JP4358701B2 - Induction heating device - Google Patents

Induction heating device Download PDF

Info

Publication number
JP4358701B2
JP4358701B2 JP2004222973A JP2004222973A JP4358701B2 JP 4358701 B2 JP4358701 B2 JP 4358701B2 JP 2004222973 A JP2004222973 A JP 2004222973A JP 2004222973 A JP2004222973 A JP 2004222973A JP 4358701 B2 JP4358701 B2 JP 4358701B2
Authority
JP
Japan
Prior art keywords
load
temperature
input current
output
induction heating
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2004222973A
Other languages
Japanese (ja)
Other versions
JP2006040833A (en
Inventor
潤 文屋
加津典 関根
整司 吉田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2004222973A priority Critical patent/JP4358701B2/en
Publication of JP2006040833A publication Critical patent/JP2006040833A/en
Application granted granted Critical
Publication of JP4358701B2 publication Critical patent/JP4358701B2/en
Anticipated expiration legal-status Critical
Active legal-status Critical Current

Links

Images

Landscapes

  • General Induction Heating (AREA)
  • Induction Heating Cooking Devices (AREA)

Description

この発明は、誘導加熱調理器、誘導加熱給湯器等の誘導加熱装置の負荷温度検出に関するものである。   The present invention relates to load temperature detection of induction heating devices such as induction heating cookers and induction heating water heaters.

従来の誘導加熱装置の温度検出装置は、入力電流の変化から負荷温度を検出する際、入力電流検出手段の出力の所定電圧を差し引いた電圧を入力電流の変化部分として抽出する入力電流変化部分抽出手段を設け、入力電流変化部分抽出手段の出力を利用して負荷温度の検出を行っている(例えば、特許文献1参照。)。   Conventional temperature detection device of induction heating device, when detecting the load temperature from the change of the input current, the voltage obtained by subtracting the predetermined voltage of the output of the input current detection means is extracted as the input current change part extraction Means are provided, and the load temperature is detected using the output of the input current change portion extraction means (see, for example, Patent Document 1).

特許第3014181号(第4頁、第3図)Patent No. 3014181 (4th page, Fig. 3)

従来の誘導加熱装置の温度検出装置では、入力電流の変化から負荷温度を検出するために、入力電流検出手段の出力の所定電圧を差し引いた電圧を入力電流の変化部分として抽出するという入力電流変化部分抽出手段が必要となるので、特別な回路構成の入力電流変化部分抽出手段を用意しなければならず、コストアップにつながるという問題があった。
また、入力電流変化部分抽出手段の出力を利用して負荷温度の検出を行っているが、空焚きの検出を目的とするものではないため、確実に空焚き検出することができるとはいえないという問題もあった。
この発明は、上記のような課題を解決するためになされたもので、新たに負荷温度検出手段を設けることなく確実に空焚きを検出し、コストアップを回避できる誘導加熱装置を得ることを目的とするものである。
In a conventional induction heating device temperature detection device, in order to detect a load temperature from a change in input current, a voltage obtained by subtracting a predetermined voltage from the output of the input current detection means is extracted as a change portion of the input current. Since the partial extraction means is necessary, there is a problem that the input current change partial extraction means having a special circuit configuration must be prepared, leading to an increase in cost.
Further, although the load temperature is detected by using the output of the input current change portion extraction means, it is not intended for the detection of flying, so it cannot be said that the flying detection can be reliably performed. There was also a problem.
The present invention has been made to solve the above-described problems, and it is an object of the present invention to provide an induction heating apparatus that can reliably detect idling without newly providing a load temperature detection means and can avoid an increase in cost. It is what.

この発明に係る誘導加熱装置は、交流電源からの入力電流を整流する整流回路と、前記整流回路の出力側に接続された入力電流を高周波電流に変換するインバータ回路と、前記インバータ回路の出力側に接続され、高周波電流が供給されて負荷を誘導加熱する加熱コイルと、前記整流回路への入力電流又は前記整流回路からの入力電流を検出する入力電流検出手段と、設定入力電力信号を生成する設定電力生成手段と、前記設定電力生成手段が生成した設定入力電力信号から変換した指令電圧と前記入力電流検出手段が検出した入力電流から変換した検出電圧とに基づいて前記インバータ回路へ前記検出電圧が前記指令電圧に一致するような駆動信号を出力する駆動信号制御回路と、前記入力電流検出手段が検出した入力電流の時間変化分がキュリー温度に起因する負荷インピーダンスに基づいて予め設定された値を超えた時に前記駆動信号制御回路に前記インバータ回路の出力を停止又は下降させる指令を出力する温度判定処理回路とを備えて構成したものである。 An induction heating device according to the present invention includes a rectifier circuit that rectifies an input current from an AC power supply, an inverter circuit that converts an input current connected to an output side of the rectifier circuit into a high-frequency current, and an output side of the inverter circuit A heating coil that is supplied with a high-frequency current to inductively heat the load, an input current detection unit that detects an input current to the rectifier circuit or an input current from the rectifier circuit, and a setting input power signal The detected voltage to the inverter circuit based on the set power generation means, the command voltage converted from the set input power signal generated by the set power generation means, and the detection voltage converted from the input current detected by the input current detection means A drive signal control circuit that outputs a drive signal that matches the command voltage, and a time change amount of the input current detected by the input current detection means It said that the output of the inverter circuit to the drive signal control circuit is constructed by a temperature determination processing circuit for outputting a command for stopping or lowering when exceeding a preset value based on the load impedance caused by Jury temperature It is.

この発明に係る誘導加熱装置は、駆動信号制御回路が設定電力生成手段が生成した設定入力電力信号から変換した指令電圧と前記入力電流検出手段が検出した入力電流から変換した検出電圧とに基づいて前記インバータ回路へ前記検出電圧が前記指令電圧に一致するような駆動信号を出力し、温度判定処理回路が入力電流検出手段が検出した入力電流の時間変化分がキュリー温度に起因する負荷インピーダンスに基づいて予め設定された値を超えた時に前記駆動信号制御回路に前記インバータ回路の出力を停止又は下降させる指令を出力し、インバータ回路の出力を停止又は下降させるようにしたので、空焚き等による負荷のの温度過昇状態を特異点検出という形で温度検出することとなり、誤検出無く確実に空焚きを防止できるという効果がある。
また、負荷温度検出を行うための入力電流検出手段は既存の入力電流を検出するものを用いているので、新たな負荷温度検出回路を設ける必要が無く、コストアップを回避できるという効果もある。
The induction heating device according to the present invention is based on the command voltage converted from the set input power signal generated by the set power generating means by the drive signal control circuit and the detected voltage converted from the input current detected by the input current detecting means. A drive signal is output to the inverter circuit such that the detected voltage matches the command voltage, and the time variation of the input current detected by the input current detection means by the temperature determination processing circuit is based on the load impedance caused by the Curie temperature. When the value exceeds a preset value, a command to stop or lower the output of the inverter circuit is output to the drive signal control circuit, and the output of the inverter circuit is stopped or lowered. The temperature is detected in the form of singularity detection when the temperature is overheated. A.
Further, since the input current detecting means for detecting the load temperature uses the one that detects the existing input current, it is not necessary to provide a new load temperature detecting circuit, and there is an effect that an increase in cost can be avoided.

実施の形態1.
図1はこの発明の実施の形態1に係る誘導加熱装置の構成を示すブロック図、図2は同誘導加熱装置の動作を示すフローチャート、図3は同誘導加熱装置の負荷に管状SUS440を用いて空焚き加熱を行った際の負荷温度と入力電流の実測データを示すグラフである。
図1において、交流電源1からの入力電流を整流回路2が整流し、整流回路2の出力側には平滑用コンデンサ11とインバータ回路3が接続される。
インバータ回路3は一対のスイッチング素子3a、3bと、これらスイッチング素子3a、3bにそれぞれ駆動信号を出力するドライバ3cとで構成されている。インバータ回路3の出力側には加熱コイル4と共振コンデンサ12から成る共振回路が接続され、加熱コイル4の近くに負荷5が配されている。
Embodiment 1 FIG.
FIG. 1 is a block diagram showing the configuration of the induction heating apparatus according to Embodiment 1 of the present invention, FIG. 2 is a flowchart showing the operation of the induction heating apparatus, and FIG. 3 uses a tubular SUS440 as a load of the induction heating apparatus. It is a graph which shows the actual measurement data of load temperature and input current at the time of performing air heating.
In FIG. 1, a rectifier circuit 2 rectifies an input current from an AC power supply 1, and a smoothing capacitor 11 and an inverter circuit 3 are connected to the output side of the rectifier circuit 2.
The inverter circuit 3 includes a pair of switching elements 3a and 3b and a driver 3c that outputs a drive signal to each of the switching elements 3a and 3b. A resonance circuit including a heating coil 4 and a resonance capacitor 12 is connected to the output side of the inverter circuit 3, and a load 5 is disposed near the heating coil 4.

また、交流電源1からの入力電流値を検出するための入力電流検出手段6が交流電源1と整流回路2の間に設けられ、入力電流検出手段6の検出信号は制御手段8内に設けられた温度判定処理回路8aと駆動信号制御回路8bとに入力される。また、温度判定処理回路8aによる出力信号は同じく制御手段8内に設けられた駆動信号制御回路8bに入力され、駆動信号制御回路8bの出力信号がドライバ3cに入力される。
更に、誘導加熱装置使用者が設定する電力(火力)の情報は設定電力生成手段7から駆動信号制御回路8bに送られる。
An input current detection means 6 for detecting an input current value from the AC power supply 1 is provided between the AC power supply 1 and the rectifier circuit 2, and a detection signal of the input current detection means 6 is provided in the control means 8. Are input to the temperature determination processing circuit 8a and the drive signal control circuit 8b. The output signal from the temperature determination processing circuit 8a is also input to the drive signal control circuit 8b provided in the control means 8, and the output signal of the drive signal control circuit 8b is input to the driver 3c.
Further, information on the power (thermal power) set by the user of the induction heating apparatus is sent from the set power generation means 7 to the drive signal control circuit 8b.

次に、この発明の実施の形態1における誘導加熱装置の動作について図1と図2を用いて説明する。
インバータ回路3から出力される高周波電流は加熱コイル4と共振コンデンサ12から成る共振回路により共振電流となって加熱コイル4を流れ、加熱コイル4の近くに配された金属で形成される負荷5を誘導加熱により加熱する。
Next, the operation of the induction heating apparatus according to Embodiment 1 of the present invention will be described with reference to FIGS.
The high frequency current output from the inverter circuit 3 becomes a resonance current by the resonance circuit composed of the heating coil 4 and the resonance capacitor 12, flows through the heating coil 4, and loads the load 5 formed of metal disposed near the heating coil 4. Heat by induction heating.

この時の加熱出力は以下のようにして制御される。
まず、電源がオンとなると、制御手段8の駆動信号制御回路8bは起動信号をドライバ3cに出力する(ステップS1)。こうすることでインバータ回路3は動作を開始し、入力電流が流れ始める。そして、入力電流検出手段6は入力電流を検出し(ステップS2)、その入力電流は制御回路8の温度判定処理回路8aと駆動信号制御回路8bに出力される。
次に、誘導加熱装置使用者による設定電力情報PIに対し設定電力生成手段7は指令電圧IAを生成し(ステップS3)、制御手段8の駆動信号制御回路8bとに出力する(ステップS4)。
駆動信号制御回路8bでは、入力電流検出手段6が検出した入力電流に基づき、その入力電流から変換した直流の検出電圧DAが設定電力生成手段7の指令電圧IAと一致しているかどうかを判断する(ステップS5)。
The heating output at this time is controlled as follows.
First, when the power is turned on, the drive signal control circuit 8b of the control means 8 outputs an activation signal to the driver 3c (step S1). By doing so, the inverter circuit 3 starts to operate, and the input current starts to flow. The input current detection means 6 detects the input current (step S2), and the input current is output to the temperature determination processing circuit 8a and the drive signal control circuit 8b of the control circuit 8.
Next, the set power generation means 7 generates a command voltage IA for the set power information PI by the induction heating device user (step S3) and outputs it to the drive signal control circuit 8b of the control means 8 (step S4).
In the drive signal control circuit 8b, based on the input current detected by the input current detection means 6, it is determined whether or not the DC detection voltage DA converted from the input current matches the command voltage IA of the set power generation means 7. (Step S5).

前記検出電圧DAが前記指令電圧IAと一致している場合には、駆動信号制御回路8bはインバータ回路3への出力を持続する。
また、前記検出電圧DAが前記指令電圧IAと一致していない場合には入力電流検出手段6による入力電流に基づく検出電圧DAが設定電力生成手段7の指令電圧IAと一致するようにインバータ回路3への出力を変化させることにより、所望の加熱出力を得るようにしている。
When the detected voltage DA matches the command voltage IA, the drive signal control circuit 8b continues output to the inverter circuit 3.
Further, when the detected voltage DA does not match the command voltage IA, the inverter circuit 3 so that the detected voltage DA based on the input current by the input current detecting means 6 matches the command voltage IA of the set power generating means 7. By changing the output to, a desired heating output is obtained.

ここで、所望の加熱出力で負荷5が加熱されると負荷温度は上昇し、負荷温度上昇に伴い入力電流は若干減少する。これは金属で形成される負荷5の抵抗率が温度特性を持ち、温度上昇と共に抵抗率が増加することで負荷インピーダンスが増大することに起因する。
正常状態での加熱動作においては、負荷温度変化に対する入力電流変化は小さく(温度上昇100degで入力電流10%程度減少、特許文献1の第2頁参照)、従って、入力電流値から負荷温度を精度良く検出することは極めて困難である。
Here, when the load 5 is heated with a desired heating output, the load temperature rises, and the input current slightly decreases as the load temperature rises. This is because the resistivity of the load 5 formed of metal has temperature characteristics, and the load impedance increases as the resistivity increases with increasing temperature.
In the heating operation in the normal state, the change in the input current with respect to the change in the load temperature is small (the input current decreases by about 10% when the temperature rises by 100 deg, see page 2 of Patent Document 1). It is extremely difficult to detect well.

ところが、負荷5に対して空焚き状態で加熱動作が行われると、負荷温度は急上昇し、負荷材質が磁性体の場合、負荷材質で決定するキュリー温度(キュリー点)に負荷温度が達すると残留磁束密度はゼロとなり、磁性を完全に失うことから材料特性が大きく変化する。キュリー温度の一例を挙げると、アルニコ磁石で850℃、Ba-フェライト磁石で460℃、サマリウム・コバルト磁石で820℃、ネオジウム磁石で360℃程度である。
このとき、負荷5の負荷インピーダンスは急峻に減少し、従って入力電流は急峻に増大
することになる。
However, when the heating operation is performed in an empty state with respect to the load 5, the load temperature rapidly rises, and when the load material is a magnetic material, the residue remains when the load temperature reaches the Curie temperature (Curie point) determined by the load material. The magnetic flux density becomes zero, and the material properties change greatly because the magnetism is completely lost. An example of the Curie temperature is 850 ° C. for an alnico magnet, 460 ° C. for a Ba-ferrite magnet, 820 ° C. for a samarium / cobalt magnet, and about 360 ° C. for a neodymium magnet.
At this time, the load impedance of the load 5 decreases sharply, and therefore the input current increases sharply.

図3に示すグラフは負荷5に管状SUS440(磁性体のマルテンサイト系ステンレス)を用いて空焚き加熱を行った際の、負荷温度と入力電流の実測データである。
図3に示すように、インバータ回路3の動作開始により負荷温度は上昇し、負荷インピーダンスの増大に伴って入力電流は減少する(図3の経過時間約40secまで)。更に、負荷温度が上昇するとキュリー温度に達し、負荷5の材料特性が大きく変化することから負荷インピーダンスは急峻に減少し、従って入力電流は急峻に増大する(図3の経過時間約45sec以降)。
The graph shown in FIG. 3 is measured data of load temperature and input current when air heating is performed using tubular SUS440 (magnetic martensitic stainless steel) for the load 5.
As shown in FIG. 3, the load temperature rises as the operation of the inverter circuit 3 starts, and the input current decreases as the load impedance increases (up to about 40 seconds elapsed time in FIG. 3). Further, when the load temperature rises, the Curie temperature is reached, and the material characteristics of the load 5 change greatly, so that the load impedance decreases sharply, and therefore the input current increases rapidly (after about 45 seconds in FIG. 3).

上述したように、入力電流検出手段6が検出した交流の入力電流は制御手段8の温度判定処理回路8aに出力されている。温度判定処理回路8aでは、入力電流検出手段6が検出した入力電流の時間変化分ΔIinが、予め温度判定処理回路8aで設定された値Y以上であるかどうかを判断する(ステップS6)。
その入力電流の時間変化分ΔIinが、予め温度判定処理回路8aで設定された値Yを超えた時点をキュリー温度到達点とみなし、温度判定処理回路8aは駆動信号制御回路8bの出力を変化させ(ステップS7)、インバータ回路3を出力停止又は下降させるものとする。
As described above, the AC input current detected by the input current detection unit 6 is output to the temperature determination processing circuit 8 a of the control unit 8. In the temperature determination processing circuit 8a, it is determined whether or not the time variation ΔIin of the input current detected by the input current detection means 6 is equal to or greater than the value Y set in advance in the temperature determination processing circuit 8a (step S6).
The time when the time change ΔIin of the input current exceeds the value Y set in advance by the temperature determination processing circuit 8a is regarded as the Curie temperature reaching point, and the temperature determination processing circuit 8a changes the output of the drive signal control circuit 8b. (Step S7), the output of the inverter circuit 3 is stopped or lowered.

図3で言えば、例えば経過時間47sec〜49sec間(負荷温度約220℃)における入力電流の時間変化分ΔIinは、
ΔIin=12.33-10.54/49.0-47.0=0.895[A/sec]
であり、経過時間47sec以前と比較してΔIin値が急速に大きくなることから、入力電流検出手段6が検出する入力電流の時間変化分ΔIinも同様に急速に大きくなり、この時点をキュリー温度到達点とみなしてインバータ回路3を出力停止又は下降させる。
In FIG. 3, for example, the time change ΔIin of the input current during the elapsed time 47 seconds to 49 seconds (load temperature about 220 ° C.) is
ΔIin = 12.33-10.54 / 49.0-47.0 = 0.895 [A / sec]
Since the ΔIin value increases rapidly compared to before 47 seconds, the time change ΔIin of the input current detected by the input current detection means 6 also increases rapidly, and this point is reached when the Curie temperature is reached. Considering this as a point, the output of the inverter circuit 3 is stopped or lowered.

一旦、インバータ回路3の出力停止又は下降が行われた後、インバータ回路3の出力を復帰しても再びキュリー温度を超える危険性があるため、再復帰(電源オフで再び電源オン)させない限り、インバータ回路3の出力を復帰させないことが望ましい。   Once the output of the inverter circuit 3 is stopped or lowered, there is a risk that the Curie temperature will be exceeded again even if the output of the inverter circuit 3 is restored. It is desirable not to restore the output of the inverter circuit 3.

ここで、入力電流検出手段6の出力側は、駆動信号制御回路8bにも接続されていることから、負荷温度変化に基づく入力電流検出手段6の出力変化に応じて駆動信号制御回路8bの出力も変化しようとするが、前述のとおり負荷温度変化に対する入力電流変化は小さいため、入力電流検出手段6の出力(瞬時値)で、駆動信号制御回路8bの出力を変化させ、インバータ回路3の停止等の電力制御をすることは困難であることを付記しておく。   Here, since the output side of the input current detection means 6 is also connected to the drive signal control circuit 8b, the output of the drive signal control circuit 8b according to the output change of the input current detection means 6 based on the load temperature change. However, since the change in the input current with respect to the change in the load temperature is small as described above, the output of the drive signal control circuit 8b is changed by the output (instantaneous value) of the input current detection means 6, and the inverter circuit 3 is stopped. It should be noted that it is difficult to perform power control such as.

なお、図1での電気回路はスイッチング素子3a、3bのハーフブリッジ構成としたが、回路構成はこの限りではなく、フルブリッジ構成にしても同様の作用を有することは言うまでもない。   Although the electric circuit in FIG. 1 has a half-bridge configuration of the switching elements 3a and 3b, it is needless to say that the circuit configuration is not limited to this, and the same effect can be obtained even in a full-bridge configuration.

以上のように、入力電流検出手段6が検出した入力電流の時間変化分が予め温度判定処理回路8aで設定された値を超えた時に、温度判定処理回路8aは駆動信号制御回路8bの出力を変化させ、インバータ回路3の出力を停止又は下降させるようにしているので、空焚き等による負荷5の温度過昇状態をキュリー温度到達による特異点検出という形で温度検出できることとなり、誤検出無く確実に空焚きを防止でき、誘導加熱装置使用者の安全を図ることができるという効果がある。
また、誘導加熱装置に、既存の入力電流検出手段6を用いて入力電流値の時間変化分から負荷5の温度検出を行うため、新たに特別の検出回路を設ける必要がなく、コストアップを回避できるという効果もある。
As described above, when the time change of the input current detected by the input current detection means 6 exceeds the value set in advance by the temperature determination processing circuit 8a, the temperature determination processing circuit 8a outputs the output of the drive signal control circuit 8b. Since the output of the inverter circuit 3 is stopped or lowered, the overheated state of the load 5 due to idling or the like can be detected in the form of singularity detection due to the arrival of the Curie temperature, and there is no false detection. Therefore, there is an effect that it is possible to prevent emptying and to secure the safety of the user of the induction heating apparatus.
Further, since the temperature of the load 5 is detected from the time change of the input current value using the existing input current detection means 6 in the induction heating device, it is not necessary to newly provide a special detection circuit, and an increase in cost can be avoided. There is also an effect.

実施の形態2.
図4はこの発明の実施の形態2に係る誘導加熱装置の構成を示すブロック図、図2は同誘導加熱装置の動作を示すフローチャートである。
上記実施の形態1では、入力電流検出手段6が検出した入力電流値の時間変化を利用して負荷5の温度検出を行うようにしたものであるが、この実施の形態2は、実施の形態1に加え、インバータ回路3のスイッチング素子の温度を検出するようにしたものである。
Embodiment 2. FIG.
4 is a block diagram showing a configuration of an induction heating apparatus according to Embodiment 2 of the present invention, and FIG. 2 is a flowchart showing an operation of the induction heating apparatus.
In the first embodiment, the temperature of the load 5 is detected using the time change of the input current value detected by the input current detecting means 6, but this second embodiment is the same as the first embodiment. In addition to 1, the temperature of the switching element of the inverter circuit 3 is detected.

図4において、インバータ回路3を構成するスイッチング素子3aの放熱フィンにサーミスタ等の素子温度検出素子9aが取り付けられ、素子温度検出素子9aを有する素子温度検出手段9によりスイッチング素子3aの温度を監視するようにしたものである。その他の構成は実施の形態1と同様であり、説明を省略する。なお、この実施の形態2では、素子温度検出素子9aがスイッチング素子3aに取り付けられているが、素子温度検出素子9aをスイッチング素子3bに取り付けるようにしてもよい。   In FIG. 4, an element temperature detecting element 9a such as a thermistor is attached to the heat radiation fin of the switching element 3a constituting the inverter circuit 3, and the temperature of the switching element 3a is monitored by the element temperature detecting means 9 having the element temperature detecting element 9a. It is what I did. Other configurations are the same as those of the first embodiment, and the description thereof is omitted. In the second embodiment, the element temperature detecting element 9a is attached to the switching element 3a. However, the element temperature detecting element 9a may be attached to the switching element 3b.

次に、この発明の実施の形態2に係る誘導加熱装置の動作について図5と図6を用いて説明する。
電源がオンされると素子温度検出手段9の動作が開始し、スイッチング素子3aの温度を素子温度検出素子9aが検出する(ステップS8)。素子温度検出素子9aの温度検出信号は素子温度検出手段9でデジタル信号に変換されて制御手段8の温度判定処理回路8aに出力される(ステップS4)。
Next, the operation of the induction heating apparatus according to Embodiment 2 of the present invention will be described with reference to FIGS.
When the power is turned on, the operation of the element temperature detecting means 9 starts, and the element temperature detecting element 9a detects the temperature of the switching element 3a (step S8). The temperature detection signal of the element temperature detection element 9a is converted into a digital signal by the element temperature detection means 9 and output to the temperature determination processing circuit 8a of the control means 8 (step S4).

温度判定処理回路8aには予め素子温度の上限値が設定されており、温度判定処理回路8aでは素子温度検出手段9が検出した素子温度が予め設定された素子温度の上限値以上かどうかを判断する(ステップS8)。
そして、素子温度検出手段9が検出した素子温度が予め設定された素子温度の上限値に達した場合、温度判定処理回路8aは駆動信号制御回路8bの出力を変化させ(ステップS7)、インバータ回路3を出力停止又は下降させるものである。
An upper limit value of the element temperature is set in advance in the temperature determination processing circuit 8a, and the temperature determination processing circuit 8a determines whether the element temperature detected by the element temperature detecting means 9 is equal to or higher than the preset upper limit value of the element temperature. (Step S8).
When the element temperature detected by the element temperature detecting means 9 reaches the preset upper limit value of the element temperature, the temperature determination processing circuit 8a changes the output of the drive signal control circuit 8b (step S7), and the inverter circuit 3 stops or lowers the output.

この実施の形態2においても、インバータ回路3の出力停止又は下降が行われた後、インバータ回路出力を復帰しても再びスイッチング素子温度が上限値を超える危険性があるため、再復帰(電源オフで再び電源オン)させない限りインバータ回路3出力を復帰させないことが望ましい。
なお、図5のステップS1〜S6の動作については実施の形態1と同様であり、説明を省略する。
Even in the second embodiment, after the output of the inverter circuit 3 is stopped or lowered, even if the output of the inverter circuit is restored, there is a risk that the switching element temperature again exceeds the upper limit value. It is desirable not to restore the output of the inverter circuit 3 unless the power is turned on again.
In addition, about operation | movement of step S1-S6 of FIG. 5, it is the same as that of Embodiment 1, and abbreviate | omits description.

以上のように、この実施の形態2によれば、インバータ回路3のスイッチング素子3aの素子温度を素子温度検出手段9で検出し、温度判定処理回路8aでは検出した素子温度が予め設定された上限値に達したときに駆動信号制御回路8bの出力を変化させ、インバータ回路3を出力停止又は下降させるようにしているので、実施の形態1の効果に加え、インバータ回路3のスイッチング素子3aの素子温度の過熱の防止の観点からもインバータ回路3の安全を図ることができる。   As described above, according to the second embodiment, the element temperature of the switching element 3a of the inverter circuit 3 is detected by the element temperature detecting means 9, and the detected element temperature is detected by the temperature determination processing circuit 8a. Since the output of the drive signal control circuit 8b is changed when the value is reached and the output of the inverter circuit 3 is stopped or lowered, the element of the switching element 3a of the inverter circuit 3 is added to the effect of the first embodiment. From the viewpoint of preventing overheating of the temperature, the safety of the inverter circuit 3 can be achieved.

実施の形態3.
図6はこの発明の実施の形態3に係る誘導加熱装置の構成を示すブロック図、図7は同誘導加熱装置の動作を示すフローチャートである。
上記実施の形態2は、インバータ回路3のスイッチング素子3a(又は3b)が予め設定された上限値の温度を超えないよう制御して誘導加熱装置の安全を図ったものであるが、この実施の形態3は実施の形態1に加え、負荷5が予め設定された上限値の温度を超えないよう制御して誘導加熱装置の安全を図ったものである。
この実施の形態3では、図6に示すように金属で形成される負荷5にサーミスタ等の負荷温度検出素子10aが取り付けられ、負荷温度検出素子10aを有する負荷温度検出手段10により負荷5の温度を監視するようにしたものである。その他の構成は実施の形態1と同様であり、説明を省略する。
Embodiment 3 FIG.
6 is a block diagram showing the configuration of an induction heating apparatus according to Embodiment 3 of the present invention, and FIG. 7 is a flowchart showing the operation of the induction heating apparatus.
In the second embodiment, the switching element 3a (or 3b) of the inverter circuit 3 is controlled so as not to exceed the temperature of the preset upper limit value so as to make the induction heating apparatus safe. In the third embodiment, in addition to the first embodiment, the load 5 is controlled so as not to exceed the temperature of the preset upper limit value, thereby ensuring the safety of the induction heating apparatus.
In the third embodiment, a load temperature detection element 10a such as a thermistor is attached to a load 5 formed of metal as shown in FIG. 6, and the temperature of the load 5 is detected by the load temperature detection means 10 having the load temperature detection element 10a. Are to be monitored. Other configurations are the same as those of the first embodiment, and the description thereof is omitted.

次に、この発明の実施の形態3に係る誘導加熱装置の動作について図6と図7を用いて説明する。
電源がオンされると負荷温度検出手段10の動作が開始し、金属で形成される負荷5の温度を負荷温度検出素子10aが検出する(ステップS10)。負荷温度検出素子10aの温度検出信号は負荷温度検出手段10でデジタル信号に変換されて制御手段8の温度判定処理回路8aに出力される(ステップS4)。
Next, the operation of the induction heating apparatus according to Embodiment 3 of the present invention will be described with reference to FIGS.
When the power is turned on, the operation of the load temperature detecting means 10 starts, and the load temperature detecting element 10a detects the temperature of the load 5 formed of metal (step S10). The temperature detection signal of the load temperature detection element 10a is converted into a digital signal by the load temperature detection means 10 and output to the temperature determination processing circuit 8a of the control means 8 (step S4).

温度判定処理回路8aには予め負荷温度の上限値が設定されており、温度判定処理回路8aでは負荷温度検出手段10が検出した負荷温度が予め設定された負荷温度の上限値以上かどうかを判断する(ステップS11)。
そして、負荷温度検出手段10が検出した負荷温度が予め設定された負荷温度に達した場合、温度判定処理回路8aは駆動信号制御回路8bの出力を変化させ(ステップS7)、インバータ回路3を出力停止又は下降させるものである。
An upper limit value of the load temperature is set in advance in the temperature determination processing circuit 8a, and the temperature determination processing circuit 8a determines whether or not the load temperature detected by the load temperature detecting means 10 is equal to or higher than the preset upper limit value of the load temperature. (Step S11).
When the load temperature detected by the load temperature detection means 10 reaches a preset load temperature, the temperature determination processing circuit 8a changes the output of the drive signal control circuit 8b (step S7) and outputs the inverter circuit 3. Stop or descend.

この実施の形態3においても、インバータ回路3の出力停止又は下降が行われた後、インバータ回路出力を復帰しても再び負荷温度が上限値を超える危険性がある為、再復帰(電源オフで再び電源オン)させない限りインバータ回路3出力を復帰させないことが望ましい。図7のステップS1〜S6の動作については実施の形態1と同様であり、説明を省略する。   Even in the third embodiment, after the output of the inverter circuit 3 is stopped or lowered, there is a risk that the load temperature will again exceed the upper limit even if the inverter circuit output is restored. It is desirable not to restore the output of the inverter circuit 3 unless the power is turned on again. The operations in steps S1 to S6 in FIG. 7 are the same as those in the first embodiment, and a description thereof will be omitted.

以上のように、この実施の形態3によれば、負荷5の負荷温度を負荷温度検出手段10で検出し、温度判定処理回路8aでは検出した負荷温度が予め設定された上限値に達したときに駆動信号制御回路8bの出力を変化させ、インバータ回路3を出力停止又は下降させるようにしているので、実施の形態1の効果に加え、非磁性材質の負荷5であっても負荷温度を検出することができ、負荷5の空焚きを防止できることから誘導加熱装置使用者の安全を更に図ることができるという効果がある。   As described above, according to the third embodiment, when the load temperature of the load 5 is detected by the load temperature detection means 10 and the detected load temperature reaches the preset upper limit value in the temperature determination processing circuit 8a. Since the output of the drive signal control circuit 8b is changed and the output of the inverter circuit 3 is stopped or lowered, in addition to the effect of the first embodiment, the load temperature is detected even with the load 5 made of a non-magnetic material. Therefore, since the emptying of the load 5 can be prevented, the safety of the induction heating device user can be further improved.

なお、実施の形態1に加え、実施の形態2における素子温度検出手段9と実施の形態3における負荷温度検出手段10とを併用しても同様の効果を得られることはいうまでもない。   In addition to the first embodiment, it is needless to say that the same effect can be obtained even when the element temperature detecting means 9 in the second embodiment and the load temperature detecting means 10 in the third embodiment are used in combination.

実施の形態4.
図8はこの発明の実施の形態4に係る誘導加熱装置の加熱コイル4と負荷5の部分を示す断面図である。
この実施の形態4は、誘導加熱装置として誘導加熱給湯器を模したものである。
上記実施の形態3では、負荷温度検出手段10の取付位置や構造を任意としたが、この実施の形態4では、負荷温度検出手段10の取付位置や構造を限定し、加熱コイル4に流す高周波電流が生成する交番磁束による誤検出を防止するようにしたものである。
この実施の形態4は、図8に示すように、負荷温度検出手段10を負荷5の端部近傍で加熱コイル4の端部内側に取り付けて負荷温度を監視するようにしたものである。なお、誘導加熱装置の構成は実施の形態3と同様であり、説明を省略する。
Embodiment 4 FIG.
FIG. 8 is a cross-sectional view showing portions of heating coil 4 and load 5 of an induction heating apparatus according to Embodiment 4 of the present invention.
In the fourth embodiment, an induction heating water heater is imitated as an induction heating device.
In the third embodiment, the mounting position and structure of the load temperature detecting means 10 are arbitrary. However, in the fourth embodiment, the mounting position and structure of the load temperature detecting means 10 are limited, and the high frequency that flows through the heating coil 4 is limited. It is intended to prevent erroneous detection due to the alternating magnetic flux generated by the current.
In the fourth embodiment, as shown in FIG. 8, the load temperature detecting means 10 is attached to the inside of the end of the heating coil 4 in the vicinity of the end of the load 5 to monitor the load temperature. In addition, the structure of the induction heating apparatus is the same as that of Embodiment 3, and description is abbreviate | omitted.

次に、負荷温度検出手段10の取り付け位置について図8を用いて説明する。
加熱コイル4の周囲には加熱コイル4に流す高周波電流により交番磁束が発生し、負荷5を通過することにより負荷5を誘導加熱させている。
ここで、加熱コイル4の端部は加熱コイル4の中心部付近と比較し交番磁束発生量が少なく(磁束密度が小さく)、故に加熱コイル4の端部付近に負荷温度検出手段10を取り付けると、負荷温度検出手段10自身の誘導加熱による誤検出を防止しやすくなる。
Next, the mounting position of the load temperature detecting means 10 will be described with reference to FIG.
An alternating magnetic flux is generated around the heating coil 4 by a high-frequency current flowing through the heating coil 4, and the load 5 is induction-heated by passing through the load 5.
Here, the end portion of the heating coil 4 generates less alternating magnetic flux than the vicinity of the center portion of the heating coil 4 (the magnetic flux density is small). Therefore, when the load temperature detecting means 10 is attached near the end portion of the heating coil 4. It becomes easy to prevent erroneous detection due to induction heating of the load temperature detecting means 10 itself.

但し負荷5の加熱度合いは加熱コイル4の端部よりも中心部の方が大きく、加熱コイル4の端部への取り付けは負荷温度最大値を得られにくくなることから、加熱コイル4の端部に対し数mmだけ内側で負荷5の端部近傍へ負荷温度検出手段10を取り付けることが望ましい。
なお、負荷温度検出手段10自身の誘導加熱による誤検出を防止するために負荷温度検出手段10をシールド材で覆い、防磁構造としても良い。
However, the degree of heating of the load 5 is greater at the center than at the end of the heating coil 4, and it is difficult to obtain the maximum load temperature when the heating coil 4 is attached to the end. On the other hand, it is desirable to attach the load temperature detecting means 10 to the vicinity of the end of the load 5 by a few mm inside.
In order to prevent erroneous detection due to induction heating of the load temperature detection means 10 itself, the load temperature detection means 10 may be covered with a shield material to have a magnetic-shielding structure.

以上のように、この実施の形態4によれば、負荷温度検出手段10は負荷5の端部近傍で加熱コイル4の端部内側に取り付けられているので、負荷温度検出手段10自身の誘導加熱による誤検出を防止し、負荷温度最大値が得られるため、負荷温度検出手段10は負荷温度を検出精度良く検出することができる。
また、その負荷温度検出手段10をシールド材で覆い、防磁構造とすることにより、負荷温度検出手段10自身の誘導加熱による誤検出をより一層防止することができる。
As described above, according to the fourth embodiment, the load temperature detecting means 10 is attached to the inside of the end of the heating coil 4 in the vicinity of the end of the load 5, so that the induction heating of the load temperature detecting means 10 itself is performed. Thus, the load temperature detection means 10 can detect the load temperature with high detection accuracy.
Further, by covering the load temperature detecting means 10 with a shield material and providing a magnetic-shielding structure, erroneous detection due to induction heating of the load temperature detecting means 10 itself can be further prevented.

上記実施の形態4では、誘導加熱装置として誘導加熱給湯器を挙げているが、誘導加熱調理器にも適用でき、上記実施の形態1〜3の誘導加熱装置も、誘導加熱給湯器や誘導加熱調理器に適用できることはいうまでもない。   In the fourth embodiment, an induction heating water heater is cited as the induction heating device. However, the induction heating device can also be applied to an induction heating cooker, and the induction heating device in the first to third embodiments is also an induction heating water heater or induction heating. Needless to say, it can be applied to a cooking device.

この発明の実施の形態1に係る誘導加熱装置の構成を示すブロック図。The block diagram which shows the structure of the induction heating apparatus which concerns on Embodiment 1 of this invention. 同誘導加熱装置の動作を示すフローチャート。The flowchart which shows operation | movement of the same induction heating apparatus. 同誘導加熱装置の負荷に管状SUS440を用いて空焚き加熱を行った際の負荷温度と入力電流の実測データを示すグラフ。The graph which shows the actual measurement data of the load temperature at the time of performing air heating using the tubular SUS440 for the load of the induction heating apparatus. この発明の実施の形態2に係る誘導加熱装置の構成を示すブロック図。The block diagram which shows the structure of the induction heating apparatus which concerns on Embodiment 2 of this invention. 同誘導加熱装置の動作を示すフローチャート。The flowchart which shows operation | movement of the same induction heating apparatus. この発明の実施の形態3に係る誘導加熱装置の構成を示すブロック図。The block diagram which shows the structure of the induction heating apparatus which concerns on Embodiment 3 of this invention. 同誘導加熱装置の動作を示すフローチャート。The flowchart which shows operation | movement of the same induction heating apparatus. この発明の実施の形態4に係る誘導加熱装置の加熱コイル4と負荷5の部分を示す断面図。Sectional drawing which shows the part of the heating coil 4 and the load 5 of the induction heating apparatus which concerns on Embodiment 4 of this invention.

符号の説明Explanation of symbols

1 交流電源、2 整流回路、3 インバータ回路、3a,3b スイッチング素子、3c ドライバ、4 加熱コイル、5 負荷、6 入力電流検出手段、7 設定電力生成手段、8 制御手段、8a 温度判定処理回路、8b 駆動信号制御回路、11 平滑コンデンサ、12 共振コンデンサ。   1 AC power supply, 2 rectifier circuit, 3 inverter circuit, 3a, 3b switching element, 3c driver, 4 heating coil, 5 load, 6 input current detection means, 7 set power generation means, 8 control means, 8a temperature determination processing circuit, 8b Drive signal control circuit, 11 smoothing capacitor, 12 resonant capacitor.

Claims (5)

交流電源からの入力電流を整流する整流回路と、
前記整流回路の出力側に接続された入力電流を高周波電流に変換するインバータ回路と、
前記インバータ回路の出力側に接続され、高周波電流が供給されて負荷を誘導加熱する加熱コイルと、
前記整流回路への入力電流又は前記整流回路からの入力電流を検出する入力電流検出手段と、
設定入力電力信号を生成する設定電力生成手段と、
前記設定電力生成手段が生成した設定入力電力信号から変換した指令電圧と前記入力電流検出手段が検出した入力電流から変換した検出電圧とに基づいて前記インバータ回路へ前記検出電圧が前記指令電圧に一致するような駆動信号を出力する駆動信号制御回路と、
前記入力電流検出手段が検出した入力電流の時間変化分がキュリー温度に起因する負荷インピーダンスに基づいて予め設定された値を超えた時に前記駆動信号制御回路に前記インバータ回路の出力を停止又は下降させる指令を出力する温度判定処理回路と
を備えたことを特徴とする誘導加熱装置。
A rectifier circuit for rectifying the input current from the AC power supply;
An inverter circuit for converting an input current connected to the output side of the rectifier circuit into a high-frequency current;
A heating coil connected to the output side of the inverter circuit, to which a high frequency current is supplied to inductively heat the load;
Input current detection means for detecting an input current to the rectifier circuit or an input current from the rectifier circuit;
Set power generation means for generating a set input power signal;
Based on the command voltage converted from the set input power signal generated by the set power generation means and the detection voltage converted from the input current detected by the input current detection means, the detected voltage matches the command voltage to the inverter circuit. A drive signal control circuit for outputting such a drive signal;
When the time variation of the input current detected by the input current detection means exceeds a preset value based on the load impedance caused by the Curie temperature, the drive signal control circuit stops or lowers the output of the inverter circuit An induction heating apparatus comprising: a temperature determination processing circuit that outputs a command .
前記インバータ回路を構成するスイッチング素子と、前記スイッチング素子の温度を検出する素子温度検出手段とを備え、
前記温度判定処理回路は前記負荷温度検出手段の出力が予め設定された値を超えた時に、前記駆動信号制御回路に前記インバータ回路の出力を停止又は下降させることを特徴とする請求項1記載の誘導加熱装置。
A switching element constituting the inverter circuit, and an element temperature detecting means for detecting the temperature of the switching element,
2. The temperature determination processing circuit according to claim 1, wherein when the output of the load temperature detecting means exceeds a preset value, the drive signal control circuit stops or lowers the output of the inverter circuit . Induction heating device.
前記加熱コイルが誘導加熱する負荷の温度を検出する負荷温度検出手段を備え、
前記温度判定処理回路は前記負荷温度検出手段の出力が予め設定された値を超えた時に、前記駆動信号制御回路に前記インバータ回路の出力を停止又は下降させることを特徴とする請求項1記載の誘導加熱装置。
Load temperature detecting means for detecting the temperature of the load that the heating coil induction heats,
2. The temperature determination processing circuit according to claim 1, wherein when the output of the load temperature detecting means exceeds a preset value, the drive signal control circuit stops or lowers the output of the inverter circuit . Induction heating device.
前記負荷温度検出手段は、前記加熱コイルに流す高周波電流が生成する交番磁束の影響を受けない箇所に設けられていることを特徴とする請求項3記載の誘導加熱装置。 4. The induction heating apparatus according to claim 3, wherein the load temperature detecting means is provided at a location not affected by an alternating magnetic flux generated by a high-frequency current flowing through the heating coil . 前記負荷温度検出手段は、シールド材に覆われた防磁構造をしたことを特徴とする請求項3記載の誘導加熱装置。 4. The induction heating apparatus according to claim 3, wherein the load temperature detecting means has a magnetic shielding structure covered with a shield material .
JP2004222973A 2004-07-30 2004-07-30 Induction heating device Active JP4358701B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2004222973A JP4358701B2 (en) 2004-07-30 2004-07-30 Induction heating device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2004222973A JP4358701B2 (en) 2004-07-30 2004-07-30 Induction heating device

Publications (2)

Publication Number Publication Date
JP2006040833A JP2006040833A (en) 2006-02-09
JP4358701B2 true JP4358701B2 (en) 2009-11-04

Family

ID=35905586

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2004222973A Active JP4358701B2 (en) 2004-07-30 2004-07-30 Induction heating device

Country Status (1)

Country Link
JP (1) JP4358701B2 (en)

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4985240B2 (en) * 2007-08-31 2012-07-25 パナソニック株式会社 Induction heating cooker
JP5309282B2 (en) * 2008-09-24 2013-10-09 第一高周波工業株式会社 Induction heating melting device
FR2951606B1 (en) * 2009-10-19 2012-01-06 Electricite De France INDUCTION HEATING METHOD IN A DEVICE COMPRISING MAGNETICALLY COUPLED INDUCTORS
JP5858794B2 (en) * 2012-01-13 2016-02-10 三菱電機株式会社 Induction heating cooker
WO2014068648A1 (en) 2012-10-30 2014-05-08 三菱電機株式会社 Induction heating cooker
GB2518634A (en) * 2013-09-26 2015-04-01 Gary John Milton Induction heater circuit protection closed loop control process
JP6737606B2 (en) * 2016-02-24 2020-08-12 ホシザキ株式会社 Induction heating steam generator

Also Published As

Publication number Publication date
JP2006040833A (en) 2006-02-09

Similar Documents

Publication Publication Date Title
EP2555586B1 (en) Induction heating cookware
KR101860490B1 (en) Induction range to detect position of container
WO2015063942A1 (en) Induction heating cooker
JP4358701B2 (en) Induction heating device
JP4444062B2 (en) Induction heating cooker
JP4821791B2 (en) Induction heating cooker
EP2209352B1 (en) Induction cooking heater and method for the control thereof
US20240114601A1 (en) Induction heating type cooktop and operating method thereof
JP4894191B2 (en) Induction heating device
JP4996289B2 (en) Induction heating cooker
WO2011089901A1 (en) Induction heating cooker and program
KR102183722B1 (en) Working coil overheat control system and method of induction heating cooker
KR101707881B1 (en) Induction cooker having container detecting function and container detecting method of induction cooker
JP2006216429A (en) Induction heating apparatus
JP5258593B2 (en) Induction heating cooker
JP5182172B2 (en) Induction heating cooker
JP4285320B2 (en) Induction heating cooker
JP3800808B2 (en) Induction heating inverter device
JP2010088766A (en) Electric kettle
JP2013125721A (en) Induction heating apparatus
KR102659719B1 (en) Induction heating type cooktop
JP5661141B2 (en) rice cooker
JP2009238686A (en) Induction heating cooker
JP2009284928A5 (en)
CN107438300A (en) The anhydrous hand warmer of safety and wireless charging thermal and control method

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20070710

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20081117

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20081202

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20090130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20090728

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20090806

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 4358701

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20120814

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20130814

Year of fee payment: 4

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250