JP5190996B2 - Sheet for optical semiconductor encapsulation - Google Patents

Sheet for optical semiconductor encapsulation Download PDF

Info

Publication number
JP5190996B2
JP5190996B2 JP2009033886A JP2009033886A JP5190996B2 JP 5190996 B2 JP5190996 B2 JP 5190996B2 JP 2009033886 A JP2009033886 A JP 2009033886A JP 2009033886 A JP2009033886 A JP 2009033886A JP 5190996 B2 JP5190996 B2 JP 5190996B2
Authority
JP
Japan
Prior art keywords
sheet
optical semiconductor
sealing
resin layer
release sheet
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009033886A
Other languages
Japanese (ja)
Other versions
JP2010192586A (en
Inventor
一郎 末廣
和也 藤岡
広和 松田
光治 赤沢
龍一 木村
英之 薄井
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nitto Denko Corp
Original Assignee
Nitto Denko Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nitto Denko Corp filed Critical Nitto Denko Corp
Priority to JP2009033886A priority Critical patent/JP5190996B2/en
Priority to US12/706,123 priority patent/US20100209670A1/en
Priority to EP10153757.9A priority patent/EP2219242A3/en
Priority to KR1020100014048A priority patent/KR101641384B1/en
Priority to CN201010114553.1A priority patent/CN101847683B/en
Publication of JP2010192586A publication Critical patent/JP2010192586A/en
Application granted granted Critical
Publication of JP5190996B2 publication Critical patent/JP5190996B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01LSEMICONDUCTOR DEVICES NOT COVERED BY CLASS H10
    • H01L2924/00Indexing scheme for arrangements or methods for connecting or disconnecting semiconductor or solid-state bodies as covered by H01L24/00
    • H01L2924/15Details of package parts other than the semiconductor or other solid state devices to be connected
    • H01L2924/181Encapsulation
    • H01L2924/1815Shape

Description

本発明は、光半導体封止用シートに関する。さらに詳しくは、発光ダイオードや半導体レーザー等の発光素子の封止用パッケージに関するもので、実装が簡便で、かつ、表面に凹凸形状を形成できる光半導体封止用シート、及び該シートで封止してなる光半導体装置に関する。   The present invention relates to an optical semiconductor sealing sheet. More specifically, the present invention relates to a package for sealing a light emitting element such as a light emitting diode or a semiconductor laser. The sheet for sealing an optical semiconductor that can be easily mounted and can form a concavo-convex shape on the surface, and the sheet is sealed with the sheet. The present invention relates to an optical semiconductor device.

白熱電球や蛍光灯に代わり、光半導体(発光ダイオード)の発光装置が普及している。発光装置は、発光素子と該素子の上に透光性封止樹脂とが配置された構造を有しており、透光性封止樹脂を透過した光が出力される。   Instead of incandescent bulbs and fluorescent lamps, light-emitting devices using optical semiconductors (light-emitting diodes) have become widespread. The light-emitting device has a structure in which a light-emitting element and a light-transmitting sealing resin are disposed on the light-emitting element, and light transmitted through the light-transmitting sealing resin is output.

発光素子より放射された光は、散乱によって、透光性封止樹脂をそのまま透過する一方で、透光性封止樹脂の表面に臨界角以上の入射角で到達すると、全反射されて樹脂に吸収されるため、その分、発光装置の輝度が低下する。   The light emitted from the light emitting element passes through the translucent sealing resin as it is due to scattering, but when it reaches the surface of the translucent sealing resin at an incident angle greater than the critical angle, it is totally reflected and is reflected on the resin. Since the light is absorbed, the luminance of the light emitting device is reduced accordingly.

これに対して、特許文献1では、封止樹脂の表面のうち、発光素子の上方に位置する部分は平滑化し、残る部分を粗化することにより、臨界角に関わらず光が出力される技術が開示されている。   On the other hand, in Patent Document 1, a portion of the surface of the sealing resin that is located above the light emitting element is smoothed, and the remaining portion is roughened to output light regardless of the critical angle. Is disclosed.

特許文献2の発光装置では、凹凸が形成された金属基板を金型として用いて透光性材料を成形し、該透光性材料の表面に略角錐状又は略円錐状の凹凸を形成して、光の取り出し効率を高めている。   In the light-emitting device of Patent Document 2, a translucent material is molded using a metal substrate on which irregularities are formed as a mold, and a substantially pyramidal or substantially conical irregularity is formed on the surface of the translucent material. , Increasing the light extraction efficiency.

特許文献3では、複数の樹脂層で構成され、そのうちの少なくとも1つが凹凸が形成された凹凸形状層であり、該凹凸形状層が樹脂層同士の界面となるように積層された光半導体封止用シートが開示されている。   In Patent Document 3, an optical semiconductor encapsulation is composed of a plurality of resin layers, at least one of which is a concavo-convex shaped layer formed so that the concavo-convex shaped layer is an interface between the resin layers. A sheet is disclosed.

特開平11−204840号公報JP-A-11-204840 特開2005−166941号公報Japanese Patent Laying-Open No. 2005-166941 特開2007−110053号公報JP 2007-110053 A

特許文献1及び2における封止樹脂層表面の凹凸形状は、発光素子を樹脂層で封止後に、予め凹凸形状を転写した金型を用いて形成される。一般的な金型は、平滑な表面を有する金属で構成されるため、凹凸形状を形成するのは容易ではなく、工程も複雑となる。   The concavo-convex shape on the surface of the sealing resin layer in Patent Documents 1 and 2 is formed using a mold in which the concavo-convex shape is transferred in advance after sealing the light emitting element with the resin layer. Since a general mold is made of a metal having a smooth surface, it is not easy to form an uneven shape, and the process becomes complicated.

また、封止樹脂層への凹凸形状成形後に発光装置が実装されるが、その際、凹凸形状は露出された状態であるため、実装工程中に、表面に傷がついたり、凹凸形状が欠落したりするなどして、光取り出し効率が低下する。   In addition, the light emitting device is mounted after forming the concavo-convex shape on the sealing resin layer. At that time, since the concavo-convex shape is exposed, the surface is damaged or the concavo-convex shape is missing during the mounting process. Light extraction efficiency decreases.

特許文献3に示す光半導体封止用シートは、封止樹脂層内での反射効率を高めることができるものの、シートが空気と接する界面は平坦であるため、空気との屈折率差による臨界角が制限されてフレネル反射による内部反射が生じ、十分な光取り出し効率が得られない。   The optical semiconductor encapsulating sheet shown in Patent Document 3 can improve the reflection efficiency in the encapsulating resin layer, but since the interface where the sheet is in contact with air is flat, the critical angle due to the refractive index difference from air Is limited and internal reflection due to Fresnel reflection occurs, and sufficient light extraction efficiency cannot be obtained.

本発明の課題は、光取り出し効率に優れる光半導体封止用シート、及び該シートで封止してなる光半導体装置を提供することにある。   The subject of this invention is providing the sheet | seat for optical semiconductor sealing excellent in light extraction efficiency, and the optical semiconductor device formed by sealing with this sheet | seat.

本発明は、
〔1〕 剥離シートの上に封止樹脂層が積層されてなる光半導体封止用シートであって、前記剥離シートが封止樹脂層との界面に、凹形状を有する凹部形成層又は凸形状を有する凸部形成層を含み、かつ、前記封止樹脂層が剥離シートとの界面に、剥離シートの凹形状に嵌合する凸形状又は剥離シートの凸形状に嵌合する凹形状を有してなる、光半導体封止用シート、及び
〔2〕 前記〔1〕記載の光半導体封止用シートを光半導体素子搭載基板に封止樹脂層が基板に対向するよう積層して加圧成型後、剥離シートを剥離して、凸形状又は凹形状が表面に形成されてなる、光半導体装置
に関する。
The present invention
[1] An optical semiconductor sealing sheet in which a sealing resin layer is laminated on a release sheet, wherein the release sheet has a concave shape or a convex shape at the interface with the sealing resin layer. And the sealing resin layer has a convex shape that fits into the concave shape of the release sheet or a concave shape that fits into the convex shape of the release sheet at the interface with the release sheet. After the optical semiconductor sealing sheet and [2] the optical semiconductor sealing sheet described in [1] above are laminated on the optical semiconductor element mounting substrate so that the sealing resin layer faces the substrate, and after pressure molding The present invention relates to an optical semiconductor device in which a release sheet is released and a convex shape or a concave shape is formed on the surface.

本発明の光半導体封止用シートは、光取り出し効率に優れるという優れた効果を奏する。   The sheet | seat for optical semiconductor sealing of this invention has the outstanding effect that it is excellent in light extraction efficiency.

図1は、剥離シート(単層構造)に凹部を形成する一例を示す図である。左が凹部形成前、中が金型転写時、右が凹部形成後の状態である。FIG. 1 is a diagram showing an example of forming a recess in a release sheet (single layer structure). The left is the state before forming the recess, the inside is when the mold is transferred, and the right is the state after forming the recess. 図2は、剥離シート(多層構造)に凹部を形成する一例を示す図である。左が凹部形成前、中が金型転写時、右が凹部形成後の状態である。FIG. 2 is a diagram illustrating an example of forming a recess in a release sheet (multilayer structure). The left is the state before forming the recess, the inside is when the mold is transferred, and the right is the state after forming the recess. 図3は、実施例の光半導体封止用シートを用いて光半導体素子を封止した一例を示す図である。左が封止前、中が圧縮成型時、右が封止後の状態である。FIG. 3 is a diagram illustrating an example in which an optical semiconductor element is sealed using the optical semiconductor sealing sheet of the example. The left is before sealing, the inside is during compression molding, and the right is after sealing. 図4は、比較例の光半導体封止用シートを用いて光半導体素子を封止した一例を示す図である。左が封止前、中が圧縮成型時、右が封止後の状態である。FIG. 4 is a diagram illustrating an example in which the optical semiconductor element is sealed using the optical semiconductor sealing sheet of the comparative example. The left is before sealing, the inside is during compression molding, and the right is after sealing.

本発明の光半導体封止用シートは、剥離シートの上に封止樹脂層が積層された光半導体封止用シートであって、前記剥離シートが封止樹脂層との界面に凹形状を有する凹部形成層又は凸形状を有する凸部形成層を含有し、かつ、前記封止樹脂層が剥離シートとの界面に、剥離シートの凹形状に嵌合する凸形状又は剥離シートの凸形状に嵌合する凹形状を有することに大きな特徴を有する。より詳述すると、剥離シートと封止樹脂層との界面では、封止樹脂層の凸形状と剥離シートの凹形状、あるいは、封止樹脂層の凹形状と剥離シートの凸形状が嵌合し、封止樹脂層と剥離シートが間隙なく積層されている。   The optical semiconductor sealing sheet of the present invention is an optical semiconductor sealing sheet in which a sealing resin layer is laminated on a release sheet, and the release sheet has a concave shape at the interface with the sealing resin layer. Containing a concave forming layer or a convex forming layer having a convex shape, and the sealing resin layer fits into the convex shape of the release sheet or the convex shape of the release sheet at the interface with the release sheet. It has a great feature in having a concave shape. More specifically, at the interface between the release sheet and the sealing resin layer, the convex shape of the sealing resin layer and the concave shape of the release sheet, or the concave shape of the sealing resin layer and the convex shape of the release sheet are fitted. The sealing resin layer and the release sheet are laminated without a gap.

本発明の光半導体封止用シートの使用態様としては、発光素子搭載基板の上に積層して加圧成形した後に、剥離シートを剥離する態様が挙げられる。従って、剥離シートの剥離後には、封止樹脂層が剥離シートとの界面に有する凸形状又は凹形状(以降、両形状をまとめて凹凸形状ともいう)が露出される。該凹凸形状は、発光素子から放射された光の入射角に関わらず、封止樹脂層外へ光を出力することが可能となるため、光の取り出し効率を向上することができる。   As a usage mode of the sheet for optical semiconductor encapsulation of the present invention, there is a mode in which the release sheet is peeled after being laminated on the light emitting element mounting substrate and subjected to pressure molding. Therefore, after peeling of the release sheet, the convex shape or the concave shape (hereinafter, both shapes are collectively referred to as the concave and convex shape) that the sealing resin layer has at the interface with the release sheet is exposed. The uneven shape can output light to the outside of the sealing resin layer regardless of the incident angle of light emitted from the light emitting element, so that the light extraction efficiency can be improved.

また、本発明の光半導体封止用シートは、剥離シートの剥離を加圧成形後、即ち、発光装置の封止後から使用直前までのいずれかの時点で行えばよいために、剥離シートの剥離を発光装置の実装後に行えば、剥離シートが封止樹脂層のカバーシートの役割を果たして、実装中の封止樹脂層への外力による損傷を防止することができる。   Further, the optical semiconductor sealing sheet of the present invention can be peeled off from the release sheet after pressure molding, that is, at any point in time from sealing the light emitting device to immediately before use. If peeling is performed after mounting the light emitting device, the release sheet serves as a cover sheet for the sealing resin layer, and damage to the sealing resin layer during mounting due to external force can be prevented.

またさらに、本発明の光半導体封止用シートにおける凹凸形状は、金型を用いて封止後の樹脂層に成形処理を行う従来方法に比べて、シート形成時に併せて成形されるために、より容易に成形することができる。具体的には、例えば、凸形状や曲面を有する発光素子パッケージの封止樹脂表面に凹凸形状を形成する場合、従来の金型を用いる方法では金型が平板であるために、封止樹脂の上面のみにしか凹凸形状を形成することができない。一方、本発明のシートは、シートを積層して、発光素子パッケージの形状に合わせて加圧成形することができるので、封止樹脂の上面のみならず側面にも凹凸形状を形成できる。   Furthermore, since the concavo-convex shape in the optical semiconductor sealing sheet of the present invention is molded together with the sheet formation, compared to the conventional method of performing molding processing on the resin layer after sealing using a mold, It can be molded more easily. Specifically, for example, when forming a concavo-convex shape on the surface of a sealing resin of a light emitting element package having a convex shape or a curved surface, since the mold is a flat plate in the method using a conventional mold, Uneven shape can be formed only on the upper surface. On the other hand, since the sheet of the present invention can be laminated and pressure-molded according to the shape of the light-emitting element package, an uneven shape can be formed not only on the top surface but also on the side surface of the sealing resin.

本発明における剥離シートは、封止樹脂層との界面に、凹形状を有する凹部形成層又は凸形状を有する凸部形成層を含有し、かつ、圧縮成型後に剥離できるものであれば特に限定はない。具体例としては、例えば、ポリスチレン(表面自由エネルギー33mJ/m2)、ポリプロピレン(表面自由エネルギー29mJ/m2)、ポリエチレン(表面自由エネルギー31mJ/m2)等の表面自由エネルギーの比較的小さい材質からなるシートが例示される。かかるシートは、前記材質で構成される凹部形成層又は凸部形成層からなる単層構造であっても、シート自体の離型性が優れている。なお、本明細書において「離型性」とは、封止樹脂層からの離型性、及び圧縮成型時の金型からの離型性のいずれをも意味する。 The release sheet in the present invention is not particularly limited as long as it contains a concave portion forming layer having a concave shape or a convex portion forming layer having a convex shape at the interface with the sealing resin layer and can be peeled after compression molding. Absent. Specific examples include, for example, materials having a relatively small surface free energy such as polystyrene (surface free energy 33 mJ / m 2 ), polypropylene (surface free energy 29 mJ / m 2 ), polyethylene (surface free energy 31 mJ / m 2 ), etc. The following sheet is exemplified. Such a sheet is excellent in releasability of the sheet itself even if it has a single layer structure composed of a concave portion forming layer or a convex portion forming layer made of the above material. In the present specification, the term “releasability” means both releasability from the sealing resin layer and releasability from the mold during compression molding.

前記材質以外のものによって構成されるシートであっても、シート表面に離型処理を施すことでシート自体の離型性を向上することができる。   Even if the sheet is made of a material other than the above material, it is possible to improve the releasability of the sheet itself by performing a release treatment on the surface of the sheet.

離型処理の方法としては、例えば、ダイキン社製 オプツールHD2010、3M社製 ノベックEGC1720等の離型剤をシート表面に塗布後、乾燥する方法が例示される。   Examples of the release treatment method include a method in which a release agent such as Optool HD2010 manufactured by Daikin and Novec EGC1720 manufactured by 3M is applied to the sheet surface and then dried.

また、凹部形成層又は凸部形成層への凹凸形状の転写性を向上させ、かつ、剥離シート全体としての離型性を向上させる観点から、剥離シートは、前記凹部形成層又は凸部形成層に加えて、さらに支持体層を含有する多層構造を有するものであってもよい。多層構造における凹部形成層又は凸部形成層を構成する材質としては、前記単層構造を構成する材質に加えて、シリコーン樹脂(表面自由エネルギー20mJ/m2)、フッ素樹脂(表面自由エネルギー18mJ/m2)等が例示される。支持体層としては、ポリエチレンテレフタレート、ポリプロピレン樹脂、金属箔等が挙げられる。 Further, from the viewpoint of improving the transferability of the concavo-convex shape to the concave portion forming layer or the convex portion forming layer and improving the releasability as the entire release sheet, the release sheet is the concave portion forming layer or the convex portion forming layer. In addition, it may have a multilayer structure further containing a support layer. In addition to the material constituting the single-layer structure, the material forming the concave portion forming layer or the convex portion forming layer in the multilayer structure is a silicone resin (surface free energy 20 mJ / m 2 ), a fluororesin (surface free energy 18 mJ / m 2 ) and the like are exemplified. Examples of the support layer include polyethylene terephthalate, polypropylene resin, and metal foil.

剥離シートに凹形状又は凸形状を形成する方法としては、単層構造の場合には、例えば、構成樹脂を適当な厚さに塗工して加熱乾燥することにより成形されたシート表面のいずれか一方に、凸形状又は凹形状を有する平板金型を積層し、熱プレス、UV硬化プレス等を用いて間歇送りで転写する方法や、ロールエンボス熱プレスを用いて、表面に凸形状又は凹形状を有するロールから転写する方法が挙げられる。   As a method for forming a concave shape or a convex shape on the release sheet, in the case of a single layer structure, for example, any of the sheet surfaces formed by applying a constituent resin to an appropriate thickness and drying by heating On the other hand, a flat plate mold having a convex shape or a concave shape is laminated and transferred by intermittent feeding using a hot press, UV curing press or the like, or a convex or concave shape on the surface using a roll embossing hot press. And a method of transferring from a roll having s.

また、剥離シートが多層構造である場合には、凹部又は凸部が形成される層と支持体層とを積層させて熱プレス等により圧着させた後に、上記方法により凹形状又は凸形状を形成すればよい。あるいは、支持体層の上に凹部形成層又は凸部形成層の構成樹脂を塗工し、ロールエンボス熱プレスで凹部又は凸部形成後、UV照射することで硬化してもよい。   In addition, when the release sheet has a multilayer structure, a concave or convex shape is formed by the method described above after laminating a layer on which a concave or convex portion is formed and a support layer and press-bonding them by hot pressing or the like. do it. Or you may harden | cure by apply | coating the constituent resin of a recessed part formation layer or a convex part formation layer on a support body layer, and forming a recessed part or a convex part by roll embossing hot press, and UV-irradiating.

剥離シートの凹凸形状は、封止樹脂層の凹凸形状と嵌合することから、凹凸形状の形状としては、半球レンズ、ピラミッド、コーン状、釣鐘形状等の封止樹脂層の輝度向上効果がある形状が好ましい。   Since the concavo-convex shape of the release sheet fits with the concavo-convex shape of the sealing resin layer, the concavo-convex shape has an effect of improving the brightness of the sealing resin layer such as a hemispherical lens, pyramid, cone shape, bell shape, etc. Shape is preferred.

また、凹凸形状は、封止樹脂層と空気の界面の屈折率差に基づく臨界角以下の角度で透過する光を増やす観点から、均一な微細構造であることが好ましい。また、フレネル反射による内部反射を減少し、かつ、界面が平坦である場合よりも臨界角を大きくする観点から、凹凸形状の径は光の波長よりも小さいことが好ましく、凸部の高さ又は凹部の深さのバラツキは±5%以下であることが好ましい。具体的には、凹凸形状の径は100nm〜10μmが好ましく、100〜350nmがより好ましい。ピッチは120nm〜12μmが好ましく、120〜350nmがより好ましい。凸部の高さ又は凹部の深さは100nm〜5μmが好ましく、100〜350nmがより好ましい。   Further, the uneven shape is preferably a uniform fine structure from the viewpoint of increasing light transmitted at an angle less than the critical angle based on the refractive index difference between the sealing resin layer and the air interface. Further, from the viewpoint of reducing internal reflection due to Fresnel reflection and increasing the critical angle as compared with the case where the interface is flat, the diameter of the concavo-convex shape is preferably smaller than the wavelength of light, and the height of the convex portion or The variation in the depth of the recess is preferably ± 5% or less. Specifically, the diameter of the concavo-convex shape is preferably 100 nm to 10 μm, and more preferably 100 to 350 nm. The pitch is preferably 120 nm to 12 μm, and more preferably 120 to 350 nm. The height of the convex portion or the depth of the concave portion is preferably 100 nm to 5 μm, and more preferably 100 to 350 nm.

剥離シートのシート厚さは、単層構造の場合は、成型時の追従性の観点から、12〜100μmが好ましく、18〜40μmがより好ましい。また、多層構造である場合、成型時の追従性及び封止樹脂層の塗工性の観点から、凹部形成層又は凸部形成層の厚さは、0.5〜1μmが好ましく、支持体層を含めたシート厚さは、12.5〜101μmが好ましく、18.5〜41μmがより好ましく、18.5〜26μmがさらに好ましい。本明細書において、凹凸形状を有する剥離シートの厚さとは、凹凸形状の頂上部からシート対面までの厚さのことをいい、凹部形成層又は凸部形成層の厚さは、凹凸形状の頂上部から支持体層までの厚さのことをいう。なお、得られたシートは、複数枚積層して熱プレスすることにより上記範囲の厚みを有する1枚のシートとして成形後、凹凸形状を形成することもできる。   In the case of a single layer structure, the sheet thickness of the release sheet is preferably 12 to 100 μm, more preferably 18 to 40 μm, from the viewpoint of followability during molding. Further, in the case of a multilayer structure, from the viewpoint of followability at the time of molding and coating properties of the sealing resin layer, the thickness of the concave portion forming layer or the convex portion forming layer is preferably 0.5 to 1 μm, including the support layer. The sheet thickness is preferably 12.5 to 101 μm, more preferably 18.5 to 41 μm, and further preferably 18.5 to 26 μm. In this specification, the thickness of the release sheet having a concavo-convex shape means a thickness from the top of the concavo-convex shape to the sheet facing, and the thickness of the concave portion forming layer or the convex portion forming layer is the top of the concavo-convex shape. The thickness from the part to the support layer. In addition, the obtained sheet | seat can also form an uneven | corrugated shape after shape | molding as one sheet | seat which has the thickness of the said range by laminating | stacking several sheets and carrying out hot pressing.

本発明における封止樹脂層としては、例えば、エポキシ樹脂、トリアセチルセルロース(TAC)、ポリカルボジイミド、変性ポリアルミノシロキサン樹脂等、従来から光半導体封止に用いられる樹脂であれば特に限定ないが、封止加工の際に、光半導体素子及び該素子に接続する配線に対して破損することなく封止できる観点から、好ましくは80〜160℃、より好ましくは100〜150℃の軟化点を有する樹脂が好ましい。   As the sealing resin layer in the present invention, for example, epoxy resin, triacetyl cellulose (TAC), polycarbodiimide, modified polyaluminosiloxane resin, and the like are not particularly limited as long as they are conventionally used for optical semiconductor sealing, Resin having a softening point of preferably 80 to 160 ° C., more preferably 100 to 150 ° C., from the viewpoint of sealing without damage to the optical semiconductor element and the wiring connected to the element during the sealing process Is preferred.

また、封止樹脂層には、前記構成樹脂に加えて、蛍光体、硬化剤、硬化促進剤、さらに老化防止剤、変性剤、界面活性剤、染料、顔料、変色防止剤、紫外線吸収剤等の添加剤が原料として配合されていてもよい。   In addition to the constituent resins, the sealing resin layer includes a phosphor, a curing agent, a curing accelerator, an anti-aging agent, a modifier, a surfactant, a dye, a pigment, a discoloration inhibitor, an ultraviolet absorber, and the like. These additives may be blended as raw materials.

凹凸形状を有する封止樹脂層を形成する方法としては、上記で得られた剥離シートとは別に、凹凸形状を有する封止樹脂層を別途調製してもよいが、その場合、本発明の光半導体封止用シートを調製する際に、剥離シートと封止樹脂層を積層して剥離シートの凹凸形状と封止樹脂層の凹凸形状を嵌合させる必要がある。しかしながら、該構造の嵌合は構造が微細なために容易ではないことから、封止樹脂層に凹凸形状を形成させる際に、剥離シートの凹凸形状を利用して、封止樹脂層を剥離シートに嵌合させ、本発明の光半導体封止用シートを調製する方法が好ましい。   As a method for forming a sealing resin layer having a concavo-convex shape, a sealing resin layer having a concavo-convex shape may be separately prepared separately from the release sheet obtained above. When preparing the semiconductor sealing sheet, it is necessary to stack the release sheet and the sealing resin layer to fit the uneven shape of the release sheet and the uneven shape of the sealing resin layer. However, since the fitting of the structure is not easy because the structure is fine, when forming the concavo-convex shape on the sealing resin layer, the concavo-convex shape of the release sheet is used to remove the sealing resin layer from the release sheet. A method of fitting the sheet to the optical semiconductor sealing sheet of the present invention is preferable.

具体的には、剥離シートの凹凸形状が形成された面に、直接、封止樹脂層の構成樹脂又は該樹脂の有機溶媒溶液をキャスティング、スピンコーティング、ロールコーティングなどの方法により適当な厚さに塗工し、溶媒の除去が可能な程度の温度で乾燥させる製膜工程を行って、剥離シートと半硬化状の封止樹脂層が嵌合した本発明の光半導体封止用シートを得ることができる。なお、封止樹脂層の空気との界面には、離型処理を施したフィルム(例えば、ポリエチレンテレフタレートフィルムにシリコーン離型処理を施したフィルム)を積層して圧着させてもよい。   Specifically, the constituent resin of the sealing resin layer or the organic solvent solution of the resin is directly applied to the surface of the release sheet on which the uneven shape is formed by a method such as casting, spin coating, or roll coating. The optical semiconductor sealing sheet of the present invention in which the release sheet and the semi-cured sealing resin layer are fitted is obtained by performing a film-forming process that is applied and dried at a temperature at which the solvent can be removed. Can do. Note that a film subjected to a release treatment (for example, a film obtained by subjecting a polyethylene terephthalate film to a silicone release treatment) may be laminated and pressure-bonded to the interface of the sealing resin layer with air.

また、前記と同様の離型処理を施したフィルムの上に、上記と同様の製膜工程を行って得られた半硬化状の樹脂シートを、剥離シートの凹凸形状が形成された面に樹脂層を対向させて積層し、ラミネーターもしくはプレスを用いて圧着させることにより、剥離シートの凹凸形状に樹脂層が充填され、剥離シートに封止樹脂層を嵌合させた本発明の光半導体封止用シートを形成することができる。   In addition, a semi-cured resin sheet obtained by performing a film forming process similar to that described above on a film that has been subjected to a mold release treatment similar to that described above is applied to the surface on which the uneven shape of the release sheet is formed. The optical semiconductor sealing of the present invention in which the resin layer is filled in the concavo-convex shape of the release sheet, and the sealing resin layer is fitted to the release sheet by laminating the layers facing each other and pressing with a laminator or press A sheet can be formed.

なお、封止樹脂層の凹凸形状は、剥離シートの凹凸形状と嵌合することから、剥離シートの凹凸形状と同じ形状、大きさである。   In addition, since the uneven | corrugated shape of a sealing resin layer fits with the uneven shape of a peeling sheet, it is the same shape and magnitude | size as the uneven shape of a peeling sheet.

封止樹脂層の厚さは、光半導体素子及びワイヤー配線を包埋できる観点から、250〜1000μmが好ましく、250〜500μmがより好ましく、250〜350μmがさらに好ましい。本明細書において、凹凸形状を有する封止樹脂層の厚さとは、凹凸形状の頂上部から対面までの厚さのことをいう。なお、得られた封止樹脂層は、複数枚積層して熱プレス後に凹凸形状を形成することにより、上記範囲の厚みを有する1枚の封止樹脂層として成形してもよく、凹凸形状を形成した封止樹脂層に、別途調製した封止樹脂層を積層して熱プレスすることにより、上記範囲の厚みを有する1枚の封止樹脂層として成形してもよい。   The thickness of the sealing resin layer is preferably 250 to 1000 μm, more preferably 250 to 500 μm, and further preferably 250 to 350 μm, from the viewpoint of embedding the optical semiconductor element and the wire wiring. In this specification, the thickness of the sealing resin layer having a concavo-convex shape refers to the thickness from the top of the concavo-convex shape to the facing surface. The obtained encapsulating resin layer may be formed as a single encapsulating resin layer having a thickness in the above range by laminating a plurality of layers and forming an uneven shape after hot pressing. A separately prepared sealing resin layer may be laminated on the formed sealing resin layer and hot-pressed to form a single sealing resin layer having a thickness in the above range.

封止樹脂層は、封止時に光半導体素子及びワイヤー配線を包埋し、かつ、シート硬化後に外部衝撃から保護する観点から、150℃の溶融粘度は、100〜10000mPa・sが好ましく、500〜5000mPa・sがより好ましく、1000〜3000mPa・sがより好ましい。また、200℃で1時間加熱硬化後の150℃の貯蔵弾性率は、10kPa〜10GPaが好ましく、100kPa〜3GPaがより好ましく、1GPa〜3GPaがさらに好ましい。   From the viewpoint of embedding the optical semiconductor element and the wire wiring at the time of sealing and protecting from external impact after the sheet is cured, the sealing resin layer preferably has a melt viscosity at 150 ° C. of 100 to 10,000 mPa · s, 500 to 5000 mPa · s is more preferable, and 1000 to 3000 mPa · s is more preferable. The storage elastic modulus at 150 ° C. after heat curing at 200 ° C. for 1 hour is preferably 10 kPa to 10 GPa, more preferably 100 kPa to 3 GPa, and further preferably 1 GPa to 3 GPa.

また、本発明は、本発明の光半導体封止用シートで封止してなる、光半導体装置を提供する。   Moreover, this invention provides the optical semiconductor device formed by sealing with the sheet | seat for optical semiconductor sealing of this invention.

本発明の光半導体装置は、本発明の光半導体封止用シートを用いて光半導体デバイスを封止することを特徴とし、具体的には、例えば、光半導体素子が搭載された基板の上に、上記の光半導体封止用シートを封止樹脂層が基板に対向するよう積層して加圧成型後、剥離シートを剥離する工程を含む方法により得られる。かかる方法により得られた本発明の光半導体装置は、凹凸形状が封止樹脂層の表面に形成され、また、剥離シートの剥離が光半導体装置の使用直前であるために、該凹凸形状は欠落のない微細な構造を維持している。なお、本発明の光半導体封止用シートを光半導体素子基板に積層する際に、該基板サイズに応じて、光半導体封止用シートを短冊状に切断してから積層してもよい。   The optical semiconductor device of the present invention is characterized in that the optical semiconductor device is sealed using the optical semiconductor sealing sheet of the present invention, and specifically, for example, on a substrate on which an optical semiconductor element is mounted. The optical semiconductor sealing sheet is obtained by a method including the step of laminating the sealing resin layer so that the sealing resin layer faces the substrate, press molding, and then peeling the release sheet. In the optical semiconductor device of the present invention obtained by such a method, the uneven shape is formed on the surface of the encapsulating resin layer, and the release sheet is peeled immediately before use of the optical semiconductor device. Maintains a fine structure without any defects. In addition, when laminating | stacking the sheet | seat for optical semiconductor sealing of this invention on an optical semiconductor element substrate, you may laminate | stack, after cutting the sheet | seat for optical semiconductor sealing into strip shape according to this board | substrate size.

加圧成型の条件としては、使用する樹脂の種類やシート厚さ等によって一概には決定されず、例えば、基板に搭載された光半導体素子の上に、本発明の光半導体素子封止用シートを封止樹脂層が光半導体素子が搭載された基板と対向するよう積層した後、金型を設置して、好ましくは80〜160℃の温度で、好ましくは0.1〜0.5MPa、より好ましくは0.1〜0.3MPaの圧力で加温加圧することにより加圧成型されたパッケージが得られる。前記条件で加圧成型することにより、光半導体素子へのダメージがなく、また、硬化後の封止樹脂が応力緩和に優れるものとなる。   The conditions for pressure molding are not determined unconditionally depending on the type of resin used, the sheet thickness, etc., for example, the optical semiconductor element sealing sheet of the present invention on the optical semiconductor element mounted on the substrate Is laminated so that the sealing resin layer faces the substrate on which the optical semiconductor element is mounted, and then a mold is installed, preferably at a temperature of 80 to 160 ° C., preferably 0.1 to 0.5 MPa, more preferably 0.1. A package molded by pressure can be obtained by heating and pressing at a pressure of .about.0.3 MPa. By pressure molding under the above conditions, there is no damage to the optical semiconductor element, and the cured sealing resin is excellent in stress relaxation.

加圧成型後は、室温下においても形状が変化しなくなるまで放置後、金型をはずして、封止樹脂層の硬化(ポストキュア)を行ってから、剥離シートを剥離する。なお、ポストキュアは、例えば、好ましくは100〜150℃の温度の乾燥機で、好ましくは15分〜6時間放置して行うことができる。   After pressure molding, the mold is removed after leaving until the shape does not change even at room temperature, the sealing resin layer is cured (post-cure), and then the release sheet is peeled off. In addition, the post-cure can be performed, for example, preferably in a dryer at a temperature of 100 to 150 ° C., and preferably left for 15 minutes to 6 hours.

本発明の光半導体装置は、光取り出し効率に優れる本発明の光半導体封止用シートを光半導体素子封止材として含有するために、青色素子等の高輝度LED素子や緑色LED素子等を搭載した光半導体装置であっても、発光輝度を高い状態で取り出すことが可能となり、好適に使用することができる。また、封止樹脂層に蛍光体が配合されている場合には、白色LED素子を搭載した光半導体装置であっても、発光輝度の高い状態で光を取り出すことができる。   The optical semiconductor device of the present invention is equipped with a high-intensity LED element such as a blue element or a green LED element in order to contain the optical semiconductor sealing sheet of the present invention excellent in light extraction efficiency as an optical semiconductor element sealing material. Even an optical semiconductor device that has been manufactured can be taken out in a high emission luminance state and can be suitably used. In addition, when a phosphor is blended in the sealing resin layer, light can be extracted with a high emission luminance even in an optical semiconductor device in which a white LED element is mounted.

以下、本発明を実施例に基づいて説明するが、本発明はこれらの実施例等によりなんら限定されるものではない。   EXAMPLES Hereinafter, although this invention is demonstrated based on an Example, this invention is not limited at all by these Examples.

〔樹脂の分子量〕
ゲルろ過クロマトグラフィー(GPC)によるポリスチレン換算にて求める。
[Molecular weight of resin]
Obtained in terms of polystyrene by gel filtration chromatography (GPC).

〔樹脂の屈折率〕
プリズムカップラー(SPA-4000、サイロン社製)を用いて、25℃、460nmにおける屈折率を測定する。
[Refractive index of resin]
The refractive index at 25 ° C. and 460 nm is measured using a prism coupler (SPA-4000, manufactured by Cylon).

実施例1
無延伸ポリプロピレンフィルム(東セロ社製、商品名「S-40」、40μm)上に、径200nm、高さ210nmの凸部がピッチ250nmで配列された凸金型を配置し、真空プレス装置(ニチゴーモートン社製、V-130)を用いて、1MPaの加圧下で、160℃、3分間プレス成型して、表面に凹形状を有する剥離シートが得られた(厚さ40μm)。
Example 1
On a non-stretched polypropylene film (trade name “S-40”, manufactured by Tosero Co., Ltd., 40 μm), a convex mold in which convex portions having a diameter of 200 nm and a height of 210 nm are arranged at a pitch of 250 nm is arranged, and a vacuum press apparatus (Nichigo) A release sheet having a concave shape on the surface was obtained (thickness: 40 μm) by press molding at 160 ° C. for 3 minutes under a pressure of 1 MPa using V-130 manufactured by Morton.

次に、両末端シラノール型シリコーンオイル(信越化学工業社製、商品名「KF-9701」、平均分子量3000)600g(0.200mol)、及びアルミニウムイソプロポキシド8.22g(40.2mol)を、室温(25℃)で24時間攪拌混合した。その後、得られた混合物を遠心分離して不溶物を除去し、減圧下、50℃で2時間濃縮して、ポリアルミノシロキサンオイルを得た。得られたポリアルミノシロキサンオイル100重量部に対して、メタクリル型シランカップリング剤(信越化学工業社製、KBM-503)10重量部を添加して、減圧下、80℃で10分間攪拌して、メタクリル変性ポリアルミノシロキサンを得た。得られたメタクリル変性ポリアルミノシロキサンを、上記で得られた凹形状を有する剥離シート上に300μmの厚さにアプリケータを用いて塗工し、100℃で10分乾燥して、実施例1の光半導体封止用シートを得た(厚さ340μm)。なお、メタクリル変性ポリアルミノシロキサンは、波長460nmの入射光に対する屈折率が1.40であった。   Next, both terminal silanol type silicone oil (manufactured by Shin-Etsu Chemical Co., Ltd., trade name `` KF-9701 '', average molecular weight 3000) 600 g (0.200 mol), and aluminum isopropoxide 8.22 g (40.2 mol) at room temperature (25 And stirred for 24 hours. Thereafter, the obtained mixture was centrifuged to remove insoluble matters, and concentrated under reduced pressure at 50 ° C. for 2 hours to obtain polyaluminosiloxane oil. To 100 parts by weight of the resulting polyaluminosiloxane oil, 10 parts by weight of a methacrylic silane coupling agent (manufactured by Shin-Etsu Chemical Co., Ltd., KBM-503) is added and stirred at 80 ° C. for 10 minutes under reduced pressure. A methacryl-modified polyaluminosiloxane was obtained. The obtained methacryl-modified polyaluminosiloxane was coated on the release sheet having a concave shape obtained above to a thickness of 300 μm using an applicator, dried at 100 ° C. for 10 minutes, and An optical semiconductor sealing sheet was obtained (thickness 340 μm). The methacryl-modified polyaluminosiloxane had a refractive index of 1.40 with respect to incident light having a wavelength of 460 nm.

実施例2
ポリエチレンテレフタレートフィルム(18μm)の一方の面に、紫外線硬化性フッ素樹脂溶液(旭硝子社製、商品名「NIF-A1」)を1μmの厚さに塗工後、径200nm、高さ210nmの凸部がピッチ250nmで配列された凸金型を凸部がフッ素樹脂溶液の塗工面に対向するよう配置し、ポリエチレンテレフタレートフィルムが露出する側から、紫外線(波長365nm)を照射してフッ素樹脂を硬化させて、表面に凹形状を有する剥離シートが得られた(厚さ19μm)。
Example 2
On one side of a polyethylene terephthalate film (18μm), an ultraviolet curable fluororesin solution (product name `` NIF-A1 '' manufactured by Asahi Glass Co., Ltd.) is applied to a thickness of 1μm, then a convex part with a diameter of 200nm and a height of 210nm A convex mold with a pitch of 250 nm is placed so that the convex part faces the coating surface of the fluororesin solution, and the fluororesin is cured by irradiating ultraviolet rays (wavelength 365 nm) from the side where the polyethylene terephthalate film is exposed. Thus, a release sheet having a concave shape on the surface was obtained (thickness 19 μm).

次に、エポキシ樹脂(日東電工社製、商品名「NT-8528」、エポキシ当量3200)200gを、50℃条件下で、メチルエチルケトン200gに攪拌しながら徐々に添加して、固形分濃度50重量%のエポキシ樹脂溶液を得た。得られたエポキシ樹脂溶液を、上記で得られた凹形状を有する剥離シート上に31μmの厚さにアプリケータを用いて塗工し、100℃で2分、次いで、120℃で2分加熱して、剥離シートに嵌合したエポキシ樹脂層を得た。   Next, 200 g of an epoxy resin (manufactured by Nitto Denko Corporation, trade name “NT-8528”, epoxy equivalent 3200) is gradually added to 200 g of methyl ethyl ketone under stirring at 50 ° C., and the solid content concentration is 50% by weight. An epoxy resin solution was obtained. The obtained epoxy resin solution was applied on the release sheet having a concave shape obtained above to a thickness of 31 μm using an applicator, heated at 100 ° C. for 2 minutes, and then heated at 120 ° C. for 2 minutes. Thus, an epoxy resin layer fitted to the release sheet was obtained.

また、前記エポキシ樹脂溶液を、別途、離型処理を行ったポリエチレンテレフタレートフィルム上に50μmの厚さにアプリケータを用いて塗工し、100℃で2分、次いで、120℃で2分加熱して、1枚のエポキシ樹脂シートを得た。さらに、同様にして4枚のエポキシ樹脂シートを作製し、上記で得られた剥離シートに嵌合したエポキシ樹脂層に、合計5枚のエポキシ樹脂シートをラミネータ(日東精機社製、NLE-550ST)を用いて120℃、0.3MPaで貼り合わせ、実施例2の光半導体封止用シートを得た(厚さ300μm)。なお、エポキシ樹脂は、波長460nmの入射光に対する屈折率が1.55であった。   In addition, the epoxy resin solution was coated on a polyethylene terephthalate film that had been subjected to a separate release treatment to a thickness of 50 μm using an applicator, and heated at 100 ° C. for 2 minutes and then at 120 ° C. for 2 minutes. Thus, one epoxy resin sheet was obtained. Furthermore, four epoxy resin sheets were produced in the same manner, and a total of five epoxy resin sheets were laminated on the epoxy resin layer fitted to the release sheet obtained above (NLE-550ST, manufactured by Nitto Seiki Co., Ltd.) Was used and bonded at 120 ° C. and 0.3 MPa to obtain an optical semiconductor sealing sheet of Example 2 (thickness: 300 μm). The epoxy resin had a refractive index of 1.55 with respect to incident light having a wavelength of 460 nm.

実施例3
実施例1と同様の無延伸ポリプロピレンフィルム(S-40)上に、径10μm、高さ5μmの凸部がピッチ12μmで配列された凸金型を配置し、真空プレス装置(V-130)を用いて、1MPaの加圧下で、160℃、3分間プレス成型して、表面に凹形状を有する剥離シートが得られた(厚さ40μm)。
Example 3
A convex mold in which convex portions having a diameter of 10 μm and a height of 5 μm are arranged at a pitch of 12 μm is arranged on the same unstretched polypropylene film (S-40) as in Example 1, and a vacuum press device (V-130) is arranged. Then, press molding was performed at 160 ° C. for 3 minutes under a pressure of 1 MPa to obtain a release sheet having a concave shape on the surface (thickness: 40 μm).

次に、実施例2において調製した50μmの厚さのエポキシ樹脂シートを260μmの厚さに変更する以外は、実施例2と同様にしてエポキシ樹脂シートを調製後、上記で得られた凹形状を有する剥離シート上に積層して、ラミネータ(LE-550ST)を用いて120℃、0.3MPaで貼り合わせ、実施例3の光半導体封止用シートを得た(厚さ300μm)。   Next, except that the 50 μm thick epoxy resin sheet prepared in Example 2 was changed to 260 μm in thickness, the epoxy resin sheet was prepared in the same manner as in Example 2, and the concave shape obtained above was then used. The sheet was laminated on the release sheet and laminated at 120 ° C. and 0.3 MPa using a laminator (LE-550ST) to obtain an optical semiconductor sealing sheet of Example 3 (thickness 300 μm).

比較例1〜3
実施例1〜3において、剥離シートに凹形状を形成しない以外は、実施例1〜3と同様にして、比較例1〜3の光半導体封止用シートを調製した。
Comparative Examples 1-3
In Examples 1-3, the sheet | seat for optical semiconductor sealing of Comparative Examples 1-3 was prepared like Example 1-3 except not forming a concave shape in a peeling sheet.

<アレイパッケージ>
得られた光半導体封止用シートを、光半導体素子(波長域460nm)を実装した平板の基板に、封止樹脂層を光半導体素子と対向するよう積層し、その上から、凹部(8mm×8mm、深さ250μm)を有するSUS製金型を、真空プレス装置(V-130)を用いて、0.1MPaの圧力下で、160℃で5分加熱した。その後、真空ラミネーターから取り出し、室温(25℃)に戻してから金型をはずし、150℃の乾燥機にて1時間ポストキュアを行った後、剥離シートを剥離して、アレイパッケージを得た。なお、比較例1〜3のアレイパッケージでは、剥離シートの剥離後に封止樹脂層に、実施例1〜3の光半導体封止用シート成形時に用いた凸型構造を有する凸金型をそれぞれ配置し、真空プレス装置(V-130)を用いて、1MPaの加圧下で、160℃、3分間プレス成型して、表面に凹形状を形成した。
<Array package>
The obtained optical semiconductor sealing sheet was laminated on a flat substrate mounted with an optical semiconductor element (wavelength range 460 nm) so that the sealing resin layer was opposed to the optical semiconductor element, and from above, a recess (8 mm × A SUS mold having a thickness of 8 mm and a depth of 250 μm was heated at 160 ° C. for 5 minutes under a pressure of 0.1 MPa using a vacuum press apparatus (V-130). Thereafter, the mold was taken out from the vacuum laminator and returned to room temperature (25 ° C.). After the mold was removed with a dryer at 150 ° C. for 1 hour, the release sheet was peeled off to obtain an array package. In the array packages of Comparative Examples 1 to 3, the convex molds having the convex structure used at the time of molding the optical semiconductor sealing sheet of Examples 1 to 3 were arranged in the sealing resin layer after the release sheet was peeled off. Then, using a vacuum press (V-130), press molding was performed at 160 ° C. for 3 minutes under a pressure of 1 MPa to form a concave shape on the surface.

得られたアレイパッケージについて、以下の試験例1に従って、特性を評価した。結果を表1に示す。   The characteristics of the obtained array package were evaluated according to Test Example 1 below. The results are shown in Table 1.

試験例1(光取り出し効率)
各アレイパッケージの発光輝度を全天候輝度計測により測定し、実施例1と比較例1のアレイパッケージは、比較例1のアレイパッケージにおいて封止樹脂層に凹形状がないアレイパッケージを基準とした場合の、実施例2と比較例2のアレイパッケージは、比較例2のアレイパッケージにおいて封止樹脂層に凹形状がないアレイパッケージを基準とした場合の、実施例3と比較例3のアレイパッケージは、比較例3のアレイパッケージにおいて封止樹脂層に凹形状がないアレイパッケージを基準とした場合の、発光輝度向上率をそれぞれ算出した。なお、測定には積分球を使用し、マルチ測光システム(MCPD-3000、大塚電子社製)を用いて行った。
Test example 1 (light extraction efficiency)
The light emission luminance of each array package is measured by all-weather luminance measurement, and the array packages of Example 1 and Comparative Example 1 are based on an array package in which the sealing resin layer has no concave shape in the array package of Comparative Example 1. The array packages of Example 2 and Comparative Example 2 are based on the array package of Comparative Example 2 in which the sealing resin layer has no concave shape, and the array packages of Example 3 and Comparative Example 3 are: In the array package of Comparative Example 3, the emission luminance improvement rate was calculated based on the array package in which the sealing resin layer does not have a concave shape. The measurement was performed using an integrating sphere and a multi-photometry system (MCPD-3000, manufactured by Otsuka Electronics Co., Ltd.).

結果、実施例のアレイパッケージは、発光素子の側面にも封止樹脂層の凸部構造が形成されているため、比較例のアレイパッケージよりも、輝度向上率が高い。   As a result, since the convex structure of the sealing resin layer is also formed on the side surface of the light emitting element, the array package of the example has a higher luminance improvement rate than the array package of the comparative example.

本発明の光半導体封止用シートは、例えば、液晶画面のバックライト、信号機、屋外の大型ディスプレイや広告看板等の半導体素子を製造する際に好適に用いられる。   The optical semiconductor sealing sheet of the present invention is suitably used, for example, when manufacturing semiconductor elements such as a backlight of a liquid crystal screen, a traffic light, an outdoor large display, and an advertising billboard.

1−1 剥離シートに凹部を形成する金型
1−2 剥離シートの凹部形成層
1−3 剥離シートの支持体層
1 剥離シート
2 封止樹脂層
3 光半導体素子
4 基板
5 圧縮成型用金型
6 封止樹脂層に凸部を形成する金型
1-1 Mold for Forming Recesses in Release Sheet 1-2 Recess Forming Layer of Release Sheet 1-3 Support Layer for Release Sheet 1 Release Sheet 2 Sealing Resin Layer 3 Optical Semiconductor Element 4 Substrate 5 Mold for Compression Molding 6 Molds that form protrusions on the sealing resin layer

Claims (4)

剥離シートの上に封止樹脂層が積層されてなる光半導体封止用シートであって、前記剥離シートが封止樹脂層との界面に、凹形状を有する凹部形成層又は凸形状を有する凸部形成層を含み、かつ、前記封止樹脂層が剥離シートとの界面に、剥離シートの凹形状に嵌合する凸形状又は剥離シートの凸形状に嵌合する凹形状を有してなる、光半導体封止用シート。   An optical semiconductor sealing sheet in which a sealing resin layer is laminated on a release sheet, wherein the release sheet has a recess-forming layer having a concave shape or a convex having a convex shape at the interface with the sealing resin layer. Including a part forming layer, and the sealing resin layer has a convex shape that fits into the concave shape of the release sheet or a concave shape that fits into the convex shape of the release sheet at the interface with the release sheet. Sheet for optical semiconductor sealing. 封止樹脂層における、凸形状の凸部の高さ又は凹形状の凹部の深さが100nm〜10μmである、請求項1記載の光半導体封止用シート。   The sheet | seat for optical semiconductor sealing of Claim 1 whose height of a convex-shaped convex part or the depth of a concave-shaped recessed part is 100 nm-10 micrometers in a sealing resin layer. 剥離シートが、さらに、支持体層を含んでなる、請求項1又は2記載の光半導体封止用シート。   The optical semiconductor sealing sheet according to claim 1, wherein the release sheet further comprises a support layer. 請求項1〜3いずれか記載の光半導体封止用シートを光半導体素子搭載基板に封止樹脂層が基板に対向するよう積層して加圧成型後、剥離シートを剥離して、凸形状又は凹形状が表面に形成されてなる、光半導体装置。   The optical semiconductor sealing sheet according to any one of claims 1 to 3 is laminated on an optical semiconductor element mounting substrate so that the sealing resin layer faces the substrate, and after pressure molding, the release sheet is peeled off to form a convex shape or An optical semiconductor device having a concave shape formed on a surface.
JP2009033886A 2009-02-17 2009-02-17 Sheet for optical semiconductor encapsulation Expired - Fee Related JP5190996B2 (en)

Priority Applications (5)

Application Number Priority Date Filing Date Title
JP2009033886A JP5190996B2 (en) 2009-02-17 2009-02-17 Sheet for optical semiconductor encapsulation
US12/706,123 US20100209670A1 (en) 2009-02-17 2010-02-16 Sheet for photosemiconductor encapsulation
EP10153757.9A EP2219242A3 (en) 2009-02-17 2010-02-17 Sheet for photosemiconductor encapsulation
KR1020100014048A KR101641384B1 (en) 2009-02-17 2010-02-17 Sheet for photosemiconductor encapsulation
CN201010114553.1A CN101847683B (en) 2009-02-17 2010-02-20 For the sheet of optical semiconductor encapsulation

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009033886A JP5190996B2 (en) 2009-02-17 2009-02-17 Sheet for optical semiconductor encapsulation

Publications (2)

Publication Number Publication Date
JP2010192586A JP2010192586A (en) 2010-09-02
JP5190996B2 true JP5190996B2 (en) 2013-04-24

Family

ID=42818323

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009033886A Expired - Fee Related JP5190996B2 (en) 2009-02-17 2009-02-17 Sheet for optical semiconductor encapsulation

Country Status (1)

Country Link
JP (1) JP5190996B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5923850B2 (en) * 2010-11-30 2016-05-25 サンユレック株式会社 Opto device manufacturing method
CN102909872B (en) * 2011-08-02 2015-02-04 深圳光启高等理工研究院 Preparation method of inhomogeneous-media substrate
TW201609350A (en) * 2014-06-04 2016-03-16 道康寧東麗股份有限公司 Imprinting process of hot-melt type curable silicone composition for optical devices
WO2016039443A1 (en) * 2014-09-12 2016-03-17 日東電工株式会社 Sealing-layer-covered photosemiconductor element production method and photosemiconductor device production method

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2000114605A (en) * 1998-10-07 2000-04-21 Matsushita Electronics Industry Corp Led display
JP4383768B2 (en) * 2003-04-23 2009-12-16 スリーエム イノベイティブ プロパティズ カンパニー Film adhesive for sealing, film laminate for sealing, and sealing method
JP2005203737A (en) * 2003-12-19 2005-07-28 Nitto Denko Corp Method of manufacturing semiconductor light-emitting device
JP2005294733A (en) * 2004-04-05 2005-10-20 Nitto Denko Corp Sheet for sealing optical semiconductor element, and manufacturing method for optical semiconductor device using the sheet
JP4863682B2 (en) * 2005-10-17 2012-01-25 日東電工株式会社 Optical semiconductor element sealing sheet
JP2008230114A (en) * 2007-03-22 2008-10-02 Hitachi Chem Co Ltd Sealing film

Also Published As

Publication number Publication date
JP2010192586A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
KR101641384B1 (en) Sheet for photosemiconductor encapsulation
JP5190993B2 (en) Sheet for optical semiconductor encapsulation
JP5473609B2 (en) LED device having a lens and manufacturing method thereof
JP5107886B2 (en) Manufacturing method of optical semiconductor device
US10522728B2 (en) Beveled chip reflector for chip-scale packaging light-emitting device and manufacturing method of the same
JP5511524B2 (en) Sealing sheet for optical semiconductor
JP5177693B2 (en) Sheet for optical semiconductor encapsulation
JP5744386B2 (en) Optical semiconductor encapsulant
TW201539801A (en) Glueless phosphor converter light emitting device
JP5366587B2 (en) Processed sheet for optical semiconductor encapsulation
JP5064254B2 (en) Resin sheet for optical semiconductor element sealing and optical semiconductor device
US20090242928A1 (en) Resin sheet for encapsulating optical semiconductor element and optical semiconductor device
EP2441098A1 (en) Led with remote phosphor layer and reflective submount
KR20120078561A (en) Light emitting diode packaging structure and method for fabricating the same
JP5190996B2 (en) Sheet for optical semiconductor encapsulation
US20170194538A1 (en) Chip scale packaging light emitting device and manufacturing method of the same
JP2019201089A (en) Oblique angle chip reflector of chip scale packaging light emission device and manufacturing method of the same
TW201346398A (en) Light guide plate and method of manufacturing the same
JP6596410B2 (en) Chip scale package light emitting device and manufacturing method thereof
JP5191001B2 (en) Sheet for optical semiconductor encapsulation
JP2007301843A (en) Resin molding, method for molding the molding, light emitting device, and method for producing the device
JP5450358B2 (en) Seal molding method
JP2018523256A (en) Conversion part manufacturing method and optoelectronic lighting device
JP5730559B2 (en) Optical semiconductor device
JP6347596B2 (en) Lens sheet and EL light emitting device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20111130

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130123

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130125

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees