JP2000065312A - High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material - Google Patents

High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material

Info

Publication number
JP2000065312A
JP2000065312A JP10362042A JP36204298A JP2000065312A JP 2000065312 A JP2000065312 A JP 2000065312A JP 10362042 A JP10362042 A JP 10362042A JP 36204298 A JP36204298 A JP 36204298A JP 2000065312 A JP2000065312 A JP 2000065312A
Authority
JP
Japan
Prior art keywords
steam
electromagnetic induction
heating
temperature
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP10362042A
Other languages
Japanese (ja)
Inventor
Riyouhei Nanba
瞭平 難波
Takeshi Yamanaka
剛 山中
Taizo Kawamura
泰三 川村
Yoshitaka Uchibori
義隆 内堀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kogi Corp
Seta Giken KK
Original Assignee
Kogi Corp
Seta Giken KK
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kogi Corp, Seta Giken KK filed Critical Kogi Corp
Priority to JP10362042A priority Critical patent/JP2000065312A/en
Publication of JP2000065312A publication Critical patent/JP2000065312A/en
Pending legal-status Critical Current

Links

Classifications

    • BPERFORMING OPERATIONS; TRANSPORTING
    • B24GRINDING; POLISHING
    • B24BMACHINES, DEVICES, OR PROCESSES FOR GRINDING OR POLISHING; DRESSING OR CONDITIONING OF ABRADING SURFACES; FEEDING OF GRINDING, POLISHING, OR LAPPING AGENTS
    • B24B49/00Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation
    • B24B49/10Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means
    • B24B49/105Measuring or gauging equipment for controlling the feed movement of the grinding tool or work; Arrangements of indicating or measuring equipment, e.g. for indicating the start of the grinding operation involving electrical means using eddy currents
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22BMETHODS OF STEAM GENERATION; STEAM BOILERS
    • F22B1/00Methods of steam generation characterised by form of heating method
    • F22B1/28Methods of steam generation characterised by form of heating method in boilers heated electrically
    • F22B1/281Methods of steam generation characterised by form of heating method in boilers heated electrically other than by electrical resistances or electrodes
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F22STEAM GENERATION
    • F22GSUPERHEATING OF STEAM
    • F22G1/00Steam superheating characterised by heating method
    • F22G1/16Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil
    • F22G1/165Steam superheating characterised by heating method by using a separate heat source independent from heat supply of the steam boiler, e.g. by electricity, by auxiliary combustion of fuel oil by electricity

Abstract

PROBLEM TO BE SOLVED: To raise steam to an ultra-high temperature range of a specific temperature of higher by installing a plurality of heaters for heating by an electromagnetic induction in a passage of a nonmagnetic material, and forming a rearmost stage heater of the heaters of a heater containing carbon. SOLUTION: An electromagnetic induction heating means 3 has a first electromagnetic induction heater 5 for heating steam to a superheating region, and a second electromagnetic induction heater 6 for further superheating steam of the superheating region to an ultra-high temperature superheating region. The heaters 5, 6 form a fluid passage 12 of a plurality of pipes 7 made of nonmagnetic material connected between a steam generating means 2 and a treating means 4, and a plurality of heating materials 8 to 11 made of a conductive material are installed in the passage 12. The materials 9 to 11 of the heater 6 are formed of a carbon and ceramic composite material containing about 60% of carbon, about 30% of silicon carbide and about 10% of boron carbide.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】本発明は、電磁誘導で発熱す
る発熱体を用いて、水蒸気を超高温域まで昇温する高温
水蒸気発生装置、高温水蒸気を用いた処理装置及び有機
系塩素含有物の脱塩素方法に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a high-temperature steam generator that raises steam to an extremely high temperature range by using a heating element that generates heat by electromagnetic induction, a processing apparatus using high-temperature steam, and an organic chlorine-containing material. It relates to the dechlorination method.

【0002】[0002]

【従来の技術】水蒸気を昇温する技術としては、特開平
8−135903号公報に開示される様に電磁誘導加熱
を用いるものがある。その概略構成は、コイルが巻かれ
た蒸発室内に金属体を水に浸かる様に配置してあり、コ
イルに交流電流を流して金属体を発熱させることで、水
から水蒸気にする。続いて、水蒸気は、電磁誘導で発熱
する金属発泡体を通過することで昇温される。その他の
技術としては、特開平9−241734号公報に開示さ
れるものがある。その概略構成は、蒸気ボイラーで水を
蒸発させ、更に蒸発した水蒸気を燃料の燃焼で加熱する
過熱蒸気発生装置とでなる。
2. Description of the Related Art As a technique for raising the temperature of water vapor, there is a technique using electromagnetic induction heating as disclosed in Japanese Patent Application Laid-Open No. 8-135903. The schematic configuration is such that a metal body is immersed in water in an evaporation chamber in which a coil is wound, and water is turned into water vapor by flowing an alternating current through the coil to generate heat. Subsequently, the steam is heated by passing through a metal foam that generates heat by electromagnetic induction. As another technique, there is one disclosed in Japanese Patent Application Laid-Open No. 9-241732. The schematic configuration is a superheated steam generator that evaporates water with a steam boiler and further heats the evaporated steam by burning fuel.

【0003】[0003]

【発明が解決しようとする課題】ところで、近年の環境
問題に関する意識が高まる中、500℃以上の超高温域
で所定成分の過熱水蒸気を用いて、廃棄物のリサイク
ル、悪臭などの環境汚染対策を行う様なことが考えられ
つつある。しかしながら、従来の電磁誘導加熱の技術で
は、その用途が家庭や業務用の食品の解凍、調理又はパ
ン等の食品加工に用いられるもので、水蒸気の昇温もせ
いぜい300℃程度であれば十分である。したがって、
水蒸気を昇温させる発熱体を金属で製造すれば、用途に
あった温度の水蒸気を得られる。ところが、電磁誘導で
発熱する金属発泡体を、例えば500℃以上の超高温域
まで水蒸気を昇温するものに適用しても、その金属の磁
気特性で決まる温度にしか昇温できない。また、燃料燃
焼で水蒸気を昇温させる技術では、所定圧力下で水蒸気
を加熱することで500℃以上の超高温域に昇温できる
が、燃焼ガスと蒸気の混合ガスになり、過熱蒸気主体に
することができず、更に装置自体が大型化し、燃料の燃
焼により環境にも悪影響を与える。
Meanwhile, as awareness of environmental issues has increased in recent years, recycling of waste and countermeasures for environmental pollution such as odors have been carried out using superheated steam of a predetermined component in an ultra-high temperature range of 500 ° C. or more. Things to do are being considered. However, in the conventional electromagnetic induction heating technology, the application is used for thawing food for home or business use, cooking or food processing such as bread, and it is sufficient if the temperature rise of steam is at most about 300 ° C. is there. Therefore,
If a heating element for raising the temperature of steam is made of metal, steam at a temperature suitable for the intended use can be obtained. However, even if a metal foam that generates heat by electromagnetic induction is applied to a material that raises the temperature of water vapor to an extremely high temperature range of, for example, 500 ° C. or more, the temperature can be raised only to a temperature determined by the magnetic properties of the metal. In the technology of raising the temperature of steam by fuel combustion, the temperature can be increased to an ultra-high temperature range of 500 ° C. or higher by heating the steam under a predetermined pressure. In addition, the size of the apparatus itself increases, and the combustion of fuel has an adverse effect on the environment.

【0004】本発明は、上記課題に対応するためになさ
れたものであり、電磁誘導で発熱される発熱体によって
水蒸気を500℃以上の超高温域まで昇温できる高温水
蒸気発生装置、高温水蒸気を用いた処理装置及び有機系
塩素含有物の脱塩素方法を提供することを目的とする。
SUMMARY OF THE INVENTION The present invention has been made to address the above-described problems, and has been made in view of the above circumstances. A high-temperature steam generator capable of raising the temperature of a steam to an ultra-high temperature range of 500 ° C. or more by a heating element heated by electromagnetic induction, It is an object of the present invention to provide a processing apparatus used and a method for dechlorinating organic chlorine-containing substances.

【0005】[0005]

【課題を解決するための手段】請求項1にかかる高温水
蒸気発生装置は、水蒸気発生手段と、非磁性体の通路中
に電磁誘導で発熱する発熱体を複数設置する電磁誘導加
熱手段とを備え、少なくとも最後段をカーボン含有の発
熱体としたものである。前記電磁誘導加熱手段は、前記
通路中に電磁誘導で発熱する金属製の発熱体を設置し、
前記水蒸気発熱手段からの水蒸気を加熱する第1電磁誘
導加熱部と、前記通路中に電磁誘導で発熱するカーボン
を含む発熱体を設置し、前記第1電磁誘導加熱部からの
水蒸気を更に加熱する第2電磁誘導部とでなる(請求項
2)。また、前記第1電磁誘導加熱部は、前記発熱体を
金属の磁気特性で決まる温度まで加熱可能であり、前記
第2電磁誘導加熱部は、前記発熱体を500℃以上に加
熱可能である(請求項3)。電磁誘導加熱手段の少なく
とも最後段又は第2電磁誘導部の発熱体をカーボン含有
のものとすると、この発熱体を大気圧で1200℃まで
発熱できる。したがって、水蒸気を複数段の発熱体で段
階的に昇温させて、1200℃を越える超高温域まで昇
温させることが可能となる。
According to a first aspect of the present invention, there is provided a high-temperature steam generating apparatus comprising: a steam generating means; and an electromagnetic induction heating means for providing a plurality of heating elements which generate heat by electromagnetic induction in a passage of a non-magnetic material. At least the last stage is a heating element containing carbon. The electromagnetic induction heating means is provided with a metal heating element that generates heat by electromagnetic induction in the passage,
A first electromagnetic induction heating unit for heating the steam from the steam heating unit and a heating element containing carbon that generates heat by electromagnetic induction are installed in the passage, and the steam from the first electromagnetic induction heating unit is further heated. The second electromagnetic induction portion is provided (claim 2). Further, the first electromagnetic induction heating section can heat the heating element to a temperature determined by the magnetic properties of the metal, and the second electromagnetic induction heating section can heat the heating element to 500 ° C. or higher ( Claim 3). If the heating element of at least the last stage or the second electromagnetic induction section of the electromagnetic induction heating means is made of carbon, the heating element can generate heat up to 1200 ° C. at atmospheric pressure. Therefore, it is possible to raise the temperature of the steam stepwise by the plurality of heating elements to an extremely high temperature range exceeding 1200 ° C.

【0006】カーボン含有の発熱体としては、電気比抵
抗が800〜3500μΩcm程度の導電性、耐熱性、
耐酸化性などを備える特殊な炭素複合材料で、例えば、
電気比抵抗が2400μΩcm、カーボン約60%、炭
化珪素約30%、炭化硼素約10%の炭素・セラミック
ス複合材料で形成される。カーボンは導電性があって電
磁誘導加熱が高温域まで可能であるが、酸素があると燃
えて無くなる。水蒸気を500℃以上の高温域まで加熱
すると、分子構造が部分的に切断された活性化状態にな
ると予想され、カーボンが高温水蒸気により酸化消耗し
ていく恐れがある。そこで、カーボンを耐熱性、耐酸化
性を備えるセラミックで覆う等の複合化により、導電
性、耐熱性、耐酸化性を備える炭素複合材料とし、原理
的には炭素が固相を保つ3000℃以上に至る高温まで
蒸気を加熱することができる。ただし、現在使える炭素
複合材料であれば、1200℃程度まで加熱可能であ
り、これにより蒸気を金属製の発熱体で昇温させた後
に、カーボン含有の発熱体で1200℃程度まで段階的
に加熱できる。特に第1電磁誘導加熱部において、水蒸
気を金属の磁気特性で決まる温度まで昇温させる様にす
ると、伝熱面積を大きくでき、急速加熱が可能になる。
カーボン含有発熱体を備える第2電磁誘導加熱部は、金
属製発熱体を備える第1電磁誘導加熱部の昇温限界(例
えば500℃)を越えて、蒸気を加熱する。このよう
に、500℃以上の高温域の水蒸気を短時間で電磁誘導
加熱すると、急速過熱と高周波磁界の作用により、水蒸
気粒子の微細化と運動性が格段に付加され、活性化状態
になると予想され、還元作用や炭化作用を発揮し、通常
のガス体に比べて各種処理の実行を効率的に行える。
As the carbon-containing heating element, conductivity, heat resistance, electric resistivity of about 800 to 3500 μΩcm,
A special carbon composite material with oxidation resistance, for example,
It is formed of a carbon-ceramic composite material having an electrical resistivity of 2400 μΩcm, about 60% carbon, about 30% silicon carbide, and about 10% boron carbide. Carbon is electrically conductive and can be subjected to electromagnetic induction heating up to a high temperature range, but it burns and disappears when oxygen is present. When steam is heated to a high temperature range of 500 ° C. or higher, it is expected that the molecular structure will be in an activated state in which the molecular structure is partially cut, and carbon may be oxidized and consumed by the high-temperature steam. Therefore, carbon composite material with conductivity, heat resistance, and oxidation resistance is obtained by composite such as covering carbon with ceramics having heat resistance and oxidation resistance. Steam can be heated up to high temperatures. However, if it is a carbon composite material that can be used at present, it can be heated to about 1200 ° C., so that the vapor is heated by a metal heating element, and then gradually heated to about 1200 ° C. by a carbon-containing heating element. it can. Particularly, in the first electromagnetic induction heating section, when the temperature of water vapor is raised to a temperature determined by the magnetic properties of the metal, the heat transfer area can be increased, and rapid heating becomes possible.
The second electromagnetic induction heating section including the carbon-containing heating element heats the steam beyond the temperature rising limit (for example, 500 ° C.) of the first electromagnetic induction heating section including the metal heating element. In this way, when steam in a high temperature range of 500 ° C. or higher is heated by electromagnetic induction in a short period of time, rapid superheating and the action of a high-frequency magnetic field are expected to significantly add the fineness and mobility of steam particles to an activated state. In addition, a reduction action and a carbonization action are exhibited, and various processes can be performed more efficiently than a normal gas body.

【0007】請求項4にかかる本発明の高温水蒸気を用
いた処理装置は、水を水蒸気にする水蒸気発生手段と、
前記水蒸気が通るように非磁性体で形成された通路中に
電磁誘導で発熱する金属製の発熱体を配置し、前記水蒸
気発生手段からの水蒸気を加熱する第1電磁誘導加熱部
と、前記通路中に電磁誘導で発熱するカーボンを含む発
熱体を設置し、前記第1電磁誘導加熱部からの水蒸気を
更に加熱する第2電磁誘導加熱部と、前記第2電磁誘導
加熱部で加熱された水蒸気を被処理物に晒す処理手段
と、を備えてなる。カーボン含有の発熱体としては、先
に説明した炭素・セラミック複合材料で形成される。水
蒸気は、第1電磁誘導加熱手段で急速昇温された後、第
2電磁誘導加熱部で1200℃を越える超高温域まで昇
温される。特に、急速過熱と高周波磁界の作用により、
水蒸気粒子の微細化と運動性が格段に付加されることが
予想され、還元作用や炭化作用を発揮する。この超高温
域の水蒸気を被処理物に晒すことで、分解、炭化、乾
燥、洗浄等の各種処理が迅速且つ効率的に行える。
According to a fourth aspect of the present invention, there is provided a processing apparatus using high temperature steam, comprising: a steam generating means for converting water into steam;
A first electromagnetic induction heating unit that arranges a metal heating element that generates heat by electromagnetic induction in a passage formed of a nonmagnetic material so that the water vapor passes therethrough, and heats the water vapor from the water vapor generation means; A heating element containing carbon that generates heat by electromagnetic induction is installed therein, a second electromagnetic induction heating section for further heating the steam from the first electromagnetic induction heating section, and a steam heated by the second electromagnetic induction heating section. And a processing means for exposing the object to an object to be processed. The heating element containing carbon is formed of the carbon-ceramic composite material described above. After the steam is rapidly heated by the first electromagnetic induction heating means, the steam is heated to an ultrahigh temperature range exceeding 1200 ° C. by the second electromagnetic induction heating unit. In particular, due to the effects of rapid overheating and high-frequency magnetic fields,
It is expected that refining and mobility of the steam particles will be remarkably added, and they exhibit a reducing action and a carbonizing action. By exposing the steam in the ultra-high temperature range to the object to be processed, various processes such as decomposition, carbonization, drying, and washing can be performed quickly and efficiently.

【0008】請求項5にかかる本発明の高温水蒸気を用
いた処理装置は、水を水蒸気にする水蒸気発生手段と、
被処理ガスを導入するガス導入手段と、前記水蒸気が通
るように非磁性体で形成された通路中に電磁誘導で発熱
する金属製の発熱体を配置し、前記水蒸気発生手段と前
記ガス導入手段からの水蒸気と被処理ガスの混合ガスを
加熱する第1電磁誘導加熱部と、前記通路中に電磁誘導
で発熱するカーボンを含む発熱体を配置し、前記第1電
磁誘導加熱部で加熱された混合ガスを更にに加熱する第
2電磁誘導加熱部と、を備えてなる。カーボン含有の発
熱体としては、先に説明した炭素・セラミック複合材料
で形成される。水蒸気に被処理ガスを混合させることに
より、水蒸気はガス導入部からの被処理ガスを各電磁誘
導加熱部に運ぶキャリアとして用いられる。異臭ガス等
の被処理ガスと水蒸気との混合ガスを各電磁誘導加熱部
で加熱することで、異臭ガス等の被処理ガスの特定成分
を分解して脱臭等の処理をできる。特に、急速過熱と高
周波磁界の作用により、水蒸気粒子の微細化と運動性が
格段に付加されることが予想され、還元作用や炭化作用
を発揮し、この水蒸気をキャリアに用いることにより、
被処理ガスの分解処理等が効率的に行われる。
[0008] According to a fifth aspect of the present invention, there is provided a processing apparatus using high-temperature steam, comprising: a steam generating means for converting water into steam;
Gas introducing means for introducing the gas to be treated, and a metal heating element which generates heat by electromagnetic induction in a passage formed of a non-magnetic material so that the water vapor passes therethrough, wherein the water vapor generating means and the gas introducing means A first electromagnetic induction heating unit for heating a mixed gas of water vapor and the gas to be processed from the air, and a heating element containing carbon generating heat by electromagnetic induction in the passage, and heated by the first electromagnetic induction heating unit A second electromagnetic induction heating unit for further heating the mixed gas. The heating element containing carbon is formed of the carbon-ceramic composite material described above. By mixing the gas to be treated with the water vapor, the water vapor is used as a carrier for carrying the gas to be treated from the gas introduction section to each electromagnetic induction heating section. By heating a mixed gas of a gas to be treated such as an off-flavor gas and water vapor with each electromagnetic induction heating unit, a specific component of the gas to be treated such as an off-flavor gas can be decomposed to perform a process such as deodorization. In particular, it is expected that the rapid heating and the action of the high-frequency magnetic field will significantly reduce the size and mobility of the steam particles, exhibit a reducing action and a carbonizing action, and by using this steam as a carrier,
Decomposition processing of the gas to be processed is efficiently performed.

【0009】請求項6にかかる本発明の有機系塩素含有
物の脱塩素方法は、有機系塩素含有物を、無酸素雰囲気
とした500℃以上の高温水蒸気中に晒して、脱塩素処
理を施すものである。有機系塩素含有物を無酸素雰囲気
で500℃以上に加熱することで、該有機系塩素含有物
の塩素を分解して揮散でき、効率良く脱塩素処理を施せ
る。特に、700℃の以上の高温水蒸気を用いて、有機
系塩素含有物を700℃以上に加熱するとほぼ完全に塩
素を除去できる(請求項7)。
According to a sixth aspect of the present invention, in the method for dechlorinating an organic chlorine-containing substance, the organic chlorine-containing substance is subjected to a dechlorination treatment by exposing the organic chlorine-containing substance to high-temperature steam of 500 ° C. or higher in an oxygen-free atmosphere. Things. By heating the organic chlorine-containing substance to 500 ° C. or higher in an oxygen-free atmosphere, chlorine in the organic chlorine-containing substance can be decomposed and volatilized, and dechlorination can be performed efficiently. In particular, when the organic chlorine-containing substance is heated to 700 ° C. or higher using high-temperature steam of 700 ° C. or higher, chlorine can be almost completely removed (claim 7).

【0010】[0010]

【発明の実施の形態】以下、本発明の実施形態における
高温水蒸気発生装置、高温水蒸気を用いた処理装置及び
有機系塩素含有物の脱塩素方法について図面を参照しつ
つ説明する。
DETAILED DESCRIPTION OF THE PREFERRED EMBODIMENTS A high-temperature steam generator, a processing apparatus using high-temperature steam and a method for dechlorinating organic chlorine-containing substances according to embodiments of the present invention will be described below with reference to the drawings.

【0011】図1の高温水蒸気発生装置又は処理装置1
は、水を水蒸気にする水蒸気発生手段2と、水蒸気を段
階的に加熱する電磁誘導加熱手段3と、水蒸気で被処理
物20を処理する処理手段4とで構成される。水蒸気発
生手段2は電磁誘導加熱によって水を加熱して水蒸気と
する他に、ボイラーなどの各種加熱手段によって水蒸気
を発生させる。
The high-temperature steam generator or processing apparatus 1 shown in FIG.
Is composed of steam generating means 2 for converting water into steam, electromagnetic induction heating means 3 for heating steam in a stepwise manner, and processing means 4 for treating the workpiece 20 with steam. The steam generating means 2 heats water by electromagnetic induction heating to generate steam, and also generates steam by various heating means such as a boiler.

【0012】電磁誘導加熱手段3は、図2にも示す様
に、水蒸気を過熱域(100〜500℃程度)まで加熱
する第1電磁誘導加熱部5と、過熱域の水蒸気を更に超
高温過熱域(500〜1200℃程度、場合によっては
1200°以上)まで加熱する第2電磁誘導加熱部6と
でなる。各電磁誘導加熱部5,6は、水蒸気発生手段2
と処理手段4間で連設された複数の非磁性体のパイプ7
で流体通路12を形成し、この流体通路12中に導電材
料の発熱体8〜11を複数段設置している。各パイプ7
の外周であって発熱体8〜11に対向する位置にコイル
13が巻かれている。又各パイプ7は、コイル13を保
持し、流体通路12を区画し、流体通路12中に発熱体
8〜11を設置するものであるため、耐蝕性、耐熱性、
耐圧性がある非磁性体の材料で形成されている。具体的
にはセラミックス等の無機質材料、FRP(繊維強化プ
ラスチック)、フッ素樹脂等の樹脂材料、ステンレス等
の非磁性金属等がパイプ材として用いられる。コイル1
3は損失の少ないリッツ線を撚り合わせたもの等が用い
られ、インバーター制御回路14に接続されている。イ
ンバーター制御回路14は交流電源からの電力を受けて
所望の高周波電流をコイル13に印加する。第2電磁誘
導加熱部6の各パイプ7とコイル13間には、図2に示
す様に、断熱材21が介在されている。尚、第2電磁誘
導加熱部6に用いられるコイル13は、1200℃まで
加熱されることから実際には冷却水が循環可能なパイプ
状の銅コイルを用いることが好ましい。
As shown in FIG. 2, the electromagnetic induction heating means 3 includes a first electromagnetic induction heating section 5 for heating steam to a superheated region (about 100 to 500 ° C.), and a superheated superheated steam for superheated region. And a second electromagnetic induction heating unit 6 for heating up to a temperature range (about 500 to 1200 ° C., in some cases 1200 ° C. or more). Each of the electromagnetic induction heating units 5 and 6 is provided with a steam generating means 2.
And a plurality of non-magnetic pipes 7 connected between the processing means 4
A fluid passage 12 is formed in the fluid passage 12, and a plurality of heating elements 8 to 11 made of a conductive material are provided in the fluid passage 12. Each pipe 7
The coil 13 is wound around the outer periphery of the heater and at a position facing the heating elements 8 to 11. Further, since each pipe 7 holds the coil 13, partitions the fluid passage 12, and installs the heating elements 8 to 11 in the fluid passage 12, corrosion resistance, heat resistance,
It is made of a non-magnetic material having pressure resistance. Specifically, an inorganic material such as ceramics, a resin material such as FRP (fiber reinforced plastic), a fluorine resin, a non-magnetic metal such as stainless steel, or the like is used as a pipe material. Coil 1
Reference numeral 3 denotes a twisted litz wire with low loss or the like, which is connected to the inverter control circuit 14. The inverter control circuit 14 receives power from the AC power supply and applies a desired high-frequency current to the coil 13. As shown in FIG. 2, a heat insulating material 21 is interposed between each pipe 7 of the second electromagnetic induction heating unit 6 and the coil 13. In addition, since the coil 13 used for the second electromagnetic induction heating unit 6 is heated to 1200 ° C., it is preferable to use a pipe-shaped copper coil that can actually circulate cooling water.

【0013】第1電磁誘導加熱部5の発熱体8は、水蒸
気発生手段2から送られる水蒸気を通過させる様に、パ
イプ7内の流体通路12内に設置される。この発熱体8
の構造は、図3に示す様に、ジグザグの山型に折り曲げ
られた第1金属板31と平らな第2金属板32とを交互
に積層し、全体として円筒状の積層体に形成したもので
ある。各金属板31,32の材質としては、SUS44
7J1の如きマルテンサイト系ステンレスが用いられ
る。
The heating element 8 of the first electromagnetic induction heating section 5 is provided in a fluid passage 12 in the pipe 7 so as to pass the steam sent from the steam generating means 2. This heating element 8
As shown in FIG. 3, the first metal plate 31 and the flat second metal plate 32 bent in a zigzag mountain shape are alternately laminated as shown in FIG. 3 to form a cylindrical laminate as a whole. It is. The material of each of the metal plates 31 and 32 is SUS44
Martensitic stainless steel such as 7J1 is used.

【0014】又発熱体8は、図4に示す様に、第1金属
板31の山(又は谷)33を中心軸34に対して角度α
だけ傾く様に配設し、第2金属板32を挟んで隣り合う
第1金属板31の山(又は谷)33は交差する様に配設
している。そして、隣り合う第1金属板31における山
(又は谷)33の交差点において、第1金属板31と第
2金属板32とがスポット溶接で溶着され、電気的に導
通可能に接合されている。
As shown in FIG. 4, the heating element 8 has a peak (or valley) 33 of the first metal plate 31 at an angle α with respect to a central axis 34.
And the peaks (or valleys) 33 of the first metal plates 31 adjacent to each other across the second metal plate 32 are disposed so as to intersect. Then, at the intersection of the peaks (or valleys) 33 of the adjacent first metal plates 31, the first metal plate 31 and the second metal plate 32 are welded by spot welding and joined to be electrically conductive.

【0015】これで、最外周の第1金属板31と第2金
属板32との間には、角度αだけ傾いた第1小流路35
が形成され、次の第2金属板32と第1金属板31との
間は、角度−αだけ傾いた第2小流路36が形成され、
この第1小流路35と第2小流路36は角度2×αで交
差している。又第1金属板31や第2金属板32には、
流体の乱流を生じさせるための第3小流路としての孔3
7が形成されている。更に、第1金属板31や第2金属
板32の表面は平滑でなく、梨地加工又はエンボス加工
によって微小な凹凸38が施されている。この凹凸38
は山(又は谷)33の高さと比較して無視できる程度に
小さい(図4参照)。
Thus, between the outermost first metal plate 31 and the second metal plate 32, the first small flow path 35 inclined by the angle α is provided.
Is formed, and a second small flow path 36 inclined by an angle -α is formed between the next second metal plate 32 and the first metal plate 31,
The first small flow path 35 and the second small flow path 36 intersect at an angle of 2 × α. In addition, the first metal plate 31 and the second metal plate 32
Hole 3 as third small channel for generating turbulent flow of fluid
7 are formed. Further, the surfaces of the first metal plate 31 and the second metal plate 32 are not smooth, and are provided with minute unevenness 38 by matte finish or embossing. This unevenness 38
Is negligibly small compared to the height of the peak (or valley) 33 (see FIG. 4).

【0016】この構成によって、コイル13に高周波電
流を流して、発熱体8に高周波磁界を作用させると、磁
力線を横切る様に斜めに配置された第1金属板31と第
2金属板32の全体に渦電流が生じ、発熱体8が発熱す
る。このときの温度分布は、第1金属板31と第2金属
板32の長手方向に延びた目玉型となり、外周辺部より
中心部の方が発熱し、中央部を流れようとする水蒸気の
加熱に有利になっている。又発熱体8は、各金属板3
1,32を形成するSUS447J1などの磁気特性
(キューリ点)で決まる温度(600℃程度)まで発熱
することが可能となる。
With this configuration, when a high-frequency current is applied to the coil 13 to apply a high-frequency magnetic field to the heating element 8, the entirety of the first metal plate 31 and the second metal plate 32 that are obliquely arranged to cross the lines of magnetic force is formed. An eddy current is generated in the heating element 8 to generate heat. At this time, the temperature distribution is in the shape of an eyeball extending in the longitudinal direction of the first metal plate 31 and the second metal plate 32. Heat is generated in the central portion from the outer peripheral portion, and the steam is heated in the central portion. Has become advantageous. Further, the heating element 8 is formed of each metal plate 3.
It is possible to generate heat up to a temperature (about 600 ° C.) determined by magnetic characteristics (Curie point) of SUS447J1 or the like forming the first and the second 32.

【0017】又図4の様に、発熱体8内で交差する第1
小流路35と第2小流路36で周辺と中央部との水蒸気
の拡散が行われ、加えて第3小流路となる孔37の存在
によって、第1小流路35と第2小流路36間の厚み方
向の拡散も行われる。従って、各小流路35,36,3
7によって発熱体8の全体にわたる水蒸気のマクロ的な
拡散、放散、揮散が生じると共に、表面の微小な凹凸3
8によってミクロ的な拡散、放散、揮散も生じる。この
結果、発熱体8を通過する水蒸気は略均一な流れになっ
て、第1金属板31及び第2金属板32と水蒸気との均
一な接触機会が与えられ、均一な加熱が確保され、10
0〜500℃程度まで昇温される。
Also, as shown in FIG.
Water vapor is diffused between the peripheral portion and the central portion in the small flow passage 35 and the second small flow passage 36. In addition, the presence of the hole 37 serving as the third small flow passage causes the first small flow passage 35 and the second small flow passage 36 to diffuse. Diffusion in the thickness direction between the flow paths 36 is also performed. Therefore, each of the small channels 35, 36, 3
7, macroscopic diffusion, emission and volatilization of water vapor over the entire heating element 8 are generated, and fine irregularities 3 on the surface.
8 also causes micro diffusion, emission and volatilization. As a result, the steam passing through the heating element 8 becomes a substantially uniform flow, and a uniform opportunity of contact between the first metal plate 31 and the second metal plate 32 and the steam is provided, and uniform heating is ensured.
The temperature is raised to about 0 to 500 ° C.

【0018】ところで、発熱体8においては、各金属板
31,32の厚みを30ミクロン以上1mm以下、イン
バーター制御回路14による高周波電流の周波数を15
〜150KHzの範囲とすることが好ましい。各金属板
31,32の厚みが30ミクロン以上1mm以下である
と、電力が入り易く、伝熱面積を大きくとれるため波形
等の加工による各小流路35,36の確保が容易にな
る。又周波数が15〜150KHzの範囲であると、コ
イル7の損失や、スイッチング素子の損失を低減でき、
特に損失が少ない周波数帯としては20〜70KHzで
ある。更に発熱体8の1立方センチメートル当たりの伝
熱面積を2.5平方センチメートル以上とすることが好
ましい。発熱体8の1立方センチメートル当たりの表面
積が2.5平方センチメートル以上、特に5平方センチ
メートル以上になる様に各金属板31,32を積層する
と、熱交換の効率を上げることができる。又発熱体8の
表面積1平方センチメートル当たりで加熱すべき水蒸気
量を0.4立方センチメートル以下とすることが好まし
い。発熱体8の表面積1平方センチメートル当たりの流
体量を0.4立方センチメートル以下、特に0.1立方
センチメートル以下にすると、水蒸気に対する伝熱の急
速応答性が得られる。上述の構成をとる発熱体8による
加熱においては、電気エネルギーから熱エネルギーへの
変換効率が92%と極めて高いことが確認されている。
例えば100mm径、長さ200mm、表面積2.2〜
6.2m2 の発熱体8を用いた場合、流体の膜厚(1c
3 当たりの水膜量)が0.5〜0.2mmと極めて薄
膜状であり、発熱体8を構成する各金属板31,32も
薄いため、温度差も極めて小さく、熱伝達を素早く促進
できる。尚、発熱体8の構造はこれに限定されるもので
なく、水蒸気を適度な温度(500℃程度)まで昇温で
きるものであれば良い。
In the heating element 8, the thickness of each of the metal plates 31, 32 is 30 μm or more and 1 mm or less, and the frequency of the high-frequency current by the inverter control circuit 14 is 15 μm.
It is preferable to set the range to 150 KHz. When the thickness of each of the metal plates 31 and 32 is 30 μm or more and 1 mm or less, electric power is easily applied, and a large heat transfer area can be obtained, so that it is easy to secure the small flow paths 35 and 36 by processing a waveform or the like. When the frequency is in the range of 15 to 150 KHz, the loss of the coil 7 and the loss of the switching element can be reduced.
In particular, the frequency band in which the loss is small is 20 to 70 KHz. Further, it is preferable that the heat transfer area per cubic centimeter of the heating element 8 be 2.5 square centimeters or more. When the metal plates 31 and 32 are stacked such that the surface area per cubic centimeter of the heating element 8 is 2.5 square centimeters or more, particularly 5 square centimeters or more, the efficiency of heat exchange can be increased. It is preferable that the amount of water vapor to be heated per square centimeter of the surface area of the heating element 8 is 0.4 cubic centimeter or less. When the fluid amount per square centimeter of the surface area of the heating element 8 is 0.4 cubic centimeter or less, particularly 0.1 cubic centimeter or less, rapid response of heat transfer to water vapor can be obtained. In the heating by the heating element 8 having the above-described configuration, it has been confirmed that the conversion efficiency from electric energy to heat energy is as high as 92%.
For example, a diameter of 100 mm, a length of 200 mm, and a surface area of 2.2 to
When the heating element 8 of 6.2 m 2 is used, the thickness of the fluid (1 c
(the amount of water film per m 3 ) is extremely thin, 0.5 to 0.2 mm, and the metal plates 31 and 32 constituting the heating element 8 are also thin, so that the temperature difference is extremely small and heat transfer is quickly promoted. it can. The structure of the heating element 8 is not limited to this, but may be any as long as it can raise the temperature of steam to an appropriate temperature (about 500 ° C.).

【0019】第2電磁誘導加熱部6の発熱体9〜11
は、電磁誘導加熱により発熱して高温になり、且つ形状
を保持できる材料で形成され、電気比抵抗が800〜3
500μΩcm程度の特殊セラミックス、例えば、電気
比抵抗が2400μΩcm、カーボン約60%、炭化珪
素約30%、炭化硼素約10%の炭素・セラミックス複
合材料で円柱状に形成されている。発熱体9〜11に
は、図5に示す様に、第1電磁誘導部5の発熱体8で昇
温された水蒸気を通過させる多数の通過穴15が形成さ
れている。そして、発熱体9,10は相互に連設され
て、該発熱体9から水蒸気を通過させる様にパイプ7内
の流体通路12内に設置されている。又発熱体11は各
発熱体9,10で加熱された水蒸気を通過させる様にパ
イプ7内の流体通路12内に設置されている。
Heating elements 9 to 11 of the second electromagnetic induction heating section 6
Is made of a material that can be heated to a high temperature by electromagnetic induction heating and can maintain its shape, and has an electrical resistivity of 800 to 3
It is formed in a columnar shape with a special ceramic of about 500 μΩcm, for example, a carbon / ceramic composite material having an electric resistivity of 2400 μΩcm, about 60% carbon, about 30% silicon carbide, and about 10% boron carbide. As shown in FIG. 5, the heating elements 9 to 11 are formed with a large number of passage holes 15 through which the water vapor heated by the heating element 8 of the first electromagnetic induction section 5 passes. The heating elements 9 and 10 are connected to each other and installed in a fluid passage 12 in the pipe 7 so as to allow water vapor to pass from the heating element 9. The heating element 11 is provided in a fluid passage 12 in the pipe 7 so as to allow the steam heated by the heating elements 9 and 10 to pass therethrough.

【0020】尚、水蒸気の加熱を十分に行うためには、
各発熱体9〜11の外周を各パイプ7内に嵌合させて設
置することで、水蒸気が各通過穴15を通過して各発熱
体9〜11との接触を十分することが好ましい。又発熱
体9〜11の構造としは、図5に示されるものに限定さ
れるものでなく、所定厚さの板状体で大きさの異なるも
のを流体通路12の軸方向に沿う様に間隔を隔てて複数
設置したもの、非磁性体の容器に導電材料のチップを収
納して流体通路12中に設置したもの、複数の円柱状又
は角柱状の部材を流体通路12の軸方向に沿う様に間隔
を隔てて複数設置したもの、円筒状のものを流体通路1
2の軸方向に沿う様に設置したものであっても良い。
In order to sufficiently heat the steam,
It is preferable that the outer periphery of each of the heating elements 9 to 11 is fitted and installed in each of the pipes 7 so that the water vapor passes through each of the passage holes 15 and makes sufficient contact with each of the heating elements 9 to 11. The structure of the heating elements 9 to 11 is not limited to the one shown in FIG. 5, but a plate-like body having a predetermined thickness and different sizes may be spaced apart along the axial direction of the fluid passage 12. A plurality of cylindrical or prismatic members are provided along the axial direction of the fluid passage 12, a plurality of cylindrical or prismatic members are provided in the fluid passage 12 with a chip of a conductive material stored in a non-magnetic container, and A plurality of cylinders are installed at an interval, and a cylindrical one is
2 may be installed along the axial direction.

【0021】この構成によって、コイル13に高周波電
流を流して、発熱体9〜11に高周波磁界を作用させる
と、渦電流が生じ、各発熱体9〜11が発熱する。各発
熱体9〜11は1200℃程度まで昇温可能であり、耐
熱性に優れているので大気中でもほどんど劣化すること
がない。そして、第1電磁誘導部5の発熱体8で加熱さ
れた水蒸気は、各発熱体9〜11の通過穴15を通過す
る間に十分に加熱され、1200℃を越える所定温度ま
での任意温度に昇温されて処理部4に至る。又各発熱体
9〜11の電気比抵抗と通過穴15の数とを異ならせる
様に構成しもて良い。具体的には、発熱体9を電気比抵
抗1400μΩcm、通過穴15の数を21とし、各発
熱体10,11を電気比抵抗2400μΩcm、通過穴
15の数を25とする。これで、第1電磁誘導加熱部5
の発熱体8からの水蒸気を、各発熱体9〜11で段階的
に1200℃を越える温度まで加熱できる。
With this configuration, when a high-frequency current is applied to the coil 13 to apply a high-frequency magnetic field to the heating elements 9 to 11, an eddy current is generated, and the heating elements 9 to 11 generate heat. Each of the heating elements 9 to 11 can be heated up to about 1200 ° C. and has excellent heat resistance, so that it hardly deteriorates even in the air. Then, the steam heated by the heating element 8 of the first electromagnetic induction section 5 is sufficiently heated while passing through the passage holes 15 of the heating elements 9 to 11 and reaches an arbitrary temperature up to a predetermined temperature exceeding 1200 ° C. The temperature is raised to reach the processing section 4. Further, the electrical resistivity of each of the heating elements 9 to 11 may be different from the number of the passage holes 15. Specifically, the heating element 9 has an electrical specific resistance of 1400 μΩcm and the number of passage holes 15 is 21. Each of the heating elements 10 and 11 has an electrical specific resistance of 2400 μΩcm and the number of passage holes 15 is 25. Thus, the first electromagnetic induction heating unit 5
The steam from the heating element 8 can be heated stepwise to a temperature exceeding 1200 ° C. by the heating elements 9 to 11.

【0022】又各発熱体8〜11で加熱される水蒸気の
温度制御は、複数の温度センサ17〜19による温度検
出に基づいて行われる。各温度センサ17〜19は、発
熱体8,9間、発熱体10,11間、発熱体10と処理
手段4間に配置され、各発熱体8,10,11から流れ
出てくる水蒸気の温度を検出する。そして、各センサ1
7〜19の検出結果に基づいて、インバーター制御回路
14による各発熱体8〜11のコイル13に対する高周
波電流を制御することで、水蒸気の昇温温度を適正に制
御する。
The temperature of the steam heated by the heating elements 8 to 11 is controlled based on temperature detection by a plurality of temperature sensors 17 to 19. Each of the temperature sensors 17 to 19 is disposed between the heating elements 8 and 9, between the heating elements 10 and 11, and between the heating element 10 and the processing unit 4, and detects the temperature of steam flowing out of each of the heating elements 8, 10 and 11. To detect. And each sensor 1
By controlling the high-frequency current to the coil 13 of each of the heating elements 8 to 11 by the inverter control circuit 14 based on the detection results of 7 to 19, the heating temperature of the steam is appropriately controlled.

【0023】この様に本発明の高温水蒸気発生装置1に
よれば、大気圧(常圧)に近い1.0〜1.5気圧の下
で、水蒸気を500℃〜1200℃の任意の温度まで昇
温できることから、この高温水蒸気を用いた処理装置と
すれば、各処理の対象となる被処理物20を処理するこ
とができる。各処理、被処理物20を処理する水蒸気温
度の具体例としては、次の〜の態様が考えられる。
As described above, according to the high-temperature steam generator 1 of the present invention, the steam is cooled to an arbitrary temperature of 500 ° C. to 1200 ° C. under 1.0 to 1.5 atm close to the atmospheric pressure (normal pressure). Since the temperature can be raised, the processing apparatus using the high-temperature steam can process the workpiece 20 to be processed. As specific examples of the temperature of the steam for processing each treatment and the object to be treated 20, the following aspects (1) to (4) can be considered.

【0024】廃プラ脱塩素処理:含塩素廃プラスチッ
クの再資源化を図るため、脱塩素及び減容処理を行うも
のである。被処理物20である廃プラスチックに晒され
る水蒸気温度は650〜800℃である。 食品残渣処理:食品残渣、廃棄物の脱臭を含む乾燥及
び炭化処理を行うものである。被処理物20である食品
残渣などに晒される水蒸気温度は500〜800℃であ
る。 PET、フッ素樹脂残渣処理:PET、フッ素樹脂残
渣の還元分解及び炭化処理を行うものである。被処理物
20であるPETなどに晒される水蒸気温度は800〜
900℃である。 石材洗浄処理:石材外壁を洗浄するものである。被処
理物20である石材に晒される水蒸気温度は400〜6
00℃である。 炭化処理:草花や竹などの植物、プラスチックコーテ
ィングされた紙コップ、ちり紙など、C(炭素)、H
(水素)、O(酸素)を主体とするあらゆる有機物の形
状を保ったままで炭化するものである。被処理物20で
ある有機物に晒される水蒸気温度は300〜500℃で
ある。このとき、発熱体9〜11としてはセラミック・
カーボンを使用しなくても行える(カーボンのみ)。
Waste plastic dechlorination treatment: In order to recycle chlorine-containing waste plastic, dechlorination and volume reduction treatment are performed. The temperature of the water vapor exposed to the waste plastic as the object 20 is 650 to 800 ° C. Food residue treatment: Drying and carbonization treatment including deodorization of food residue and waste. The temperature of the steam exposed to the food residue, which is the object to be processed 20, is 500 to 800 ° C. PET and fluororesin residue treatment: Performs reductive decomposition and carbonization treatment of PET and fluororesin residues. The temperature of water vapor exposed to PET or the like to be processed 20 is 800 to
900 ° C. Stone cleaning process: Cleaning stone outer walls. The water vapor temperature exposed to the stone as the object to be processed 20 is 400 to 6
00 ° C. Carbonization treatment: Plants such as flowers and bamboo, plastic coated paper cups, dust paper, etc., C (carbon), H
Carbonization is performed while maintaining the shape of any organic substance mainly composed of (hydrogen) and O (oxygen). The temperature of water vapor exposed to the organic matter as the object to be processed 20 is 300 to 500 ° C. At this time, ceramic heating elements 9 to 11 were used.
This can be done without using carbon (only carbon).

【0025】そして、被処理物20を処理手段4内に収
納した後に、電磁誘導加熱手段3で上記〜の各処理
に対応する温度まで昇温された超高温域の水蒸気を被処
理物20に晒す(吹き付ける)と、この高温水蒸気によ
る炭化作用、還元作用などで各種処理が実行できる。又
超高温域の水蒸気は、昇温までの時間が極く短時間であ
る為、急速過熱と高周波磁界の作用により、蒸気粒子の
微細化を運動性が格段に付加されると予想され、この様
な水蒸気を用いて上記〜の処理を効率的に行う。特
に近年、環境問題に関する意識がますます高まる中、省
エネ、省資源化、リサイクル、環境汚染対策に関する用
途に適用できることになる。また、大気圧(常圧)に近
い圧力である1〜1.5気圧程度の環境条件で、水蒸気
を1100℃程度まで昇温できるので、小型化の装置を
提供できる。
After the object 20 is accommodated in the processing means 4, the steam in the ultrahigh temperature range, which has been heated to a temperature corresponding to each of the above-mentioned processes by the electromagnetic induction heating means 3, is applied to the object 20. When exposed (sprayed), various processes can be executed by the carbonizing action, the reducing action, and the like by the high-temperature steam. In addition, since the time required for the steam in the ultra-high temperature region to rise to the temperature is extremely short, it is expected that the mobility of the steam particles will be significantly reduced by the action of the rapid superheating and the high-frequency magnetic field. The above processes (1) to (4) are efficiently performed using such steam. Particularly, in recent years, with increasing awareness of environmental issues, it can be applied to applications related to energy saving, resource saving, recycling, and measures against environmental pollution. Further, since the temperature of steam can be raised to about 1100 ° C. under environmental conditions of about 1 to 1.5 atm, which is a pressure close to atmospheric pressure (normal pressure), a compact device can be provided.

【0026】又、高温水蒸気装置1で昇温された高温水
蒸気を用いて各種処理を行う他に、図6に示す様に、水
蒸気と異臭ガス等の被処理ガスの混合ガスを電磁誘導加
熱手段3で加熱して脱臭処理しても良い。図6におい
て、図1と異なる点は、水蒸気発生手段2と第1電磁誘
導加熱部5間のパイプ7に異臭ガス等を導入するガス導
入手段25を接続した点と、処理手段4を設けない点で
ある。ガス導入手段25からパイプ7に導入される異臭
ガスは、蒸気発生手段2からの水蒸気と混合されて、こ
の水蒸気をキャリアとして電磁誘導加熱手段3に運ばれ
る。そして、水蒸気、悪臭ガスの混合ガスを各発熱体8
〜11に通過させることで、悪臭ガスの臭気成分、例え
ば、アンモニア、フェノール、アニリン等を分解させる
ことで脱臭する。また、悪臭ガスの息気成分は650〜
700℃で分解することから、各発熱体8〜11による
混合ガスの昇温を750℃以上に保持する様にする。脱
臭処理された混合ガスはパイプ7から大気中などに排気
される。この場合においても、水蒸気を含む混合ガス
は、昇温までの時間が極く短時間である為、急速過熱と
高周波磁界の作用により、蒸気粒子の微細化を運動性が
格段に付加されると予想され、還元作用や炭化作用を発
揮し、この様な水蒸気を用いて脱臭処理が効率的に行わ
れる。
In addition to performing various treatments using the high-temperature steam raised in the high-temperature steam apparatus 1, as shown in FIG. The deodorizing treatment may be performed by heating in step 3. 6 differs from FIG. 1 in that a gas introducing means 25 for introducing an off-flavor gas or the like is connected to the pipe 7 between the steam generating means 2 and the first electromagnetic induction heating unit 5, and the processing means 4 is not provided. Is a point. The off-flavor gas introduced from the gas introducing means 25 into the pipe 7 is mixed with the steam from the steam generating means 2 and is carried to the electromagnetic induction heating means 3 using the steam as a carrier. Then, a mixed gas of steam and odorous gas is supplied to each heating element 8.
11 to deodorize by decomposing odor components of the malodorous gas, such as ammonia, phenol, and aniline. The breath component of the odorous gas is 650 to
Since it is decomposed at 700 ° C., the temperature rise of the mixed gas by each of the heating elements 8 to 11 is maintained at 750 ° C. or more. The deodorized mixed gas is exhausted from the pipe 7 into the atmosphere or the like. Even in this case, since the mixed gas containing water vapor has a very short time until the temperature rises, the rapid heating and the action of the high-frequency magnetic field significantly reduce the mobility of the vapor particles. It is expected that it exhibits a reducing action and a carbonizing action, and the deodorizing treatment is efficiently performed using such steam.

【0027】更に、第2電磁誘導加熱部6では、発熱体
9〜11を3個とした場合について説明したがこれに限
定するものでなく、図7に示す様に、発熱体9のみで構
成しても良い。図1,図2及び図6の様に、発熱体を複
数段設置するのは、水蒸気を確実に上記〜の各処理
又は脱臭処理に対応する温度とするためであり、図7の
様に発熱体9のみによっても、水蒸気を1100℃まで
昇温させることが可能である。又、水蒸気を1100℃
に昇温することについて説明したが、これに限定される
ものでなく、各発熱体9〜11の電気比抵抗、カーボ
ン、炭化珪素及び炭化硼の含有割合を変化させること
で、1100℃以上の高温域に昇温させることも可能と
なる。
Further, in the second electromagnetic induction heating section 6, the case where the number of the heating elements 9 to 11 is three has been described. However, the present invention is not limited to this, and as shown in FIG. You may. As shown in FIGS. 1, 2 and 6, the plurality of heating elements are provided in order to ensure that steam has a temperature corresponding to each of the above-mentioned processes or deodorizing treatment. The steam can be heated up to 1100 ° C. only by the body 9. In addition, steam at 1100 ° C
However, the present invention is not limited to this. By changing the electrical specific resistance of each of the heating elements 9 to 11, the content ratio of carbon, silicon carbide, and boron carbide, the temperature can be increased to 1100 ° C. or more. It is also possible to raise the temperature to a high temperature range.

【0028】更に、水蒸気発生手段2としては、第1電
磁誘導加熱部5と同様な発熱体8を用いて水を水蒸気に
しても良い。
Further, as the steam generating means 2, water may be converted into steam by using a heating element 8 similar to the first electromagnetic induction heating section 5.

【0029】又、電磁誘導手段3の各発熱体8〜11で
昇温させる媒体として水蒸気について説明したが、これ
に限定されるものでなく、水蒸気と窒素ガスの混合ガ
ス、不活性ガスなど昇温させて、上記〜の処理や脱
臭処理に供じても良い。
Although steam has been described as a medium to be heated by each of the heating elements 8 to 11 of the electromagnetic induction means 3, it is not limited to this, and a mixed gas of steam and nitrogen gas, an inert gas, etc. It may be heated and then subjected to the above-mentioned treatments and deodorization treatment.

【0030】本発明の有機系塩素含有物の脱塩素方法に
ついて説明する。本発明となる脱塩素方法は、PCBな
どの有機系塩素化合物、ダイオキシン、ダイオキシンを
含む燃却灰や廃プラスチックなどの有機系塩素含有物
を、無酸素雰囲気とした500℃以上の高温水蒸気(過
熱水蒸気)中に晒すことで、脱塩素処理を施すものであ
る。高温になる程処理効率が高くなるため、700℃以
上、800℃以上、900℃以上、1000℃以上、1
100℃以上と高温にすることが好ましい。尚、無酸素
雰囲気とは、酸素のない状態の他に、窒素、アルゴンな
どの不活性ガス雰囲気とする場合を含むものである。こ
の脱塩素方法の実現のためには、図1〜図7の高温水蒸
気装置1によって500℃以上の高温水蒸気を発生さ
せ、該高温水蒸気を無酸素雰囲気とした処理手段4内に
導入し、有機系塩素含有物を処理手段4内の無酸素雰囲
気とした高温水蒸気に晒して、脱塩素処理を施ことが好
ましい。但し、500℃以上の高温水蒸気は、図1〜図
7の高温水蒸気装置で発生させるものに限定されず、従
来の電磁誘導加熱にて発生させる他、ボイラーなどの各
種加熱手段にて発生させても良い。又、有機系塩素含有
物の相(固定、液体、粉体など)の別に、高温水蒸気に
対する晒し方法を異にさせることが好ましい。固体では
処理器4内の皿に置いて高温水蒸気中に晒し、液体相で
は容器内に有機系塩素含有液体を入れ、その液体に高温
水蒸気を導入し、又粉体では処理器4内に配置した網上
に配置し、該網下方から高温水蒸気を導入するようにす
る。
The method for dechlorinating an organic chlorine-containing substance according to the present invention will be described. The dechlorination method according to the present invention is a method in which an organic chlorine compound such as PCB, organic chlorinated substances such as incineration ash containing dioxin and dioxin, and waste plastic are converted into an oxygen-free atmosphere using high-temperature steam of 500 ° C. or higher (superheat (Steam) to dechlorinate. The higher the temperature, the higher the processing efficiency, so that the temperature is 700 ° C or higher, 800 ° C or higher, 900 ° C or higher, 1000 ° C or higher,
Preferably, the temperature is as high as 100 ° C. or higher. Note that the oxygen-free atmosphere includes a case in which an inert gas atmosphere such as nitrogen or argon is used in addition to a state without oxygen. In order to realize this dechlorination method, high-temperature steam of 500 ° C. or more is generated by the high-temperature steam device 1 shown in FIGS. It is preferable to subject the chlorine-containing substance to high-temperature steam in an oxygen-free atmosphere in the processing means 4 to perform a dechlorination treatment. However, the high-temperature steam of 500 ° C. or more is not limited to the one generated by the high-temperature steam device of FIGS. 1 to 7, and may be generated by various heating means such as a boiler in addition to conventional electromagnetic induction heating. Is also good. In addition, it is preferable that the method of exposure to high-temperature steam is different for each phase (fixed, liquid, powder, etc.) of the organic chlorine-containing substance. For solids, it is placed on a plate in the processor 4 and exposed to high-temperature steam. For the liquid phase, an organic chlorine-containing liquid is placed in a container, and high-temperature steam is introduced into the liquid. And placed high temperature steam from below the screen.

【0031】[0031]

【実施例】次に、本発明となる脱塩素方法にて、有機系
塩素含有物に対して脱塩素処理を施した実験例1および
実験例2を説明する。
Next, Experimental Examples 1 and 2 in which an organic chlorine-containing substance was subjected to dechlorination by the dechlorination method according to the present invention will be described.

【0032】A:実験例1 実験例1の条件は、 有機系塩素含有物として、硬質塩化ビニール管の30
g(約50mm)を2分割したものを用いた。 硬質塩化ビニールに対する高温水蒸気(処理温度)
を、300℃、500℃および700℃の各条件とし
た。 硬質塩化ビニール管に対する処理時間を、180秒、
600秒および1200秒の各条件とした。 そして、実験例1では、処理後の硬質塩化ビニールに残
存する塩素量をボンブ電位差滴定法にて計量・分析した
もので、その結果を図8(a)に示す。尚、図8(a)
中の脱塩素化率とは処理前の硬質塩化ビニール管(ブラ
ンク)の塩素量gから処理後の残留塩素量gを差し引い
た値のブランク塩素量gに対する割合である。図8
(a)において、脱塩素化率の傾向は、硬質塩化ビニー
ルに対する高温水蒸気の温度が高い程顕著であることが
わかり、300℃以下では脱塩素化率が低いもとのな
る。又、700℃の処理についてみると、処理時間18
0秒と600秒とでは脱塩素化率に明らかに差があるも
のの、600秒と1200秒とではほとんど変わりがな
い。このとこから、温度域の別に脱塩素化率(脱塩素処
理)の限界があると予測され、例えば、700℃の処理
ではその限度が600秒以下の処理時間となる。
A: Experimental Example 1 The conditions of Experimental Example 1 were as follows.
g (about 50 mm) divided into two parts was used. High temperature steam (processing temperature) for hard vinyl chloride
Were set to 300 ° C., 500 ° C., and 700 ° C., respectively. 180 seconds processing time for hard PVC pipe,
The conditions were 600 seconds and 1200 seconds. In Experimental Example 1, the amount of chlorine remaining in the treated hard vinyl chloride was measured and analyzed by a bomb potentiometric titration method, and the results are shown in FIG. 8A. FIG. 8 (a)
The dechlorination ratio in the medium is a ratio of a value obtained by subtracting the residual chlorine amount g after the treatment from the chlorine amount g of the hard vinyl chloride tube (blank) before the treatment to the blank chlorine amount g. FIG.
In (a), it is found that the tendency of the dechlorination rate is more remarkable as the temperature of the high-temperature steam with respect to the hard vinyl chloride is higher, and the dechlorination rate is lower at 300 ° C. or lower. Looking at the treatment at 700 ° C.,
Although there is a clear difference in the dechlorination rate between 0 and 600 seconds, there is almost no difference between 600 and 1200 seconds. From this, it is predicted that there is a limit in the dechlorination rate (dechlorination treatment) for each temperature range. For example, in a treatment at 700 ° C., the limit is a treatment time of 600 seconds or less.

【0033】B:実験例2 実験例2の条件は、 有機系塩素含有物(被処理物)として、硬質塩化ビニ
ール管の30g(約50mm)を2分割したものを用い
た。 硬質塩化ビニールに対する高温水蒸気を、300℃、
500℃および700℃の各条件とした。 硬質塩化ビニール管に対する処理時間を、165秒と
した。 そして、実験例2では、処理中の揮散ガスを60秒間サ
ンプリングし、該揮散ガスに対する塩素量をJIS K
0106「排ガス中の塩素分析法−Oトリジン吸光光
度法」にて計量・分析し、および処理後の硬質塩化ビニ
ールに残存する塩素量をボンブ電位差滴定法に計量・分
析したもので、その結果を図8(b)に示す。尚、図8
(b)中の脱塩素化率とは処理前の硬質塩化ビニール管
(ブランク)の塩素量gから処理後の残留塩素量gを差
し引いた値のブランク塩素量gに対する割合である。図
8(b)において、脱塩素化率の傾向は、硬質塩化ビニ
ールに対する高温水蒸気の温度が高い程顕著であること
がわかり、300℃以下では脱塩素化率が低いもとのな
る。又揮散ガスに対する塩素量については、700℃の
処理で顕著となる。
B: Experimental Example 2 The conditions of Experimental Example 2 were such that a 30 g (about 50 mm) hard vinyl chloride pipe divided into two was used as an organic chlorine-containing substance (object to be processed). 300 ℃ of high temperature steam for hard vinyl chloride,
The conditions were 500 ° C. and 700 ° C. The processing time for the hard vinyl chloride tube was 165 seconds. In Experimental Example 2, the volatile gas being processed was sampled for 60 seconds, and the amount of chlorine with respect to the volatile gas was measured according to JIS K.
0106 "Chlorine analysis in exhaust gas-O-tolidine absorption spectrophotometry" was measured and analyzed, and the amount of chlorine remaining in the treated hard vinyl chloride was measured and analyzed by a bomb potentiometric titration method. It is shown in FIG. FIG.
The dechlorination ratio in (b) is a ratio of a value obtained by subtracting the residual chlorine amount g after the treatment from the chlorine amount g of the rigid vinyl chloride tube (blank) before the treatment to the blank chlorine amount g. In FIG. 8 (b), the tendency of the dechlorination rate is more remarkable as the temperature of the high-temperature steam with respect to the hard vinyl chloride is higher, and the dechlorination rate is lower at 300 ° C. or lower. Further, the chlorine amount with respect to the volatile gas becomes remarkable in the treatment at 700 ° C.

【0034】又、実験例1および実験例2の実験結果で
あって、脱塩素化率(%)と処置温度(℃)との関係を
図9にグラフとして示す。図9に示すように、硬質塩化
ビニールに対する処理時間ごと、例えば165秒、60
0秒ごとに、脱塩素化率(%)と処置温度(℃)との関
係を一次方程式(比例直線)a、bに近似させることが
可能となる。これは、実験例1および実験例1での30
0℃、500℃および700℃以外における脱塩素化率
(%)を予測可能なものにできる。又硬質塩化ビニール
に対する処理時間が同じならば、処理温度が高くなる
程、脱塩素化率(%)も高い率となる。
FIG. 9 is a graph showing the relationship between the dechlorination rate (%) and the treatment temperature (° C.), which are the experimental results of Experimental Examples 1 and 2. As shown in FIG. 9, every processing time for hard vinyl chloride, for example, 165 seconds, 60
Every 0 seconds, the relationship between the dechlorination rate (%) and the treatment temperature (° C.) can be approximated to linear equations (proportional lines) a and b. This is the same as in Experimental Example 1 and 30 in Experimental Example 1.
The dechlorination rate (%) at temperatures other than 0 ° C., 500 ° C. and 700 ° C. can be made predictable. If the processing time for hard vinyl chloride is the same, the higher the processing temperature, the higher the dechlorination rate (%).

【0035】これら実験例1、2の結果から、硬質塩化
ビニールに対する脱塩素処理は、該硬質塩化ビニールを
無酸素雰囲気にした500℃以上の高温水蒸気に晒すこ
とで効率良く行える。特に、硬質塩化ビニールに対し
て、700℃の温度によって処理を施すと、該硬質塩化
ビニールからほぼ完全に塩素を除去できる。尚、電線
(銅線)などを被覆する有機系塩素含有の被覆材は、細
かい粉状とした後に、無酸素雰囲気にした高温水蒸気中
に晒すことで、銅線などの酸化による影響を受けること
なく、確実に脱塩素処理を施すことができる。従って、
本発明の脱塩素方法において、有機系塩素含有物に対し
て脱塩素処理を施すことは、塩素化合物を効率よく除去
できる。又、高温水蒸気としては、500℃以上のもの
を用いることが有効であり、好ましくは700℃とす
る。又、700℃以上、800℃以上、900℃以上、
1000℃以上などの超高温域においては、更に処理時
間を短くして確実に脱塩素処理を行うことが予測され
る。
From the results of Experimental Examples 1 and 2, dechlorination of hard vinyl chloride can be efficiently performed by exposing the hard vinyl chloride to high-temperature steam of 500 ° C. or higher in an oxygen-free atmosphere. In particular, when hard vinyl chloride is treated at a temperature of 700 ° C., chlorine can be almost completely removed from the hard vinyl chloride. In addition, the coating material containing organic chlorine, which covers electric wires (copper wires), etc., may be affected by oxidation of copper wires etc. by exposing it to high-temperature steam in an oxygen-free atmosphere after making it into a fine powder. In addition, dechlorination can be reliably performed. Therefore,
In the dechlorination method of the present invention, dechlorination of an organic chlorine-containing substance can efficiently remove chlorine compounds. It is effective to use a high-temperature steam having a temperature of 500 ° C. or higher, preferably 700 ° C. Also, 700 ° C or higher, 800 ° C or higher, 900 ° C or higher,
In an ultra-high temperature range such as 1000 ° C. or higher, it is expected that the treatment time will be further shortened and the dechlorination treatment will be surely performed.

【0036】[0036]

【発明の効果】請求項1の発明によると、電磁誘導加熱
手段の少なくとも最後段の発熱体をカーボン含有のもの
とすると、大気圧で1200℃を越える超高温域まで発
熱できる。したがって、水蒸気を複数段の発熱体で段階
的に昇温させて、1200℃を越える温度まで急速に昇
温させることが可能となる。しかも、純粋な蒸気だけの
過熱や、所定量の付加ガスの添加等の高温蒸気成分の制
御が簡単にでき、処理に適した温度と成分の高温水蒸気
を簡単に得ることが出来る。この様に、大気圧中又は
1.5気圧以内の低圧で水蒸気を1200℃まで昇温さ
せれるから、装置全体の小型化を図れ、従来簡単に得ら
れなかった高温水蒸気を簡単に得て、この高温水蒸気を
用いた種々の処理が可能になる。
According to the first aspect of the present invention, when at least the last heating element of the electromagnetic induction heating means is made of carbon, heat can be generated to an ultrahigh temperature range exceeding 1200 ° C. at atmospheric pressure. Therefore, it is possible to raise the temperature of the steam stepwise by a plurality of heating elements to rapidly exceed 1200 ° C. In addition, it is possible to easily control high-temperature steam components such as overheating of pure steam alone and addition of a predetermined amount of additional gas, and easily obtain high-temperature steam having a temperature and components suitable for processing. As described above, since the steam can be heated to 1200 ° C. at atmospheric pressure or at a low pressure within 1.5 atm, it is possible to reduce the size of the entire apparatus and easily obtain high-temperature steam which was not easily obtained conventionally. Various processes using this high-temperature steam become possible.

【0037】請求項2又は3の発明によると、金属製の
発熱体を用いた第1電磁誘導加熱手段で、キュウリー点
付近まで蒸気を急速に加熱し、カーボン含有の発熱体を
用いた第2電磁誘導加熱手段で、金属製の発熱体の限界
を越える温度まで蒸気を加熱することができ、全体とし
て、蒸気を高周波磁界に晒しつつ急速に加熱することが
できる。
According to the second or third aspect of the present invention, the first electromagnetic induction heating means using a metal heating element rapidly heats the steam to near the cucumber point, and the second electromagnetic induction heating means uses a carbon-containing heating element. With the electromagnetic induction heating means, the steam can be heated to a temperature exceeding the limit of the metal heating element, and as a whole, the steam can be rapidly heated while being exposed to a high-frequency magnetic field.

【0038】請求項4の発明によると、昇温までの時間
が極く短時間であり、急速過熱と高周波磁界の作用によ
り、蒸気粒子の微細化を運動性が格段に付加され、還元
作用や炭化作用を発揮し、活性化された蒸気を処理手段
に導き、被処理物を従来とは比較にならない程度に効率
よく処理することができる。
According to the fourth aspect of the present invention, the time until the temperature rises is extremely short, and the rapid superheating and the action of the high-frequency magnetic field significantly reduce the mobility of the vapor particles, thereby reducing By exerting a carbonizing action, the activated steam is guided to the processing means, and the object to be processed can be efficiently processed to an extent that cannot be compared with conventional ones.

【0039】請求項5の発明によると、蒸気と被処理ガ
スを混合させ、混合ガスの状態にして、蒸気をキャリア
にして、この蒸気の急速過熱と高周波磁界の作用によ
り、蒸気粒子の微細化を運動性が格段に付加し、還元作
用や炭化作用を発揮し、活性化された蒸気のキャリアに
より、、被処理ガスを従来とは比較にならない程度に効
率よく分解処理することができる。
According to the fifth aspect of the present invention, the vapor and the gas to be treated are mixed to form a mixed gas, and the vapor is used as a carrier. Is significantly added in motility, exerts a reducing action and a carbonizing action, and the activated gas carrier enables the gas to be treated to be efficiently decomposed to an extent that cannot be compared with conventional ones.

【0040】請求項6の発明によると、有機系塩素含有
物を無酸素雰囲気で500℃以上に加熱することで、該
有機系塩素含有物の塩素を分解して揮散でき、効率良く
脱塩素処理を施させる。特に、700℃以上の高温水蒸
気を用いて、有機系塩素含有物を700℃以上まで加熱
するとほぼ完全に塩素を除去できる。従って、有機系塩
素含有物から塩素化合物を効率良く除去して無害化で
き、その後の取り扱いが格段を容易になる。
According to the sixth aspect of the present invention, the organic chlorine-containing substance is heated to 500 ° C. or more in an oxygen-free atmosphere, whereby the chlorine in the organic chlorine-containing substance can be decomposed and volatilized, and the dechlorination treatment can be performed efficiently. Is given. In particular, when the organic chlorine-containing substance is heated to 700 ° C. or higher using high-temperature steam of 700 ° C. or higher, chlorine can be almost completely removed. Therefore, the chlorine compound can be efficiently removed from the organic chlorine-containing substance to make it harmless, and the subsequent handling becomes much easier.

【図面の簡単な説明】[Brief description of the drawings]

【図1】高温水蒸気発生装置を示す全体図である。FIG. 1 is an overall view showing a high-temperature steam generator.

【図2】電磁誘導加熱手段の具体的な構成を示す斜視図
である。
FIG. 2 is a perspective view showing a specific configuration of the electromagnetic induction heating means.

【図3】第1電磁誘導加熱部の発熱体を示す斜視図であ
る。
FIG. 3 is a perspective view showing a heating element of a first electromagnetic induction heating unit.

【図4】図3の発熱体の構造図である。FIG. 4 is a structural view of the heating element of FIG. 3;

【図5】第2電磁誘導加熱部の発熱体を示す斜視図であ
る。
FIG. 5 is a perspective view showing a heating element of a second electromagnetic induction heating unit.

【図6】高温水蒸気を用いた処理装置を示す全体図であ
る。
FIG. 6 is an overall view showing a processing apparatus using high-temperature steam.

【図7】電磁誘導加熱手段の変形例を示し斜視図であ
る。
FIG. 7 is a perspective view showing a modification of the electromagnetic induction heating means.

【図8】有機系塩素含有物に対して脱塩素処理を施した
実験結果を示す図表である。
FIG. 8 is a table showing the results of an experiment in which an organic chlorine-containing substance was subjected to a dechlorination treatment.

【図9】図8の実験結果で、脱塩素化率と処理時間との
関係を示すグラフ図である。
9 is a graph showing the relationship between the dechlorination rate and the processing time in the experimental results of FIG.

【符号の説明】 1 高温水蒸気発生装置 2 水蒸気発生手段 3 電磁誘導加熱手段 4 処理手段 5 第1電磁誘導加熱部 6 第2電磁誘導加熱部 7 パイプ 8〜11 発熱体 12 通路 13 コイル 14 インバーター制御回路 15 通過穴[Description of Signs] 1 High-temperature steam generator 2 Steam generating means 3 Electromagnetic induction heating means 4 Processing means 5 First electromagnetic induction heating unit 6 Second electromagnetic induction heating unit 7 Pipes 8-11 Heating element 12 Passage 13 Coil 14 Inverter control Circuit 15 passage hole

───────────────────────────────────────────────────── フロントページの続き (72)発明者 山中 剛 兵庫県姫路市大津区勘兵衛町3丁目12 虹 技株式会社姫路東工場内 (72)発明者 川村 泰三 大阪府茨木市美沢町19番21号 株式会社瀬 田技研内 (72)発明者 内堀 義隆 大阪府茨木市美沢町19番21号 株式会社瀬 田技研内 ──────────────────────────────────────────────────続 き Continuing on the front page (72) Inventor Go Yamanaka 3--12 Kanbei-cho, Otsu-ku, Himeji-shi, Hyogo Niji-Tech Co., Ltd. (72) Inventor Yoshitaka Uchibori 19-21 Misawa-cho, Ibaraki-shi, Osaka Pref.

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 水を水蒸気にする水蒸気発生手段と、前
記水蒸気が通るように非磁性体で形成された通路中に電
磁誘導で発熱する発熱体を複数段設置し、前記水蒸気を
加熱する電磁誘導加熱手段とを備え、前記電磁誘導加熱
手段は、前記複数段の発熱体のうち少なくとも最後段を
カーボンを含む発熱体とした高温水蒸気発生装置。
1. A steam generating means for converting water into steam, and a plurality of heating elements which generate heat by electromagnetic induction in a passage made of a non-magnetic material so that the steam passes therethrough. A high-temperature steam generating apparatus comprising: an induction heating means, wherein the electromagnetic induction heating means has at least a last stage of the plurality of stages of heating elements containing carbon.
【請求項2】 前記電磁誘導加熱手段は、前記通路中に
電磁誘導で発熱する金属製の発熱体を設置し、前記水蒸
気発熱手段からの水蒸気を加熱する第1電磁誘導加熱部
と、前記通路中に電磁誘導で発熱するカーボンを含む発
熱体を設置し、前記第1電磁誘導加熱部からの水蒸気を
更に加熱する第2電磁誘導部とでなる請求項1に記載の
高温水蒸気発生装置。
2. The electromagnetic induction heating means includes: a first electromagnetic induction heating unit configured to install a metal heating element that generates heat by electromagnetic induction in the passage, and to heat steam from the steam heat generation unit; 2. The high-temperature steam generator according to claim 1, wherein a heating element including carbon that generates heat by electromagnetic induction is provided therein, and the second electromagnetic induction section further heats the steam from the first electromagnetic induction heating section. 3.
【請求項3】 前記第1電磁誘導加熱部は、前記発熱体
を金属の磁気特性で決まる温度まで加熱可能であり、前
記第2電磁誘導加熱部は、前記発熱体を500℃以上に
加熱可能である請求項2に記載の高温水蒸気発生装置。
3. The first electromagnetic induction heating section is capable of heating the heating element to a temperature determined by magnetic properties of a metal, and the second electromagnetic induction heating section is capable of heating the heating element to 500 ° C. or more. The high-temperature steam generator according to claim 2, wherein
【請求項4】 水を水蒸気にする水蒸気発生手段と、前
記水蒸気が通るように非磁性体で形成された通路中に電
磁誘導で発熱する金属製の発熱体を配置し、前記水蒸気
発生手段からの水蒸気を加熱する第1電磁誘導加熱部
と、前記通路中に電磁誘導で発熱するカーボンを含む発
熱体を設置し、前記第1電磁誘導加熱部からの水蒸気を
更に加熱する第2電磁誘導加熱部と、前記第2電磁誘導
加熱部で加熱された水蒸気を被処理物に晒す処理手段
と、を備えてなる高温水蒸気を用いた処理装置。
4. A steam generating means for converting water into steam, and a metal heating element which generates heat by electromagnetic induction in a passage formed of a non-magnetic material so that the steam passes therethrough, wherein A first electromagnetic induction heating section for heating water vapor, and a heating element containing carbon which generates heat by electromagnetic induction in the passage, and further heats the water vapor from the first electromagnetic induction heating section. And a processing unit for exposing the steam heated by the second electromagnetic induction heating unit to an object to be processed.
【請求項5】 水を水蒸気にする水蒸気発生手段と、被
処理ガスを導入するガス導入手段と、前記水蒸気が通る
ように非磁性体で形成された通路中に電磁誘導で発熱す
る金属製の発熱体を配置し、前記水蒸気発生手段と前記
ガス導入手段からの水蒸気と被処理ガスの混合ガスを加
熱する第1電磁誘導加熱部と、前記通路中に電磁誘導で
発熱するカーボンを含む発熱体を配置し、前記第1電磁
誘導加熱部で加熱された混合ガスを更にに加熱する第2
電磁誘導加熱部と、を備えてなる高温水蒸気を用いた処
理装置。
5. A steam generating means for converting water into steam, a gas introducing means for introducing a gas to be treated, and a metal made of heat generated by electromagnetic induction in a passage formed of a non-magnetic material so that the steam passes therethrough. A first electromagnetic induction heating section for disposing a heating element, heating a mixed gas of the steam and the gas to be processed from the steam generating means and the gas introducing means, and a heating element including carbon which generates heat by electromagnetic induction in the passage; And a second heater for further heating the mixed gas heated by the first electromagnetic induction heating unit.
A processing device using high-temperature steam, comprising: an electromagnetic induction heating unit.
【請求項6】 有機系塩素含有物の脱塩素方法であっ
て、 前記有機系塩素含有物を、無酸素雰囲気とした500℃
以上の高温水蒸気中に晒して、脱塩素処理を施すもので
ある有機系塩素含有物の脱塩素方法。
6. A method for dechlorinating an organic chlorine-containing substance, wherein the organic chlorine-containing substance is placed in an oxygen-free atmosphere at 500 ° C.
A method for dechlorinating an organic chlorine-containing substance, which is subjected to a dechlorination treatment by exposing it to high-temperature steam as described above.
【請求項7】 前記有機系塩素含有物を、700℃の高
温水蒸気に晒すものである請求項6に記載の有機系塩素
含有物の脱塩素方法。
7. The method for dechlorinating an organic chlorine-containing material according to claim 6, wherein the organic chlorine-containing material is exposed to high-temperature steam at 700 ° C.
JP10362042A 1998-06-10 1998-12-21 High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material Pending JP2000065312A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP10362042A JP2000065312A (en) 1998-06-10 1998-12-21 High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP10-161909 1998-06-10
JP16190998 1998-06-10
JP10362042A JP2000065312A (en) 1998-06-10 1998-12-21 High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material

Publications (1)

Publication Number Publication Date
JP2000065312A true JP2000065312A (en) 2000-03-03

Family

ID=26487860

Family Applications (1)

Application Number Title Priority Date Filing Date
JP10362042A Pending JP2000065312A (en) 1998-06-10 1998-12-21 High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material

Country Status (1)

Country Link
JP (1) JP2000065312A (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100427A (en) * 2001-09-27 2003-04-04 Uchu Kankyo Kogaku Kenkyusho:Kk Steam generator
EP1351016A3 (en) * 2002-04-02 2004-06-02 Masami Nomura Superheated steam generator
JP2006204808A (en) * 2005-01-31 2006-08-10 Mayekawa Mfg Co Ltd Food heating method and apparatus
WO2006137418A1 (en) * 2005-06-21 2006-12-28 Tomoda Selling & Sailing Co., Ltd. Superheated steam generating device, and methods of manufacturing and heating food using superheated steam
WO2009148000A1 (en) * 2008-06-02 2009-12-10 有限会社ニューネイチャー Active water vapor generator
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
CN102537919A (en) * 2012-02-28 2012-07-04 佛冈县新能达节能环保有限公司 Steam boiler
JP2015081751A (en) * 2013-10-24 2015-04-27 信越化学工業株式会社 Superheated steam processing device
JP2017187250A (en) * 2016-04-08 2017-10-12 富久 内藤 Manufacturing method and device for high-temperature steam-containing gas
JP2019208433A (en) * 2018-06-05 2019-12-12 学校法人関東学院 Method for producing soybean flour and apparatus for producing soybean flour
US11149205B2 (en) * 2018-11-02 2021-10-19 Yau Fu Industry Co., Ltd Triphase organic matter pyrolysis system and its atmospheric pressure water ion generating device

Cited By (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2003100427A (en) * 2001-09-27 2003-04-04 Uchu Kankyo Kogaku Kenkyusho:Kk Steam generator
EP1351016A3 (en) * 2002-04-02 2004-06-02 Masami Nomura Superheated steam generator
US7115845B2 (en) 2002-04-02 2006-10-03 Masami Nomura Superheated steam generator
AU2003203492B2 (en) * 2002-04-02 2008-06-05 Masaaki Nomura Superheated Steam Generator
JP4588473B2 (en) * 2005-01-31 2010-12-01 株式会社前川製作所 Food heating method and apparatus
JP2006204808A (en) * 2005-01-31 2006-08-10 Mayekawa Mfg Co Ltd Food heating method and apparatus
JP4620732B2 (en) * 2005-06-21 2011-01-26 友田セーリング株式会社 Superheated steam generator, food production method and heating method using superheated steam
JPWO2006137418A1 (en) * 2005-06-21 2009-01-22 友田セーリング株式会社 Superheated steam generator, food production method and heating method using superheated steam
WO2006137418A1 (en) * 2005-06-21 2006-12-28 Tomoda Selling & Sailing Co., Ltd. Superheated steam generating device, and methods of manufacturing and heating food using superheated steam
WO2009148000A1 (en) * 2008-06-02 2009-12-10 有限会社ニューネイチャー Active water vapor generator
US20110089163A1 (en) * 2008-06-02 2011-04-21 New Nature Co., Ltd. Activated-steam-generating apparatus
JPWO2009148000A1 (en) * 2008-06-02 2011-10-27 有限会社ニューネイチャー Active steam generator
JP2010177069A (en) * 2009-01-30 2010-08-12 Dai Ichi High Frequency Co Ltd High-temperature fluid heating device
CN102537919A (en) * 2012-02-28 2012-07-04 佛冈县新能达节能环保有限公司 Steam boiler
JP2015081751A (en) * 2013-10-24 2015-04-27 信越化学工業株式会社 Superheated steam processing device
WO2015060140A1 (en) * 2013-10-24 2015-04-30 信越化学工業株式会社 Superheated steam processing device
US9989245B2 (en) 2013-10-24 2018-06-05 Shin-Etsu Chemical Co., Ltd. Superheated steam treatment apparatus
JP2017187250A (en) * 2016-04-08 2017-10-12 富久 内藤 Manufacturing method and device for high-temperature steam-containing gas
JP2019208433A (en) * 2018-06-05 2019-12-12 学校法人関東学院 Method for producing soybean flour and apparatus for producing soybean flour
JP7204169B2 (en) 2018-06-05 2023-01-16 学校法人関東学院 Soybean flour manufacturing method and soybean flour manufacturing apparatus
US11149205B2 (en) * 2018-11-02 2021-10-19 Yau Fu Industry Co., Ltd Triphase organic matter pyrolysis system and its atmospheric pressure water ion generating device

Similar Documents

Publication Publication Date Title
Locke et al. Electrohydraulic discharge and nonthermal plasma for water treatment
JP2000065312A (en) High temperature steam generator, treating apparatus using high temperature steam and method for dechlorinating organic chlorine-containing material
US6455014B1 (en) Decontamination of fluids or objects contaminated with chemical or biological agents using a distributed plasma reactor
CA2634661C (en) Method for oxidation of volatile organic compounds contained in gaseous effluents and device thereof
JP2010214364A (en) Heater, industrial waste treatment method, and water desalination method
KR0145097B1 (en) Heating apparatus utilizing microwaves
JP2007173253A (en) Heat-treatment device
JP2003100427A (en) Steam generator
JP3933493B2 (en) Heat treatment device
US6080362A (en) Porous solid remediation utilizing pulsed alternating current
JP2004202290A (en) Method for treating soil or the like contaminated with organic chlorine compound
KR20020059518A (en) A carbonizing treating and exhausting appartus for waste matter
Lu et al. Evaluation of energy-conversion efficiency of multineedle-to-plate corona-DBD plasma for organic degradation in soil
KR102410117B1 (en) Contaminant gas purification device equipped with induction heating type high-temperature oxidation and pyrolysis heat exchanger
TW201226044A (en) High efficient organic gas magnetized heating method and equipment
KR101431968B1 (en) Drying Apparatus With Pyrolysis Function
JP6259739B2 (en) Hazardous substance decomposition apparatus, combustion gas decomposition system, and vaporized gas decomposition system
JPH09168773A (en) Waste treatment apparatus and method
JP2019037312A (en) Deodorization system
Khan et al. Suitability of thermal plasma for solid waste treatment and non-thermal plasma for nano-scale high-tech plasmonic materials: a concise review
KR101614498B1 (en) Manufacturing method for a oxidation resistant carbon heating element generating heat by a microwave
JP2001191050A (en) Treating method of dioxins
JP3784780B2 (en) Deodorizing catalyst, method for producing the same, and deodorizing apparatus
JP3241037B2 (en) Garbage processing equipment
JP2000167572A (en) Decomposition of organic harmful substance in water or sludge

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20051221

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20071025

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20071106

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20071227

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20080129