JP5190803B2 - Electric motor control device - Google Patents

Electric motor control device Download PDF

Info

Publication number
JP5190803B2
JP5190803B2 JP2009049356A JP2009049356A JP5190803B2 JP 5190803 B2 JP5190803 B2 JP 5190803B2 JP 2009049356 A JP2009049356 A JP 2009049356A JP 2009049356 A JP2009049356 A JP 2009049356A JP 5190803 B2 JP5190803 B2 JP 5190803B2
Authority
JP
Japan
Prior art keywords
transfer function
axis
driving force
loop transfer
unit
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009049356A
Other languages
Japanese (ja)
Other versions
JP2010206930A5 (en
JP2010206930A (en
Inventor
剛彦 小宮
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yaskawa Electric Corp
Original Assignee
Yaskawa Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yaskawa Electric Corp filed Critical Yaskawa Electric Corp
Priority to JP2009049356A priority Critical patent/JP5190803B2/en
Publication of JP2010206930A publication Critical patent/JP2010206930A/en
Publication of JP2010206930A5 publication Critical patent/JP2010206930A5/ja
Application granted granted Critical
Publication of JP5190803B2 publication Critical patent/JP5190803B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、半導体製造装置や工作機械、産業用ロボット等に用いられて位置決め制御や、プレス機、加工機等に用いられて押し付け制御などをする複数軸を用いた電動機制御装置に関する。 The present invention relates to an electric motor control device using a plurality of axes that is used in a semiconductor manufacturing apparatus, a machine tool, an industrial robot, etc., and performs positioning control and pressing control used in a press machine, a processing machine, and the like.

位置決め制御や押し付け制御、倣い制御などで電動機制御装置を高速・高精度に利用するには、機械特性と、電動機制御装置の制御特性と、を最適に整合させて電動機を動作させる必要がある。また、電動機制御装置を複数備えた構成では、複数の電動機が動作することで、他軸の電動機の動作により自軸の検出部が反応し、軸間の干渉を起こすことがある。本来、複数の電動機の軸間についても機械特性と、電動機制御装置の制御特性とを最適に整合させる必要がある。   In order to use the motor control device at high speed and high accuracy in positioning control, pressing control, copying control, etc., it is necessary to operate the motor by optimally matching the mechanical characteristics with the control characteristics of the motor control apparatus. Further, in the configuration including a plurality of motor control devices, the operation of the plurality of motors may cause the detection unit of the own shaft to react due to the operation of the motors of the other shafts and cause interference between the shafts. Originally, it is necessary to optimally match the mechanical characteristics and the control characteristics of the motor control device between the shafts of a plurality of motors.

一方で、電動機制御装置を備えた機械システムは、多軸の利用が多く、軸間で互いに影響を及ぼす電動機制御装置の組み合わせが多数考えられ、機械特性と制御特性を整合して軸間の影響度をすべて考慮するのは非効率である。このため、軸間で互いに影響を及ぼす組み合わせを絞りこむ必要がある。なお、多数の電動機制御装置の中には、長いストロークを要しながら重力や外力が作用するものが含まれる。   On the other hand, a mechanical system equipped with an electric motor control device often uses multiple axes, and there are many possible combinations of electric motor control devices that affect each other between the axes. It is inefficient to consider all degrees. For this reason, it is necessary to narrow down combinations that affect each other between the axes. In addition, in many electric motor control apparatuses, what a gravity and an external force act is contained, requiring a long stroke.

こうした一般的な技術課題を解決するために、従来には以下の4例のような関連技術がある。
従来の第1例である電動機制御装置は、動作指令信号109である入力トルク信号112と回転速度信号110とをFFTにより周波数分析し、分析結果114を出力するようにしている(例えば、特許文献1参照)。
また、従来の第2例である電動機制御装置およびその機械特性測定方法並びに制御器調整方法は、機械特性を測定して制御器の安定度を把握し、機械特性に合わせて制御器を最適に調整可能な電動機制御装置および機械特性測定方法、制御器調整方法を提供するために、閉ループ外乱周波数応答特性を算出する閉ループ外乱周波数応答特性算出手段210と、閉ループ駆動力周波数応答特性算出手段211と、機械特性算出手段213と、を備えているものもある(例えば、特許文献2参照)。
また、従来の第3例であるモータ制御装置の周波数特性演算装置は、モータ制御系の複数軸の周波数特性を容易に計測することができる周波数特性演算装置を提供するために、複数軸のモータの回転指令Fと回転センサの信号Xを用いて周波数特性を演算しているものもある(例えば、特許文献3参照)。
また、従来の第4例である除振台のフィードフォワード制御方法は、フィードバック制御では対処できない直動外乱に対して非常に有効なフィードフォワード制御を提供するため、入出力関係(G)の逆を与えるシステム(G−1)を演算し、フィードフォワード制御信号(U)を能動アクチュエータ(A)〜(D)に与えて機器(K)の作動に起因する振動をキャンセルするようにしているものもある(例えば、特許文献4参照)。
In order to solve such general technical problems, there are conventionally related technologies such as the following four examples.
The conventional motor control apparatus as the first example performs frequency analysis on the input torque signal 112 and the rotation speed signal 110, which are operation command signals 109, by FFT, and outputs an analysis result 114 (for example, Patent Documents). 1).
In addition, the conventional second example of the motor control device and its mechanical characteristic measuring method and controller adjusting method is to measure the mechanical characteristic to grasp the stability of the controller and optimize the controller according to the mechanical characteristic. Closed-loop disturbance frequency response characteristic calculating means 210 for calculating a closed-loop disturbance frequency response characteristic, closed-loop driving force frequency response characteristic calculating means 211 for providing an adjustable motor control device, mechanical characteristic measurement method, and controller adjustment method And a mechanical characteristic calculation unit 213 (see, for example, Patent Document 2).
In addition, a frequency characteristic calculation device for a motor control device, which is a conventional third example, provides a frequency characteristic calculation device that can easily measure the frequency characteristics of a plurality of axes of a motor control system. In some cases, the frequency characteristic is calculated using the rotation command F and the rotation sensor signal X (see, for example, Patent Document 3).
Further, the feedforward control method for the vibration isolation table, which is the conventional fourth example, provides very effective feedforward control for linear motion disturbance that cannot be dealt with by feedback control. The system (G-1) that gives the power is calculated, and the feedforward control signal (U) is given to the active actuators (A) to (D) to cancel the vibration caused by the operation of the device (K). (For example, refer to Patent Document 4).

WO2001/082462号公報(図1)WO2001 / 082462 (FIG. 1) 特開2006−221404号公報(図1)Japanese Patent Laying-Open No. 2006-221404 (FIG. 1) 特開2003−061379号公報(図1)Japanese Patent Laying-Open No. 2003-061379 (FIG. 1) 特開平05−011856号公報(図1) 従来の第1例である特許文献1の電動機制御装置について説明する。図21は従来の第1例を示す電動機制御装置のブロック図である。電動機制御装置の制御対象を含む周波数特性を測定し把握した上で、サーボゲインを決めるためには、FFTアナライザ等の高価な計測器を用意し、熟練した作業者が必要となる。安易に周波数特性を測定すれば、デジタル・サンプリング時に測定周波数範囲外の成分が混入する折り返し誤差が発生し、正確な周波数特性を求めることができない。さらに、周波数特性を測定するために、電動機を動作させると可動部が移動する。負荷機械の可動部はその位置により特性が変化し、共振周波数や反共振周波数がずれ、周波数特性の測定精度が低下する。測定時に平均化等を実行するために測定するデータ量を増やすには、長時間のデータを収集するか、もしくは、複数回の動作と測定を実行する必要があるが、可動部の移動量が増大し、周波数特性の共振周波数ピークが割れるなど、測定精度がさらに低下するという問題がある。以上のような一般的な技術課題を解決するために、従来の第1例である特許文献1の電動機制御装置は、周波数分析時に折り返し誤差が発生せず、測定周波数範囲外の不要な高周波成分を含まない前記動作指令信号を作成し、サーボ装置102に出力し電動機104を駆動し、動作指令信号と回転検出器103からの回転検出器信号を演算装置101が周波数分析し、分析結果を出力するようにしている。また、電動機104の正転側と逆転側の動作指令信号を作成し、前記サーボ装置102に出力し、動作指令信号と回転検出器103の検出信号から演算装置101が周波数特性を演算している。このようにして、従来の第1例である特許文献1の電動機制御装置は、単軸の周波数特性を算出するのである。従来の第2例である特許文献2の電動機制御装置およびその機械特性測定方法並びに制御器調整方法について説明する。図22は従来の第2例を示す電動機制御装置の全体構成図である。機械特性を測定しながら制御器の安定度を把握し、機械特性に合わせて制御器を最適に調整できなかった。この一般的な技術課題を解決するために、従来の第2例である特許文献2の電動機制御装置およびその機械特性測定方法並びに制御器調整方法は、フィードバックループを構成した電動機制御装置において、電動機201または機械205の動作量を検出する検出手段202と、指令信号を発生する指令器204と、指令信号を受けて電動機201を駆動するための制御器203と、電流制御部206と、を備えた電動機制御装置において、外乱入力する指令を生成する外乱信号発生部207と、制御器203が出力する駆動力を検出する駆動力検出手段208と、該外乱信号発生部207の出力と駆動力検出手段208の出力から閉ループ駆動力周波数応答特性を算出する閉ループ駆動力周波数応答特性算出手段211と、該閉ループ駆動力周波数応答特性と該閉ループ外乱周波数応答特性から、機械特性を算出する機械特性算出手段213とを備え、外乱信号発生部207で作成した外乱信号で電動機201を駆動し、駆動力検出手段208と検出手段202の検出信号を得る。外乱信号発生部207と検出手段202の出力から閉ループ外乱周波数応答特性算出手段210で閉ループ外乱周波数応答特性を算出する。また、外乱信号発生部207と駆動力検出手段208の出力から閉ループ駆動力周波数応答特性算出手段211で閉ループ駆動力周波数応答特性を算出する。さらに、閉ループ駆動力周波数応答特性から、一巡開ループ周波数応答特性算出手段212が一巡開ループ周波数応答特性を算出する。加えて、機械特性算出手段213は閉ループ駆動力周波数応答特性と閉ループ外乱周波数応答特性から、機械特性を算出するようにしている。このように、従来の第2例である特許文献2の電動機制御装置およびその機械特性測定方法並びに制御器調整方法は、単軸の閉ループ外乱周波数応答特性、閉ループ外乱周波数応答特性、一巡開ループ周波数応答特性、機械特性を算出するのである。従来の第3例である特許文献3のモータ制御装置の周波数特性演算装置について説明する。図23は従来の第3例を示すモータ制御装置の構成図である。2軸以上のサーボ系を有するモータ制御装置の場合は、1軸毎に単軸の周波数特性を別々に計測し、その結果を総合して全体の特性が把握されていた。全軸の周波数特性を計測するには長時間を要するという問題があった。また、本来、軸間に干渉があり軸間の特性があるが、1軸毎に単軸の周波数特性を計測する方法ではできなかった。以上のような一般的な技術課題を解決するために、従来の第3例である特許文献3のモータ制御装置の周波数特性演算装置は、可動部310、311と、モータ306、307と、モータの回転を伝えて可動部を移動させる伝達機構308、309と、モータの回転を検出する回転センサ304、305と、モータの回転指令Fと回転センサの信号Xを受けてモータの回転を制御するサーボ装置302、303とを複数備えて複数のサーボ系をなすモータ制御装置において、モータの回転指令Fを出力し、回転センサの信号Xを入力して所定の式に基づいて周波数特性を演算する演算装置301を備えている。このように、従来の第3例である特許文献3のモータ制御装置の周波数特性演算装置は、複数軸の周波数特性を算出するのである。従来の第4例である特許文献4の除振台のフィードフォワード制御方法について説明する。図24は従来の第4例を示す能動アクチュエータの配置平面図である。除振台は地動外乱に対する対処が主目的であったため、除振台による能動制振はフィードバック制御が基本となっていたが、フィードバック制御ではスピルオーバーや安定性が十分でない等の問題があり、また、際限なくフィードバックゲインを高めてやる事ができる訳でもなく直動外乱に対処する事ができなかった。尚、フィードバックゲインを高めると振動制御とのトレードオフが問題となるような一般的な技術課題がある。この一般的な技術課題を解決するために、従来の第4例である特許文献4の除振台のフィードフォワード制御方法は、事前に除振台の多入多出力関係(G)を得ている。機器(K)を載置するための除振台本体402と、除振台本体402を支持するための能動アクチュエータ(A)〜(D)と、除振台本体402の振動を検出するためのセンサ(S)とで構成された除振台において、除振台の能動アクチュエータ(A)〜(D)に既知の信号を与え、この時の除振台の応答をセンサ(S)で検出してその出力データ(Y)を演算装置(cont)に取り込み、多入多出力関係(G)を得る。演算装置(cont)にてその入出力関係(G)の逆を与えるシステム(G−1)を演算し、この逆システム(G−1)に除振台本体402上に載置された機器(K)を作動させて求めた出力データ(Y)を掛け、更に反転したフィードフォワード制御信号(U)を生成させ、このフィードフォワード制御信号(U)を記憶しておき、次の機器(K)の作動時に同期させて逆システム(G−1)に基づくフィードフォワード制御信号(U)を能動アクチュエータ(A)〜(D)に入力し、機器(K)の作動に起因する振動をキャンセルするようにしている。Japanese Patent Laid-Open No. 05-011856 (FIG. 1) A motor control device of Patent Document 1 as a first conventional example will be described. FIG. 21 is a block diagram of a motor control apparatus showing a first conventional example. In order to determine the servo gain after measuring and grasping the frequency characteristics including the controlled object of the motor control device, an expensive measuring instrument such as an FFT analyzer is prepared and a skilled worker is required. If frequency characteristics are easily measured, aliasing errors in which components outside the measurement frequency range are mixed at the time of digital sampling occur, and accurate frequency characteristics cannot be obtained. Further, when the electric motor is operated to measure the frequency characteristic, the movable part moves. The characteristic of the movable part of the load machine changes depending on its position, the resonance frequency and the anti-resonance frequency shift, and the measurement accuracy of the frequency characteristic decreases. In order to increase the amount of data to be measured in order to perform averaging during measurement, it is necessary to collect long-term data or perform multiple operations and measurements. There is a problem that the measurement accuracy is further deteriorated, for example, the resonance frequency peak of the frequency characteristic is broken. In order to solve the general technical problems as described above, the electric motor control device of Patent Document 1 as the first conventional example does not generate a folding error at the time of frequency analysis, and is an unnecessary high frequency component outside the measurement frequency range. The operation command signal that does not include the signal is generated, output to the servo device 102 to drive the motor 104, the arithmetic device 101 analyzes the frequency of the operation command signal and the rotation detector signal from the rotation detector 103, and outputs the analysis result Like to do. In addition, the operation command signals for the forward rotation side and the reverse rotation side of the electric motor 104 are generated and output to the servo device 102, and the arithmetic device 101 calculates the frequency characteristics from the operation command signal and the detection signal of the rotation detector 103. . In this way, the electric motor control device of Patent Document 1 as the first conventional example calculates the single-axis frequency characteristics. An electric motor control device, a mechanical characteristic measuring method thereof, and a controller adjusting method of Patent Document 2 as a second conventional example will be described. FIG. 22 is an overall configuration diagram of an electric motor control device showing a second conventional example. The stability of the controller was grasped while measuring the mechanical characteristics, and the controller could not be adjusted optimally according to the mechanical characteristics. In order to solve this general technical problem, an electric motor control device, a mechanical characteristic measurement method and a controller adjustment method of Patent Document 2 as a second conventional example are disclosed in an electric motor control device having a feedback loop. 201 or a detection unit 202 that detects an operation amount of the machine 205, a command unit 204 that generates a command signal, a controller 203 that receives the command signal to drive the motor 201, and a current control unit 206. In the electric motor control apparatus, a disturbance signal generator 207 that generates a disturbance input command, a driving force detector 208 that detects a driving force output by the controller 203, and an output and driving force detection of the disturbance signal generator 207 Closed loop driving force frequency response characteristic calculating means 211 for calculating a closed loop driving force frequency response characteristic from the output of the means 208, and the closed loop driving Mechanical characteristic calculation means 213 for calculating mechanical characteristics from the frequency response characteristics and the closed-loop disturbance frequency response characteristics is provided, and the electric motor 201 is driven by the disturbance signal generated by the disturbance signal generation unit 207, and detected by the driving force detection means 208. The detection signal of the means 202 is obtained. A closed loop disturbance frequency response characteristic calculation unit 210 calculates a closed loop disturbance frequency response characteristic from the outputs of the disturbance signal generator 207 and the detection unit 202. Further, the closed loop driving force frequency response characteristic calculating unit 211 calculates the closed loop driving force frequency response characteristic from the outputs of the disturbance signal generating unit 207 and the driving force detecting unit 208. Furthermore, from the closed-loop driving force frequency response characteristic, the one-round loop frequency response characteristic calculation unit 212 calculates the one-round loop frequency response characteristic. In addition, the mechanical characteristic calculation means 213 calculates the mechanical characteristic from the closed loop driving force frequency response characteristic and the closed loop disturbance frequency response characteristic. As described above, the electric motor control device and the mechanical characteristic measuring method and the controller adjusting method of Patent Document 2 which are the second example of the related art include a single-axis closed loop disturbance frequency response characteristic, a closed loop disturbance frequency response characteristic, and a single loop frequency. Response characteristics and mechanical characteristics are calculated. A frequency characteristic calculation device for a motor control device of Patent Document 3 as a conventional third example will be described. FIG. 23 is a block diagram of a motor control apparatus showing a third conventional example. In the case of a motor control device having two or more servo systems, the frequency characteristics of a single axis are separately measured for each axis, and the overall characteristics are grasped by integrating the results. There is a problem that it takes a long time to measure the frequency characteristics of all axes. In addition, there is interference between the axes and there is a characteristic between the axes, but this cannot be achieved by the method of measuring the frequency characteristics of a single axis for each axis. In order to solve the general technical problem as described above, the frequency characteristic calculation device of the motor control device of Patent Document 3 as a third conventional example includes movable parts 310 and 311, motors 306 and 307, and a motor. Transmission mechanism 308, 309 that transmits the rotation of the motor and moves the movable portion, rotation sensors 304, 305 that detect the rotation of the motor, motor rotation command F, and rotation sensor signal X are received to control the rotation of the motor. In a motor control device including a plurality of servo devices 302 and 303 and forming a plurality of servo systems, a motor rotation command F is output, a rotation sensor signal X is input, and a frequency characteristic is calculated based on a predetermined formula. An arithmetic device 301 is provided. As described above, the frequency characteristic calculation device of the motor control device of Patent Document 3 as the third conventional example calculates the frequency characteristics of a plurality of axes. A feedforward control method for a vibration isolation table of Patent Document 4 as a conventional fourth example will be described. FIG. 24 is an arrangement plan view of active actuators showing a fourth conventional example. The main purpose of the vibration isolation table was to deal with ground motion disturbances, so active vibration control by the vibration isolation table was based on feedback control, but there were problems such as insufficient spillover and stability in feedback control, and However, the feedback gain could not be increased without limit, and it was not possible to deal with the linear motion disturbance. There is a general technical problem that a trade-off with vibration control becomes a problem when the feedback gain is increased. In order to solve this general technical problem, the feedforward control method of the vibration isolator of Patent Document 4 as the fourth conventional example obtains the multi-input / multi-output relationship (G) of the vibration isolator in advance. Yes. An anti-vibration table main body 402 for mounting the device (K), active actuators (A) to (D) for supporting the anti-vibration table main body 402, and a vibration for detecting the vibration of the anti-vibration table main body 402 In the vibration isolation table composed of the sensor (S), a known signal is given to the active actuators (A) to (D) of the vibration isolation table, and the response of the vibration isolation table at this time is detected by the sensor (S). Then, the output data (Y) is taken into the arithmetic unit (cont) to obtain a multiple input / multiple output relationship (G). A system (G-1) that reverses the input / output relationship (G) is calculated by an arithmetic unit (cont), and a device (on the vibration isolation base main body 402) that is placed in the reverse system (G-1) ( The output data (Y) obtained by operating K) is multiplied, and an inverted feedforward control signal (U) is generated. This feedforward control signal (U) is stored, and the next device (K) The feedforward control signal (U) based on the reverse system (G-1) is input to the active actuators (A) to (D) in synchronization with the operation of the actuator (K-1) to cancel the vibration caused by the operation of the device (K). I have to.

従来の例では、電動機制御装置の単軸の機械特性や、単軸の自己一巡開ループ伝達関数や、複数軸の機械特性を得る方法があるが、複数軸の電動機制御装置の制御特性を含む相互一巡開ループ伝達関数を把握できていなかった。また、垂直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれる複数軸の機械特性を得る方法については十分でなかった。 In the conventional example, there are methods for obtaining the mechanical characteristics of the single axis of the motor control device, the self-circular loop transfer function of the single axis, and the mechanical characteristics of the multiple axes, including the control characteristics of the multi-axis motor control device. We could not grasp the mutual loop-opening transfer function. In addition, a method for obtaining mechanical characteristics of a plurality of axes including a motor that is used with a large stroke in a situation where a vertical axis or external force is applied is not sufficient.

従来の第1例である特許文献1の電動機制御装置は、単軸の制御対象を含む機械系の周波数特性を把握するようにいて、制御特性を含む一巡開ループ伝達関数を把握することができないので、制御特性を含めた特性を定量的に把握できない。電動機制御装置の最適なパラメータ調整には不十分であった。また、単軸の周波数特性の把握のみしかできないなので、複数軸の電動機制御装置が構成された場合の軸間の周波数特性を把握できないというような問題もあった。   The electric motor control device of Patent Document 1 as the first conventional example is adapted to grasp the frequency characteristic of a mechanical system including a single-axis controlled object, and cannot grasp a single loop transfer function including the control characteristic. Therefore, characteristics including control characteristics cannot be grasped quantitatively. It was insufficient for optimal parameter adjustment of the motor control device. Moreover, since only the frequency characteristics of a single axis can be grasped, there is a problem that the frequency characteristics between axes cannot be grasped when a multi-axis motor control device is configured.

従来の第2例である特許文献2の電動機制御装置およびその機械特性測定方法並びに制御器調整方法は、単軸の機械特性や一巡開ループ伝達関数を把握するようになっている。複数軸の電動機制御装置が構成された場合の軸間の機械特性や一巡開ループ伝達関数を把握できないので、軸間で干渉する機械特性や制御特性を定量的に未把握のまま、試行錯誤的に電動機制御装置のパラメータ調整を行う方法しか無いというような問題もあった。   The electric motor control device and its mechanical characteristic measuring method and controller adjusting method disclosed in Patent Document 2, which is a conventional second example, are configured to grasp single-axis mechanical characteristics and a loop-open transfer function. Since it is impossible to grasp the mechanical characteristics and the loop transfer function between the axes when a multi-axis motor control device is configured, it is a trial and error without quantitatively understanding the mechanical characteristics and control characteristics that interfere between the axes. In addition, there is a problem that there is only a method for adjusting parameters of the motor control device.

従来の第3例である特許文献3のモータ制御装置の周波数特性演算装置は、多軸の機械系の周波数特性を把握するようになっていて、単軸および多軸の一巡開ループ伝達関数を把握することができないので、電動機制御装置の最適なパラメータ調整には不十分であった。電動機の動作の精度要求が高まる一方で、軸間の他軸の制御系の影響が不明のまま電動機制御装置のパラメータ調整を行う方法しか無いという問題があった。また、多軸の機械系の周波数特性を把握するようにしているが、重力や外力で電動機が動かされる状況については考慮しておらず、多軸構成でもすべての条件で周波数特性を把握できなかった。   The frequency characteristic calculation device of the motor control device of Patent Document 3 which is the conventional third example is adapted to grasp the frequency characteristic of the multi-axis mechanical system, and the single-axis and multi-axis single-loop transfer function is obtained. Since it cannot be grasped, it was insufficient for optimal parameter adjustment of the motor control device. While there is an increasing demand for accuracy of operation of the motor, there is a problem that there is only a method for adjusting the parameters of the motor control device while the influence of the control system of the other axis between the axes is unknown. Also, the frequency characteristics of multi-axis mechanical systems are grasped, but the situation in which the motor is moved by gravity or external force is not considered, and the frequency characteristics cannot be grasped under all conditions even in a multi-axis configuration. It was.

従来の第4例である特許文献4の除振台のフィードフォワード制御方法における多入力多出力関係の把握は、小ストロークのボイスコイルモータを利用しているので、垂直方向や外力が掛かる軸でも負荷やモータの移動量が少なく、変化が無い機械特性を把握できる。しかしながら、汎用サーボモータとボールねじ機構のような組み合わせや、汎用リニアモータ等大きなストロークで使用する場合は、重力や外力が電動機を移動する場合、位置により機械特性も変化するので、使用される機構の姿勢や位置などの状態で電動機制御装置の多軸の周波数特性を把握できないというような問題があるが解決できていなかった。   Since the multi-input / multi-output relation in the feedforward control method of the vibration isolator of Patent Document 4 as the fourth example of the prior art uses a small stroke voice coil motor, it can be used in the vertical direction or on an axis on which an external force is applied. It is possible to grasp the mechanical characteristics with little load and motor movement and no change. However, when using a combination such as a general-purpose servo motor and a ball screw mechanism or a large stroke such as a general-purpose linear motor, the mechanical characteristics change depending on the position when gravity or external force moves the motor. There is a problem that the multi-axis frequency characteristics of the motor control device cannot be grasped in the state of the position and position of the motor, but it has not been solved.

本発明はこのような問題点に鑑みてなされたものであり、垂直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれる複数軸の軸間を含む機械特性を測定するとともに制御器の安定度を把握し、機械特性に合わせた軸間を含めた制御器の調整度合いを把握できる電動機制御装置を提供することを目的とする。 The present invention has been made in view of such problems, and measures mechanical characteristics including a plurality of shafts including a vertical shaft and an electric motor used with a large stroke in a situation where an external force is applied, and the controller. An object of the present invention is to provide an electric motor control device capable of grasping the stability and grasping the adjustment degree of the controller including the distance between the axes in accordance with the mechanical characteristics.

上記問題を解決するため、本発明は、次のように構成したのである。
請求項1に記載の発明は、負荷機械もしくは該負荷機械を駆動する電動機の移動量を検出する検出部の検出値が動作指令に追従するように前記電動機を制御する制御部を備えた1軸用電動機制御装置を少なくとも2軸分備えた電動機制御装置であって、
前記1軸用電動機制御装置に、前記制御部の特性と制御対象である機械の特性とを含む単軸の自己一巡開ループ伝達関数を算出する自己一巡開ループ伝達関数算出部と、
前記制御部に、駆動力生成出力後に外乱として動作指令を与える外乱駆動力入力部と、
前記外乱駆動力入力部の前の駆動力を検出する制御部補償駆動力検出部と、を備え、
前記電動機制御装置に、前記制御部へ動作指令を与える指令部と、
軸夫々の前記外乱駆動力を動作指令として軸の夫々の前記外乱駆動力入力部に与え、夫々の前記制御部補償駆動力検出部により補償駆動力を検出し、全軸の前記外乱駆動力と、軸の前記補償駆動力と、軸の単軸の自己一巡開ループ伝達関数と、に基づいて相互一巡開ループ伝達関数を算出する相互一巡開ループ伝達関数算出部を備えたことを特徴とするものである。
また、請求項2に記載の発明は、請求項1に記載の電動機制御装置において、前記相互一巡開ループ伝達関数算出部は、軸を駆動可能にしたまま1軸づつ前記外乱駆動力を前記外乱駆動力入力部に与えて、それぞれが駆動した状態での軸の前記補償駆動力と、1軸づつに与えた前記外乱駆動力と、軸の単軸の前記自己一巡開ループ伝達関数と、から前記相互一巡開ループ伝達関数を算出することを特徴とするものである。
また、請求項3に記載の発明は、請求項1または2に記載の電動機制御装置において、少なくとも1つの前記1軸用電動機制御装置に、複数の前記検出部を備え前記制御部にフィードバックループを複数備えた場合、前記相互一巡開ループ伝達関数算出部は、夫々の前記検出部の応答と他軸の駆動による機械特性と自軸の制御特性とからなる特性の和を相互一巡開ループ伝達関数とすることを特徴とするものである。
また、請求項4に記載の発明は、請求項1〜3のいずれか1項に記載の電動機制御装置において、前記電動機制御装置は、少なくとも1つの前記1軸用電動機制御装置、前記電動機の制御を切ると前記電動機が移動する構成であって、前記動作指令と前記補償駆動力と前記検出部の検出値から前記機械特性を算出する機械特性演算部を備え、前記機械特性演算部は、少なくとも1軸に加えた前記動作指令に基づく前記機械特性のみを算出することを特徴とするものである。
また、請求項5に記載の発明は、請求項1〜4のいずれか1項に記載の電動機制御装置において、前記電動機制御装置は、前記相互一巡開ループ伝達関数と前記機械特性と前記自己一巡開ループ伝達関数から制御系特性および新たな組み合わせの前記相互一巡開ループ伝達関数を算出する特性演算部を備えることを特徴とするものである。

In order to solve the above problem, the present invention is configured as follows.
The invention according to claim 1 is a single shaft including a control unit that controls the electric motor so that the detection value of the detection unit that detects the amount of movement of the load machine or the electric motor that drives the load machine follows the operation command. An electric motor control device comprising at least two motor control devices for a motor,
In the single-axis motor control device, a self-circular loop transfer function calculation unit that calculates a single-axis self-circular loop transfer function including the characteristics of the control unit and the characteristics of the machine to be controlled;
A disturbance driving force input unit that gives an operation command as a disturbance after driving force generation output to the control unit;
A control unit compensating driving force detecting unit for detecting a driving force in front of the disturbance driving force input unit,
A command unit for giving an operation command to the control unit to the motor control device;
Applied to the disturbance driving force input portion of each of all the axes of the disturbance driving force of the shaft as each of the operation command, and detecting the compensation driving force by the control unit compensates the driving force detecting section of each said disturbance driving force for all axes When, with the compensation driving force of all axes, and self-round open-loop transfer function of the single axes of all axes, further comprising a cross-round open-loop transfer function calculation unit that calculates a cross-round open-loop transfer function based on It is a feature.
The invention according to claim 2, wherein the motor control device according to claim 1, wherein the cross-round open-loop transfer function calculation unit, the one-axis increments the disturbance driving force while allowing driving all axes giving the disturbance driving force input portion, and the compensation driving force of all axes in a state where each is driven, and the disturbance driving force given to one axis at a time, said self-round open-loop transfer function of the single axes of all axes When, it is characterized in that calculating the mutual round open-loop transfer function from.
Further, the invention according to claim 3 is the motor control device according to claim 1 or 2 , wherein the at least one single-axis motor control device includes a plurality of the detection units, and a feedback loop is provided in the control unit. In the case where there are a plurality, the mutual loop-opening transfer function calculation unit calculates the sum of the characteristics composed of the response of each of the detection units, the mechanical characteristics by driving the other axis, and the control characteristics of the own axis. It is characterized by that.
Further, the invention according to claim 4, in the electric motor control device according to claim 1, wherein the motor control device includes at least one of the uniaxial electric motor control apparatus, the electric motor a structure off and control the motor to move, equipped with a mechanical characteristic calculation unit for calculating the mechanical properties from the detection value of the detecting unit and the operation command and the compensation driving force, the mechanical characteristic calculation section, it is characterized in that to calculate only the mechanical properties based on the operation command plus at least one axis.
Further, the invention according to claim 5, in the motor control apparatus according to claim 1, wherein the motor control device, the self-round and the cross-round open-loop transfer function and the mechanical properties it is characterized in further comprising a characteristic calculating unit for calculating the cross-round open-loop transfer function of the control system characteristics and new combination of open-loop transfer function.

本発明によると、垂直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれる複数軸の軸間を含む機械特性を測定するとともに軸間干渉の機械特性と、ゲイン余裕や位相余裕を考慮した制御系の設定を行うことができる。つまり、制御系の安定度を把握し、機械特性に合わせ軸間を含めた制御器の調整度合いを把握し、軸間干渉の機械特性と、ゲイン余裕や位相余裕を考慮した制御系の設定を行うことができる。
まず、機械特性である多軸伝達関数が得られれば、機械の剛性が把握できるので、機械の剛性の設計性能の確認ができ、機械側の修正・改善に利用できる。
また、多軸伝達関数を把握することで、制御部のノッチフィルタ、ローパスフィルタ、振動抑制制御などを含めた制御方式の選択、指令部の共振させない動作信号の作成、などを、単軸だけでなく、多軸間の軸間の組み合わせにおける影響度を考慮して検討し、設定できる。
さらに、多軸伝達関数を把握することで、機械特性の影響度がお互いに高いために、電動機制御装置の他軸を考慮した設定が必要な軸間を絞り込むことができる。
絞りこまれた軸間では、軸間の機械特性と制御系を合わせた特性を新たな評価基準である相互一巡開ループ伝達関数を定量的に把握することで、制御部の応答性パラメータや各種フィルタや振動抑制機能、指令部にて加工した動作信号などを軸間で相互に効果があるように設定し、また、その各種設定後に再度、相互一巡開ループ伝達関数を求めることで各種設定した効果を確認できるので、機械特性と整合した複数の電動機を備えた電動機制御装置を実現できる。
請求項1に記載の発明によると、2軸以上の電動機制御装置において軸間の相互一巡開ループ伝達関数を算出することができ、軸間の機械特性と制御特性を合わせた特性を定量的に把握し、軸間干渉の機械特性と、ゲイン余裕や位相余裕を考慮した制御系の軸間で相互に効果がある設定を行うことができる。または、その効果を定量的に確認できる。
また、請求項2に記載の発明によると、2軸以上の電動機制御装置において1軸づつ外乱駆動力を与えて相互一巡開ループ伝達関数を算出することができ、相互一巡開ループ伝達関数の計測・算出を1軸づつ状態確認しながら実施できる。
また、請求項3に記載の発明によると、フィードバックループを複数備えた前記電動機制御装置の場合でも軸間の機械特性と制御特性を合わせた特性を定量的に把握することができる。
また、請求項4に記載の発明によると、電動機の制御を切ると電動機が移動するような、直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれていても、制御部の保持力で電動機の位置を保ったまま、多軸の軸間を含む機械特性を多軸伝達関数として計測・算出することができる。機械特性から、制御特性と機械特性の詳細な整合が必要な軸間の組み合わせを、多数の中から絞り込むことができる。
また、請求項5に記載の発明によると、多軸伝達関数や軸間の相互一巡開ループ伝達関数、単軸の自己一巡開ループ伝達関数から制御部単独の制御系特性や新たな組み合わせの相互一巡開ループ伝達関数を算出することがでる。他軸の制御系特性を別途得られれば、計測していない他軸との相互一巡開ループ伝達関数を算出することもできる。
According to the present invention, it measures the mechanical characteristics including the axes of multiple axes including the motor used in a large stroke in the situation where the vertical axis and external force are applied, and considers the mechanical characteristics of inter-axis interference, gain margin and phase margin. The control system can be set. In other words, grasp the stability of the control system, grasp the adjustment degree of the controller including the inter-axis according to the mechanical characteristics, and set the control system considering the mechanical characteristics of the inter-axis interference and the gain margin and phase margin. It can be carried out.
First, if the multi-axis transfer function, which is a mechanical characteristic, is obtained, the rigidity of the machine can be grasped. Therefore, the design performance of the rigidity of the machine can be confirmed, which can be used for correction and improvement on the machine side.
In addition, by grasping the multi-axis transfer function, it is possible to select control methods including notch filters, low-pass filters, vibration suppression control, etc. of the control unit, create operation signals that do not resonate the command unit, etc. with only a single axis. It is possible to examine and set in consideration of the degree of influence in the combination between axes between multiple axes.
Further, by grasping the multi-axis transfer function, since the degree of influence of the mechanical characteristics is high, it is possible to narrow down between the axes that need to be set in consideration of the other axis of the motor control device.
Between the narrowed shafts, we can quantitatively grasp the combined characteristics of the mechanical characteristics between the shafts and the control system, the mutual loop-opening transfer function, which is a new evaluation standard, and thereby the response parameters of the control unit and various The filter, vibration suppression function, operation signal processed by the command unit, etc. are set so that they have mutual effects between the axes, and after various settings, various settings are made by obtaining the mutual loop-opening loop transfer function again. Since the effect can be confirmed, an electric motor control device including a plurality of electric motors consistent with mechanical characteristics can be realized.
According to the first aspect of the present invention, it is possible to calculate a mutual open loop transfer function between the axes in the motor control device having two or more axes, and to quantitatively calculate the characteristics combining the mechanical characteristics and the control characteristics between the axes. It is possible to grasp and establish a mutually effective setting between the axes of the control system in consideration of the mechanical characteristics of the inter-axis interference and the gain margin and the phase margin. Or the effect can be confirmed quantitatively.
According to the second aspect of the present invention, it is possible to calculate a mutual loop opening loop transfer function by applying a disturbance driving force for each axis in a motor control device having two or more axes, and measuring the mutual loop opening loop transfer function.・ Calculation can be performed while checking the status of each axis.
According to the invention described in claim 3, even in the case of the motor control device provided with a plurality of feedback loops, it is possible to quantitatively grasp the characteristics combining the mechanical characteristics and the control characteristics between the shafts.
Further, according to the invention described in claim 4, even if an electric motor used with a large stroke in a situation where a direct shaft or an external force is applied, such as when the electric motor is turned off, the electric motor is moved, the control unit is retained. While maintaining the position of the electric motor with force, it is possible to measure and calculate the mechanical characteristics including the multi-axis axis as a multi-axis transfer function. From the mechanical characteristics, the combinations between the axes that require detailed matching between the control characteristics and the mechanical characteristics can be narrowed down from a large number.
According to the fifth aspect of the present invention, the control system characteristics of the control unit alone or a new combination can be obtained from the multi-axis transfer function, the inter-circular loop transfer function between the axes, or the single-axis self-circular loop transfer function. A one-loop open loop transfer function can be calculated. If the control system characteristics of the other axis can be obtained separately, it is also possible to calculate a mutual loop-open loop transfer function with the other axis that has not been measured.

本発明の第1実施例を示す2軸の電動機制御装置の概略構成図1 is a schematic configuration diagram of a two-axis motor control device showing a first embodiment of the present invention. 本発明の第1実施例を示す2軸の電動機制御装置のブロック図1 is a block diagram of a two-axis motor control device showing a first embodiment of the present invention. 本発明の第1実施例を示す自己一巡開ループ伝達関数算出部と相互一巡開ループ伝達関数算出部を示すブロック図The block diagram which shows the self-circular loop transfer function calculation part and the mutual loop loop transfer function calculation part which show 1st Example of this invention. 本発明の第1実施例を示す電動機制御装置の相互一巡開ループ伝達関数算出方法のフローチャートThe flowchart of the mutual loop-opening transfer function calculation method of the motor control apparatus which shows 1st Example of this invention. 本発明の第1実施例を示す電動機制御装置の自己一巡開ループ伝達関数の算出を示すブロック図The block diagram which shows calculation of the self-circular loop transfer function of the motor control apparatus which shows 1st Example of this invention. 本発明の第1実施例を示す自己一巡開ループ伝達関数算出部および相互一巡開ループ伝達関数算出部の出力を示すブロック図The block diagram which shows the output of the self-circular loop transfer function calculation part which shows 1st Example of this invention, and a mutual loop loop transfer function calculation part 本発明の第2実施例を示す2軸の電動機制御装置の概略構成図Schematic configuration diagram of a two-axis motor control device showing a second embodiment of the present invention 本発明の第2実施例を示す2軸の電動機制御装置の第1軸に動作指令を外乱として加算したブロック図The block diagram which added operation command as disturbance to the 1st axis of the 2-axis motor control device which shows the 2nd example of the present invention. 本発明の第2実施例を示す2軸の電動機制御装置の第2軸に動作指令を外乱として加算したブロック図The block diagram which added operation command as disturbance to the 2nd axis of the 2-axis motor control device which shows the 2nd example of the present invention. 本発明の第3実施例を示す3軸の電動機制御装置の概略構成図Schematic configuration diagram of a three-axis motor control device showing a third embodiment of the present invention 本発明の第3実施例を示す特性演算部を示すブロック図The block diagram which shows the characteristic calculating part which shows 3rd Example of this invention 本発明の第3実施例を示す電動機制御装置の多軸伝達関数算出方法および相互一巡開ループ伝達関数算出方法のフローチャートFlowchart of Multi-axis Transfer Function Calculation Method and Mutual Loop Loop Transfer Function Calculation Method of Motor Control Device showing Third Embodiment of the Present Invention 本発明の第3実施例を示す3軸の電動機制御装置のブロック図Block diagram of a three-axis motor control apparatus showing a third embodiment of the present invention 本発明の第3実施例を示す特性演算部の出力を示すブロック図The block diagram which shows the output of the characteristic calculating part which shows 3rd Example of this invention 本発明の第4実施例および第5実施例を示す3軸の電動機制御装置の概略構成図Schematic configuration diagram of a three-axis motor control device showing a fourth embodiment and a fifth embodiment of the present invention 本発明の第4実施例を示す3軸の電動機制御装置のブロック図Block diagram of a three-axis motor control device showing a fourth embodiment of the present invention 本発明の第4実施例を示す1軸のフルクローズド制御の電動機制御装置の自己一巡開ループ伝達関数の算出を示すブロック図The block diagram which shows calculation of the self-circular loop transfer function of the motor control apparatus of 1 axis | shaft full-closed control which shows 4th Example of this invention 本発明の第4実施例および第5実施例を示す2軸のフルクローズド制御の電動機制御装置の相互一巡開ループ伝達関数の算出を示すブロック図The block diagram which shows the calculation of the mutual open loop transfer function of the motor control apparatus of the biaxial full-closed control which shows 4th Example and 5th Example of this invention 本発明の第6実施例を示す3軸の電動機制御装置の概略構成図Schematic configuration diagram of a three-axis motor control device showing a sixth embodiment of the present invention 本発明の第6実施例を示す2軸の電動機制御装置のブロック図Block diagram of a two-axis motor control apparatus showing a sixth embodiment of the present invention. 従来の第1例を示す電動機制御装置のブロック図Block diagram of a motor control apparatus showing a first conventional example 従来の第2例を示す電動機制御装置の全体構成図Overall configuration diagram of an electric motor control device showing a second conventional example 従来の第3例を示すモータ制御装置の構成図The block diagram of the motor control apparatus which shows the conventional 3rd example 従来の第4例を示す能動アクチュエータの配置平面図Arrangement plan view of active actuator showing fourth conventional example

以下、本発明の実施の形態について図を参照して説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

本発明の第1実施例にて2軸の電動機を同時に駆動することによる相互一巡開ループ伝達関数の算出について説明する。 The calculation of the mutual open loop transfer function by simultaneously driving two-axis motors in the first embodiment of the present invention will be described.

図1は、本発明の第1実施例を示す2軸の電動機制御装置の概略構成図、図2は本発明の第1実施例を示す2軸の電動機制御装置のブロック図、図3は本発明の第1実施例を示す自己一巡開ループ伝達関数算出部と相互一巡開ループ伝達関数算出部を示すブロック図である。
図において、1a、1bは電動機、2a、2bは検出部、3a、3bは制御部、4a,4bは機械部、5は指令部、6a、6bは外乱駆動力入力部、7a、7bは制御部補償駆動力検出部、8は自己一巡開ループ伝達関数算出部、9は相互一巡開ループ伝達関数算出部となっている。
図1では電動機1a、1bが回転型であり、ボールねじ機構を介してテーブル部が並進動作し、第1軸の上に第2軸が搭載された機構になっている。
図2の1および4は、電動機1a、1bと機械部4a,4bを機械特性で示している。
図3の自己一巡開ループ伝達関数算出部8と相互一巡開ループ伝達関数算出部9は図2のブロック図のT1,T2、τ1、τ2を得て自己一巡開ループ伝達関数並びに相互一巡開ループ伝達関数を算出するようになっている
図4は本発明の第1実施例を示す電動機制御装置の相互一巡開ループ伝達関数算出方法のフローチャートである。STP1は単軸の自己一巡開ループ伝達関数を算出するステップ、STP2は相互一巡開ループ伝達関数を算出するステップとなっている。
本発明が従来技術の第1例と異なる部分は、複数の電動機制御装置を備えて電動機1a、1bと検出部2a、2bと機械部4a,4bを2つ備えている部分と、外乱駆動力入力部6a、6bと、制御部補償駆動力検出部7a、7bと、自己一巡開ループ伝達関数算出部8と、相互一巡開ループ伝達関数算出部9とを備えた部分である。
また、単軸の自己一巡開ループ伝達関数を算出するステップSTP1と、相互一巡開ループ伝達関数を算出するステップSTP2とを備えた部分が従来技術の第1例と異なる。
本発明が従来技術の第2例と異なる部分は、複数の電動機制御装置を備えて電動機1a、1bと検出部2a、2bと機械部4a,4bを2つ備えている部分と、相互一巡開ループ伝達関数算出部9とを備えた部分である。
また、相互一巡開ループ伝達関数を算出するステップSTP2を備えた部分が従来技術の第2例と異なる。
本発明が従来技術の第3例と異なる部分は、外乱駆動力入力部6a、6bと、制御部補償駆動力検出部7a、7bと、自己一巡開ループ伝達関数算出部8と、相互一巡開ループ伝達関数算出部9とを備えた部分である。
また、単軸の自己一巡開ループ伝達関数を算出するステップSTP1と、相互一巡開ループ伝達関数を算出するステップSTP2とを備えた部分が従来技術の第3例と異なる。
本発明が従来技術の第4例と異なる部分は、外乱駆動力入力部6a、6bと、制御部補償駆動力検出部7a、7bと、自己一巡開ループ伝達関数算出部8と、相互一巡開ループ伝達関数算出部9とを備えた部分である。
また、単軸の自己一巡開ループ伝達関数を算出するステップSTP1と、相互一巡開ループ伝達関数を算出するステップSTP2とを備えた部分が従来技術の第4例と異なる。
本発明の第1実施例を図4に従って説明する。
単軸の自己一巡開ループ伝達関数を算出するステップSTP1では、図1、図2のように2軸備えた電動機制御装置を従来技術の第3例と同様に1軸づつ使用する。
図5は本発明の第1実施例を示す電動機制御装置の自己一巡開ループ伝達関数の算出を示すブロック図である。図5に第1軸と第2軸の間に二重線を加えて2軸が独立に稼動することを示している。
Figure 1 is a schematic diagram of a motor control device 2 axis indicating a first embodiment of the present invention, FIG. 2 is a block diagram of a motor control device 2 axis indicating a first embodiment of the present invention, FIG 3 is present It is a block diagram which shows the self-circular loop transfer function calculation part and the mutual loop loop transfer function calculation part which show 1st Example of invention.
In the figure, 1a and 1b are motors, 2a and 2b are detection units, 3a and 3b are control units, 4a and 4b are mechanical units, 5 is a command unit, 6a and 6b are disturbance driving force input units, and 7a and 7b are control units. Part compensation driving force detection unit, 8 is a self-circular loop transfer function calculation unit, and 9 is a mutual loop loop transfer function calculation unit.
In FIG. 1, the electric motors 1a and 1b are of a rotary type, and the table portion is translated via a ball screw mechanism, and the second shaft is mounted on the first shaft.
1 and 4 of FIG. 2 show the electric motors 1a and 1b and the machine parts 4a and 4b by mechanical characteristics.
3 obtains T1, T2, τ1, and τ2 in the block diagram of FIG. 2 to obtain the self-circular loop transfer function and the mutual loop loop. and calculates the transfer function.
FIG. 4 is a flowchart of a mutual loop opening transfer function calculation method for the motor control apparatus according to the first embodiment of the present invention. STP1 is a step of calculating a single-axis self-circular loop transfer function, and STP2 is a step of calculating a mutual circular loop transfer function.
The part in which the present invention differs from the first example of the prior art is that a plurality of electric motor control devices are provided, the electric motors 1a and 1b, the detection units 2a and 2b, and the two mechanical units 4a and 4b are provided, and the disturbance driving force This is a part provided with input units 6 a and 6 b, control unit compensation driving force detection units 7 a and 7 b, a self-circular loop transfer function calculation unit 8, and a mutual loop loop transfer function calculation unit 9.
Moreover, the part provided with step STP1 which calculates a uniaxial self-circular loop transfer function and step STP2 which calculates a mutual circular loop transfer function differs from the 1st example of a prior art.
The present invention is different from the second example of the prior art in that it includes a plurality of motor control devices and includes a motor 1a, 1b, a detector 2a, 2b, and two machines 4a, 4b, This is a part provided with a loop transfer function calculation unit 9.
Moreover, the part provided with step STP2 which calculates a mutual open loop transfer function differs from the 2nd example of a prior art.
The present invention is different from the third example of the prior art in that the disturbance driving force input units 6a and 6b, the control unit compensating driving force detection units 7a and 7b, the self-circular loop transfer function calculation unit 8, and the mutual loop This is a part provided with a loop transfer function calculation unit 9.
Moreover, the part provided with step STP1 which calculates a uniaxial self-circular loop transfer function and step STP2 which calculates a mutual circular loop transfer function differs from the 3rd example of a prior art.
The present invention is different from the fourth example of the prior art in that the disturbance driving force input units 6a and 6b, the control unit compensating driving force detection units 7a and 7b, the self-circular loop transfer function calculation unit 8, and the mutual loop This is a part provided with a loop transfer function calculation unit 9.
Moreover, the part provided with step STP1 which calculates a uniaxial self-circular loop transfer function and step STP2 which calculates a mutual circular loop transfer function differs from the 4th example of a prior art.
A first embodiment of the present invention will be described with reference to FIG.
In step STP1 for calculating a single-axis self-circular loop transfer function, the motor control device having two axes as shown in FIGS. 1 and 2 is used for each axis as in the third example of the prior art.
FIG. 5 is a block diagram showing calculation of the self-circular loop transfer function of the motor control apparatus according to the first embodiment of the present invention. FIG. 5 shows that the two axes operate independently by adding a double line between the first axis and the second axis.

まず、第1軸を稼動可能な状態とする。第2軸は使用しないので電源を落としておく。
指令部5から制御部3aの外乱駆動力入力部6aに外乱として駆動信号T1を与える。駆動信号は広域の周波数成分を持つランダム波や掃引正弦波やM系列信号を用いる。制御部3aが電動機1aを駆動信号で駆動し、この応答r1を検出部2aで得る。また、制御部3aは検出部2aの応答をフィードバックして補償駆動力τ1を発し、これを制御部補償駆動力検出部7aが検出する。
自己一巡開ループ伝達関数算出部8は、駆動信号T1、補償駆動力τ1から自己一巡開ループ伝達関数Zo1を算出する。
この自己一巡開ループ伝達関数Zo1は従来技術の第3例と同様の算出方法である。自己一巡開ループ伝達関数Zo1の導出について説明する。
図5の第1軸は、式(16)の状態にある。ここで駆動信号T1、補償駆動力τ1を検出し、駆動信号T1あたりの補償駆動力τ1を自己閉ループ伝達関数Zc1として求めると式(17)となる。自己一巡開ループ伝達関数Zo1は制御特性G1と機械特性H11の積なので、式(18)のようにZo1=G1×H11は自己閉ループ伝達関数Zc1の関数となる。
First, the first axis is brought into an operable state. Since the second axis is not used, the power is turned off.
A driving signal T1 is given as a disturbance from the command unit 5 to the disturbance driving force input unit 6a of the control unit 3a. As the drive signal, a random wave having a wide frequency component, a swept sine wave, or an M-sequence signal is used. Controller 3a drives the motor 1a in the driving signal, to obtain this response r1 by the detection unit 2a. The controller 3a feeds back the response of the detector 2a to generate a compensation driving force τ1, which is detected by the controller compensation driving force detector 7a.
The self-circular loop transfer function calculator 8 calculates the self-circular loop transfer function Zo1 from the drive signal T1 and the compensation driving force τ1.
This self-circular loop transfer function Zo1 is the same calculation method as in the third example of the prior art. Derivation of the self-circular loop transfer function Zo1 will be described.
The first axis in FIG. 5 is in the state of equation (16). Here, when the drive signal T1 and the compensation drive force τ1 are detected and the compensation drive force τ1 per drive signal T1 is obtained as a self-closed loop transfer function Zc1, Equation (17) is obtained. Since the self-circular loop transfer function Zo1 is a product of the control characteristic G1 and the mechanical characteristic H11, Zo1 = G1 × H11 is a function of the self-closed loop transfer function Zc1 as shown in Expression (18).


ここで、
:第1軸応答
11:第1軸加振第1軸応答の機械特性
:第1軸の外乱駆動力
τ:τ第1軸の補償駆動力
:第1軸の制御系特性
C1:第1軸の自己閉ループ伝達関数
O1:第1軸の自己一巡開ループ伝達関数
である。
自己閉ループ伝達関数ZC1は外乱駆動力Tとの補償駆動力τの実測から得られ、実際には外乱駆動力Tとの補償駆動力τの周波数スペクトルから得たクロススペクトルXτ1T1とオートパワースペクトルAT1T1を式(19)のように平均化して自己閉ループ伝達関数ZC1を得る。
here,
r 1 : first axis response H 11 : mechanical characteristics of the first axis vibration first axis response T 1 : disturbance driving force τ 1 of the first axis τ compensation driving force G 1 of the first axis G 1 : of the first axis Control system characteristic Z C1 : Self-closed loop transfer function Z O1 of the first axis: Self-open loop transfer function of the first axis
It is.
Self closed-loop transfer function Z C1 is obtained from the measured compensation driving force tau 1 of disturbance driving force T 1, actually the cross spectrum X were obtained from the frequency spectrum of the compensation driving force tau 1 of disturbance driving force T 1 τ1T1 Then, the auto power spectrum A T1T1 is averaged as shown in Equation (19) to obtain a self-closed loop transfer function Z C1 .

ここで、Nは平均化の回数である。
以上のように第1軸の自己閉ループ伝達関数を自己一巡開ループ伝達関数算出部8が算出する。
第2軸についても同様にすれば、式(20)のように第2軸の自己一巡開ループ伝達関数Zo2が得られ、式(21)のように第2軸の自己閉ループ伝達関数Zc2を得る。
Here, N is the number of times of averaging.
As described above, the self-closed loop transfer function calculation unit 8 calculates the self-closed loop transfer function of the first axis.
Similarly for the second axis, the second axis self-open loop transfer function Zo2 is obtained as in equation (20), and the second axis self-closed loop transfer function Zc2 is obtained as in equation (21). .

ここで、 here,

22:第2軸加振第2応答の機械特性
:第2軸の制御系特性
C2:実測された第2軸の自己閉ループ伝達関数
O2:第2軸の自己一巡開ループ伝達関数
である。
以上のように、単軸の自己一巡開ループ伝達関数を算出するステップSTP1ではそれぞれの自己一巡開ループ伝達関数Zo1,Zo2を算出するのである。
相互一巡開ループ伝達関数を算出するステップSTP2では、図2のように第1軸と第2軸を稼動可能な状態とし、2軸に指令部5から制御部3a、3bの外乱駆動力入力部6a、6bに外乱として駆動信号T1、T2を与える。駆動信号は広域の周波数成分を持つランダム波や掃引正弦波やM系列信号であり、駆動信号T1、T2間の相関が無い信号を用いる。
制御部3a、3bが電動機1a、1bを駆動信号T1,T2で駆動し、この応答r1、r2を検出部2a、2bで得る。また、制御部3a、3bは検出部2a、2bの応答をフィードバックして補償駆動力τ1、τ2を発し、これを制御部補償駆動力検出部7a、7bが検出する。なお、2軸は機械的に繋がっているので、電動機1aを駆動することで、検出部2bが応答を検出する成分と、電動機1bを駆動することで、検出部2aが応答を検出する成分と、があり、図2のように、電動機1a、1bと機械部4a,4bを機械特性H11,H12,H21,H22としている。
相互一巡開ループ伝達関数算出部9は、駆動信号T1、T2と、補償駆動力τ1、τ2と、単軸の自己一巡開ループ伝達関数を算出するステップSTP1で自己一巡開ループ伝達関数算出部8が算出した自己一巡開ループ伝達関数Zo1,Zo2とを用いて、相互一巡開ループ伝達関数Zo12、Zo21を算出する。
駆動信号T1、T2と、補償駆動力τ1、τ2から相互一巡開ループ伝達関数Zo12、Zo21を導出する理論的な背景を説明する。図2のブロック図の状態は式(22)(23)の関係がある。式(22)(23)を行列で示すと式(24)(25)となる。式(24)(25)から応答r1、r2を除くようにまとめると式(26)となる。2軸のシステムに入力した駆動信号T1、T2と、2軸のシステムからの出力を検出した補償駆動力τ1、τ2との項に分けると式(27)となる。式(27)は制御特性Giと機械特性Hijと駆動信号T1、T2と補償駆動力τ1、τ2とから成る。
実際には自己一巡開ループ伝達関数を求めたように周波数軸での演算になるので、式(27)の両辺に右から駆動信号T1、T2の項の随伴行列(転置かつ複素共役)を掛け、右辺に作成される駆動信号T1、T2とその共役が要素となる2×2行列の逆行列を両辺に右から掛ける。さらに、左辺の制御特性Giと機械特性Hijとを要素とする2×2行列の逆行列を両辺に左から掛ける。これにより式(28)のように、制御特性Giと機械特性Hijとを要素とする行列と、補償駆動力τ1、τ2と駆動信号T1、T2とその共役が要素とする行列に分けられる。
H 22 : Mechanical characteristic of second axis excitation second response G 2 : Control system characteristic Z C2 of second axis: Self-closed loop transfer function Z O2 of second axis measured: Self-circular loop transmission of second axis function
It is.
As described above, in step STP1 for calculating the uniaxial self-circular loop transfer function, the respective self-circular loop transfer functions Zo1 and Zo2 are calculated.
In step STP2 for calculating the mutual loop-opening loop transfer function, the first axis and the second axis are made operable as shown in FIG. 2, and the disturbance driving force input unit of the control units 3a and 3b is set from the command unit 5 to the two axes. Drive signals T1 and T2 are given to 6a and 6b as disturbances. The driving signal is a random wave having a wide frequency component, a swept sine wave, or an M-sequence signal, and a signal having no correlation between the driving signals T1 and T2 is used.
The control units 3a and 3b drive the electric motors 1a and 1b with the drive signals T1 and T2, and the responses r1 and r2 are obtained by the detection units 2a and 2b. Further, the control units 3a and 3b feed back the responses of the detection units 2a and 2b to generate the compensation driving forces τ1 and τ2, which are detected by the control unit compensation driving force detection units 7a and 7b. Since the two axes are mechanically connected, driving the motor 1a causes the detection unit 2b to detect a response, and driving the motor 1b causes the detection unit 2a to detect the response. As shown in FIG. 2, the electric motors 1a and 1b and the machine parts 4a and 4b have mechanical characteristics H11, H12, H21, and H22.
The mutual loop-opening transfer function calculation unit 9 calculates the driving signals T1, T2, the compensation driving forces τ1, τ2, and the uniaxial self-looping loop transfer function in step STP1, and the self-looping loop transfer function calculating unit 8 Are used to calculate mutual loop-opening loop transfer functions Zo12 and Zo21.
A theoretical background for deriving the mutual loop-open loop transfer functions Zo12 and Zo21 from the drive signals T1 and T2 and the compensation driving forces τ1 and τ2 will be described. The state of the block diagram of FIG. 2 has a relationship of Expressions (22) and (23). Expressions (22) and (23) are expressed as matrices, and expressions (24) and (25) are obtained. When the responses r1 and r2 are excluded from the equations (24) and (25), the equation (26) is obtained. When the driving signals T1 and T2 input to the biaxial system and the compensation driving forces τ1 and τ2 detected from the outputs from the biaxial system are divided into terms (27). Expression (27) includes a control characteristic Gi, a mechanical characteristic Hij, drive signals T1 and T2, and compensation drive forces τ1 and τ2.
Actually, since the calculation is performed on the frequency axis as the self-circular loop transfer function is obtained, both sides of the equation (27) are multiplied from the right by the adjoint matrix (transposed complex conjugate) of the terms of the drive signals T1 and T2. The drive signals T1 and T2 created on the right side and the inverse matrix of the 2 × 2 matrix whose conjugate is an element are multiplied on both sides from the right. Further, both sides are multiplied from the left by an inverse matrix of a 2 × 2 matrix having the left side control characteristic Gi and the mechanical characteristic Hij as elements. As a result, as shown in Expression (28), the matrix is divided into a matrix having the control characteristics Gi and the mechanical characteristics Hij as elements, and a matrix having the compensation driving forces τ1 and τ2, the driving signals T1 and T2, and their conjugates as elements.


ここで、
[T]:[T]の随伴行列(転置かつ複素共役)
[B]−1:[B]の逆行列
実測するT1,T2,τ1,τ2の要素から成る左辺は、式(29)となる。
ただし、自己一巡開ループ伝達関数を求めたように、周波数変換して平均化するので、式(7)となる。
here,
[T] h : adjoint matrix of [T] (transposition and complex conjugate)
[B] −1 : Inverse matrix of [B] The left side composed of the elements of T1, T2, τ1, and τ2 to be actually measured is represented by Expression (29).
However, since the frequency conversion is performed and averaged as the self-circular loop transfer function is obtained, Equation (7) is obtained.

一方で、特性を示すHij,Giの要素から成る式(28)の右辺は、単軸の自己一巡開ループ伝達関数を算出するステップSTP1で自己一巡開ループ伝達関数算出部8が算出した自己一巡開ループ伝達関数Zo1,Zo2が式(5)(6)なので、式(30)となる。
式(30)から式(31)(32)が成り立つので相互一巡開ループ伝達関数Zo12式(1)または式(3)のように求められる。
あるいは、式(30)から式(33)(34)として、相互一巡開ループ伝達関数Zo21式(2)または式(4)のように求めても良い。
On the other hand, the right side of the equation (28) composed of the elements of Hij and Gi indicating the characteristic is the self-rounding loop transfer function calculation unit 8 calculated by the self-rounding loop transfer function calculation unit 8 in step STP1 for calculating the uniaxial self-rounding loop transfer function. Since the open loop transfer functions Zo1 and Zo2 are the expressions (5) and (6), the expression (30) is obtained.
Since the equations (30) to (31) and (32) hold, the mutual open loop transfer function Zo12 is obtained as in the equations (1) and (3) .
Or you may obtain | require the mutual 1-open loop transfer function Zo21 like Formula (2) or Formula (4) from Formula (30) to Formula (33) (34).

以上のように、相互一巡開ループ伝達関数を算出するステップSTP2ではそれぞれの相互一巡開ループ伝達関数Zo12,Zo21を算出するのである。
図6は本発明の第1実施例を示す自己一巡開ループ伝達関数算出部および相互一巡開ループ伝達関数算出部の出力を示すブロック図である。
As described above, in step STP2 for calculating the mutual loop opening loop transfer function, the mutual loop opening loop transfer functions Zo12 and Zo21 are calculated.
FIG. 6 is a block diagram showing the outputs of the self-circular loop transfer function calculation unit and the mutual loop transfer function calculation unit according to the first embodiment of the present invention.

図6の(A)と(D)は単軸の自己一巡開ループ伝達関数を算出するステップSTP1で、1軸づつ独立に動作させ、1軸のシステムに入力した駆動信号T1、T2と、1軸のシステムからの出力を検出した補償駆動力τ1、τ2と、から自己一巡開ループ伝達関数算出部8が自己一巡開ループ伝達関数Zo1,Zo2を算出した。   FIGS. 6A and 6D are steps STP1 for calculating a single-axis self-revolving loop transfer function. The drive signals T1 and T2 input to the single-axis system are operated independently for each axis, and 1 The self-circular loop transfer function calculating unit 8 calculates the self-circular loop transfer functions Zo1 and Zo2 from the compensated driving forces τ1 and τ2 detected from the output from the shaft system.

図6の(B)と(C)は相互一巡開ループ伝達関数を算出するステップSTP2で、2軸を同時に動作させ、2軸のシステムに入力した駆動信号T1、T2と、2軸のシステムからの出力を検出した補償駆動力τ1、τ2と、から相互一巡開ループ伝達関数算出部9が相互一巡開ループ伝達関数Zo12,Zo21を算出する。なお、相互一巡開ループ伝達関数Zo12,Zo21は図6の(B)´(C)´に示したように、機械的に繋がっている2軸の電動機制御装置において他軸側の検出部2の応答がフィードバックして補償駆動力を発生する影響度を評価できるようになる。 (B) and (C) of FIG. 6 are steps STP2 for calculating a mutual loop-opening transfer function, and the two axes are operated simultaneously, and the drive signals T1 and T2 inputted to the two axes system and the two axes system are used. From the compensated driving forces τ1 and τ2 from which the outputs are detected, the mutual loop opening loop transfer function calculating unit 9 calculates the loop opening loop transfer functions Zo12 and Zo21 . In addition, as shown in (B) ′ (C) ′ of FIG. 6, the mutual loop-opening loop transfer functions Zo12 and Zo21 are the same as those of the detecting unit 2 on the other axis side in the mechanically connected two-axis motor control device. It is possible to evaluate the degree of influence that the response is fed back to generate the compensation driving force.

本発明の第2実施例にて2軸の電動機を1軸づつ交互に駆動することによる相互一巡開ループ伝達関数の算出について説明する。
図7は本発明の第2実施例を示す2軸の電動機制御装置の概略構成図、図8は本発明の第2実施例を示す2軸の電動機制御装置の第1軸に動作指令を与えたブロック図、図9は本発明の第2実施例を示す2軸の電動機制御装置の第2軸に動作指令を外乱として加算したブロック図である。
図7では電動機1a、1bが並進型であり、電動機1a、1bの可動部が直接テーブル部を並進動作させ、第1軸の上に第2軸が搭載された機構になっている。
本発明の電動機制御装置の相互一巡開ループ伝達関数算出方法のフローチャートは、第1実施例の図4と同じである。
本発明の第2実施例が本発明の第1実施例と異なる部分は、相互一巡開ループ伝達関数算出の手順である。第1実施例では、図2のように2軸の電動機1a、1bを同時に動作させるように駆動信号T1、T2を与えていたが、第2実施例では、図8、図9に示すように、電動機1a、1bを1軸づつ動作させるように駆動信号T1、T2を与えている部分である。
本発明が従来技術の第1例、第2例、第3例、第4例と異なる部分は、本発明の第1例と同じである。
本発明の第2実施例は、本発明の第1実施例の図4と同じ手順で実行される。
単軸の自己一巡開ループ伝達関数を算出するステップSTP1では、本発明の第1実施例と同様にして、自己一巡開ループ伝達関数算出部8が自己一巡開ループ伝達関数Zo1、Zo2を算出する。
相互一巡開ループ伝達関数を算出するステップSTP2は、図8、図9に示すように、1軸づつ駆動信号T1、T2を与え、1軸づつ電動機1a、1bを駆動する。但し、単軸の自己一巡開ループ伝達関数を算出するステップSTP1とは異なり、駆動しない電動機1も駆動可能な状態とし、外乱が検出部2からフィードバックされれば、制御部3が補償駆動力τを発生する状態とする。
まずは、第1軸を駆動して相互一巡開ループ伝達関数を算出する手順を説明する。図8のように、指令部5から制御部3aの外乱駆動力入力部6aに外乱として駆動信号T1を与える。この応答r1を検出部2aで得る。また、制御部3aは検出部2aの応答をフィードバックして補償駆動力τ1を発し、これを制御部補償駆動力検出部7aが検出する。なお、2軸は機械的に繋がっているので、電動機1aを駆動することで、検出部2bが応答を検出する成分がある。よって、制御部3bは検出部2bの応答をフィードバックして補償駆動力τ2を発し、これを制御部補償駆動力検出部7bが検出する。
駆動信号T1と、補償駆動力τ1、τ2から相互一巡開ループ伝達関数が求まることを説明する。
図8の状態は式(35)(36)の関係がある。式(35)(36)を行列で示すと式(37)(38)となる。式(37)(38)をまとめると式(39)となる。2軸のシステムに入力した駆動信号T1と、2軸のシステムからの出力を検出した補償駆動力τ1、τ2との項に分け、制御特性Giと機械特性Hijとを要素とする行列と、補償駆動力τ1、τ2と駆動信号T1とその共役が要素とする行列に分けると式(40)となる。
The calculation of the mutual loop-opening transfer function by alternately driving two-axis motors one by one in the second embodiment of the present invention will be described.
FIG. 7 is a schematic configuration diagram of a two-axis motor control device showing a second embodiment of the present invention, and FIG. 8 gives an operation command to the first shaft of the two-axis motor control device showing a second embodiment of the present invention. FIG. 9 is a block diagram in which an operation command is added as a disturbance to the second axis of the two-axis motor control apparatus according to the second embodiment of the present invention.
In FIG. 7, the electric motors 1 a and 1 b are of a translation type, and the movable portion of the electric motors 1 a and 1 b directly translates the table portion, and the second shaft is mounted on the first shaft.
The flowchart of the mutual loop opening loop transfer function calculation method of the motor control device of the present invention is the same as that in FIG. 4 of the first embodiment.
The difference between the second embodiment of the present invention and the first embodiment of the present invention is the procedure for calculating the mutual open loop transfer function. In the first embodiment , the drive signals T1 and T2 are given so as to simultaneously operate the two-axis motors 1a and 1b as shown in FIG. 2, but in the second embodiment , as shown in FIGS. The drive signals T1 and T2 are provided so that the electric motors 1a and 1b are operated one axis at a time.
The difference between the first example, the second example, the third example, and the fourth example of the prior art is the same as the first example of the present invention.
The second embodiment of the present invention is executed in the same procedure as FIG. 4 of the first embodiment of the present invention.
In step STP1 for calculating the single-axis self-circular loop transfer function, the self-circular loop transfer function calculating unit 8 calculates the self-circular loop transfer functions Zo1 and Zo2 as in the first embodiment of the present invention. .
In step STP2 for calculating the mutual loop opening loop transfer function, as shown in FIGS. 8 and 9, drive signals T1 and T2 are given for each axis, and the motors 1a and 1b are driven for each axis. However, unlike step STP1 for calculating a single-axis self-circular loop transfer function, if the motor 1 that is not driven can be driven, and the disturbance is fed back from the detection unit 2, the control unit 3 can compensate the driving force τ. Is assumed to occur.
First, a procedure for driving the first axis to calculate the mutual loop-opening transfer function will be described. As shown in FIG. 8, a drive signal T1 is given as a disturbance from the command unit 5 to the disturbance driving force input unit 6a of the control unit 3a. This response r1 is obtained by the detector 2a. The controller 3a feeds back the response of the detector 2a to generate a compensation driving force τ1, which is detected by the controller compensation driving force detector 7a. Since the two axes are mechanically connected, there is a component that the detection unit 2b detects a response by driving the electric motor 1a. Therefore, the control unit 3b feeds back the response of the detection unit 2b to generate the compensation driving force τ2, which is detected by the control unit compensation driving force detection unit 7b.
It will be described that a mutual loop-opening transfer function is obtained from the driving signal T1 and the compensation driving forces τ1 and τ2.
The state of FIG. 8 has a relationship of Expressions (35) and (36). When the expressions (35) and (36) are represented by a matrix, the expressions (37) and (38) are obtained. Summarizing equations (37) and (38) yields equation (39). It is divided into terms of the drive signal T1 input to the biaxial system and the compensation driving forces τ1, τ2 detected from the output from the biaxial system, and a matrix having the control characteristic Gi and the mechanical characteristic Hij as elements. When the driving forces τ1, τ2, the driving signal T1, and their conjugates are divided into matrixes, Expression (40) is obtained.

既知の駆動信号T1と、補償駆動力τ1、τ2とから成る式(40)の左辺側は、式(10)のように、T1、τ1、τ2が関わる平均化されたオートパワースペトルとクロススペクトルから構成される。
制御特性と機械特性から成る式(40)の右辺側は式(41)となる。
ここでは、駆動信号T2を与えていないので、式(10)の“0”要素に対応する要素を用いず、式(42)とすれば、式(8)のように相互一巡開ループ伝達関数Zo12が得られる。
The left side of the equation (40) composed of the known drive signal T1 and the compensation drive forces τ1, τ2 is an averaged auto power spectrum and cross spectrum related to T1, τ1, τ2, as in equation (10). Consists of
The right side of Expression (40) composed of control characteristics and mechanical characteristics is Expression (41).
Here, since the drive signal T2 is not given, the element corresponding to the “0” element of the equation (10) is not used, and if the equation (42) is used, the mutual loop-opening transfer function as in the equation (8) is obtained. Zo12 is obtained.

つぎに、第2軸を駆動して相互一巡開ループ伝達関数を算出する手順を説明する。図9のように、指令部5から制御部3bの外乱駆動力入力部6bに外乱として駆動信号T2を与える。この応答r2を検出部1aで得る。また、制御部3bは検出部2bの応答をフィードバックして補償駆動力τ2を発し、これを制御部補償駆動力検出部7bが検出する。なお、2軸は機械的に繋がっているので、電動機1bを駆動することで、検出部2aが応答を検出する成分がある。よって、制御部3aは検出部2aの応答をフィードバックして補償駆動力τ1を発し、これを制御部補償駆動力検出部7aが検出する。
図9の状態は式(43)(44)の関係がある。式(43)(44)を行列で示すと式(45)(46)となる。式(45)(46)をまとめると式(47)となる。
Next, the procedure for driving the second axis to calculate the mutual loop-opening transfer function will be described. As shown in FIG. 9, the drive signal T2 is given as disturbance from the command unit 5 to the disturbance driving force input unit 6b of the control unit 3b. This response r2 is obtained by the detector 1a. The control unit 3b feeds back the response of the detection unit 2b to generate the compensation driving force τ2, which is detected by the control unit compensation driving force detection unit 7b. Since the two axes are mechanically connected, there is a component that the detection unit 2a detects a response by driving the electric motor 1b. Therefore, the control unit 3a feeds back the response of the detection unit 2a to generate the compensation driving force τ1, which is detected by the control unit compensation driving force detection unit 7a.
The state of FIG. 9 has the relationship of Formula (43) (44). Expressions (43) and (44) can be expressed as matrices (45) and (46). When formulas (45) and (46) are put together, formula (47) is obtained.


既知の駆動信号T2と、補償駆動力τ1、τ2とから成る式(47)の左辺側は、式(11)のように、T2、τ1、τ2が関わる平均化されたオートパワースペトルとクロススペクトルから構成される。
制御特性と機械特性から成る式(47)の右辺側は式(48)となる。
ここでは、駆動信号T1を与えていないので、式(11)の“0” 要素に対応する要素を用いず、式(49)とすれば、式(9)のように相互一巡開ループ伝達関数Zo21が得られる。
The left side of the equation (47) consisting of the known drive signal T2 and the compensation driving forces τ1 and τ2 is an averaged auto power spectrum and cross associated with T2, τ1, and τ2, as in equation (11). Consists of spectrum.
The right side of Expression (47) composed of control characteristics and mechanical characteristics is Expression (48).
Here, since the drive signal T1 is not given, the element corresponding to the “0” element in the equation (11) is not used, and if the equation (49) is used, the mutual loop-opening transfer function as in the equation (9) is obtained. Zo21 is obtained.

以上のように、相互一巡開ループ伝達関数を算出するステップSTP2ではそれぞれの相互一巡開ループ伝達関数Zo12,Zo21を算出するのである。
以上のように、本発明の第2実施例においても、第1実施例の図6に示したように、単軸の自己一巡開ループ伝達関数Zo1,Zo2をステップSTP1で出力する。また、相互一巡開ループ伝達関数Zo12,Zo23をステップSTP2で出力するようになっている。
As described above, in step STP2 for calculating the mutual loop opening loop transfer function, the mutual loop opening loop transfer functions Zo12 and Zo21 are calculated.
As described above, also in the second embodiment of the present invention, as shown in FIG. 6 of the first embodiment, the single-axis self-circular loop transfer functions Zo1 and Zo2 are output in step STP1. Further, the mutual open loop transfer functions Zo12 and Zo23 are output in step STP2.

本発明の第3実施例にて、電動機の制御を切ると電動機が移動するような、直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれる3軸の電動機制御装置において、機械特性である多軸伝達関数の算出と、相互一巡開ループ伝達関数の算出について説明する。
図10は本発明の第3実施例を示す3軸の電動機制御装置の概略構成図、図11は本発明の第3実施例を示す特性演算部を示すブロック図である。図10において、24は固定機械部である。第2軸と第3軸の構成は、第2実施例の図7と同じである。第1軸に回転型の電動機1aを用いボールねじ機構を介してテーブル部が垂直方向に並進動作し、テーブル部には検出部2dがあり、フルクローズド制御を行う構成となっている。第1軸から第3軸は図10(b)に示すような全体構成となっている。
図11において、10は特性演算部、11は機械特性演算部である。
図12は本発明の第3実施例を示す電動機制御装置の多軸伝達関数算出方法および相互一巡開ループ伝達関数算出方法のフローチャートである。STE1は機械特性を算出するステップ、STE2は少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップ、STは制御系特性および新たな組み合わせの相互一巡開ループ伝達関数を算出するステップである。
本発明の第3実施例が本発明の第1例、第2例と異なる部分は、電動機制御装置を3軸備えた部分と、1軸が垂直軸であり、しかもフルクローズド制御を行う構成となっている点である。また、図11に示すように、特性演算部10と、機械特性演算部11とを備えた部分である。
さらに、図12、機械特性を算出するステップSTE1と、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2と、制御系特性および新たな組み合わせの相互一巡開ループ伝達関数を算出するステップSTを備えた部分である。
本発明の第3実施例を図12に従って説明する。
まず、機械特性を算出するステップSTE1では、垂直軸かつフルクローズ制御である第1軸を含む3軸の機械特性を算出する。
図13は本発明の第3実施例を示す3軸の電動機制御装置を示すブロック図である。図13において21は制御モード切替部、22は単位換算部である。
電動機1a,1b,1cが3つあり、検出部2a,2b,2c,2dが4つあるので、図13では、機械特性H11,H12,H13,H21,H22,H23,H31,H32,H33,H41,H42,H43の12個で電動機1および機械部4を示している。垂直軸の第1軸は、フィードバックループを組む位置制御を行い、水平軸の第2、第3軸は駆動力制御(推力制御)を行う。位置制御では制御モード切替部21をONしており、駆動力制御では制御モード切替部21をOFFしている。
ここでは、機械特性を算出するステップSTE1で、1軸ごとに電動機1を動作させて、機械特性Hを求める方法を説明する。
この場合、1軸ごとに、機械特性を算出するステップSTE1と、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2と、が処理される。
最初にCASE1として、第1軸の電動機1aを動作させる。指令部5は制御部3aに駆動信号T1を与える。制御部3aは外乱駆動力入力部6aに外乱として駆動信号T1を与え電動機1aを動作させる。制御部3aはフィードバックループを組んでいる。第2軸、第3軸は駆動力制御であり、フィードバックループを組んでいない。制御部3b、3cに与えられる駆動信号はT2=0,T3=0である。
この状態は、式(50)なので、式(51)として、機械特性H11,H21,H31、H41が求められる。実際には、駆動信号T1と補償駆動力τ1の和と、検出部2a,2b,2c,2dの検出結果r1、r2、r3、r4を周波数分析し、平均化したオートパワースペクトルとクロススペクトルから式(52)のように、機械特性H11,H21,H31、H41が求められる。
この例では、機械特性H11,H21,H31、H41しか求めていないが、同時に、自動的に、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2が処理されたことになる。
In the third embodiment of the present invention , in a three-axis motor control apparatus including a motor used with a large stroke in a situation where a direct axis or an external force is applied such that the motor moves when the control of the motor is cut off, The calculation of the multi-axis transfer function and the calculation of the mutual open loop transfer function will be described.
FIG. 10 is a schematic configuration diagram of a three-axis motor control device showing a third embodiment of the present invention, and FIG. 11 is a block diagram showing a characteristic calculation unit showing the third embodiment of the present invention. In FIG. 10, 24 is a fixed machine part. The configurations of the second axis and the third axis are the same as those in FIG. 7 of the second embodiment. A rotary electric motor 1a is used for the first shaft, the table portion is translated in a vertical direction via a ball screw mechanism, and the table portion has a detection portion 2d, which is configured to perform full-closed control. The first to third axes have an overall configuration as shown in FIG.
In FIG. 11, 10 is a characteristic calculation unit, and 11 is a mechanical characteristic calculation unit.
FIG. 12 is a flowchart of a multi-axis transfer function calculating method and a mutual loop-opening transfer function calculating method of the motor control apparatus according to the third embodiment of the present invention. STE1 is a step of calculating a mechanical characteristic, STE2 is a step of outputting only a mechanical characteristic based on an operation command applied to at least one axis, and ST is a step of calculating a mutual open loop transfer function of a control system characteristic and a new combination. is there.
The third embodiment of the present invention is different from the first and second examples of the present invention in that the motor control device is provided with three axes, one axis is a vertical axis, and full closed control is performed. It is a point. Further, as shown in FIG. 11, the characteristic calculation unit 10 and the mechanical characteristic calculation unit 11 are provided.
Further, in FIG. 12, a step STE1 of calculating the mechanical properties, and a step STE2 to output only mechanical properties based on the operation command plus at least one axis, the cross-round open-loop transfer function of the control system characteristics and new combination It is a part provided with step ST to calculate.
A third embodiment of the present invention will be described with reference to FIG.
First, in step STE1 for calculating the mechanical characteristics, the mechanical characteristics of the three axes including the first axis that is the vertical axis and the full-closed control are calculated.
FIG. 13 is a block diagram showing a three-axis motor control apparatus showing a third embodiment of the present invention. In FIG. 13, 21 is a control mode switching unit, and 22 is a unit conversion unit.
Since there are three electric motors 1a, 1b, and 1c and four detection units 2a, 2b, 2c, and 2d, in FIG. 13, mechanical characteristics H11, H12, H13, H21, H22, H23, H31, H32, H33, The motor 1 and the machine part 4 are shown by 12 pieces of H41, H42, and H43. The first axis of the vertical axis performs position control that forms a feedback loop, and the second and third axes of the horizontal axis perform driving force control (thrust control). In the position control is turned ON the control mode switching unit 21 to turn OFF the control mode switching unit 21 is a driving force control.
Here, a method for obtaining the mechanical characteristic H by operating the electric motor 1 for each axis in step STE1 for calculating the mechanical characteristic will be described.
In this case, for each axis, step STE1 for calculating mechanical characteristics and step STE2 for outputting only mechanical characteristics based on an operation command applied to at least one axis are processed.
First, the first shaft motor 1a is operated as CASE1. The command unit 5 gives a drive signal T1 to the control unit 3a. The controller 3a gives a drive signal T1 to the disturbance driving force input unit 6a as a disturbance to operate the electric motor 1a. The control unit 3a forms a feedback loop. The second axis and the third axis are driving force controls and do not form a feedback loop. The drive signals given to the control units 3b and 3c are T2 = 0 and T3 = 0.
Since this state is expression (50), mechanical characteristics H11, H21, H31, and H41 are obtained as expression (51). Actually, frequency analysis is performed on the sum of the driving signal T1 and the compensation driving force τ1 and the detection results r1, r2, r3, and r4 of the detection units 2a, 2b, 2c, and 2d, and the averaged auto power spectrum and cross spectrum are used. Mechanical characteristics H11, H21, H31, and H41 are obtained as in Expression (52).
In this example, only mechanical characteristics H11, H21, H31, and H41 are obtained, but at the same time, step STE2 for automatically outputting only mechanical characteristics based on an operation command applied to at least one axis has been processed. .

次に、CASE2として、第2軸の電動機1bを動作させる。指令部5は制御部3bに駆動信号T2を与える。制御部3bは駆動力制御で駆動信号T2により電動機1bを動作させる。制御部3aはフィードバックループを組んでいるが、第2軸、第3軸は駆動力制御であり、フィードバックループを組んでいない。制御部3a、3cに与えられる駆動信号はT1=0,T3=0である。
この状態は、式(53)なので、式(54)のようになる。補償駆動力τ1と駆動信号T2の随伴行列(転置かつ複素共役)を式(54)の両辺に掛け、さらにτ1、T2、τ1、T2から成る行列の逆行列を式(54)の両辺に掛けると、機械特性の行列が求まる。実際には、補償駆動力τ1と駆動信号T2と、検出部2a,2b,2c,2dの検出結果r1、r2、r3、r4を周波数分析し、平均化したオートパワースペクトルとクロススペクトルから式(55)のように、機械特性H11,H12,H21,H22,H31,H32,H41,H42が求まる。
Next, as CASE 2, the second-axis motor 1b is operated. The command unit 5 gives a drive signal T2 to the control unit 3b. The controller 3b operates the electric motor 1b by the driving signal T2 by driving force control. Although the control unit 3a forms a feedback loop, the second axis and the third axis are driving force controls, and do not form a feedback loop. The drive signals given to the control units 3a and 3c are T1 = 0 and T3 = 0.
Since this state is Expression (53), Expression (54) is obtained. The adjoint matrix (transposition / complex conjugate) of the compensation driving force τ1 and the driving signal T2 is multiplied by both sides of the equation (54), and the inverse matrix of the matrix composed of τ1, T2, τ1 * , T2 * is both sides of the equation (54). Multiply by to get a matrix of mechanical properties. Actually, frequency analysis is performed on the compensation driving force τ1, the driving signal T2, and the detection results r1, r2, r3, and r4 of the detection units 2a, 2b, 2c, and 2d, and an equation ( As in (55), mechanical characteristics H11, H12, H21, H22, H31, H32, H41, and H42 are obtained.

ここで得た機械特性である多軸伝達関数は、補償駆動力τ1により励振された機械特性H11,H21,H31、H41と、駆動信号T2により励振されたH12、H22、H32、H42とに分離している。CASE1で、機械特性H11,H21,H31、H41は算出されており、周波数成分が限られると考えられる補償駆動力τ1により励振されているので、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2で、駆動信号T2により励振された機械特性H12、H22、H32、H42を採用する。
同様に、CASE3として、駆動力制御で駆動信号T3により電動機1cを動作させる。制御部3a、3bに与えられる駆動信号はT1=0,T2=0である。
この状態は、式(56)なので、CASE2と同様に、式(57)として機械特性Hを得る。
The multi-axis transfer function which is the mechanical characteristic obtained here is separated into mechanical characteristics H11, H21, H31 and H41 excited by the compensation driving force τ1, and H12, H22, H32 and H42 excited by the driving signal T2. doing. In CASE1, mechanical characteristics H11, H21, H31, and H41 are calculated and excited by a compensation driving force τ1 that is considered to have a limited frequency component. Therefore, only mechanical characteristics based on an operation command applied to at least one axis are used. In step STE2 for outputting, the mechanical characteristics H12, H22, H32, and H42 excited by the drive signal T2 are employed.
Similarly, as CASE3, the electric motor 1c is operated by the driving signal T3 by driving force control. The drive signals given to the control units 3a and 3b are T1 = 0 and T2 = 0.
Since this state is Expression (56), the mechanical characteristic H is obtained as Expression (57) as in CASE2.

少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2で、駆動信号T3により励振された機械特性H13、H23、H33、H43を採用する。
以上のように、CASE1,CASE2,CASE3を通して、1軸ごとに機械特性を算出するステップSTE1と、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2と、が処理され、機械特性である多軸伝達関数H11,H21,H31、H41、H12、H22、H32、H42、H13、H23、H33、H43を機械特性演算部11が算出するのである。
In step STE2 for outputting only mechanical characteristics based on an operation command applied to at least one axis, mechanical characteristics H13, H23, H33, and H43 excited by the drive signal T3 are employed.
As described above, step STE1 for calculating the mechanical characteristics for each axis through CASE1, CASE2, and CASE3 and step STE2 for outputting only the mechanical characteristics based on the operation command applied to at least one axis are processed. The mechanical characteristic calculation unit 11 calculates the multi-axis transfer functions H11, H21, H31, H41, H12, H22, H32, H42, H13, H23, H33, and H43, which are characteristics.

次の手順は、単軸の自己一巡開ループ伝達関数を算出するステップSTP1と、相互一巡開ループ伝達関数を算出するステップSTP2とであり、本発明の第1実施例、第2実施例と同じである。なお、前段の機械特性を算出するステップSTE1と、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2と、によって機械系の軸間の特性を把握できている。図10(b)のような構成なので、第1軸は、第2軸と第3軸と離れており、相関が薄く、第1軸を含めた相互一巡開ループ伝達関数を求める必要が無いとする。 The next procedure is a step STP1 for calculating a uniaxial self-circular loop transfer function and a step STP2 for calculating a mutual circular loop transfer function, which are the same as in the first and second embodiments of the present invention. It is. The characteristics between the axes of the mechanical system can be grasped by step STE1 for calculating the mechanical characteristics of the previous stage and step STE2 for outputting only the mechanical characteristics based on the operation command applied to at least one axis. Since the configuration is as shown in FIG. 10B, the first axis is separated from the second axis and the third axis, the correlation is low, and it is not necessary to obtain a mutual open loop transfer function including the first axis. To do.

このように、機械特性を多軸で得て、相互一巡開ループ伝達関数を求める軸を絞りこんで良い。ここでは、以下本発明の第1実施例と同様の処理を行う。
なお、単軸の自己一巡開ループ伝達関数を算出するステップSTP1は、独立した電動機制御装置のパラメータ調整のために、本発明の第1実施例と同様に第1軸から第3軸まで、3軸分実施し、自己一巡開ループ伝達関数Zo1,Zo2,Zo3を求める。
次に、相互一巡開ループ伝達関数を算出するステップSTP2においても、発明の第1実施例と同様の処理を行い、相互一巡開ループ伝達関数Zo23,Zo32を求める。
軸番号と式の添え字を統一して自己一巡開ループ伝達関数Zo1,Zo2,Zo3と相互一巡開ループ伝達関数Zo23,Zo32を示すと、式(18)(20)(57)(59)(60)となる
In this way, the mechanical characteristics can be obtained with multiple axes, and the axes for obtaining the mutual loop-opening transfer function can be narrowed down. Here, the same processing as in the first embodiment of the present invention is performed.
Note that step STP1 for calculating the single-axis self-circular loop transfer function is performed from the first axis to the third axis in the same manner as in the first embodiment of the present invention in order to adjust the parameters of the independent motor control device. Axis is implemented, and self-open loop transfer functions Zo1, Zo2, and Zo3 are obtained.
Next, also in step STP2 for calculating the mutual loop opening loop transfer function, the same processing as in the first embodiment of the invention is performed to obtain the mutual loop opening loop transfer functions Zo23 and Zo32.
When the axis numbers and the subscripts of the equations are unified and the self-rounding loop transfer functions Zo1, Zo2, and Zo3 and the mutual loop-opening loop transfer functions Zo23 and Zo32 are shown, formulas (18), (20), (57), and (59) ( 60)

次に、制御系特性および新たな組み合わせの相互一巡開ループ伝達関数を算出するステップSTの処理を行う。
図14は本発明の第3実施例を示す特性演算部の出力を示すブロック図である。
機械特性を算出するステップSTE1と、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2と、において、機械特性演算部11が機械特性H11,H21,H31、H41、H12、H22、H32、H42、H13、H23、H33、H43を算出している。また、単軸の自己一巡開ループ伝達関数を算出するステップSTP1にて、自己一巡開ループ伝達関数算出部8が自己一巡開ループ伝達関数Zo1,Zo2,Zo3を算出している。さらに、相互一巡開ループ伝達関数を算出するステップSTP2において相互一巡開ループ伝達関数算出部9が相互一巡開ループ伝達関数Zo23,Zo32を算出している。Zo23,Zo32は図14(D)(E)である。
以上の特性が既知であれば、特性演算部10は、図14(F)(G)のような制御特性G1,G2を、自己一巡開ループ伝達関数Zo1と機械特性H11と、自己一巡開ループ伝達関数Zo2と機械特性H11と、から求められる。制御特性G2は、相互一巡開ループ伝達関数Zo23から求めても良い。
さらに、特性演算部10は、求めた制御特性G1と機械特性H12から、実測していない相互一巡開ループ伝達関数算出部Zo12を、図14(H)のように求めることもできる。
図14(I)のような、制御特性G1、G2と機械特性H12の組み合わせの新たな特性を算出することができる。
Next, the process of step ST which calculates a control system characteristic and the mutual combination open loop transfer function of a new combination is performed.
FIG. 14 is a block diagram showing the output of the characteristic calculation unit according to the third embodiment of the present invention.
In step STE1 for calculating the mechanical characteristics and in step STE2 for outputting only the mechanical characteristics based on the operation command applied to at least one axis, the mechanical characteristic calculation unit 11 performs the mechanical characteristics H11, H21, H31, H41, H12, H22. , H32, H42, H13, H23, H33, and H43 are calculated. In step STP1 for calculating a single-axis self-circular loop transfer function, the self-circular loop transfer function calculator 8 calculates self-circular loop transfer functions Zo1, Zo2, and Zo3. Further, in step STP2 for calculating the mutual one-open loop transfer function, the mutual one-open loop transfer function calculating unit 9 calculates the mutual one-open loop transfer functions Zo23 and Zo32. Zo23 and Zo32 are shown in FIGS. 14D and 14E.
If the above characteristics are known, the characteristic calculation unit 10 obtains the control characteristics G1 and G2 as shown in FIGS. 14F and 14G, the self-circular loop transfer function Zo1, the mechanical characteristic H11, and the self-circular loop. It is obtained from the transfer function Zo2 and the mechanical characteristic H11. The control characteristic G2 may be obtained from the mutual open loop transfer function Zo23.
Furthermore, the characteristic calculation unit 10 can also obtain a mutual loop-opening transfer function calculation unit Zo12 that is not actually measured from the obtained control characteristic G1 and mechanical characteristic H12 as shown in FIG.
A new characteristic of a combination of the control characteristics G1 and G2 and the mechanical characteristic H12 as shown in FIG. 14 (I) can be calculated.

以上のように、多軸の機械特性を多軸伝達関数として把握し、機械特性から軸間の影響度を絞り込み、相互一巡開ループ伝達関数によって軸間の影響が大きい組み合わせにおける制御系を含めた軸間の特性を定量的に把握できる。   As described above, the multi-axis mechanical characteristics are grasped as multi-axis transfer functions, the degree of influence between the axes is narrowed down from the mechanical characteristics, and the control system in the combination in which the inter-axis open loop transfer function has a large effect between the axes The characteristics between the axes can be grasped quantitatively.

単軸の自己一巡開ループ伝達関数を求めておけば、制御特性が求められ、新たな組み合わせの相互一巡開ループ伝達関数を実測せずに算出することもできる。   If a single-axis self-circular loop transfer function is obtained, control characteristics can be obtained, and a new combination of mutual circular loop transfer functions can be calculated without actual measurement.

本発明の第4実施例にて、2軸の電動機制御装置にそれぞれ2つの検出部を備えたフルクローズド制御を行う構成の相互一巡開ループ伝達関数の算出について説明する。
図15は本発明の第4実施例および第5実施例を示す3軸の電動機制御装置の概略構成図、図16は本発明の第4実施例を示す3軸の電動機制御装置のブロック図である。
図15(b)のように、第3実施例の3軸の構成に似ているが、第2軸、第3軸はフルクローズド制御を行う構成となっている。第1軸はフルクローズド制御では無い。
本発明の第3実施例と同様に、CASE1,2,3に分けて、機械特性を算出するステップSTE1、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2を処理し、機械特性を算出できる。
3つの電動機1a,1b,1cと、5つの検出部2a,2b,2c,2d、2eから成る多軸構成のため、CASE1では式(62)、CASE2では式(63)、CASE3では式(64)から機械特性を算出し、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2の処理に基づき、CASE1ではH11,H21,H31,H41,H51、H12、CASE2ではH22,H32,H42,H52、CASE3ではH13、H23,H33,H43,H53を得る。
In the fourth embodiment of the present invention , description will be given of the calculation of the mutual one-loop open loop transfer function configured to perform full-closed control in which each of the two-axis motor control device includes two detection units.
FIG. 15 is a schematic configuration diagram of a three-axis motor control device showing a fourth embodiment and a fifth embodiment of the present invention, and FIG. 16 is a block diagram of a three-axis motor control device showing a fourth embodiment of the present invention. is there.
As shown in FIG. 15B, although it is similar to the three-axis configuration of the third embodiment, the second axis and the third axis are configured to perform full-closed control. The first axis is not fully closed control.
As in the third embodiment of the present invention, the processing is divided into CASE 1, 2, and 3, step STE1 for calculating the mechanical characteristics, and step STE2 for outputting only the mechanical characteristics based on the operation command applied to at least one axis, Mechanical properties can be calculated.
Because of the multi-axis configuration including three electric motors 1a, 1b, and 1c and five detectors 2a, 2b, 2c, 2d, and 2e, the expression (62) for CASE1, the expression (63) for CASE2, and the expression (64) for CASE3 ) To calculate mechanical characteristics, and output only mechanical characteristics based on an operation command applied to at least one axis. Based on the processing in step STE2, H11, H21, H31, H41, H51, H12, and CASE2 are H22, H32. , H42, H52, and CASE3, H13, H23, H33, H43, and H53 are obtained.

次に、単軸の自己一巡開ループ伝達関数を算出するステップSTP1にてフルクローズド制御を行う構成の自己一巡開ループ伝達関数について説明する。
図17は本発明の第4実施例を示す1軸のフルクローズド制御の電動機制御装置の自己一巡開ループ伝達関数の算出を示すブロック図である。
制御部3bは、位置制御部Gp2、速度制御部Gv2を備え、検出部2bの応答は特性をaとする単位換算部22を介して速度制御部Gv2にフィードバックされる。検出部2dの応答は位置制御部Gp2にフィードバックされる。
自己一巡開ループ伝達関数を求めるために、指令部5から制御部3bの外乱駆動力入力部6bに外乱として駆動信号T2を与える。制御部3bが電動機1bを駆動信号で駆動し、この応答r2を検出部2b応答r5を検出部2dで得る。また、制御部3bは検出部2b、2dの応答をフィードバックして補償駆動力τ2を発し、これを制御部補償駆動力検出部7bが検出する。
この状態は、式(65)(66)なので、式(67)のように自己閉ループ伝達関数Zc2を得る。ここで、外乱駆動力T 補償駆動力τの周波数スペクトルから得たクロススペクトルXτ2T2とオートパワースペクトルAT2T2を式(68)のように平均化して自己閉ループ伝達関数ZC2を得る。自己一巡開ループ伝達関数Zo2は式(69)のように求められる。同様に第3軸は式(70)となる。なお、第1軸は第1実施例と同様に式(18)となる。
Next, a self-circular loop transfer function configured to perform full-closed control in step STP1 for calculating a single-axis self-circular loop transfer function will be described.
FIG. 17 is a block diagram showing calculation of a self-circular loop transfer function of a motor controller for single-axis full-closed control according to a fourth embodiment of the present invention.
The control unit 3b includes a position control unit Gp2 and a speed control unit Gv2, and the response of the detection unit 2b is fed back to the speed control unit Gv2 via the unit conversion unit 22 whose characteristic is a. The response of the detection unit 2d is fed back to the position control unit Gp2.
In order to obtain a self-circular loop transfer function, a drive signal T2 is given as a disturbance from the command unit 5 to the disturbance driving force input unit 6b of the control unit 3b. Control unit 3b drives the motor 1b in the drive signal, obtained by the detection unit 2d responding r5 this response r2 by the detection unit 2b. The controller 3b feeds back the responses of the detectors 2b and 2d to generate a compensation driving force τ2, which is detected by the controller compensation driving force detector 7b.
Since this state is Expressions (65) and (66), a self-closed loop transfer function Zc2 is obtained as shown in Expression (67). Here, to obtain a self-closed loop transfer function Z C2 cross spectrum X Tau2T2 and auto power spectrum A T2T2 obtained from the frequency spectrum of the disturbance driving force T 2 and the compensation driving force tau 2 are averaged by the equation (68). The self-circular loop transfer function Zo2 is obtained as shown in Equation (69). Similarly, the third axis is expressed by equation (70). The first axis is expressed by equation (18) as in the first embodiment.

図18は本発明の第4実施例および第5実施例を示す2軸のフルクローズド制御の電動機制御装置の相互一巡開ループ伝達関数の算出を示すブロック図である。
制御部3cは、位置制御部Gp3、速度制御部Gv3を備え、検出部2cの応答は特性をaとする単位換算部22を介して速度制御部Gv3にフィードバックされる。検出部2eの応答は位置制御部Gp3にフィードバックされる。
ここでは、第1実施例と同様に2軸の電動機を同時に駆動することによる相互一巡開ループ伝達関数の算出について説明する。
図18のように第2軸と第3軸を稼動可能な状態とし、2軸に指令部5から制御部3b、3cの外乱駆動力入力部6b、6cに外乱として駆動信号T2、T3を与える。そして補償駆動力τ2、τ3を制御部補償駆動力検出部7b、7cが検出する。
この状態は、式(71)式(72)の関係がある、式(71)は式(73)(74)に分解できる。また、式(72)は式(75)のように行列で示される。
FIG. 18 is a block diagram showing the calculation of the mutual open loop transfer function of the two-axis full-closed motor control apparatus according to the fourth and fifth embodiments of the present invention.
The control unit 3c includes a position control unit Gp3 and a speed control unit Gv3, and the response of the detection unit 2c is fed back to the speed control unit Gv3 via the unit conversion unit 22 whose characteristic is a. The response of the detector 2e is fed back to the position controller Gp3.
Here, calculation of a mutual loop-opening transfer function by simultaneously driving two-axis motors as in the first embodiment will be described.
As shown in FIG. 18, the second and third axes are operable, and the drive signals T2 and T3 are given as disturbances to the disturbance driving force input units 6b and 6c of the control units 3b and 3c from the command unit 5 to the two axes. . Then, the compensation drive forces τ2 and τ3 are detected by the controller compensation drive force detectors 7b and 7c.
This state has a relationship of Expression (71) and Expression (72). Expression (71) can be decomposed into Expressions (73) and (74). Further, Expression (72) is represented by a matrix like Expression (75).

式(73)(74)(75)をまとめると、式(76)となる。式(76)に、前ステップで得た自己一巡開ループ伝達関数Zo2、Zo3の式(69)(70)と相互一巡開ループ伝達関数Zo23,Zo32である式(77)(78)を代入すると、式(79)となる。式(79)を第1実施例と同様にまとめると式(80)となる。   When formulas (73), (74), and (75) are put together, formula (76) is obtained. When the formulas (69) and (70) of the self-rounding loop transfer functions Zo2 and Zo3 obtained in the previous step and the formulas (77) and (78) which are the mutual loop-opening loop transfer functions Zo23 and Zo32 are substituted into the formula (76). Equation (79) is obtained. When Expression (79) is summarized in the same manner as in the first embodiment, Expression (80) is obtained.

式(80)の自己一巡開ループ伝達関数Zo2、Zo3と相互一巡開ループ伝達関数Zo23,Zo32から成る項は、式(81)となるので、式(82)式(83)が得られ
相互一巡開ループ伝達関数Zo23,Zo32が式(84)式(85)のように得られる。
Since the term composed of the self-circular loop transfer functions Zo2 and Zo3 and the mutual loop-open loop transfer functions Zo23 and Zo32 in the equation (80) becomes the equation (81), the equation (82) and the equation (83) are obtained and the mutual circle is obtained. Open loop transfer functions Zo23 and Zo32 are obtained as shown in equations (84) and (85).

このように、フルクローズド制御を行う構成の2軸の電動機制御装置であっても、相互一巡開ループ伝達関数を求めることができる。
また、第3実施例と同様に特性演算部10を用いて、制御系特性および新たな組み合わせの相互一巡開ループ伝達関数を算出するステップSTの処理を行っても良い。
以上のように、フルクローズド制御を行う構成の2軸の電動機制御装置を含んでいても、多軸の機械特性を多軸伝達関数として把握し、機械特性から軸間の影響度を絞り込み、相互一巡開ループ伝達関数によって軸間の影響が大きい組み合わせにおける制御系を含めた軸間の特性を定量的に把握できる。
In this way, even with a two-axis motor control device configured to perform full-closed control, the mutual loop-opening loop transfer function can be obtained.
Further, similarly to the third embodiment, the characteristic calculation unit 10 may be used to perform the process of step ST for calculating the mutual loop-opening transfer function of the control system characteristic and a new combination.
As described above, even if a two-axis motor controller configured to perform full-closed control is included, the multi-axis mechanical characteristics are grasped as a multi-axis transfer function, and the degree of influence between the axes is narrowed down from the mechanical characteristics. It is possible to quantitatively grasp the characteristics between the axes including the control system in the combination where the influence between the axes is large by the one loop open loop transfer function.

単軸の自己一巡開ループ伝達関数を求めておけば、制御特性が求められ、新たな組み合わせの相互一巡開ループ伝達関数を実測せずに算出することもできる。   If a single-axis self-circular loop transfer function is obtained, control characteristics can be obtained, and a new combination of mutual circular loop transfer functions can be calculated without actual measurement.

本発明の第5実施例にて2軸の電動機制御装置にそれぞれ2つの検出部を備えたフルクローズド制御を行う構成において、電動機を1軸づつ交互に駆動することによる相互一巡開ループ伝達関数の算出について説明する。また、機械特性を算出するステップSTE1で3軸を駆動する例について説明する。
構成は、実施例4の図15に示された、本発明の第4実施例および第5実施例を示す3軸の電動機制御装置の概略構成図である。
まず、機械特性を算出するステップSTE1について説明する。実施例4の図16ではCASE1、CASE2、CASE3に分けた過程を1回で行う。
駆動信号T1、T2,T3を与えることで、補償駆動力検出部6aの検出結果の補償駆動力τ1、検出部2a,2b,2c,2dの検出結果r1、r2、r3、r4と機械特性である多軸伝達関数Hは式(86)の関係があるので、式(87)のように処理すれば、機械特性Hが求まる。実際には式(88)のように平均化したオートパワースペクトルとクロススペクトルから求める。
なお、少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2では、3軸を駆動したので、式(88)の機械特性である多軸伝達関数Hをすべて選択する。
In the fifth embodiment of the present invention , in a configuration for performing full-closed control in which each of the two-axis motor control device includes two detection units, the mutual loop-opening loop transfer function is obtained by alternately driving the motors one by one. The calculation will be described. An example in which three axes are driven in step STE1 for calculating mechanical characteristics will be described.
The configuration is a schematic configuration diagram of a three-axis motor control device shown in FIG. 15 of the fourth embodiment and showing a fourth embodiment and a fifth embodiment of the present invention.
First, step STE1 for calculating mechanical characteristics will be described. In FIG. 16 of the fourth embodiment, the process divided into CASE1, CASE2, and CASE3 is performed once.
By providing the drive signals T1, T2, and T3, the compensation driving force τ1 of the detection result of the compensation driving force detector 6a, the detection results r1, r2, r3, and r4 of the detectors 2a, 2b, 2c, and 2d Since a certain multi-axis transfer function H has the relationship of the equation (86), the mechanical characteristic H can be obtained by processing as in the equation (87). Actually, it is obtained from the averaged auto power spectrum and cross spectrum as shown in equation (88).
In step STE2 in which only the mechanical characteristics based on the operation command applied to at least one axis are output, since the three axes are driven, all the multi-axis transfer functions H that are the mechanical characteristics of Expression (88) are selected.

単軸の自己一巡開ループ伝達関数を算出するステップSTP1は、第4実施例と同様に求められる。
次の相互一巡開ループ伝達関数を算出するステップSTP2では、第4実施例とは異なり、絞ったフルクローズド制御の電動機制御装置の2軸に1軸づつ交互に電動機を動作させる。図18は本発明の第4実施例および第5実施例を示す2軸のフルクローズド制御の電動機制御装置の相互一巡開ループ伝達関数の算出を示すブロック図である。
まず、第2軸のみを動作した場合は、式(89)(90)の関係がある。式(89)は式(91)(92)のように分解できる、式(90)は式(93)のように行列で示せる。式(91)(92)(93)と、第4実施例で示した自己一巡開ループ伝達関数と相互一巡開ループ伝達関数を式(69)(70)(77)(78)とから、式(94)となる。式(94)の右辺側は式(95)となり、左辺側は実際には平均化されたオートパワースペトルとクロススペクトルから構成されるため式(96)となる。
ここでは、駆動信号T3を与えていないので、式(96)の“0” 要素に対応する要素を用いず、式(97)のように相互一巡開ループ伝達関数Zo23が得られる。
Step STP1 for calculating a single-axis self-circular loop transfer function is obtained in the same manner as in the fourth embodiment.
In step STP2 for calculating the next reciprocal loop transfer function, unlike the fourth embodiment, the motors are alternately operated one by one for the two axes of the motor controller for the fully closed control. FIG. 18 is a block diagram showing the calculation of the mutual open loop transfer function of the two-axis full-closed motor control apparatus according to the fourth and fifth embodiments of the present invention.
First, when only the second axis is operated, there is a relationship of equations (89) and (90). Expression (89) can be decomposed as Expressions (91) and (92), and Expression (90) can be expressed as a matrix as Expression (93). Equations (91), (92), and (93), and the self-circular loop transfer function and the mutual circular loop transfer function shown in the fourth embodiment are expressed by the equations (69), (70), (77), and (78). (94). The right side of Expression (94) is Expression (95), and the left side is actually Expression (96) because it is composed of an averaged auto power spectrum and cross spectrum.
Here, since the drive signal T3 is not given, an element corresponding to the “0” element in Expression (96) is not used, and a mutual open loop transfer function Zo23 is obtained as shown in Expression (97).


同様に、駆動信号T3のみを与えた場合、式(98)(99)の関係から式(100)(101)が得られるので、式(101)の“0” 要素に対応する要素を用いず、式(102)のように相互一巡開ループ伝達関数Zo32が得られる。 Similarly, when only the drive signal T3 is given, Expressions (100) and (101) are obtained from the relations of Expressions (98) and (99), and therefore, an element corresponding to the “0” element in Expression (101) is not used. , A mutual open loop transfer function Zo32 is obtained as shown in equation (102).


以上のように、相互一巡開ループ伝達関数を算出するステップSTP2では2軸の電動機制御装置にそれぞれ2つの検出部を備えたフルクローズド制御を行う構成でも、電動機を1軸づつ交互に駆動することにより、相互一巡開ループ伝達関数Zo23Zo32を出力するようになっている。 As described above, in step STP2 for calculating the mutual loop-opening loop transfer function, the motors are driven alternately one axis at a time even in a configuration in which the two-axis motor control device is provided with two detection units and each has two detection units. Therefore , the mutual loop-opening transfer functions Zo23 and Zo32 are output.

本発明の第6実施例にて2軸の電動機制御装置において、1つの軸には検出部を1つそなえ、もう1つの軸には検出部を2つそなえたフルクローズド制御を行う構成とし、2軸の電動機を同時に駆動することによる相互一巡開ループ伝達関数の算出について説明する。また、制御部を速度制御部と位置制御部に分けて示した場合の自己一巡開ループ伝達関数についても説明する。
図19は本発明の第6実施例を示す3軸の電動機制御装置の概略構成図である。相互一巡開ループ伝達関数を求めるのは第4・第5実施例と同じ第2軸・第3軸とする。
図20は本発明の第6実施例を示す2軸の電動機制御装置のブロック図である。
機械特性を算出するステップSTE1と少なくとも1軸に加えた動作指令に基づく機械特性のみを出力するステップSTE2については説明を省略する。
単軸の自己一巡開ループ伝達関数を算出するステップSTP1において、第2軸のルクローズド制御を行う構成では、第4実施例に示したように、式(69)となる。
第3軸と第1軸の自己一巡開ループ伝達関数を速度制御部と位置制御部を含めて示す。
第3軸に独立して外乱として駆動信号T3を与えると式(103)の関係があるので、自己閉ループ伝達関数 C3 を式(104)のように得る。これより、式(105a)のように自己一巡開ループ伝達関数Zo3を得る。同様に式(105b)のように第1軸の自己一巡開ループ伝達関数Zo1を得る。
In the sixth embodiment of the present invention , in the two-axis motor control apparatus, one shaft is provided with one detection unit, and the other shaft is provided with two detection units, and a full-closed control is performed. The calculation of the mutual loop-opening transfer function by simultaneously driving the two-axis motor will be described. A self-circular loop transfer function when the control unit is divided into a speed control unit and a position control unit will also be described.
FIG. 19 is a schematic configuration diagram of a three-axis motor control device showing a sixth embodiment of the present invention. The mutual loop-opening transfer function is obtained on the second axis and the third axis as in the fourth and fifth embodiments.
FIG. 20 is a block diagram of a two-axis motor control apparatus showing a sixth embodiment of the present invention.
The description of step STE1 for calculating the mechanical characteristics and step STE2 for outputting only the mechanical characteristics based on the operation command applied to at least one axis will be omitted.
In step STP1 for calculating the single-axis self-circular loop transfer function, in the configuration in which the second-axis closed loop control is performed, Expression (69) is obtained as shown in the fourth embodiment.
The self-circular loop transfer function of the third axis and the first axis is shown including the speed control unit and the position control unit.
When the drive signal T3 is given as a disturbance independently to the third axis, there is a relationship of Equation (103), and thus a self-closed loop transfer function Z C3 is obtained as shown in Equation (104). As a result, a self-circular loop transfer function Zo3 is obtained as shown in equation ( 105a ). Similarly, a self-circular loop transfer function Zo1 of the first axis is obtained as in the formula ( 105b ).

図20は本発明の第6実施例を示す2軸の電動機制御装置のブロック図において、2軸の電動機を同時に駆動することによる相互一巡開ループ伝達関数の算出について説明する。相互一巡開ループ伝達関数を算出するステップSTの処理は、式(106a)式(106b)の関係を用いる。
式(106a)は式(107)(108)に分解でき、式(106b)は式(109)となるので、式(110)となる。既知の自己一巡開ループ伝達関数とこれから求める相互一巡開ループ伝達関数の関係式(111)を用いると、式(110)は式(112)となる。式(112)は式(113)と式(114)となるので、式(115)のように相互一巡開ループ伝達関数が求まる。
整理すると、相互一巡開ループ伝達関数Zo23は式(116)、Zo32は式(117)となる。
FIG. 20 is a block diagram of a two-axis motor control device showing a sixth embodiment of the present invention, and the calculation of a mutual open loop transfer function by simultaneously driving the two-axis motor will be described. The process of step ST which calculates a mutual open loop transfer function uses the relationship of Formula ( 106a ) and Formula ( 106b ).
Expression ( 106a ) can be decomposed into Expressions (107) and (108), and Expression ( 106b ) becomes Expression (109), so Expression (110) is obtained. When a relational expression (111) between a known self-circular loop transfer function and a mutual circular loop transfer function obtained from this is used, Expression (110) becomes Expression (112). Since Expression (112) becomes Expression (113) and Expression (114), a mutual open loop transfer function is obtained as in Expression (115).
To summarize, the mutual loop-opening transfer function Zo23 is expressed by equation (116), and Zo32 is expressed by equation (117).


以上のように、フルクローズド制御が混在した場合にも、相互一巡開ループ伝達関数を定量的に把握できる。また、第3実施例と同様に特性演算部10を用いて、制御系特性および新たな組み合わせの相互一巡開ループ伝達関数を算出するステップSTの処理を行っても良い。
なお、第1実施例から第6実施例では、制御特性をGiとしたが、積分項や微分項やフィルタ項などの他の処理を制御特性Giに含んでも良い。第5、第6実施例に示したように、第1から第4実施例においても、制御特性を速度制御特性Gvi、位置制御特性Gpiのように分けても良い。
これらのように、本発明は垂直軸や外力が掛かる状況で大きなストロークで使用する電動機が含まれる複数軸の軸間を含む機械特性を測定するとともに制御器の安定度を把握し、機械特性に合わせた軸間を含めた制御器の調整度合いを把握できる電動機制御装置および該装置の相互一巡開ループ伝達関数算出方法、もしくは多軸伝達関数算出方法を提供する。
As described above, even when full-closed control is mixed, the mutual loop-opening transfer function can be quantitatively grasped. Further, similarly to the third embodiment, the characteristic calculation unit 10 may be used to perform the process of step ST for calculating the mutual loop-opening transfer function of the control system characteristic and a new combination.
In the first to sixth embodiments, the control characteristic is Gi, but other processes such as an integral term, a differential term, and a filter term may be included in the control characteristic Gi. As shown in the fifth and sixth embodiments, also in the first to fourth embodiments, the control characteristics may be divided into speed control characteristics Gvi and position control characteristics Gpi.
As described above, the present invention measures the mechanical characteristics including the shafts of multiple axes including the electric motor used with a large stroke in a situation where a vertical axis or an external force is applied, and grasps the stability of the controller to improve the mechanical characteristics. An electric motor control device capable of grasping the degree of adjustment of a controller including the combined axes and a mutual loop-opening transfer function calculation method or a multi-axis transfer function calculation method of the device are provided.

複数の電動機制御装置を搭載した機械システムの機械設計検証や、制御系設計、制御部・指令部の調整、パラメータ設定に利用できる。さらに、機械システムを量産する際に、固体の特性の試験を行うという用途にも適用できる。
機械特性である多軸伝達関数が得られれば、機械の剛性が把握できるので、機械の剛性の設計性能の確認ができ、機械側の修正・改善に利用できる。
また、多軸伝達関数を把握することで、制御部のノッチフィルタ、ローパスフィルタ、振動抑制制御機能などを含めた制御方式の選択、指令部の共振させない動作信号の作成、などを、単軸だけで無く、多軸間の軸間の組み合わせにおける影響度を考慮して検討し、設定できる。
さらに、多軸伝達関数を把握することで、機械特性の影響度がお互いに高いために、電動機制御装置の他軸を考慮した設定が必要な軸間を絞り込むことができる。
絞りこまれた軸間では、軸間の機械特性と制御系を合わせた特性を新たな評価基準である相互一巡開ループ伝達関数を定量的に把握することで、制御部の応答性パラメータや各種フィルタや振動抑制機能、指令部にて加工した動作信号などを軸間で相互に効果があるように設定し、また、その各種設定後に再度、相互一巡開ループ伝達関数を求めることで各種設定した効果を確認できるので、機械特性と整合した複数の電動機を備えた電動機制御装置を実現できる。
It can be used for machine design verification of machine systems equipped with multiple motor control devices, control system design, control / command unit adjustment, and parameter setting. Furthermore, the present invention can be applied to the use of testing the characteristics of solids when mass-producing mechanical systems.
If a multi-axis transfer function, which is a mechanical characteristic, is obtained, the rigidity of the machine can be grasped, so that the design performance of the machine rigidity can be confirmed and used for correction and improvement on the machine side.
In addition, by grasping the multi-axis transfer function, it is possible to select control methods including notch filters, low-pass filters, vibration suppression control functions, etc. in the control unit, and create operation signals that do not resonate in the command unit. Rather, it can be studied and set in consideration of the degree of influence in the combination between multiple axes.
Further, by grasping the multi-axis transfer function, since the degree of influence of the mechanical characteristics is high, it is possible to narrow down between the axes that need to be set in consideration of the other axis of the motor control device.
Between the narrowed shafts, we can quantitatively grasp the combined characteristics of the mechanical characteristics between the shafts and the control system, the mutual loop-opening transfer function, which is a new evaluation standard, and thereby the response parameters of the control unit and various The filter, vibration suppression function, operation signal processed by the command unit, etc. are set so that they have mutual effects between the axes, and after various settings, various settings are made by obtaining the mutual loop-opening loop transfer function again. Since the effect can be confirmed, an electric motor control device including a plurality of electric motors consistent with mechanical characteristics can be realized.

1 1a,1b1c 電動機
2 2a,2b,2c,2d,2e 検出部
3 3a,3b3c 制御部
4 4a,4b,4c 機械部
5 指令部
6 6a、6b 外乱駆動力入力部
7 7a、7b 制御部補償駆動力検出部
8 自己一巡開ループ伝達関数算出部
9 相互一巡開ループ伝達関数算出部
10 特性演算部
11 機械特性演算部
21 制御モード切替部
22 単位換算部
24 固定機械部
101 演算装置
102 サーボ制御装置
103 回転検出器
104 電動機
105 伝達機構
106 可動部
107 非可動部
108 動作指令信号
109 回転検出器信号
110 制御信号
119 入力装置
120 周波数特性式
121 出力装置
201 電動機
202 検出手段
203 制御器
204 指令器
205 機械
206 電流制御部
207 外乱信号発生部
208 駆動力検出手段
209 加算器
210 閉ループ外乱周波数応答特性算出手段
211 閉ループ駆動力周波数応答特性算出手段
212 一巡開ループ周波数応答特性算出手段
213 機械特性算出手段
214 負荷慣性モーメント推定装置
215 電動機特性
216 電動機単体の回転子の慣性モーメント値もしくは可動子の質量
217 単位換算手段
218 共振周波数推定手段
219 制御器特性算出手段
220 出力手段
221 入力装置
222 記憶装置
302、303 サーボ装置
304、305 センサ
306、307 モータ
308、309 伝達機構
310、311 可動部
312 固定台
313、314 振動センサ
402 除振台本体
(A)〜(D) 能動アクチュエータ
(S) センサ
(K) 機器
1 1a, 1b , 1c Motor 2 2a, 2b, 2c, 2d, 2e Detection unit 3 3a, 3b , 3c Control unit
4 4a, 4b, 4c Machine part 5 Command part 6 6a, 6b Disturbance driving force input part 7 7a, 7b Control part Compensation driving force detection part 8 Self-one-round open loop transfer function calculation part 9 Mutual one-round loop transfer function calculation part 10 Characteristic calculation unit 11 Mechanical characteristic calculation unit 21 Control mode switching unit 22 Unit conversion unit 24 Fixed machine unit 101 Calculation device
102 Servo control device 103 Rotation detector 104 Electric motor 105 Transmission mechanism 106 Movable portion 107 Non-movable portion 108 Operation command signal 109 Rotation detector signal 110 Control signal 119 Input device 120 Frequency characteristic equation 121 Output device 201 Electric motor 202 Detection means 203 Controller 204 Commander 205 Machine 206 Current control unit 207 Disturbance signal generation unit 208 Driving force detection means 209 Adder 210 Closed loop disturbance frequency response characteristic calculation means 211 Closed loop driving force frequency response characteristic calculation means 212 Single loop open loop frequency response characteristic calculation means 213 Machine Characteristic calculation means 214 Load inertia moment estimation device 215 Motor characteristic 216 Motor inertia value of rotor or mass of mover 217 Unit conversion means 218 Resonance frequency estimation means 219 Controller characteristic calculation means 220 Output Stage 221 input device 222 memory device 302, 303 Servo devices 304 and 305 Sensors 306 and 307 Motor 308, 309 Transmission mechanism 310, 311 Movable part 312 Fixed base 313, 314 Vibration sensor 402 Anti-vibration base (A) to (D) Active actuator (S) Sensor (K) machine

Claims (5)

負荷機械もしくは該負荷機械を駆動する電動機の移動量を検出する検出部の検出値が動作指令に追従するように前記電動機を制御する制御部を備えた1軸用電動機制御装置を少なくとも2軸分備えた電動機制御装置であって、
前記1軸用電動機制御装置に、前記制御部の特性と制御対象である機械の特性とを含む単軸の自己一巡開ループ伝達関数を算出する自己一巡開ループ伝達関数算出部と、
前記制御部に、駆動力生成出力後に外乱として動作指令を与える外乱駆動力入力部と、
前記外乱駆動力入力部の前の駆動力を検出する制御部補償駆動力検出部と、を備え、
前記電動機制御装置に、前記制御部へ動作指令を与える指令部と、
軸夫々の前記外乱駆動力を動作指令として軸の夫々の前記外乱駆動力入力部に与え、夫々の前記制御部補償駆動力検出部により補償駆動力を検出し、全軸の前記外乱駆動力と、軸の前記補償駆動力と、軸の単軸の自己一巡開ループ伝達関数と、に基づいて相互一巡開ループ伝達関数を算出する相互一巡開ループ伝達関数算出部を備えたことを特徴とする電動機制御装置。
A single-axis motor control device including a control unit that controls the motor so that the detection value of the detection unit that detects the amount of movement of the load machine or the motor that drives the load machine follows the operation command. An electric motor control device comprising:
In the single-axis motor control device, a self-circular loop transfer function calculation unit that calculates a single-axis self-circular loop transfer function including the characteristics of the control unit and the characteristics of the machine to be controlled;
A disturbance driving force input unit that gives an operation command as a disturbance after driving force generation output to the control unit;
A control unit compensating driving force detecting unit for detecting a driving force in front of the disturbance driving force input unit,
A command unit for giving an operation command to the control unit to the motor control device;
Applied to the disturbance driving force input portion of each of all the axes of the disturbance driving force of the shaft as each of the operation command, and detecting the compensation driving force by the control unit compensates the driving force detecting section of each said disturbance driving force for all axes When, with the compensation driving force of all axes, and self-round open-loop transfer function of the single axes of all axes, further comprising a cross-round open-loop transfer function calculation unit that calculates a cross-round open-loop transfer function based on An electric motor control device.
前記相互一巡開ループ伝達関数算出部は、軸を駆動可能にしたまま1軸づつ前記外乱駆動力を前記外乱駆動力入力部に与えて、それぞれが駆動した状態での軸の前記補償駆動力と、1軸づつに与えた前記外乱駆動力と、軸の単軸の前記自己一巡開ループ伝達関数と、から前記相互一巡開ループ伝達関数を算出することを特徴とする請求項1に記載の電動機制御装置。 The mutual round open-loop transfer function calculation unit, the one-axis increments the disturbance driving force while allowing driving all axes given to the disturbance driving force input portion, the compensation drive of all axes in a state where each driven and power 1 and the disturbance driving force applied to the shaft at a time, and the self-round open-loop transfer function of the single axes of all axes to claim 1, characterized in that calculating the mutual round open loop transfer function from The motor control device described. 少なくとも1つの前記1軸用電動機制御装置に、複数の前記検出部を備え前記制御部にフィードバックループを複数備えた場合、前記相互一巡開ループ伝達関数算出部は、夫々の前記検出部の応答と他軸の駆動による機械特性と自軸の制御特性とからなる特性の和を相互一巡開ループ伝達関数とすることを特徴とする請求項1または2に記載の電動機制御装置。 When the at least one single-axis motor control device includes a plurality of the detection units and the control unit includes a plurality of feedback loops, the mutual loop-opening transfer function calculation unit calculates the response of each of the detection units. 3. The motor control apparatus according to claim 1, wherein a sum of characteristics composed of mechanical characteristics due to driving of the other axis and control characteristics of the own axis is used as a mutual loop-opening transfer function. 前記電動機制御装置は、少なくとも1つの前記1軸用電動機制御装置、前記電動機の制御を切ると前記電動機が移動する構成であって、
前記動作指令と前記補償駆動力と前記検出部の検出値から前記機械特性を算出する機械特性演算部を備え、
前記機械特性演算部は、少なくとも1軸に加えた前記動作指令に基づく前記機械特性のみを算出することを特徴とする請求項1〜3のいずれか1項に記載の電動機制御装置。
The motor control device is configured such that the motor moves when at least one of the one-axis motor control devices turns off the control of the motor ,
Equipped with a mechanical characteristic calculation unit for calculating the mechanical properties from the detection value of the detecting unit and the operation command and the compensation driving force,
The mechanical characteristics calculating unit is, the motor control device according to any one of claims 1 to 3, characterized in that to calculate only the mechanical properties based on the operation command plus at least one axis.
前記電動機制御装置は、前記相互一巡開ループ伝達関数と前記機械特性と前記自己一巡開ループ伝達関数から制御系特性および新たな組み合わせの前記相互一巡開ループ伝達関数を算出する特性演算部を備えることを特徴とする請求項1〜4のいずれか1項に記載の電動機制御装置。

The motor control device further comprising a characteristic calculating unit for calculating the cross-round open-loop transfer function of the control system characteristics and a new combination with the cross-round open-loop transfer function and the mechanical properties of the self-round open loop transfer function The electric motor control device according to claim 1, wherein

JP2009049356A 2009-03-03 2009-03-03 Electric motor control device Expired - Fee Related JP5190803B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009049356A JP5190803B2 (en) 2009-03-03 2009-03-03 Electric motor control device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009049356A JP5190803B2 (en) 2009-03-03 2009-03-03 Electric motor control device

Publications (3)

Publication Number Publication Date
JP2010206930A JP2010206930A (en) 2010-09-16
JP2010206930A5 JP2010206930A5 (en) 2012-02-16
JP5190803B2 true JP5190803B2 (en) 2013-04-24

Family

ID=42967852

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009049356A Expired - Fee Related JP5190803B2 (en) 2009-03-03 2009-03-03 Electric motor control device

Country Status (1)

Country Link
JP (1) JP5190803B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5996148B1 (en) * 2015-04-23 2016-09-21 三菱電機株式会社 Multi-axis control system setting adjustment support device

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH02157904A (en) * 1988-12-09 1990-06-18 Toshiba Mach Co Ltd Servo control system
JP2700728B2 (en) * 1991-07-05 1998-01-21 特許機器株式会社 Feed-forward control method for anti-vibration table
WO2001082462A1 (en) * 2000-04-20 2001-11-01 Kabushiki Kaisha Yaskawa Denki Motor controller
JP3811088B2 (en) * 2001-04-19 2006-08-16 東芝機械株式会社 Servo control method
JP4683255B2 (en) * 2001-08-20 2011-05-18 株式会社安川電機 Frequency characteristic calculation device for motor control device
JP4325566B2 (en) * 2005-02-10 2009-09-02 株式会社安川電機 Electric motor control device, mechanical characteristic measuring method thereof, and controller adjustment method

Also Published As

Publication number Publication date
JP2010206930A (en) 2010-09-16

Similar Documents

Publication Publication Date Title
US6534944B2 (en) Servo controller
US20090284208A1 (en) Machine position control device
JP5389251B2 (en) Parallel drive system
Hosseinabadi et al. Modeling and active damping of structural vibrations in machine tools
JP6359210B1 (en) Control parameter adjustment device
US20180024572A1 (en) Motor controller and industrial machine
EP2930575B1 (en) Positioning control device
Zhao et al. Experimental study on active structural acoustic control of rotating machinery using rotating piezo-based inertial actuators
CN101260967B (en) XYY precision positioning platform calibration method
JP5190803B2 (en) Electric motor control device
JP4325566B2 (en) Electric motor control device, mechanical characteristic measuring method thereof, and controller adjustment method
US7292002B2 (en) Control method for twin synchronization
Ko et al. $\text {H} _ {\infty} $ Control Design of PID-Like Controller for Speed Drive Systems
US20090281652A1 (en) Controller of three-axis tool unit and working machine
JP4493484B2 (en) Active vibration isolation method and apparatus
WO2021176617A1 (en) Vibration isolation control device and vibration isolation control method
JP2005275588A (en) Motor controller control parameter sensitivity analyzing device
JP2003061379A (en) Frequency characteristic computing device for motor controller
Rohlfing et al. Self-tuning velocity feedback control for a time varying structure using a voltage driven electrodynamic inertial mass actuator
JP3811639B2 (en) Control device
Kehne et al. Control of the static and dynamic stiffness of feed drive axes by using an external force sensor
JP4591136B2 (en) Two-dimensional positioning device
TW202344945A (en) Servo control apparatus and servo control method
LI Reducing motion inaccuracies due to cogging in a redundantly actuated 3-DOF manipulator
ANKARALI et al. Feedback control of a dc servomotor with time delays subjected to disturbance signals

Legal Events

Date Code Title Description
A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110304

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110304

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111228

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121212

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130120

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160208

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees