) is a temperature rise characteristic graph when magnetically conductive heat-resistant material is used for the electromagnetic induction heating element and the electromagnetic induction conditions are adapted to physical properties lower than the Curie temperature. (C) is a temperature rise characteristic graph when a magnetic conductive heat-resistant material is used for the electromagnetic induction heating element and the electromagnetic induction conditions are adapted to the physical properties higher than the Curie temperature.

このような本発明の高温流体加熱装置について、これを実施するための具体的な形態を、以下の実施例1〜5により説明する。
図1に示した実施例1は、上述した解決手段1(出願当初の請求項1,2)を具現化したものであり、図2(a),(b)に示した実施例2は、その変形例である。また、図3は更なる課題の説明図であり、図4〜5に示した実施例3は、上述した解決手段2をコイル長固定態様(出願当初の請求項3,4)で具現化したものであり、図6(a),(b)に示した実施例4は、その変形例である。さらに、図7に示した実施例5は、上述した解決手段2をコイル伸縮態様(出願当初の請求項3,5)で具現化したものである。
なお、それらの図示に際し従来と同様の構成要素には同一の符号を付して示したので、重複する再度の説明は割愛し、以下、従来との相違点を中心に説明する。
About the high temperature fluid heating apparatus of this invention, the specific form for implementing this is demonstrated by the following Examples 1-5.
The embodiment 1 shown in FIG. 1 embodies the above-described solution 1 (claims 1 and 2 at the beginning of the application), and the embodiment 2 shown in FIGS. 2 (a) and 2 (b) This is a modified example. FIG. 3 is an explanatory view of a further problem. In the third embodiment shown in FIGS. 4 to 5, the above-described solution 2 is embodied in a coil length fixing mode (claims 3 and 4 at the beginning of the application). Example 4 shown in FIGS. 6A and 6B is a modification thereof. Further, the fifth embodiment shown in FIG. 7 embodies the solution 2 described above in a coil expansion / contraction mode (claims 3 and 5 at the beginning of the application).
In the drawings, the same reference numerals are given to the same components as those in the prior art, and therefore, repeated explanations are omitted. Hereinafter, the differences from the prior art will be mainly described.

本発明の高温流体加熱装置の実施例1について、その具体的な構成を、図面を引用して説明する。図1は(a)が断熱材や支持脚などを外した高温流体加熱装置40の要部の縦断正面図、(b)が制御回路等のブロック図である。   A specific configuration of the high-temperature fluid heating apparatus according to the first embodiment of the present invention will be described with reference to the drawings. FIG. 1A is a longitudinal front view of a main part of a high-temperature fluid heating apparatus 40 with the heat insulating material and support legs removed, and FIG. 1B is a block diagram of a control circuit and the like.

この高温流体加熱装置40が既述した過熱蒸気発生装置10と相違するのは、並列配置された複数本の管体13を装備していた加熱部12が、異材連結管体43を一本だけ装備した加熱部42になっている点である。
管体43は単一材種のものから異材連結管体に変更されているが、その他は既述のものを引き継いでいる。具体的には、一端が導入部11に連結され他端が吐出部16に連結されていて中空が加熱対象流体の流路をなしていることや、発熱体を兼ねていること、管体43の外周部を囲むところに誘導コイル17が配置されていること、管体の中空部を通過する流体の流れを乱す邪魔体が内挿されていても良いことは、従来と同じである。
This high-temperature fluid heating device 40 is different from the superheated steam generator 10 described above in that the heating unit 12 equipped with a plurality of tubes 13 arranged in parallel has only one dissimilar material connecting tube 43. It is the point which becomes the heating part 42 equipped.
The pipe body 43 has been changed from a single material type to a dissimilar material connection pipe body, but the others have succeeded to those already described. Specifically, one end is connected to the introduction part 11 and the other end is connected to the discharge part 16 so that the hollow forms a flow path of the fluid to be heated, doubles as a heating element, and the tube 43 It is the same as in the past that the induction coil 17 is disposed in a place surrounding the outer peripheral portion, and that a baffle that disturbs the flow of fluid passing through the hollow portion of the tubular body may be inserted.

誘導コイル17と管体43との間に介在している図示しない断熱材や、誘導コイル17の通電を担う温度制御回路23と高周波電源24も引き継がれている。温度制御回路23のPID演算回路への設定温度は応用目的に対応した例えば1000℃の制御目標温度Dに設定されていて、吐出流体温度計22の検出温度Tbを制御目標温度Dに近づけるようなコイル電流Ibが高周波電源24から誘導コイル17に供給されるようになっている。なお、温度計21の検出温度Taと発熱体上限温度Saとを比較して警報信号Aaを出力する比較演算回路の部分は、図示を割愛したが、引き継いでも良い。   A heat insulating material (not shown) interposed between the induction coil 17 and the tube 43, a temperature control circuit 23 responsible for energization of the induction coil 17, and a high-frequency power source 24 are also taken over. The set temperature for the PID calculation circuit of the temperature control circuit 23 is set to a control target temperature D of, for example, 1000 ° C. corresponding to the application purpose, and the detected temperature Tb of the discharge fluid thermometer 22 is brought close to the control target temperature D. The coil current Ib is supplied from the high frequency power supply 24 to the induction coil 17. In addition, although the illustration of the comparison arithmetic circuit portion that compares the detected temperature Ta of the thermometer 21 with the heating element upper limit temperature Sa and outputs the alarm signal Aa is omitted, it may be taken over.

異材連結管体43は、導入部11に連なる導入側部分44と吐出部16に連なる吐出側部分45とを溶接等にて剛に且つ密に連結したものであり、導入側部分44には、SUS310やインコネル600などの使い易い非磁性導電性耐熱材からなる管体が採用され、吐出側部分45には、カンタルなどの使い易い磁性導電性耐熱材からなる管体が採用されている。また、それらの導電性耐熱材の採用に際しては、導入側部分44の非磁性導電性耐熱材の上限温度Cが吐出側部分45の磁性導電性耐熱材のキュリー温度Aより高くなるよう、選定条件が課されて、例えば、非磁性導電性耐熱材上限温度Cが800℃程度になり、キュリー温度Aが600℃になっている。   The dissimilar material connecting tube 43 is formed by rigidly and tightly connecting the introduction side portion 44 connected to the introduction portion 11 and the discharge side portion 45 continuous to the discharge portion 16 by welding or the like. A tube made of an easy-to-use nonmagnetic conductive heat-resistant material such as SUS310 or Inconel 600 is adopted, and a tube made of an easy-to-use magnetic conductive heat-resistant material such as Kanthal is adopted for the discharge side portion 45. Further, when these conductive heat-resistant materials are used, the selection condition is set so that the upper limit temperature C of the non-magnetic conductive heat-resistant material in the introduction side portion 44 is higher than the Curie temperature A of the magnetic conductive heat-resistant material in the discharge side portion 45. For example, the nonmagnetic conductive heat-resistant material upper limit temperature C is about 800 ° C., and the Curie temperature A is 600 ° C.

加熱対象の流体に対する制御目標温度Dが従来の目標温度Gbより高くなっていて伝熱に長い流路が必要になる等のため、異材連結管体43の全長が従来より長くなった場合、誘導コイル17の全長も同じく伸長されて、誘導コイル17は、異材連結管体43の導入側部分44も異材連結管体43の吐出側部分45も囲む状態で固定される。長さは応用目的に応じて適宜調整されるが、誘導コイル17の個数は一本のままであり、高周波電源24の給電線は一対で足りている。異材連結管体43の全長に占める導入側部分44の長さと吐出側部分45の長さの割合も応用目的に応じて適宜調整され、昇温時間の短縮や原価の低減という観点からは非磁性導電性耐熱材の導入側部分44の長さの割合が増やされ、過熱防止の観点からは磁性導電性耐熱材の吐出側部分45の長さの割合が増やされる。   If the control target temperature D for the fluid to be heated is higher than the conventional target temperature Gb and a long flow path is required for heat transfer, etc. The entire length of the coil 17 is also extended, and the induction coil 17 is fixed so as to surround the introduction side portion 44 of the dissimilar material connecting tube body 43 and the discharge side portion 45 of the dissimilar material connecting tube body 43. The length is appropriately adjusted according to the application purpose, but the number of induction coils 17 remains one, and a pair of power supply lines for the high-frequency power source 24 is sufficient. The ratio of the length of the introduction side portion 44 and the length of the discharge side portion 45 in the total length of the dissimilar material connecting pipe body 43 is also appropriately adjusted according to the application purpose, and is non-magnetic from the viewpoint of shortening the heating time and cost. The ratio of the length of the introduction side portion 44 of the conductive heat-resistant material is increased, and the ratio of the length of the discharge side portion 45 of the magnetic conductive heat-resistant material is increased from the viewpoint of preventing overheating.

この実施例1の高温流体加熱装置40について、その使用態様及び動作を、図面を引用して説明する。図1は、(c)が横軸に経過時間を採り縦軸に温度を採った昇温特性グラフ、(d)が横軸に管体上の位置を採り縦軸に温度を採った温度分布グラフである。
基本的な使い方や動作は既述した従来例と同様なので、繰り返しとなる説明は割愛し、以下、異材連結管体43の導入によって改良された昇温特性を中心に説明する。
The use mode and operation of the high-temperature fluid heating apparatus 40 of the first embodiment will be described with reference to the drawings. 1 (c) is a temperature rise characteristic graph in which elapsed time is taken on the horizontal axis and temperature is taken on the vertical axis, and (d) is a temperature distribution in which the position on the tube is taken on the horizontal axis and the temperature is taken on the vertical axis. It is a graph.
Since the basic usage and operation are the same as those of the conventional example described above, repeated description will be omitted, and hereinafter, the temperature rise characteristics improved by the introduction of the dissimilar material connecting pipe body 43 will be mainly described.

ここでも(図1(c)参照)、Aは例えば600℃のキュリー温度を示し、Cは例えば800℃の非磁性導電性耐熱材上限温度を示し、Dは例えば1000℃に設定された高めの制御目標温度を示しているものとする。また、誘導コイル17の径その他のコイル形状や高周波電源24の出力電流の周波数その他の高周波印加条件は、異材連結管体43の吐出側部分45の磁性導電性耐熱材に係るキュリー温度Aより高い温度の物性に適合するよう、調整が済んでいるものとする。さらに、それに随伴して誘導コイル17等と異材連結管体43の導入側部分44もほぼ適合するが、導入側部分44にも高い適合度を求める場合は設計製作時に予め導入側部分44の外径等が微調整されているものとする。   Here again (see FIG. 1 (c)), A indicates the Curie temperature of, for example, 600 ° C., C indicates the upper limit temperature of the nonmagnetic conductive heat-resistant material, for example, 800 ° C., and D is a higher value set, for example, 1000 ° C. It is assumed that the control target temperature is indicated. Further, the diameter of the induction coil 17 and other coil shapes, the frequency of the output current of the high frequency power supply 24 and other high frequency application conditions are higher than the Curie temperature A related to the magnetic conductive heat-resistant material of the discharge side portion 45 of the dissimilar material connecting tube 43. It is assumed that adjustments have been made to suit the physical properties of the temperature. In addition, the induction coil 17 and the like and the introduction side portion 44 of the dissimilar material connecting pipe body 43 are substantially compatible with each other. It is assumed that the diameter is finely adjusted.

そして、時刻T0に通電と流体供給とが開始すると、電磁誘導加熱が行われるが、キュリー温度Aに未達の間は、異材連結管体43のうち吐出側部分45に投入電力が集中するため、吐出側部分45が有効に発熱するのに対し、導入側部分44はあまり発熱しない。それでも電力の一部による発熱と、吐出側部分45から熱伝導により導入側部分44も昇温する。その昇温速度は(図中の実線グラフを参照)、管体全長域を磁性導電性耐熱材にしたとき(図中の二点鎖線グラフを参照)より可成り速く、管体全長域を非磁性導電性耐熱材にしたとき(図中の一点鎖線グラフを参照)に近づく。   When energization and fluid supply start at time T0, electromagnetic induction heating is performed. However, while the Curie temperature A is not reached, the input power concentrates on the discharge side portion 45 of the dissimilar material connecting tube 43. The discharge side portion 45 generates heat effectively, whereas the introduction side portion 44 does not generate much heat. Nevertheless, the introduction side portion 44 also rises in temperature due to heat generated by part of the power and heat conduction from the discharge side portion 45. The rate of temperature rise (see the solid line graph in the figure) is considerably faster than when the entire length of the tube is made of a magnetic conductive heat-resistant material (see the two-dot chain line in the figure). It approaches when it is made a magnetic conductive heat-resistant material (see the one-dot chain line graph in the figure).

それから、吐出側部分45の温度がキュリー温度Aに達しそれを超えると、吐出側部分45の非磁性化という物性変化によって吐出側部分45も電磁誘導条件が適合することになるため、異材連結管体43が全体で有効に発熱するので、昇温速度が加速されて、昇温時間が短縮される。非磁性導電性耐熱材上限温度Cへの到達時間が従来の時間T1の数割ほど長い時間T5(=T1×(1.3〜1.7))になり、制御目標温度Dへの到達時間も従来の仮想時間T2の数割ほど長い時間T6(=T1×(1.2〜1.6))になる。この時間T5,T6は、非磁性導電性耐熱材か磁性導電性耐熱材を単独で採用したときの時間T3,T4に比べて、数分の一((1/(2〜4))に短縮されている。   Then, when the temperature of the discharge side portion 45 reaches the Curie temperature A and exceeds it, the discharge side portion 45 also conforms to the electromagnetic induction conditions due to the change in physical properties of the discharge side portion 45, so that the dissimilar material connecting pipe Since the body 43 generates heat effectively as a whole, the heating rate is accelerated and the heating time is shortened. The time to reach the nonmagnetic conductive heat-resistant material upper limit temperature C is a time T5 (= T1 × (1.3 to 1.7)) that is about several tenths of the conventional time T1, and the time to reach the control target temperature D Is a time T6 (= T1 × (1.2 to 1.6)) which is longer by several tens of the conventional virtual time T2. These times T5 and T6 are reduced to a fraction of ((1 / (2-4)) compared to times T3 and T4 when a nonmagnetic conductive heat-resistant material or a magnetic conductive heat-resistant material is employed alone. Has been.

また(図1(d)参照)、加熱対象の流体の流量が多すぎず少なすぎず適正範囲に収まっていれば、流体の温度が導入部11から吐出部16へ単調に増加するので、流体を通過させながら伝熱を行う異材連結管体43における温度分布も、導入側部分44から吐出側部分45へ単調に増加するものとなる。そのため、導入側部分44の温度は、最も熱くなる吐出側部分45との連結部であっても、非磁性導電性耐熱材上限温度Cを超えることがないので、導入側部分44は長期使用に耐えることとなる。なお、制御目標温度Dより上限温度の高い吐出側部分45は流体の有無に拘わらず長期使用に耐えられる。   In addition, if the flow rate of the fluid to be heated is not too high and not too low and is within an appropriate range (see FIG. 1D), the temperature of the fluid increases monotonically from the introduction unit 11 to the discharge unit 16, so that the fluid The temperature distribution in the dissimilar material connecting pipe 43 that conducts heat while passing the gas also monotonously increases from the introduction side portion 44 to the discharge side portion 45. Therefore, the temperature of the introduction side portion 44 does not exceed the upper limit temperature C of the non-magnetic conductive heat-resistant material even if it is a connecting portion with the discharge side portion 45 that becomes the hottest, so the introduction side portion 44 can be used for a long time. It will endure. In addition, the discharge side part 45 whose upper limit temperature is higher than the control target temperature D can withstand long-term use regardless of the presence or absence of fluid.

本発明の高温流体加熱装置の実施例2について、その具体的な構成を、図面を引用して説明する。図2(a),(b)は、高温流体加熱装置47の要部構造を示し、(a)が左側面図、(b)が断熱材を外したところの正面図である。また、図2(c),(d)は、他の高温流体加熱装置48の要部構造を示し、(c)が左側面図、(d)が断熱材を外したところの正面図である。   A specific configuration of the high-temperature fluid heating apparatus according to the second embodiment of the present invention will be described with reference to the drawings. FIGS. 2A and 2B show the main structure of the high-temperature fluid heating device 47, where FIG. 2A is a left side view, and FIG. 2 (c) and 2 (d) show the main structure of another high-temperature fluid heating device 48, (c) is a left side view, and (d) is a front view with the heat insulating material removed. .

高温流体加熱装置48が高温流体加熱装置47と相違するのは、誘導コイル17が捲回状態の異なる誘導コイル49になっている点である。誘導コイル17は捲回密度が一定であるが、誘導コイル49は、その捲回密度が、既述した誘導コイル31のように均一でなくなっているが、誘導コイル31と異なり導入部11寄りでは密に吐出部16寄りでは粗になっている。この構成により、磁性導電性耐熱材の温度がキュリー温度に未達の間の投入電力の集中が緩和され、管体全長域を非磁性導電性耐熱材とした場合の昇温速度により近づけることが可能となる。
高温流体加熱装置47,48が上述した実施例1の高温流体加熱装置40と相違するのは、多数本の異材連結管体43が並列配置されている点である。
この場合、発熱管体の複数並列配置等による誘導加熱の能率向上といった利点や、コイル密度の変更による昇温速度の向上といった利点も、加わる。
The high-temperature fluid heating device 48 is different from the high-temperature fluid heating device 47 in that the induction coil 17 is an induction coil 49 having a different winding state. Although the winding density of the induction coil 17 is constant, the winding density of the induction coil 49 is not uniform as in the induction coil 31 described above. Closer to the discharge part 16, it is rough. With this configuration, the concentration of input power while the temperature of the magnetic conductive heat-resistant material does not reach the Curie temperature is alleviated, and the temperature rise rate when the entire length of the tube is made of a non-magnetic conductive heat-resistant material can be made closer. It becomes possible.
The high-temperature fluid heating devices 47 and 48 are different from the high-temperature fluid heating device 40 of the first embodiment described above in that a large number of different-material connecting tube bodies 43 are arranged in parallel.
In this case, the advantage of improving the efficiency of induction heating by arranging a plurality of heat generating tubes in parallel, and the advantage of improving the heating rate by changing the coil density are also added.

[実施例1,2に係る小流量時の課題]
図3は、横軸に異材連結管体43上の位置を採り縦軸に各位置の温度を採った温度分布グラフであり、高温流体加熱装置40を小流量で使用したときに生じることのある課題を示している。
[Problems at a small flow rate according to Examples 1 and 2]
FIG. 3 is a temperature distribution graph in which the position on the dissimilar material connecting tube 43 is taken on the horizontal axis and the temperature of each position is taken on the vertical axis, which may occur when the high-temperature fluid heating device 40 is used at a small flow rate. Indicates a problem.

高温流体加熱装置40の場合、誘導コイル17が常に固定されているうえ異材連結管体43の導入側部分44も吐出側部分45もその外周部を囲っているため、流体吐出温度や流体処理温度が制御目標温度Dに維持されている状態で、加熱対象の流体の流量を絞って小さくしすぎると、導入側部分44が非磁性導電性耐熱材上限温度Cを超えて不所望に過熱されることがある。適正流量では管体43の温度分布が直線に近かったが(破線参照)、流量が小さくなると、管体43の導入側部分44に対する温度抑制能力が弱まって、管体43の温度分布が上に凸の弓形になってくる(実線参照)。そのため、導入側部分44のうち吐出側部分45との連結部に生じる最高温度が、流量減少とともに上昇して、適正範囲外の微小流量では非磁性導電性耐熱材上限温度Cを超えてしまうことにもなる。   In the case of the high-temperature fluid heating device 40, the induction coil 17 is always fixed and the introduction side portion 44 and the discharge side portion 45 of the dissimilar material connecting tube 43 surround the outer peripheral portion. Is maintained at the control target temperature D, if the flow rate of the fluid to be heated is reduced and made too small, the introduction side portion 44 exceeds the nonmagnetic conductive heat-resistant material upper limit temperature C and is undesirably overheated. Sometimes. At an appropriate flow rate, the temperature distribution of the tube body 43 was close to a straight line (see the broken line), but when the flow rate was reduced, the temperature suppression capability for the introduction side portion 44 of the tube body 43 was weakened, and the temperature distribution of the tube body 43 increased. It becomes a convex bow (see solid line). Therefore, the maximum temperature generated in the connecting portion of the introduction side portion 44 to the discharge side portion 45 rises with a decrease in the flow rate, and exceeds the nonmagnetic conductive heat resistant material upper limit temperature C at a minute flow rate outside the appropriate range. It also becomes.

本発明の高温流体加熱装置の実施例3について、その具体的な構成を、図面を引用して説明する。図4は、(a)が断熱材や支持脚などを外した高温流体加熱装置50の要部の縦断正面図、(b)が制御回路等のブロック図、(c)が断熱材や支持脚などを外した高温流体加熱装置50の要部の縦断正面図であり、(a)はコイル移動前の状態を示し、(c)はコイル移動後の状態を示している。   About the Example 3 of the high temperature fluid heating apparatus of this invention, the specific structure is demonstrated with reference to drawings. 4A is a longitudinal sectional front view of the main part of the high-temperature fluid heating apparatus 50 with the heat insulating material and the support legs removed, FIG. 4B is a block diagram of the control circuit, and FIG. 4C is the heat insulating material and the support legs. It is a longitudinal front view of the principal part of the high-temperature fluid heating apparatus 50 which removed etc., (a) shows the state before coil movement, (c) has shown the state after coil movement.

この高温流体加熱装置50が上述した実施例1の高温流体加熱装置40と相違するのは、誘導コイル17の長さL1より異材連結管体43の導入側部分44の長さL2の方が少し長くなっている点と、誘導コイル17を長さ固定のまま保持しているコイル保持部54aを軸方向に距離L4ほど移動させる移動機構54が追加装備された点と、異材連結管体43の吐出側部分45のうち導入側部分44に近いところの温度を検出するために例えば熱電対からなる磁性耐熱材部温度計52が吐出側部分45に付設された点と、この温度計52の検出温度に基づいて移動機構54の動作を制御する移動制御回路53が設けられた点である。なお、図では視認しやすいよう温度計52が立設されているが、温度計52やその配線は誘導コイル17の移動を妨げないよう不図示の断熱材に寄り添っている。   This high-temperature fluid heating device 50 is different from the high-temperature fluid heating device 40 of the first embodiment described above in that the length L2 of the introduction side portion 44 of the dissimilar material connecting tube body 43 is slightly longer than the length L1 of the induction coil 17. The point which becomes long, the point where the moving mechanism 54 which moves the coil holding | maintenance part 54a holding the induction coil 17 fixed length about the distance L4 in the axial direction was additionally equipped, and the dissimilar material connection pipe body 43 In order to detect the temperature of the discharge side portion 45 near the introduction side portion 44, for example, a magnetic refractory material portion thermometer 52 made of a thermocouple is attached to the discharge side portion 45, and detection of this thermometer 52 A movement control circuit 53 for controlling the operation of the movement mechanism 54 based on the temperature is provided. In the figure, a thermometer 52 is erected for easy visual recognition, but the thermometer 52 and its wiring are close to a heat insulating material (not shown) so as not to hinder the movement of the induction coil 17.

異材連結管体43の吐出側部分45の長さL3は(図4(a)参照)、導入側部分44の長さL2より短く、さらには誘導コイル17の長さL1よりも短い。また、誘導コイル17の可動距離L4は、導入側部分44の長さL2と吐出側部分45の長さL3とを合わせた異材連結管体43の全長L2+L3から誘導コイル17の長さL1を引いた長さに、等しいか、少し短い。   The length L3 of the discharge side portion 45 of the dissimilar material connecting tube body 43 (see FIG. 4A) is shorter than the length L2 of the introduction side portion 44 and further shorter than the length L1 of the induction coil 17. Further, the movable distance L4 of the induction coil 17 is obtained by subtracting the length L1 of the induction coil 17 from the total length L2 + L3 of the dissimilar material connecting tube body 43 that is obtained by combining the length L2 of the introduction side portion 44 and the length L3 of the discharge side portion 45. Is equal to or slightly shorter than the length.

移動機構54は、モータ駆動のボールネジ機構またはエア駆動のシリンダ機構といった直線運動機構からなり、移動制御回路53は(図4(b)参照)、温度計52の検出温度に基づいて誘導コイル17の位置決めを二者択一で行う例えばコンパレータ等の電子回路と、決めた位置へコイル保持部54aを移動させるために移動機構54の駆動源を制御する例えばモータドライバ又はバルブ駆動リレー等の電気回路からなる。   The moving mechanism 54 is composed of a linear motion mechanism such as a motor-driven ball screw mechanism or an air-driven cylinder mechanism, and the movement control circuit 53 (see FIG. 4B) is based on the temperature detected by the thermometer 52. For example, an electronic circuit such as a comparator that performs positioning in an alternative manner, and an electric circuit such as a motor driver or a valve drive relay that controls the drive source of the moving mechanism 54 to move the coil holding portion 54a to a predetermined position. Become.

そして、具体的には、吐出側部分45のキュリー温度Aと導入側部分44の非磁性導電性耐熱材上限温度Cとの中間の値に予め設定されている閾値温度Eを参照して(図4(b)参照)、磁性耐熱材部温度計52の検出温度が閾値温度Eを下回ったときや下回っているときには、誘導コイル17を異材連結管体43の導入側部分44の方へに目一杯寄せて誘導コイル17を吐出側部分45から外すようになっている(図4(a)参照)。また、磁性耐熱材部温度計52の検出温度が閾値温度Eを上回ったときや上回っているときには、誘導コイル17を異材連結管体43の吐出側部分45の方へ目一杯寄せて誘導コイル17に吐出側部分45を囲わせるようになっている(図4(c)参照)。   Specifically, referring to a threshold temperature E preset to an intermediate value between the Curie temperature A of the discharge side portion 45 and the nonmagnetic conductive heat-resistant material upper limit temperature C of the introduction side portion 44 (see FIG. 4 (b)), when the temperature detected by the magnetic heat-resistant material portion thermometer 52 is below or below the threshold temperature E, the induction coil 17 is directed toward the introduction side portion 44 of the dissimilar material connecting tube 43. The induction coil 17 is removed from the discharge side portion 45 when it is fully filled (see FIG. 4A). Further, when the temperature detected by the magnetic heat resistant material thermometer 52 exceeds or exceeds the threshold temperature E, the induction coil 17 is brought close to the discharge side portion 45 of the dissimilar material connecting pipe body 43 to induce the induction coil 17. The discharge-side portion 45 is surrounded by (see FIG. 4C).

この実施例3の高温流体加熱装置50について、その使用態様及び動作を、図面を引用して説明する。図5は、その動作特性を示し、(a)が横軸に経過時間を採り縦軸に温度を採った昇温特性グラフ、(b)〜(d)が何れも横軸に異材連結管体43上の位置を採り縦軸に温度を採った温度分布グラフであり、(b)がコイル移動前の温度分布、(c)がコイル移動後の温度分布、(d)が流量の影響も反映したコイル移動後の温度分布である。ここでも、昇温特性を中心に説明する。   The use mode and operation of the high-temperature fluid heating apparatus 50 of Example 3 will be described with reference to the drawings. FIG. 5 shows the operation characteristics, (a) is a temperature rise characteristic graph in which elapsed time is taken on the horizontal axis and temperature is taken on the vertical axis, and (b) to (d) are all dissimilar material connecting pipes on the horizontal axis. 43 is a temperature distribution graph in which the position on 43 is taken and the temperature is plotted on the vertical axis, (b) is the temperature distribution before moving the coil, (c) is the temperature distribution after moving the coil, and (d) is also the effect of the flow rate. It is the temperature distribution after coil movement. Here, the temperature rise characteristics will be mainly described.

時刻T0に通電と流体供給とを開始すると、電磁誘導加熱が行われるが、温度計52の検出温度が閾値温度Eに達するまでは、誘導コイル17が異材連結管体43の導入側部分44の非磁性導電性耐熱材にだけ掛かっており、その状態では誘導コイル17が全長域で電磁誘導条件に適合しているので、導入側部分44が速やかに昇温し、その熱が直接伝導や流体介在伝達にて吐出側部分45にも運ばれて、吐出側部分45も昇温する。その昇温速度は(図5(a)中の実線グラフを参照)、誘導コイル17が吐出側部分45にも掛かっている高温流体加熱装置50の場合(図中の二点鎖線グラフを参照)よりも速く、管体全長域を非磁性導電性耐熱材にしたとき(図中の一点鎖線グラフを参照)と遜色ない。しかも、昇温速度の向上に伴って、その分だけ、温度制御能力も向上する。   When energization and fluid supply are started at time T0, electromagnetic induction heating is performed. Until the temperature detected by the thermometer 52 reaches the threshold temperature E, the induction coil 17 is connected to the introduction-side portion 44 of the dissimilar material connecting pipe body 43. Since it is only applied to the non-magnetic conductive heat-resistant material, and the induction coil 17 conforms to the electromagnetic induction conditions over the entire length in this state, the introduction side portion 44 quickly rises in temperature and the heat is directly conducted or fluidized. It is also carried to the discharge side portion 45 by intervening transmission, and the discharge side portion 45 also rises in temperature. The heating rate (see the solid line graph in FIG. 5A) is the case of the high-temperature fluid heating device 50 in which the induction coil 17 is also applied to the discharge side portion 45 (see the two-dot chain line graph in the figure). Faster than the case where the entire length of the tubular body is made of a non-magnetic conductive heat-resistant material (see the one-dot chain line graph in the figure). In addition, the temperature control capability is improved as much as the heating rate is increased.

それから、温度計52の検出温度が閾値温度Eに達しそれを超えると、誘導コイル17が異材連結管体43の導入側部分44から吐出側部分45へ移動するが、閾値温度Eが吐出側部分45の磁性導電性耐熱材のキュリー温度Aより高く設定されていることから、吐出側部分45でも誘導コイル17等と電磁誘導条件が適合するため、迅速な昇温速度が維持されるので、昇温時間は一層短縮される。そのため、高温流体加熱装置60の制御目標温度Dへの到達時間T7は、高温流体加熱装置50の制御目標温度Dへの到達時間T6より更に短縮されて、従来の仮想時間T2により近づく(=T1×(1.1〜1.3))。このように昇温速度が低温域から高温域まで迅速状態に維持されるので、温度制御能力も全温度域で良好である。   Then, when the detected temperature of the thermometer 52 reaches the threshold temperature E and exceeds the threshold temperature E, the induction coil 17 moves from the introduction side portion 44 of the dissimilar material connecting tube 43 to the discharge side portion 45, but the threshold temperature E is changed to the discharge side portion. 45 is set higher than the Curie temperature A of the magnetic conductive heat-resistant material, and the discharge side portion 45 is compatible with the induction coil 17 and the electromagnetic induction conditions, so that a rapid temperature rise rate is maintained. Warm time is further reduced. Therefore, the arrival time T7 of the high-temperature fluid heating device 60 to the control target temperature D is further shortened from the arrival time T6 of the high-temperature fluid heating device 50 to the control target temperature D, and approaches the conventional virtual time T2 (= T1). X (1.1-1.3)). As described above, since the temperature rising rate is maintained in a rapid state from the low temperature range to the high temperature range, the temperature control capability is also good in the entire temperature range.

また、異材連結管体43における温度分布を見ると、温度計52の検出温度が閾値温度Eに達するまでは(図5(b)参照)、導入側部分44しか発熱しないので、導入側部分44のうち吐出側部分45との連結部が最も高温になるが、それでも閾値温度Eを超えることはない。それから(図5(c)参照)、その最高温が閾値温度Eを超えると誘導コイル17が異材連結管体43の吐出側部分45の方へ寄せられるため、この状態では、導入側部分44の昇温が抑制されるので、吐出部16の温度が高温の制御目標温度Dになっても、異材連結管体43の導入側部分44の温度は非磁性導電性耐熱材上限温度Cを超えない。その導入側部分44の昇温抑制は小流量のときでも有効なので(図5(d)参照)、、加熱対象の流体の流量を適正範囲外の微小流量まで絞っても、異材連結管体43の導入側部分44が非磁性導電性耐熱材上限温度Cを超えてしまうことは、滅多にない。   Further, when looking at the temperature distribution in the dissimilar material connecting tube 43, only the introduction side portion 44 generates heat until the temperature detected by the thermometer 52 reaches the threshold temperature E (see FIG. 5B). Among them, the connecting portion with the discharge side portion 45 becomes the highest temperature, but the threshold temperature E is never exceeded. Then (see FIG. 5 (c)), when the maximum temperature exceeds the threshold temperature E, the induction coil 17 is moved toward the discharge side portion 45 of the dissimilar material connecting tube body 43. Since the temperature rise is suppressed, even if the temperature of the discharge section 16 reaches the high control target temperature D, the temperature of the introduction side portion 44 of the dissimilar material connecting pipe body 43 does not exceed the nonmagnetic conductive heat resistant material upper limit temperature C. . Since the temperature rise suppression of the introduction side portion 44 is effective even at a small flow rate (see FIG. 5D), even if the flow rate of the fluid to be heated is reduced to a minute flow rate outside the appropriate range, the dissimilar material connecting tube 43 Rarely exceeds the upper limit temperature C of the nonmagnetic conductive heat-resistant material.

本発明の高温流体加熱装置の実施例4について、その具体的な構成を、図面を引用して説明する。図6は、上述の高温流体加熱装置50の移動制御回路53の他の構成例を示し、(a)〜(b)何れも横軸に非磁性耐熱材部44の温度を採り縦軸に誘導コイル51の位置を採った制御特性グラフであり、(a)が単純ヒステリシス特性の場合、(b)が比例制御にヒステリシスを組み合わせた特性の場合である。   About the Example 4 of the high temperature fluid heating apparatus of this invention, the specific structure is demonstrated with reference to drawing. FIG. 6 shows another configuration example of the movement control circuit 53 of the high-temperature fluid heating device 50 described above, and (a) to (b) all take the temperature of the nonmagnetic heat-resistant material part 44 on the horizontal axis and guide on the vertical axis. It is the control characteristic graph which took the position of the coil 51, (a) is a simple hysteresis characteristic, (b) is the case of the characteristic which combined the hysteresis with proportional control.

移動制御回路53のコンパレータに例えばヒステリシスコンパレータを採用するとともに、閾値温度Eを低めの閾値温度E1と高めの閾値温度E2とに拡張して(図6(a)参照)、磁性耐熱材部温度計52の検出温度が閾値温度E2を上回ったときに誘導コイル17が吐出側部分45の方に寄り、非温度計52の検出温度が閾値温度E1を下回ったときに誘導コイル17が導入側部分44の方へ寄るようにすることにより、簡便に、微小な温度変動やノイズ等に起因して発生することのあるハンチング様の過剰な誘導コイル17の移動を回避することができる。   For example, a hysteresis comparator is used as the comparator of the movement control circuit 53, and the threshold temperature E is expanded to a lower threshold temperature E1 and a higher threshold temperature E2 (see FIG. 6A), and a magnetic heat resistant material thermometer. When the detected temperature of 52 exceeds the threshold temperature E2, the induction coil 17 approaches the discharge side portion 45, and when the detected temperature of the non-thermometer 52 falls below the threshold temperature E1, the induction coil 17 becomes the introduction side portion 44. By moving closer to this direction, it is possible to easily avoid the excessive movement of the hunting-like induction coil 17 that may occur due to minute temperature fluctuations, noise, or the like.

また(図6(b)参照)、上記のヒステリシスコンパレータに代えて例えばヒステリシスを持ったオペアンプを採用する等のことにより、温度計52の検出温度に応じて誘導コイル17が中間位置にも止まれるようにすれば、誘導コイル17の移動を常態では穏やかにしつつも即応の必要なときには誘導コイル17を迅速に移動させることができる。   Further, instead of the hysteresis comparator described above (see FIG. 6B), for example, by using an operational amplifier having hysteresis, the induction coil 17 can be stopped at the intermediate position according to the temperature detected by the thermometer 52. By doing so, it is possible to move the induction coil 17 quickly when it is necessary to respond promptly while the movement of the induction coil 17 is moderated.

本発明の高温流体加熱装置の実施例5について、その具体的な構成を、図面を引用して説明する。図7は、(a)〜(c)何れも断熱材や支持脚などを外した高温流体加熱装置60の要部の縦断正面図であり、(a)がコイル移動前の状態、(b)がコイル移動中の状態、(c)がコイル移動後の状態である。   A specific configuration of the high-temperature fluid heating apparatus according to the fifth embodiment of the present invention will be described with reference to the drawings. FIGS. 7A to 7C are vertical front views of essential parts of the high-temperature fluid heating device 60 with the heat insulating material and support legs removed, where FIG. 7A is a state before moving the coil, and FIG. Is the state during coil movement, and (c) is the state after coil movement.

この高温流体加熱装置60が上述した実施例3の高温流体加熱装置50と相違するのは、誘導コイル17を長さ固定のまま移動させる移動機構54が、誘導コイル17を伸縮させて移動させる伸縮機構61になっている点である。
この場合、誘導コイル17に損傷を与えない範囲で誘導コイル17の両端を個別に位置決めし移動させることができるので、設計や調整の自由度が増す。
This high-temperature fluid heating device 60 is different from the high-temperature fluid heating device 50 of the third embodiment described above in that the moving mechanism 54 that moves the induction coil 17 while keeping its length fixed expands and contracts the induction coil 17 to move. This is a mechanism 61.
In this case, since both ends of the induction coil 17 can be individually positioned and moved within a range in which the induction coil 17 is not damaged, the degree of freedom in design and adjustment is increased.

[その他]
上記実施例では、フィードバック制御の演算例としてPID演算を挙げたが、アプリケーションによっては、PI演算や,P演算でも良い。
[Others]
In the above embodiment, the PID calculation is given as an example of feedback control calculation. However, depending on the application, PI calculation or P calculation may be used.

本発明の高温流体加熱装置は、飽和蒸気を更に加熱する過熱蒸気発生装置に適用できる他、木質バイオマス等の熱分解ガスの改質、ダイオキシン等の有毒ガスの分解、各種ガスの加熱、低融点材料の加熱にも適用することができる。   The high-temperature fluid heating device of the present invention can be applied to a superheated steam generator for further heating saturated steam, reforming pyrolysis gas such as woody biomass, decomposition of toxic gas such as dioxin, heating of various gases, low melting point It can also be applied to heating of materials.

10…過熱蒸気発生装置(高温流体加熱装置)、
11…導入部、12…加熱部、13…管体(発熱体)、
16…吐出部、17…誘導コイル、21…発熱体温度計、
22…吐出蒸気温度計、23…温度制御回路、24…高周波電源、
25…飽和蒸気発生装置、26…過熱蒸気処理装置、
30…過熱蒸気発生装置、31…誘導コイル、
40…高温流体加熱装置、
42…加熱部、43…異材連結管体(発熱体)、
44…導入側部分(非磁性耐熱材)、45…吐出側部分(磁性耐熱材)、
47…高温流体加熱装置、48…高温流体加熱装置、49…誘導コイル、
50…高温流体加熱装置、
52…磁性耐熱材部温度計、53…移動制御回路、
54…移動機構、54a…コイル保持部、
60…高温流体加熱装置、61…伸縮機構
10 ... Superheated steam generator (high temperature fluid heating device),
DESCRIPTION OF SYMBOLS 11 ... Introduction part, 12 ... Heating part, 13 ... Tube (heating element),
16 ... discharge part, 17 ... induction coil, 21 ... heating element thermometer,
22 ... Discharge steam thermometer, 23 ... Temperature control circuit, 24 ... High frequency power supply,
25 ... Saturated steam generator, 26 ... Superheated steam treatment device,
30 ... Superheated steam generator, 31 ... Induction coil,
40 ... High temperature fluid heating device,
42 ... heating unit, 43 ... dissimilar material connecting pipe (heating element),
44 ... Introduction side part (non-magnetic heat resistant material), 45 ... Discharge side part (magnetic heat resistant material),
47 ... High temperature fluid heating device, 48 ... High temperature fluid heating device, 49 ... Induction coil,
50 ... High temperature fluid heating device,
52... Magnetic refractory material thermometer, 53 ... Movement control circuit,
54 ... Moving mechanism, 54a ... Coil holding part,
60 ... High-temperature fluid heating device, 61 ... Extension mechanism

Claims (5)

加熱対象の流体を導入する導入部と、その加熱流体を吐出する吐出部と、一端が前記導入部に連結され他端が前記吐出部に連結されて中空が流路をなす発熱体兼用の管体と、この管体の外周部を囲むところに配置されて通電時には前記管体を誘導加熱する誘導コイルとを備えた高温流体加熱装置において、前記管体のうち前記導入部に連なる導入側部分が非磁性導電性耐熱材からなり、前記管体のうち前記吐出部に連なる吐出側部分が磁性導電性耐熱材からなり、前記非磁性導電性耐熱材の上限温度が前記磁性導電性耐熱材のキュリー温度より高くなっていることを特徴とする高温流体加熱装置。   An introduction part for introducing a fluid to be heated, a discharge part for discharging the heated fluid, a pipe serving as a heating element in which one end is connected to the introduction part and the other end is connected to the discharge part, and a hollow forms a flow path In a high-temperature fluid heating apparatus comprising a body and an induction coil that is disposed around an outer periphery of the tube and that inductively heats the tube when energized, an introduction-side portion connected to the introduction portion of the tube Is made of a non-magnetic conductive heat-resistant material, a discharge side portion of the tubular body connected to the discharge portion is made of a magnetic conductive heat-resistant material, and an upper limit temperature of the non-magnetic conductive heat-resistant material is the magnetic conductive heat-resistant material. A high-temperature fluid heating apparatus characterized by being higher than the Curie temperature. 前記誘導コイルが前記管体の前記導入側部分も前記管体の前記吐出側部分も囲む状態で固定されていることを特徴とする請求項1記載の高温流体加熱装置。   2. The high-temperature fluid heating apparatus according to claim 1, wherein the induction coil is fixed so as to surround the introduction side portion of the tubular body and the discharge side portion of the tubular body. 前記誘導コイルを軸方向に移動させる移動機構と、前記管体の前記吐出側部分の温度を検出する温度計とが設けられ、その検出温度が前記磁性導電性耐熱材のキュリー温度より低いときには前記誘導コイルを前記移動機構にて前記管体の前記導入側部分に寄せて前記吐出側部分から外すが、前記検出温度が前記磁性導電性耐熱材のキュリー温度より高いときには前記非磁性導電性耐熱材の上限温度より低いうちに前記移動機構にて前記誘導コイルを前記管体の前記吐出側部分の方へ寄せて前記誘導コイルに前記吐出側部分を囲わせるようになっていることを特徴とする請求項1記載の高温流体加熱装置。   A moving mechanism for moving the induction coil in the axial direction and a thermometer for detecting the temperature of the discharge side portion of the tubular body are provided, and when the detected temperature is lower than the Curie temperature of the magnetic conductive heat-resistant material, When the detection temperature is higher than the Curie temperature of the magnetic conductive heat-resistant material, the induction coil is moved to the introduction-side portion of the tubular body by the moving mechanism and removed from the discharge-side portion. The induction coil is moved toward the discharge side portion of the tubular body by the moving mechanism while the temperature is lower than the upper limit temperature, and the discharge coil is surrounded by the induction coil. The high-temperature fluid heating apparatus according to claim 1. 前記移動機構が前記誘導コイルを長さ固定のまま移動させるものであることを特徴とする請求項3記載の高温流体加熱装置。   4. The high-temperature fluid heating apparatus according to claim 3, wherein the moving mechanism moves the induction coil with a fixed length. 前記移動機構が前記誘導コイルを伸縮させて移動させるものであることを特徴とする請求項3記載の高温流体加熱装置。   The high-temperature fluid heating apparatus according to claim 3, wherein the moving mechanism moves the induction coil by expanding and contracting.
JP2009019089A 2009-01-30 2009-01-30 High temperature fluid heating device Active JP5191410B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009019089A JP5191410B2 (en) 2009-01-30 2009-01-30 High temperature fluid heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009019089A JP5191410B2 (en) 2009-01-30 2009-01-30 High temperature fluid heating device

Publications (2)

Publication Number Publication Date
JP2010177069A JP2010177069A (en) 2010-08-12
JP5191410B2 true JP5191410B2 (en) 2013-05-08

Family

ID=42707796

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009019089A Active JP5191410B2 (en) 2009-01-30 2009-01-30 High temperature fluid heating device

Country Status (1)

Country Link
JP (1) JP5191410B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6371243B2 (en) * 2015-03-18 2018-08-08 トクデン株式会社 Superheated steam generator
JP2018105168A (en) * 2016-12-26 2018-07-05 株式会社クボタ Fluid heating device of engine
JP6621733B2 (en) * 2016-12-26 2019-12-18 株式会社クボタ Engine fluid heating device
JP7105419B2 (en) * 2018-02-13 2022-07-25 新日本美風株式会社 Superheated steam generation system
JP7065506B2 (en) * 2018-04-05 2022-05-12 トクデン株式会社 Superheated steam generator
JP7065509B2 (en) * 2018-04-17 2022-05-12 トクデン株式会社 Superheated steam generator and conductor tube
CN114959200B (en) * 2022-04-27 2023-02-03 兴化市天泰合金制品科技有限公司 Heat treatment device for machining wear-resistant, corrosion-resistant and heat-resistant materials

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
GB8823182D0 (en) * 1988-10-03 1988-11-09 Ici Plc Reactor elements reactors containing them & processes performed therein
JP3112555B2 (en) * 1992-03-23 2000-11-27 日本電子株式会社 High frequency induction heating device
JP4004128B2 (en) * 1998-02-10 2007-11-07 虹技株式会社 Gas body heating device
JP2000065312A (en) * 1998-06-10 2000-03-03 Kogi Corp High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material
JP3903339B2 (en) * 2001-11-13 2007-04-11 株式会社明電舎 Fluid heating device by electromagnetic induction
JP4113813B2 (en) * 2003-08-08 2008-07-09 日本アジャックス・マグネサーミック株式会社 Induction heating device
JP4153895B2 (en) * 2003-12-25 2008-09-24 新日本製鐵株式会社 Induction heating apparatus and induction heating method for metal strip
JP2007024336A (en) * 2005-07-12 2007-02-01 Dai Ichi High Frequency Co Ltd Superheated steam generating device

Also Published As

Publication number Publication date
JP2010177069A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP5191410B2 (en) High temperature fluid heating device
US20100213190A1 (en) Flow-through induction heater
RU2531292C2 (en) Heating cable with mineral insulation working on principle of skin effect
AU2014330053B2 (en) Smart susceptor for a shape memory alloy (SMA) actuator inductive heating system
KR102466168B1 (en) Superheated steam generator
JP2007024336A (en) Superheated steam generating device
JP6185692B2 (en) Electric heating device for pressurized fluid
JP2017144728A (en) Apparatus for induction heating and bending of thermoplastic composite tubes and method for using the same
JP2010501107A (en) Temperature cycling apparatus and method
US20220191980A1 (en) Electromagnetic induction continuous-flow water heater in an automatic beverage preparation machine
KR101705118B1 (en) The apparatus for controlling temperature of heating roller used in fusing device of image forming apparatus
JP4332469B2 (en) Heated steam generator
KR101667505B1 (en) High-frequency induction heating device and processing device
EP3760923A1 (en) Superheated steam generator and cooker
JP2010071548A (en) Electric instantaneous water heater
JP2005015906A (en) Induction-heating method for thin sheet-made article and apparatus therefor
JP4358701B2 (en) Induction heating device
JP2010500737A (en) Induction heating apparatus and method
JP2007080715A (en) Electromagnetic induction fluid heating device
CN204022875U (en) Load coil for Screw Parts
JP6586371B2 (en) Heating coil
JP2021025079A (en) Electromagnetic induction heating device
JP6985735B2 (en) Superheated steam furnace
KR100571680B1 (en) Apparatus for drying food using overheated steam produced by induction heating
CN208025814U (en) Electromagnetic induction water heater

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111110

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20130124

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130129

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130129

R150 Certificate of patent or registration of utility model

Ref document number: 5191410

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250