JP5188635B2 - Resin-coated metal pigment and method for producing the same - Google Patents

Resin-coated metal pigment and method for producing the same Download PDF

Info

Publication number
JP5188635B2
JP5188635B2 JP2012098372A JP2012098372A JP5188635B2 JP 5188635 B2 JP5188635 B2 JP 5188635B2 JP 2012098372 A JP2012098372 A JP 2012098372A JP 2012098372 A JP2012098372 A JP 2012098372A JP 5188635 B2 JP5188635 B2 JP 5188635B2
Authority
JP
Japan
Prior art keywords
resin
metal pigment
coated metal
pigment
coated
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2012098372A
Other languages
Japanese (ja)
Other versions
JP2012162733A5 (en
JP2012162733A (en
Inventor
ユナザル ファミ
成樹 勝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Chemicals Corp
Original Assignee
Asahi Kasei Chemicals Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Chemicals Corp filed Critical Asahi Kasei Chemicals Corp
Priority to JP2012098372A priority Critical patent/JP5188635B2/en
Publication of JP2012162733A publication Critical patent/JP2012162733A/en
Publication of JP2012162733A5 publication Critical patent/JP2012162733A5/ja
Application granted granted Critical
Publication of JP5188635B2 publication Critical patent/JP5188635B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、新規な樹脂被覆金属顔料、及びその製造方法に関し、さらに詳しくは、塗料用顔料として使用したとき、これまでにない優れた金属光沢、意匠性を維持しながら密着性、耐薬品性においても優れたメタリック塗膜を与える金属顔料とその製造方法に関するものである。   The present invention relates to a novel resin-coated metal pigment and a method for producing the same, and more specifically, when used as a pigment for paint, adhesion and chemical resistance are maintained while maintaining an unprecedented excellent metallic luster and design. The present invention also relates to a metal pigment that gives an excellent metallic coating film and a method for producing the same.

従来からメタリック塗料用、印刷インキ用、プラスチック練り込み用等に、メタリック感を重視する美粧効果を得る目的で金属顔料が使用されている。ただし、表面に何らの処理も施していないアルミニウム顔料は、金属感や意匠性が高い反面、塗料及び印刷インキの樹脂系によっては塗膜中での樹脂との密着性が劣るため、セロハンテープ剥離による密着性試験を行った場合に多量に剥離してしまうこと、また、薬品に対する保護機能もないことという欠点を有していた。   Conventionally, metal pigments have been used for metallic paints, printing inks, plastics kneading, and the like for the purpose of obtaining a cosmetic effect that emphasizes a metallic feeling. However, aluminum pigments that have not undergone any treatment on the surface have a high metallic feel and design, but depending on the resin system of the paint and printing ink, the adhesiveness with the resin in the coating film is inferior. When the adhesion test was conducted, there was a drawback that a large amount was peeled off and there was no protective function against chemicals.

これはアルミニウム顔料表面と塗料及び印刷インキ樹脂との相溶性、及び濡れ性が不十分であるためと考えられるが、この改善策として、アルミニウム顔料の表面処理を行う方法が提案されている。   This is considered to be because the compatibility between the surface of the aluminum pigment, the paint and the printing ink resin, and the wettability are insufficient. As an improvement measure, a method of performing a surface treatment of the aluminum pigment has been proposed.

特許文献1には、アルミニウム顔料であるフレーク状アルミニウム粉末、又はフレーク状アルミニウム粉末のペーストを有機溶媒中に分散し、はじめに該粉末にラジカル重合性不飽和カルボン酸等を吸着せしめ、次いでラジカル重合性二重結合を3個以上有する単量体から生成される重合体によって該粉末の表面を被覆する方法が提案されている。しかしこの方法は、密着性は改善されるものの本来の主な目的であるメタリック塗膜の耐薬品性を実現するために、被覆させる単量体を相当量添加することが必要となり、このとき同時に金属感の低下をもたらし、意匠性が著しく低下してしまうという問題点を有している。   In Patent Document 1, flaky aluminum powder, which is an aluminum pigment, or a paste of flaky aluminum powder is dispersed in an organic solvent, and first, radically polymerizable unsaturated carboxylic acid or the like is adsorbed to the powder, and then radically polymerizable. A method has been proposed in which the surface of the powder is coated with a polymer produced from a monomer having three or more double bonds. However, although this method improves the adhesion, it is necessary to add a considerable amount of the monomer to be coated in order to realize the chemical resistance of the metallic coating, which is the original main purpose. There is a problem that the metallic feeling is lowered and the design property is remarkably lowered.

特許文献2には、樹脂被覆金属顔料の色調低下を防止し、かつ更に耐薬品性、耐候性を改良するために、表面被覆の方法を改良し、均一で高度に三次元架橋した被覆膜を形成させる方法が提案されている。しかしこの方法でも、金属感、意匠性の低下はある程度改善されるものの、表面被覆処理を施していない金属顔料の色調よりはかなり劣り、十分でない。   Patent Document 2 discloses a uniform and highly three-dimensional cross-linked coating film in which the surface coating method is improved in order to prevent color tone deterioration of the resin-coated metal pigment and to further improve chemical resistance and weather resistance. There has been proposed a method for forming the film. However, even with this method, although the metal feeling and the deterioration in design are improved to some extent, it is considerably inferior to the color tone of the metal pigment not subjected to the surface coating treatment, and is not sufficient.

また、最近特に高意匠性が求められている平均粒径が10μm以下の領域では、樹脂被覆処理後の平均粒径が処理前と比較して著しく大きくなり、塗膜にしたときの光輝性や隠蔽性、フリップフロップ感などの色調が著しく低下してしまうという問題点を有している。   In addition, in the region where the average particle size of 10 μm or less, which has recently been particularly demanded for high designability, the average particle size after the resin coating treatment is significantly larger than that before the treatment, There is a problem that the color tone such as concealing property and flip-flop feeling is remarkably lowered.

特許文献3には、マイカを樹脂被覆する際に、超音波を利用する方法が開示されている。しかし、アルミニウム顔料には言及しておらず、アルミニウム顔料では重要な物性である色調や耐薬品性、密着性に関する記載は一切ない。   Patent Document 3 discloses a method of using ultrasonic waves when resin-coated mica. However, aluminum pigments are not mentioned, and there are no descriptions regarding color tone, chemical resistance, and adhesion, which are important physical properties of aluminum pigments.

特公平1−49746号公報Japanese Patent Publication No. 1-449746 国際公開公報WO96/38506International Publication WO 96/38506 特開平2−233770号公報JP-A-2-233770

本発明は、上記のような従来技術の欠点を排除した樹脂被覆金属顔料及びその新製法を提供すること、すなわち、樹脂被覆したことによる光輝性や隠蔽性、フリップフロップ感などの色調低下が少なく、かつ優れた密着性、耐薬品性を有する樹脂被覆金属顔料及びその新製法を提供することを目的とする。   The present invention provides a resin-coated metal pigment that eliminates the disadvantages of the prior art as described above, and a new method for producing the same, that is, there is little reduction in color tone such as glossiness, concealment, and flip-flop feeling due to resin coating. Another object of the present invention is to provide a resin-coated metal pigment having excellent adhesion and chemical resistance and a new production method thereof.

本発明者らは、従来検討されたことのない樹脂被覆処理中に超音波照射といった外的作用を付加することにより優れた色調、密着性、耐薬品性とを兼ね備えた樹脂被覆金属顔料を得ることが可能となる製造方法を見出し、本発明を完成するに至った。   The present inventors obtain a resin-coated metal pigment having excellent color tone, adhesion, and chemical resistance by adding an external action such as ultrasonic irradiation during resin coating treatment that has not been studied in the past. The present inventors have found a production method that enables this and completed the present invention.

即ち、本発明は下記の通りである。
(1)金属顔料100重量部に対して0.1〜50重量部の樹脂が前記金属顔料の表面に付着している樹脂被覆金属顔料であって、反応槽での樹脂被覆処理中に、前記金属顔料を含むスラリー液の一部を外部循環型容器に循環させ、この外部循環型容器に対して超音波による振動処理を付加することにより得られる樹脂被覆金属顔料。
(2)前記振動処理の付加が、該外部循環型容器の外側に直接超音波振動子を貼付し、外部の壁を通して内部のスラリー液に超音波を付加することにより行われる、上記(1)に記載の樹脂被覆金属顔料。
(3)金属顔料100重量部に対して0.1〜50重量部の樹脂が前記金属顔料の表面に付着している樹脂被覆金属顔料の製造方法であって、樹脂被覆処理中に超音波による振動を付加することを含む、樹脂被覆金属顔料の製造方法。
(4)前記振動処理の付加が、反応槽での樹脂被覆処理中に前記金属顔料を含むスラリー液の一部を外部循環型容器に循環させ、この外部循環型容器に対して超音波による振動処理を付加することにより行われる、上記(3)に記載の樹脂被覆金属顔料の製造方法。
(5)前記振動処理の付加が、該外部循環型容器の外側に直接超音波振動子を貼付し、外部の壁を通して内部のスラリー液に超音波を付加することにより行われる、上記(4)に記載の製造方法。
(6)金属顔料がアルミニウム顔料である、上記(1)〜(5)のいずれか一項に記載の製造方法。
That is, the present invention is as follows.
(1) A resin-coated metal pigment in which 0.1 to 50 parts by weight of resin is attached to the surface of the metal pigment with respect to 100 parts by weight of the metal pigment, and during the resin coating treatment in a reaction vessel, A resin-coated metal pigment obtained by circulating a part of a slurry liquid containing a metal pigment in an external circulation type container, and applying an ultrasonic vibration treatment to the external circulation type container.
(2) The addition of the vibration treatment is performed by attaching an ultrasonic vibrator directly to the outside of the external circulation container and applying ultrasonic waves to the internal slurry liquid through the external wall. The resin-coated metal pigment described in 1.
(3) A method for producing a resin-coated metal pigment in which 0.1 to 50 parts by weight of the resin is attached to the surface of the metal pigment with respect to 100 parts by weight of the metal pigment, and the ultrasonic wave is applied during the resin coating process A method for producing a resin-coated metal pigment, comprising applying vibration.
(4) The addition of the vibration treatment causes a part of the slurry liquid containing the metal pigment to circulate in an external circulation type container during the resin coating treatment in the reaction tank, and the ultrasonic vibration is applied to the external circulation type container. The method for producing a resin-coated metal pigment according to (3), which is performed by adding a treatment.
(5) The addition of the vibration treatment is performed by attaching an ultrasonic vibrator directly to the outside of the external circulation type container, and applying ultrasonic waves to the internal slurry liquid through the external wall. The manufacturing method as described in.
(6) The manufacturing method as described in any one of said (1)-(5) whose metal pigment is an aluminum pigment.

本発明の樹脂被覆金属顔料は、樹脂被覆処理中に外部循環装置に超音波照射といった外的作用を付加することにより得られる、優れた色調、密着性、耐薬品性とを兼ね備えた樹脂被覆金属顔料である。本発明の樹脂被覆金属顔料を、塗料に用いた場合、色調は、樹脂被覆前の金属顔料を用いた場合の色調とほとんど変わらず、かつ、密着性、耐薬品に優れた塗膜を得ることができる。   The resin-coated metal pigment of the present invention is a resin-coated metal having excellent color tone, adhesion, and chemical resistance obtained by adding an external action such as ultrasonic irradiation to an external circulation device during resin coating treatment. Pigment. When the resin-coated metal pigment of the present invention is used in a paint, the color tone is almost the same as that when a metal pigment before resin coating is used, and a coating film excellent in adhesion and chemical resistance is obtained. Can do.

実施例1で用いた実験装置の概略図である。1 is a schematic diagram of an experimental apparatus used in Example 1. FIG. 実施例4で用いた実験装置の概略図である。6 is a schematic diagram of an experimental apparatus used in Example 4. FIG. 実施例7で用いた実験装置の概略図である。FIG. 10 is a schematic diagram of an experimental apparatus used in Example 7. 実施例5の樹脂被覆金属顔料のTEM写真の一例である。6 is an example of a TEM photograph of a resin-coated metal pigment of Example 5. 比較例1の樹脂被覆金属顔料のTEM写真の一例である。2 is an example of a TEM photograph of a resin-coated metal pigment of Comparative Example 1.

以下、実施の形態を示して本発明をより詳細に説明する。   Hereinafter, the present invention will be described in more detail with reference to embodiments.

樹脂被覆金属顔料の製造方法は、溶剤中に金属顔料粒子を分散させ、振動的外的作用を付加しながら、分子内に一個以上の二重結合を有する単量体及び/又はオリゴマーを加え、さらに重合開始剤を加えて重合反応を行い、樹脂を金属顔料粒子の表面に被覆させることからなる。重合反応条件は50℃〜150℃の温度で5分〜12時間の間で行うことが望ましい。重合効率を高めるために窒素、ヘリウム等の不活性ガス雰囲気下で重合することが望ましい。重合終了は有機溶剤を濾別し、不揮発分を20〜80%に調整し、必要に応じて他の溶剤、添加剤などを加えてペースト状にしてもよい。   The method for producing a resin-coated metal pigment includes dispersing a metal pigment particle in a solvent and adding a monomer and / or oligomer having one or more double bonds in the molecule while adding an external vibrational action. Further, the polymerization reaction is performed by adding a polymerization initiator, and the resin is coated on the surface of the metal pigment particles. The polymerization reaction conditions are desirably performed at a temperature of 50 ° C. to 150 ° C. for 5 minutes to 12 hours. In order to increase the polymerization efficiency, it is desirable to perform polymerization in an inert gas atmosphere such as nitrogen or helium. At the end of the polymerization, the organic solvent may be filtered off, the non-volatile content may be adjusted to 20 to 80%, and other solvents and additives may be added as necessary to make a paste.

本発明に用いる金属顔料としては、アルミニウム、亜鉛、鉄、マグネシウム、銅、ニッケル、のような卑金属粉末、及びそれらの合金粉末を用いることが好ましい。特に好適なのはメタリック用顔料として多用されているアルミニウム粉末である。本発明に用いるアルミニウム粉末としては、表面光沢性、白度、光輝性等メタリック用顔料に要求される表面性状、粒径、形状を有するものが適している。形状としては、粒状、板状、塊状、鱗片状、などの種々の形状がありうるが、塗膜に優れたメタリック感、輝度を与えるためには、鱗片状であることが好ましい。例えば、0.001から1μmの範囲の厚さを有し、1から100μmの範囲の長さまたは幅を有するものが好ましい。アスペクト比は、10から20000の範囲にあることが好ましい。ここで、アスペクト比とは、鱗片状アルミニウム粉末の平均長径をアルミニウム粉末の平均厚さで割った値である。また、アルミニウム粉末の純度は特に限定するものではないが、塗料用として用いられているものは純度99.5%以上である。アルミニウム粉末は、通常ペースト状態で市販されており、これを用いるのが好ましい。   As the metal pigment used in the present invention, it is preferable to use base metal powders such as aluminum, zinc, iron, magnesium, copper, nickel, and alloy powders thereof. Particularly preferred are aluminum powders that are frequently used as metallic pigments. As the aluminum powder used in the present invention, those having surface properties, particle sizes, and shapes required for metallic pigments such as surface gloss, whiteness, and glitter are suitable. The shape may be various shapes such as a granular shape, a plate shape, a lump shape, and a scaly shape, but a scaly shape is preferable in order to give an excellent metallic feeling and luminance to the coating film. For example, a material having a thickness in the range of 0.001 to 1 μm and a length or width in the range of 1 to 100 μm is preferable. The aspect ratio is preferably in the range of 10 to 20000. Here, the aspect ratio is a value obtained by dividing the average major axis of the scaly aluminum powder by the average thickness of the aluminum powder. Further, the purity of the aluminum powder is not particularly limited, but the purity used for coating is 99.5% or more. Aluminum powder is usually marketed in a paste state, and it is preferable to use it.

本発明に用いる樹脂は、分子内に一個以上の二重結合を有する単量体及び/又はオリゴマーを重合反応させて得られるものであることが好ましい。   The resin used in the present invention is preferably obtained by polymerizing a monomer and / or oligomer having one or more double bonds in the molecule.

上記の一個以上の二重結合を有する単量体としては、特に限定されず、従来公知のものを使用することができる。具体例としては、不飽和カルボン酸(例えば、アクリル酸、メタクリル酸、イタコン酸、フマル酸、シトラコン酸、クロトン酸、マレイン酸または無水マレイン酸)、リン酸またはホスホン酸のモノ、またはジエステル(例えば2−メタクリロイロキシエチルホスフェート、ジ−2−メタクリロイロキシエチルホスフェート、トリ−2−メタクリロイロキシエチルホスフェート、2−アクリロイロキシエチルホスフェート、ジ−2−アクリロイロキシエチルホスフェート、トリ−2−アクリロイロキシエチルホスフェート、ジフェニル−2−アクリロイロキシエチルホスフェート、ジブチル−2−メタクリロイロキシエチルホスフェート、ジオクチル−2−アクリロイロキシエチルホスフェート、2−メタクリロイロキシプロピルホスフェート、ビス(2−クロロエチル)ビニルホスホネート、ジアリルジブチルホスホノサクシネート、2−メタクリロイロキシエチルホスフェート、2−アクロイロキシエチルホスフェート)、カップリング剤(例えば、γ−メタクリロキシプロピルトリメトキシシラン、3−アクリロキシプロピルトリメトキシシラン、ビニルトリクロルシラン、ビニルトリエトキシシラン、ビニルトリメトキシシラン、ビニル・トリス(β−メトキシエトキシ)シラン、イソプロピルイソステアロイルジアクリルチタネート、アセトアルコキシアルミニウムジイソプロピレート、ジルコアルミネート)、不飽和カルボン酸のニトリル(例えば、アクリロニトリル、メタクリロニトリル)、または不飽和カルボン酸のエステル(例えば、アクリル酸メチル、アクリル酸エチル、アクリル酸n−ブチル、アクリル酸2−エチルヘキシル、アクリル酸ラウリル、アクリル酸ステアリル、アクリル酸ヒドロキシエチル、アクリル酸2−ヒドロキシプロピル、アクリル酸メトキシエチル、アクリル酸ブトキシエチル、アクリル酸グリシジル、アクリル酸シクロヘキシル、1,6−ヘキサンジオールジアクリレート、1,4−ブタジオールジアクリレート、トリエチレングリコールジアクリレート、エチレングリコールジメタクリレート、トリエチレングリコールジメタクリレート、ネオペンチルグリコールジメタクリレート、トリメチロールプロパントリアクリレート、テトラメチロールプロパンテトラアクリレート、テトラメチロールプロパンメタントリアクリレート、トリメチロールプロパントリメタクリレート、テトラメチロールメタントリメタクリレート、ジ−トリメチロールプロパンテトラアクリレート、ペンタエリスリトールテトラアクリレート、ジ−ペンタエリスリトールヘキサアクリレート、ジ−ペンタエリスリトールペンタアクリレート、ジ−ペンタエリスリトールペンタアクリレートモノプロピオネート、トリアクリルホルマール、メタクリル酸メチル、メタクリル酸エチル、メタクリル酸n−ブチル、メタクリル酸2−エチルヘキシル、メタクリル酸ラウリル、メタクリル酸ステアリル、メタクリル酸ヒドロキシエチル、メタクリル酸2−ヒドロキシプロピル、メタクリル酸メトキシエチル、メタクリル酸ブトキシエチル、メタクリル酸グリシジル、メタクリル酸シクロヘキシル)、などを好適に使用できる。   The monomer having one or more double bonds is not particularly limited, and conventionally known monomers can be used. Specific examples include unsaturated carboxylic acids (eg, acrylic acid, methacrylic acid, itaconic acid, fumaric acid, citraconic acid, crotonic acid, maleic acid or maleic anhydride), mono- or diesters of phosphoric acid or phosphonic acid (eg 2-methacryloyloxyethyl phosphate, di-2-methacryloyloxyethyl phosphate, tri-2-methacryloyloxyethyl phosphate, 2-acryloyloxyethyl phosphate, di-2-acryloyloxyethyl phosphate, tri-2- Acryloyloxyethyl phosphate, diphenyl-2-acryloyloxyethyl phosphate, dibutyl-2-methacryloyloxyethyl phosphate, dioctyl-2-acryloyloxyethyl phosphate, 2-methacryloyloxypropyl phosphate , Bis (2-chloroethyl) vinylphosphonate, diallyldibutylphosphonosuccinate, 2-methacryloyloxyethyl phosphate, 2-acryloyloxyethyl phosphate), coupling agent (for example, γ-methacryloxypropyltrimethoxysilane, 3 -Acryloxypropyltrimethoxysilane, vinyltrichlorosilane, vinyltriethoxysilane, vinyltrimethoxysilane, vinyltris (β-methoxyethoxy) silane, isopropylisostearoyl diacryl titanate, acetoalkoxyaluminum diisopropylate, zircoaluminate ), Nitriles of unsaturated carboxylic acids (eg acrylonitrile, methacrylonitrile), or esters of unsaturated carboxylic acids (eg methyl acrylate, acrylic Ethyl, n-butyl acrylate, 2-ethylhexyl acrylate, lauryl acrylate, stearyl acrylate, hydroxyethyl acrylate, 2-hydroxypropyl acrylate, methoxyethyl acrylate, butoxyethyl acrylate, glycidyl acrylate, acrylic acid Cyclohexyl, 1,6-hexanediol diacrylate, 1,4-butadiol diacrylate, triethylene glycol diacrylate, ethylene glycol dimethacrylate, triethylene glycol dimethacrylate, neopentyl glycol dimethacrylate, trimethylolpropane triacrylate, tetra Methylolpropane tetraacrylate, tetramethylolpropane methane triacrylate, trimethylolpropane trimethacrylate , Tetramethylolmethane trimethacrylate, di-trimethylolpropane tetraacrylate, pentaerythritol tetraacrylate, di-pentaerythritol hexaacrylate, di-pentaerythritol pentaacrylate, di-pentaerythritol pentaacrylate monopropionate, triacryl formal, methacryl Methyl methacrylate, ethyl methacrylate, n-butyl methacrylate, 2-ethylhexyl methacrylate, lauryl methacrylate, stearyl methacrylate, hydroxyethyl methacrylate, 2-hydroxypropyl methacrylate, methoxyethyl methacrylate, butoxyethyl methacrylate, methacrylic acid Glycidyl acid, cyclohexyl methacrylate) and the like can be preferably used.

さらには、環式不飽和化合物(例えば、シクロヘキセン)や、芳香族系不飽和化合物(例えば、スチレン、α−メチルスチレン、ビニルトルエン、ジビニルベンゼン、シクロヘキセンビニルモノオキシド、ジビニルベンゼンモノオキシド、酢酸ビニル、プロピオン酸ビニル、アリルベンゼンまたはジアリルベンゼン)も好適に使用できる。   Furthermore, cyclic unsaturated compounds (for example, cyclohexene) and aromatic unsaturated compounds (for example, styrene, α-methylstyrene, vinyltoluene, divinylbenzene, cyclohexene vinyl monooxide, divinylbenzene monooxide, vinyl acetate, Also suitable are vinyl propionate, allylbenzene or diallylbenzene).

また、フッ素や珪素、窒素などを含んだ官能基をもつ不飽和化合物も使用できる。   Further, an unsaturated compound having a functional group containing fluorine, silicon, nitrogen or the like can also be used.

分子内に一個以上の二重結合を有するオリゴマーとしては、エポキシ化1,2−ポリブタジエン、アクリル変性ポリエステル、アクリル変性ポリエーテル、アクリル変性ウレタン、アクリル変性エポキシ、アクリル変性スピラン等が挙げられ、その一種または二種以上を混合して使用することができる。   Examples of the oligomer having one or more double bonds in the molecule include epoxidized 1,2-polybutadiene, acrylic-modified polyester, acrylic-modified polyether, acrylic-modified urethane, acrylic-modified epoxy, and acrylic-modified spinane. Alternatively, two or more kinds can be mixed and used.

本発明における分子内に一個以上の二重結合を有する単量体及び/又はオリゴマーの使用量は、金属顔料の金属分100重量部に対して0.1重量部から50重量部であることが好ましく、1重量部から30重量部であることがより好ましい。   In the present invention, the amount of the monomer and / or oligomer having one or more double bonds in the molecule is 0.1 to 50 parts by weight with respect to 100 parts by weight of the metal content of the metal pigment. Preferably, it is 1 to 30 parts by weight.

金属顔料を有機溶剤中に分散させるのに使用する有機溶剤は、金属顔料に対して不活性であればよく、例えばヘキサン、ヘプタン、オクタン、ミネラルスピリット等の脂肪族炭化水素、ベンゼン、トルエン、キシレン、ソルベントナフサ等の芳香族炭化水素、テトラヒドロフラン、ジエチルエーテル等のエーテル類、エタノール、2−プロパノール、ブタノール等のアルコール類、酢酸エチル、酢酸ブチル等のエステル類、プロピレングリコール、エチレングリコール等のグリコール類、プロピレングリコールモノメチルエーテル、プロピレングリコールモノエチルエーテル、エチレングリコールモノエチルエーテル、エチレングリコールモノブチルエーテル等のグリコールエーテル類、プロピレングリコールモノメチルエーテルアセテート、プロピレングリコールモノエチルエーテルアセテート、エチレングリコールモノメチルエーテルアセテート等のグリコールエステル類が挙げられる。これらの有機溶剤は、1種を単独で用いても、2種以上を組み合わせて用いてもよい。   The organic solvent used to disperse the metal pigment in the organic solvent may be inert to the metal pigment, such as aliphatic hydrocarbons such as hexane, heptane, octane, mineral spirit, benzene, toluene, xylene. , Aromatic hydrocarbons such as solvent naphtha, ethers such as tetrahydrofuran and diethyl ether, alcohols such as ethanol, 2-propanol and butanol, esters such as ethyl acetate and butyl acetate, glycols such as propylene glycol and ethylene glycol , Glycol ethers such as propylene glycol monomethyl ether, propylene glycol monoethyl ether, ethylene glycol monoethyl ether, ethylene glycol monobutyl ether, propylene glycol monomethyl ether acetate Propylene glycol monoethyl ether acetate, glycol esters such as ethylene glycol monomethyl ether acetate. These organic solvents may be used alone or in combination of two or more.

有機溶剤中の金属顔料の濃度は0.1〜40重量%が好ましく、更に好ましくは1〜35重量%である。金属顔料への樹脂被覆を効率的に行う点において、有機溶剤中の金属顔料の濃度は0.1重量%以上であることが好ましい。また、金属顔料の分散状態を均一に保つ点において、有機溶剤中の金属顔料の濃度は40重量%以下であることが好ましい。
なお、本発明において上記有機溶剤は、上記の分子内に一個以上の二重結合を有する単量体及び/又はオリゴマーを重合反応させて樹脂を形成する際の反応溶媒としても用いられる。
The concentration of the metal pigment in the organic solvent is preferably 0.1 to 40% by weight, more preferably 1 to 35% by weight. In terms of efficiently performing resin coating on the metal pigment, the concentration of the metal pigment in the organic solvent is preferably 0.1% by weight or more. In addition, the concentration of the metal pigment in the organic solvent is preferably 40% by weight or less from the viewpoint of keeping the dispersed state of the metal pigment uniform.
In the present invention, the organic solvent is also used as a reaction solvent for forming a resin by polymerizing a monomer and / or oligomer having one or more double bonds in the molecule.

本発明に用いられる重合開始剤は、一般にラジカル発生剤として知られるものであり、その種類は特に制限されない。重合開始剤としては、例えばベンゾイルペルオキシド、ラウロイルパーオキサイド、ビス−(4−t−ブチルシクロヘキシル)ペルオキシジカーボネート等のパーオキサイド類、および2,2′−アゾビス−イソブチロニトリル、2,2′−アゾビス−2,4−ジメチルバレロニトリル等のアゾ化合物が挙げられる。その使用量は、重合性モノマーの反応速度によってそれぞれ調整されるため特に限定されないが、金属顔料100重量部に対して、0.1重量部〜25重量部であるのが好ましい。   The polymerization initiator used in the present invention is generally known as a radical generator, and the type thereof is not particularly limited. Examples of the polymerization initiator include peroxides such as benzoyl peroxide, lauroyl peroxide, bis- (4-tert-butylcyclohexyl) peroxydicarbonate, and 2,2′-azobis-isobutyronitrile, 2,2 ′. -Azo compounds such as azobis-2,4-dimethylvaleronitrile. The amount used is not particularly limited because it is adjusted depending on the reaction rate of the polymerizable monomer, but it is preferably 0.1 to 25 parts by weight with respect to 100 parts by weight of the metal pigment.

樹脂被覆金属顔料を製造する際には、外的作用としてせん断的外的作用と振動的外的作用との併用が重要である。せん断的外的作用とは、金属顔料を有機溶剤中に分散させる際に、及びその分散液に単量体を添加する際に、高いせん断力を付加して物理的分散を促進する作用をいい、そのための方法としては、たとえばディスパーや撹拌機を用いて金属顔料や単量体を分散させる方法がある。振動的外的作用とは、振動発生装置や超音波発生装置を用いて、上記分散液や重合反応中のスラリー液を、機械的に強力に振動させ、物理的分散を促進する作用のことである。   When producing a resin-coated metal pigment, it is important to use both a shearing external action and a vibrational external action as external actions. The shear external action refers to an action that promotes physical dispersion by applying a high shear force when dispersing a metal pigment in an organic solvent and when adding a monomer to the dispersion. As a method therefor, for example, there is a method of dispersing a metal pigment or monomer using a disper or a stirrer. The vibration external action is an action that mechanically vibrates the dispersion liquid or the slurry liquid during the polymerization reaction using a vibration generator or an ultrasonic generator to promote physical dispersion. is there.

本発明の製造方法において、振動的外的作用を付加する装置には、1)超音波振動子から発生する超音波を、超音波ホーンを介して外部循環型容器内のスラリー液に直接的に付加するものや、2)外部循環型容器の外側に直接超音波振動子を貼付し、外部循環型容器の壁を通して内部のスラリー液に超音波を付加するもの、3)外部循環型容器の外側に直接超音波振動子を貼付し、内部を適切な溶剤で満たし、そこをスラリー液が循環している配管を通すことで、スラリー液に超音波を付加するもの、などが挙げられる。以下、このように超音波振動子を取り付けた外部循環型容器を、循環式超音波分散機という。外部循環型容器の容量に制限はないが、接続する反応槽容量の0.0001倍〜10倍が好ましく、0.001倍〜2倍が更に好ましい。   In the manufacturing method of the present invention, an apparatus for applying a vibration external action includes 1) directly applying an ultrasonic wave generated from an ultrasonic vibrator to a slurry liquid in an external circulation type container via an ultrasonic horn. 2) Attaching an ultrasonic vibrator directly to the outside of the external circulation container and applying ultrasonic waves to the slurry liquid inside through the wall of the external circulation container 3) Outside of the external circulation container The ultrasonic vibrator is directly attached to the inside, and the inside is filled with an appropriate solvent, and the ultrasonic wave is added to the slurry liquid by passing through the piping in which the slurry liquid circulates. Hereinafter, the external circulation type container to which the ultrasonic vibrator is attached is referred to as a circulation type ultrasonic dispersion machine. Although there is no restriction | limiting in the capacity | capacitance of an external circulation type container, 0.0001 times-10 times of the reaction tank capacity | capacitance to connect are preferable, and 0.001 times-2 times are still more preferable.

本発明における振動的外的作用の付加の方法としては、反応槽で重合反応中のスラリー液の一部を外部循環型容器に循環させて、その外部循環型容器に間欠的に付加する方法、連続的に付加する方法、間欠的付加と連続的付加を組み合わせる方法、などの種々の方法をとることができる。   As a method of adding a vibration external action in the present invention, a part of the slurry liquid during the polymerization reaction in the reaction tank is circulated to the external circulation type container, and intermittently added to the external circulation type container, Various methods such as a method of adding continuously and a method of combining intermittent addition and continuous addition can be used.

本発明において、循環式超音波分散機の設置台数について特に制限はないが、複数台設置されていることが望ましい。複数台の循環式超音波分散機を同時に使用した場合には、反応槽との接続方式について直列式または並列式を適用することが可能である。生産効率の観点から、並列式が好ましく、金属顔料の分散効率の観点からは、直列式が好ましい。   In the present invention, the number of circulating ultrasonic dispersers is not particularly limited, but a plurality of circulating ultrasonic dispersers are preferably installed. When a plurality of circulating ultrasonic dispersers are used at the same time, it is possible to apply a series type or a parallel type as a connection method with the reaction vessel. From the viewpoint of production efficiency, the parallel type is preferable, and from the viewpoint of the dispersion efficiency of the metal pigment, the series type is preferable.

本発明に使用される外的作用の超音波は弾性体を伝わる弾性振動の一種であり、通常は波の進行方向に圧縮、膨張が伝わる縦波であるが、外部循環型容器壁およびその接触面等においては横波が存在することもある。なお、直接聞くことを目的としない音波も技術的な定義として超音波に含まれ、また、液体や固体の表面や内部を伝わる音波も全て超音波に含まれる。超音波としては、周波数15〜10000kHz、好ましくは20〜3000kHz、特に好ましくは30〜1000kHzの超音波が望ましい。出力は、5〜20000W、好ましくは10〜10000W、特に好ましくは12〜6000Wである。   The external action ultrasonic wave used in the present invention is a kind of elastic vibration transmitted through an elastic body, and is usually a longitudinal wave in which compression and expansion are transmitted in the wave traveling direction. There may be shear waves on the surface. It should be noted that sound waves that are not intended to be heard directly are also included in the ultrasonic waves as a technical definition, and all sound waves that are transmitted through the surface and inside of liquids and solids are also included in the ultrasonic waves. As the ultrasonic wave, an ultrasonic wave having a frequency of 15 to 10000 kHz, preferably 20 to 3000 kHz, particularly preferably 30 to 1000 kHz is desirable. The output is 5 to 20000 W, preferably 10 to 10000 W, particularly preferably 12 to 6000 W.

本発明の樹脂被覆金属顔料は樹脂被覆前の金属顔料と比べて塗膜の光輝性および隠蔽性の低下がほとんどないことが特徴である。これは、金属顔料粒子のこれまでにない好適な分散状態下では、金属顔料粒子の表面に、樹脂をより一層緻密で均一に被覆させることできるためと考えられる。樹脂被覆金属顔料の表面の凹凸や、平均表面粗さRa、及び、表面粗さ曲線の凹凸の平均高さRcを測定することにより、この均一さを評価することができる。   The resin-coated metal pigment of the present invention is characterized in that there is almost no decrease in the glitter and concealment properties of the coating film compared with the metal pigment before resin coating. This is presumably because the resin can be coated more densely and uniformly on the surface of the metal pigment particles under an unprecedented suitable dispersion state of the metal pigment particles. The uniformity can be evaluated by measuring the unevenness of the surface of the resin-coated metal pigment, the average surface roughness Ra, and the average height Rc of the unevenness of the surface roughness curve.

表面の凹凸は、下記に示す方法で測定する。
まず前処理として、樹脂被覆金属顔料を過剰のメタノール及びクロロホルムで超音波洗浄をして、その後、真空乾燥し、再度アセトンに分散・洗浄後、自然乾燥を行う。そして後エポキシ樹脂で包埋し、完全硬化させた後、トリミングと切片切り出しを行い、その断面を透過型電子顕微鏡(以下TEMと略記する)で観察し、樹脂被覆層の表面の凹部と凸部の高さの差を測定する。
The surface unevenness is measured by the method shown below.
First, as a pretreatment, the resin-coated metal pigment is subjected to ultrasonic cleaning with excess methanol and chloroform, then vacuum-dried, dispersed and washed again in acetone, and then naturally dried. Then, after embedding with epoxy resin and completely curing, trimming and sectioning are performed, and the cross section is observed with a transmission electron microscope (hereinafter abbreviated as TEM), and the concave and convex portions on the surface of the resin coating layer are observed. Measure the difference in height.

この樹脂被覆金属顔料の凹凸は25μm以下であることが好ましく、15μm以下であることがより好ましい。   The unevenness of the resin-coated metal pigment is preferably 25 μm or less, and more preferably 15 μm or less.

本発明で言う平均表面粗さRaは、次の方法により算出する。
金属顔料の表面形態観察法として、原子間力顕微鏡(以下AFMと略記する)TMX−2010(Topometrix製)を使用する。前処理として、試料の樹脂被覆金属顔料を過剰のメタノール及びクロロホルムで超音波洗浄後、真空乾燥し、再度アセトンに分散後、Siウェハー上に滴下し、自然乾燥を行う。AFMによる表面粗さの定量は、樹脂被覆金属顔料が他の樹脂被覆金属顔料と重なりがないものについて、5μm四方の視野につき表面粗さ曲線(表面凹凸のラインプロファイル)を300スキャンにより測定し、粗さ曲線の算術平均粗さ(基準長さ5μm内での標高の絶対値の算術平均)を求める。基準長さは、平均粒径d50によるが、5μmを基準とする。本願では、算術平均粗さを3視野以上測定し、更に算術平均した値を「平均表面粗さRa(nm)」として定義する。表面粗さの用語については、JIS−B−0660:1998に基づく。
The average surface roughness Ra referred to in the present invention is calculated by the following method.
As a method for observing the surface form of a metal pigment, an atomic force microscope (hereinafter abbreviated as AFM) TMX-2010 (manufactured by Topometrix) is used. As a pretreatment, the resin-coated metal pigment of the sample is subjected to ultrasonic cleaning with excess methanol and chloroform, then vacuum-dried, dispersed again in acetone, dropped onto a Si wafer, and naturally dried. Quantification of the surface roughness by AFM is to measure the surface roughness curve (surface profile of the surface irregularities) by 300 scans per 5 μm square field for the resin-coated metal pigment that does not overlap with other resin-coated metal pigments, The arithmetic mean roughness (arithmetic mean of the absolute value of the altitude within the standard length of 5 μm) is determined. Reference length, depending on the average particle size d 50, referenced to 5 [mu] m. In the present application, the arithmetic average roughness is measured by three or more visual fields, and the value obtained by arithmetic averaging is defined as “average surface roughness Ra (nm)”. The term surface roughness is based on JIS-B-0660: 1998.

本発明の樹脂被覆金属顔料の平均表面粗さRaは通常20nm以下、好ましくは15nm以下である。20nm以下の時、表面での光の正反射率が大きいため、極めて優れた光輝度を示すと共にフロップ性も良好であった。   The average surface roughness Ra of the resin-coated metal pigment of the present invention is usually 20 nm or less, preferably 15 nm or less. When the thickness was 20 nm or less, the regular reflectance of light on the surface was large, so that it showed extremely excellent light luminance and good flop.

樹脂被覆金属顔料の表面粗さ曲線の凹凸の平均高さRcは、前記で測定した表面粗さ曲線において、表面粗さ曲線の山頂の高さの絶対値の平均値と表面粗さ曲線の谷底の深さの絶対値の平均値の和で表される。具体的には、表面粗さ曲線の算術平均高さを3視野以上測定し、さらにそれらを算術平均した値をいう。   The average height Rc of the unevenness of the surface roughness curve of the resin-coated metal pigment is the average value of the absolute value of the peak height of the surface roughness curve and the valley bottom of the surface roughness curve in the surface roughness curve measured above. It is expressed as the sum of the average values of the absolute values of the depths. Specifically, it refers to a value obtained by measuring the arithmetic average height of the surface roughness curve by three or more visual fields and further arithmetically averaging them.

本発明の樹脂被覆金属顔料の平均高さRcは、80nm以下であることが好ましく、70nm以下であることがより好ましい。平均高さRcが80nm以下であると、極めて優れた高輝度を示すと共にフロップ性も良好であった。   The average height Rc of the resin-coated metal pigment of the present invention is preferably 80 nm or less, and more preferably 70 nm or less. When the average height Rc was 80 nm or less, extremely high luminance was exhibited and the flop property was also good.

また、樹脂被覆金属顔料の粒子の平均粒径と樹脂被覆前の金属顔料の平均粒径の差は0より大きく5μm以下であることが好ましい。   The difference between the average particle size of the resin-coated metal pigment particles and the average particle size of the metal pigment before resin coating is preferably greater than 0 and 5 μm or less.

また、本発明の樹脂被覆金属顔料は、金属顔料粒子の表面に、樹脂が従来より一層緻密で均一に被覆されているため、塗膜中での耐薬品性や、水性塗料中に分散したときのガス発生量が改善されている。耐薬品性の評価として、JIS−Z−8730(1980)の6.3.2に従い、色差ΔEを求めた場合、ΔEが1.0未満であることが好ましい。また、実施例に記載の方法により測定されたガス発生量は10ml以下であることが好ましく、6ml以下であることがより好ましい。   Moreover, since the resin-coated metal pigment of the present invention is coated with a finer and more uniform resin than the conventional resin on the surface of the metal pigment particles, when the resin-coated metal pigment is dispersed in a water-based paint, The amount of gas generation has been improved. As an evaluation of chemical resistance, when the color difference ΔE is determined in accordance with 6.3.2 of JIS-Z-8730 (1980), ΔE is preferably less than 1.0. Further, the gas generation amount measured by the method described in Examples is preferably 10 ml or less, and more preferably 6 ml or less.

本発明の樹脂被覆金属顔料は自動車用、一般家電用、携帯電話に代表される情報家電用、印刷用、鉄やマグネシウム合金などの金属、あるいは、プラスチック等の基材の塗装用に好適に使用でき、高い意匠性を発揮できる。   The resin-coated metal pigment of the present invention is suitably used for automobiles, general household appliances, information household appliances typified by mobile phones, printing, metals such as iron and magnesium alloys, and coatings of base materials such as plastics. And high design properties.

また、塗料業界で一般に使用されている顔料、染料、湿潤剤、分散剤、色分れ防止剤、レベリング剤、スリップ剤、レオロジーコントロール剤、粘度調整剤、皮張り防止剤、ゲル化防止剤、消泡剤、増粘剤、タレ防止剤、防カビ剤、紫外線吸収剤、成膜助剤、界面活性剤等の添加剤を、適宜、本発明の新規な樹脂被覆金属顔料に加えてもよい。   In addition, pigments, dyes, wetting agents, dispersants, anti-splitting agents, leveling agents, slip agents, rheology control agents, viscosity modifiers, anti-skinning agents, anti-gelling agents commonly used in the paint industry, Additives such as antifoaming agents, thickeners, anti-sagging agents, antifungal agents, ultraviolet absorbers, film-forming aids, surfactants, etc. may be appropriately added to the novel resin-coated metal pigments of the present invention. .

次に、本発明の実施例を挙げて詳細な説明をする。なお、以下の記載における%は重量%を示す。   Next, an example of the present invention is given and explained in detail. In addition,% in the following description shows weight%.

[実施例1]
20L反応槽に、
市販のアルミペースト 1500g
(旭化成ケミカルズ株式会社製、GX−5060「平均粒径6μm、不揮発分72%」)、及び
ミネラルスピリット 8300g
を反応槽に投入した。そして、窒素ガスを導入しながら攪拌し、系内の温度を70℃に昇温した。次いで、アクリル酸4.3gを添加し、30分間攪拌を続けた。
その後、市販の循環式超音波分散機に接続し、定量ポンプにより反応槽内のスラリー液を約1l/minの速度で循環させた。この循環式超音波分散機は、その容器内のスラリー液に、超音波ホーンを介して直接超音波を照射する型である。実施例1で用いた実験装置の概略図を図1に示す。容器内には常時100mlのスラリー液が保持されており、容器内に循環させたスラリー液に、直接、周波数20kHz、出力200Wの超音波を60分間照射した。
次いで、
トリメチロールプロパントリメタクリレート 110.2g
ジ−トリメチロールプロパンテトラアクリレート 48.6g
2,2′−アゾビス−2,4−ジメチルバレロニトリル 29.2g
、及び
ミネラルスピリット 1200g
からなる溶液を作製した。そして、定量ポンプにより約7.9g/min.の速度で反応槽にこの溶液を添加し、系内の温度を70℃に保ちながら合計6時間重合した。なお、重合中、反応槽内のスラリー液を循環式超音波分散機に継続循環し、上記超音波照射は6時間連続実施した。重合終了後にサンプリングしたろ液中のトリメチロールプロパントリメタクリレートの未反応量をガスクロマトグラフィで分析したところ、添加量の99%以上が反応していた。重合終了後、自然冷却し、スラリーを濾過し、樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.1重量%であった。
[Example 1]
In a 20L reactor
1500g of commercially available aluminum paste
(Manufactured by Asahi Kasei Chemicals Corporation, GX-5060 “average particle size 6 μm, non-volatile content 72%”), and mineral spirit 8300 g
Was charged into the reaction vessel. And it stirred, introducing nitrogen gas, and raised the temperature in a system to 70 degreeC. Next, 4.3 g of acrylic acid was added and stirring was continued for 30 minutes.
Thereafter, the slurry was connected to a commercially available circulating ultrasonic disperser, and the slurry liquid in the reaction vessel was circulated at a rate of about 1 l / min by a metering pump. This circulating ultrasonic disperser is a type that directly irradiates the slurry liquid in the container with ultrasonic waves through an ultrasonic horn. A schematic diagram of the experimental apparatus used in Example 1 is shown in FIG. 100 ml of slurry liquid was always held in the container, and the slurry liquid circulated in the container was directly irradiated with ultrasonic waves having a frequency of 20 kHz and an output of 200 W for 60 minutes.
Then
Trimethylolpropane trimethacrylate 110.2g
48.6 g of di-trimethylolpropane tetraacrylate
2,2'-azobis-2,4-dimethylvaleronitrile 29.2g
, And Mineral Spirit 1200g
A solution consisting of And about 7.9 g / min. The solution was added to the reaction vessel at a rate of and polymerization was carried out for a total of 6 hours while maintaining the temperature in the system at 70 ° C. During the polymerization, the slurry liquid in the reaction vessel was continuously circulated through a circulating ultrasonic disperser, and the ultrasonic irradiation was continuously performed for 6 hours. When the unreacted amount of trimethylolpropane trimethacrylate in the filtrate sampled after the completion of polymerization was analyzed by gas chromatography, 99% or more of the added amount had reacted. After completion of the polymerization, the mixture was naturally cooled, and the slurry was filtered to obtain a resin-coated aluminum paste. The non-volatile content of this paste according to JIS-K-5910 was 50.1% by weight.

[実施例2]
実施例1で、超音波出力を400Wに変更した以外は実施例1と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.3重量%であった。
[Example 2]
A resin-coated aluminum paste was obtained in the same manner as in Example 1 except that the ultrasonic output was changed to 400 W in Example 1. The non-volatile content of this paste according to JIS-K-5910 was 50.3% by weight.

[実施例3]
実施例1で、超音波出力を600Wに変更した以外は実施例1と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.0重量%であった。
[Example 3]
A resin-coated aluminum paste was obtained in the same manner as in Example 1 except that the ultrasonic output was changed to 600 W in Example 1. The non-volatile content of this paste according to JIS-K-5910 was 50.0% by weight.

[実施例4]
実施例1で用いた循環式超音波分散機の代わりに、外部循環型容器の外側に直接超音波振動子を貼付し、外部循環型容器の壁を通して内部のスラリー液に超音波を付加する型の循環式超音波分散機を用いた。この循環式超音波分散機には常時約1.5lのスラリー液の保持が可能な容器があり、この容器の底面に直接超音波振動子が貼付されている。この循環式超音波分散機を用い、アクリル酸添加後の攪拌時間を30分間から60分間にしたこと、及び重合中において周波数40kHz、出力12Wの超音波を照射したこと以外は実施例1と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.1重量%であった。本実施例で用いた実験装置の概略図を図2に示す。
[Example 4]
In place of the circulating ultrasonic disperser used in Example 1, an ultrasonic vibrator is attached directly to the outside of an external circulation type container, and ultrasonic waves are added to the internal slurry liquid through the wall of the external circulation type container. A circulating ultrasonic disperser was used. This circulating ultrasonic disperser has a container capable of holding about 1.5 l of slurry liquid at all times, and an ultrasonic vibrator is directly attached to the bottom surface of the container. Using this circulating ultrasonic disperser, the stirring time after addition of acrylic acid was changed from 30 minutes to 60 minutes, and ultrasonic waves having a frequency of 40 kHz and an output of 12 W were irradiated during polymerization, as in Example 1. Thus, a resin-coated aluminum paste was obtained. The non-volatile content of this paste according to JIS-K-5910 was 50.1% by weight. A schematic diagram of the experimental apparatus used in this example is shown in FIG.

[実施例5]
実施例4で、超音波出力を90Wに変更した以外は実施例4と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.0重量%であった。
[Example 5]
A resin-coated aluminum paste was obtained in the same manner as in Example 4 except that the ultrasonic output was changed to 90 W in Example 4. The non-volatile content of this paste according to JIS-K-5910 was 50.0% by weight.

[実施例6]
実施例4で、超音波出力を150Wに変更した以外は実施例4と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.1重量%であった。
[Example 6]
A resin-coated aluminum paste was obtained in the same manner as in Example 4 except that the ultrasonic output was changed to 150 W in Example 4. The non-volatile content of this paste according to JIS-K-5910 was 50.1% by weight.

[実施例7]
実施例1で用いた循環式超音波分散機の代わりに、外部循環型容器の外側に直接超音波振動子を貼付し、容器内部を水で満たし、そこをスラリー液が循環している外部循環ラインを通すことで、スラリー液に超音波を間接的に付加する型の循環式超音波分散機を用いた。本実施例で用いた実験装置の概略図を図3に示す。アクリル酸添加後の攪拌時間を30分間から60分間にしたこと、及び重合中において周波数42kHz、出力180Wの超音波を照射した以外は実施例1と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は49.9重量%であった。
[Example 7]
In place of the circulating ultrasonic disperser used in Example 1, an ultrasonic vibrator is directly attached to the outside of an external circulation type container, the inside of the container is filled with water, and the external circulation in which the slurry liquid circulates there. A circulating ultrasonic disperser of a type that indirectly applies ultrasonic waves to the slurry liquid by passing through the line was used. A schematic diagram of the experimental apparatus used in this example is shown in FIG. A resin-coated aluminum paste was obtained in the same manner as in Example 1 except that the stirring time after addition of acrylic acid was changed from 30 minutes to 60 minutes and that ultrasonic waves with a frequency of 42 kHz and an output of 180 W were irradiated during the polymerization. The non-volatile content of this paste according to JIS-K-5910 was 49.9% by weight.

[実施例8]
スラリー液の循環速度を0.25l/minにし、周波数42kHz、出力180Wの超音波を照射した以外は実施例7と同様にして樹脂被覆アルミペーストを得た。JIS−K−5910によるこのペーストの不揮発分は50.1重量%であった。
[Example 8]
A resin-coated aluminum paste was obtained in the same manner as in Example 7 except that the circulation rate of the slurry liquid was 0.25 l / min, and ultrasonic waves with a frequency of 42 kHz and an output of 180 W were applied. The non-volatile content of this paste according to JIS-K-5910 was 50.1% by weight.

[比較例1]
振動的外的作用を一切行わない以外は実施例1と同様にして樹脂被覆アルミペーストを得た。この濾過液の不揮発分及びペーストの不揮発分は、それぞれ1.9重量%と50.0重量%であった。
[Comparative Example 1]
A resin-coated aluminum paste was obtained in the same manner as in Example 1 except that no vibration external action was performed. The non-volatile content of the filtrate and the non-volatile content of the paste were 1.9 wt% and 50.0 wt%, respectively.

[評価1(平均粒径差の算出)]
(株)島津製作所製;SALD−2200(レーザー回折粒度分布測定装置)を用いて、実施例1から8、及び比較例1で得られた樹脂被覆金属顔料の平均粒径を測定し、樹脂被覆前の金属顔料との平均粒径差を算出した。
[Evaluation 1 (Calculation of average particle size difference)]
Made by Shimadzu Corporation; using SALD-2200 (laser diffraction particle size distribution measuring device), the average particle size of the resin-coated metal pigments obtained in Examples 1 to 8 and Comparative Example 1 was measured, and the resin coating The average particle size difference from the previous metal pigment was calculated.

[評価2(金属顔料の分散状態)]
実施例1から8、及び比較例1で得られた樹脂被覆金属顔料を、下記の組成でマイクロスパチュラを用いて手動により、シンナーに分散させた。目視で分散液に金属顔料の塊がないことを確認した後、先端毛細管付ピペットを用いて一滴の分散液をマイクログラスカバーの上に滴下し、60℃のオーブンで30分乾燥し、光学顕微鏡を用いて金属顔料の分散状態を観察し、粒子数を数えることで評価した。本評価では、株式会社ハイロックス製;デジタルマイクロスコープ KH−7700を用いて3500倍の倍率で観察した。
樹脂被覆金属顔料: 0.25g
(実施例1から8、比較例1、アルミニウム分として)、及び
シンナー: 25g
(酢酸ブチル30%、トルエン45%、イソプロピルアルコール20%、エチルセロソルブ5%を混合したもの)
観察結果に応じて(A)2個以上の一次粒子から形成されている粒子凝集体粒子数と(B)凝集していない一次粒子数との割合、B/(A+B)を算出し、下記のように評価した。(数値が大きいほど良好。実用上0.3以上が好ましい。)
◎(優):0.9以上
○(良):0.6以上〜0.9未満
△(可):0.3以上〜0.6未満
×(不可):0.3未満
[Evaluation 2 (Metal Pigment Dispersion State)]
The resin-coated metal pigments obtained in Examples 1 to 8 and Comparative Example 1 were manually dispersed in a thinner with the following composition using a micro spatula. After visually confirming that the dispersion is free of metal pigment clumps, a drop of the dispersion is dropped on the microglass cover using a pipette with a tip capillary, and dried in an oven at 60 ° C. for 30 minutes. The dispersion state of the metal pigment was observed using and the number of particles was evaluated. In this evaluation, it was observed at a magnification of 3500 times using a digital microscope KH-7700 manufactured by Hilox Corporation.
Resin-coated metal pigment: 0.25 g
(Examples 1 to 8, Comparative Example 1, aluminum content), and thinner: 25 g
(Mixed butyl acetate 30%, toluene 45%, isopropyl alcohol 20%, ethyl cellosolve 5%)
According to the observation results, (A) the ratio of the number of particle aggregate particles formed from two or more primary particles and the number (B) the number of non-aggregated primary particles, B / (A + B) is calculated. It was evaluated as follows. (The larger the value, the better. Practically 0.3 or more is preferable.)
◎ (excellent): 0.9 or more ○ (good): 0.6 or more to less than 0.9 △ (possible): 0.3 or more to less than 0.6 × (impossible): less than 0.3

[評価3(塗膜の密着性、耐薬品性、光沢保持率の評価)]
実施例1から8、及び比較例1で得られた樹脂被覆金属顔料を使用して、下記の組成でメタリック塗料を作製した。
樹脂被覆金属顔料: 5g
(実施例1から8、比較例1、アルミニウム分として)
シンナー: 50g
(武蔵塗料株式会社製、商品名「プラエースシンナー No.2726」)、及び
アクリル樹脂: 33g
(武蔵塗料株式会社製、商品名「プラエース No.7160」)
エアスプレー装置を用いて上記塗料をABS樹脂板に乾燥膜厚が20μmになるように塗装し、60℃のオーブンで30分乾燥し、評価用塗板を得た。
上記の評価用塗板を用いて、密着性、耐薬品性、光沢保持率の評価を行った。
[Evaluation 3 (Evaluation of film adhesion, chemical resistance, gloss retention)]
Using the resin-coated metal pigments obtained in Examples 1 to 8 and Comparative Example 1, metallic paints were prepared with the following composition.
Resin-coated metal pigment: 5g
(Examples 1 to 8, Comparative Example 1, aluminum content)
Thinner: 50g
(Musashi Paint Co., Ltd., trade name “Plaace Thinner No. 2726”), and acrylic resin: 33 g
(Musashi Paint Co., Ltd., trade name “Plaace No. 7160”)
The paint was applied to an ABS resin plate using an air spray device so that the dry film thickness was 20 μm, and dried in an oven at 60 ° C. for 30 minutes to obtain a coating plate for evaluation.
Using the above-mentioned evaluation coating plate, adhesion, chemical resistance, and gloss retention were evaluated.

(塗膜の密着性)
上記で作製した塗板を用い、セロテープ(登録商標:ニチバン(株)製、CT405AP−18)を塗膜に密着させ、45度の角度で引っ張り、金属顔料粒子の剥離度合いを目視で観察した。観察結果に応じて、下記のように評価した。
○(良):剥離なし
△(可):やや剥離あり
×(不可):剥離あり
(Coating film adhesion)
Using the coated plate prepared above, cello tape (registered trademark: manufactured by Nichiban Co., Ltd., CT405AP-18) was closely attached to the coating film, pulled at an angle of 45 degrees, and the degree of peeling of the metal pigment particles was visually observed. Depending on the observation results, the evaluation was as follows.
○ (good): no peeling △ (possible): some peeling × (no): peeling

(塗膜の耐薬品性)
上記で作製した塗板の下半分を2.5NのNaOH水溶液を入れたビーカーに浸漬し、23℃で24時間放置した。試験後の塗板を水洗、乾燥したのち、浸漬部と未浸漬部を、JIS−Z−8722(1982)の条件d(8−d法)により測色し、JIS−Z−8730(1980)の6.3.2により色差ΔEを求める。色差ΔEの値に応じて、下記のように評価した。(値が小さいほど良好。)
○(良):1.0未満
△(可):1.0以上〜2.0未満
×(不可):2.0以上
(Chemical resistance of coating film)
The lower half of the coated plate prepared above was immersed in a beaker containing a 2.5N NaOH aqueous solution and left at 23 ° C. for 24 hours. The coated plate after the test was washed with water and dried, and then the immersion part and the non-immersion part were measured according to the condition d (8-d method) of JIS-Z-8722 (1982), and JIS-Z-8730 (1980) The color difference ΔE is obtained according to 6.3.2. Evaluation was performed as follows according to the value of the color difference ΔE. (The smaller the value, the better.)
○ (good): less than 1.0 △ (possible): 1.0 or more and less than 2.0 × (impossible): 2.0 or more

(塗膜の光沢保持率)
光沢計(スガ試験機(株)製、デジタル変角光沢計UGV−5D)を用いて60度光沢(入射角、反射角とも60度)を測定する。上記で作製した塗板の60度光沢の測定値をG’、樹脂を被覆していないアルミニウム粉末を用いて同様に作製した塗板の60度光沢の測定値をGとし、光沢保持率Rを下式によって求める。
R=(G’/G)×100
光沢保持率Rの値に応じて、下記のように評価した。(数値が大きいほど良好。実用上70以上が好ましい。)
◎(優):90以上
○(良):90未満〜80以上
△(可):80未満〜70以上
×(不可):70未満
(Gloss retention rate of coating film)
A 60 degree gloss (both incident angle and reflection angle is 60 degrees) is measured using a gloss meter (manufactured by Suga Test Instruments Co., Ltd., digital variable gloss meter UGV-5D). The measurement value of the 60 ° gloss of the coated plate prepared above is G ′, the measurement value of the 60 ° gloss of the coated plate similarly prepared using the aluminum powder not coated with the resin is G, and the gloss retention rate R is the following formula: Ask for.
R = (G ′ / G) × 100
Depending on the value of the gloss retention rate R, the evaluation was as follows. (The larger the value, the better. Practically 70 or more is preferable.)
◎ (excellent): 90 or more ○ (good): less than 90 to 80 or more △ (possible): less than 80 to 70 or more × (impossible): less than 70

[評価4(特定の水性塗料中でのガス発生量の測定)]
実施例1から8、及び比較例1で得られた樹脂被覆金属顔料を使用して、下記の組成で特定の水性塗料を作製した。
樹脂被覆金属顔料: 5g
(実施例1から8、比較例1、アルミニウム分として)
ブチルセロソルブ: 40g
水: 50g、及び
アクリルエマルジョン: 110g
(DSM製、商品名「NeoCryl A−2091」)
この水性塗料200gを200mlの三角フラスコにを入れ、ゴム栓付きメスピペットを取り付け、40℃で8時間放置後のガス発生量を測定した。
[Evaluation 4 (Measurement of gas generation amount in specific water-based paint)]
Using the resin-coated metal pigments obtained in Examples 1 to 8 and Comparative Example 1, specific water-based paints were prepared with the following compositions.
Resin-coated metal pigment: 5g
(Examples 1 to 8, Comparative Example 1, aluminum content)
Butyl cellosolve: 40g
Water: 50g, and acrylic emulsion: 110g
(DSM product name "NeoCryl A-2091")
200 g of this water-based paint was placed in a 200 ml Erlenmeyer flask, a measuring pipette with a rubber stopper was attached, and the amount of gas generated after standing at 40 ° C. for 8 hours was measured.

[評価5(樹脂被覆金属顔料表面の凹凸、平均粗さの測定)]
(1)表面の凹凸の測定
まず前処理として、樹脂被覆金属顔料を過剰のメタノール及びクロロホルムで超音波洗浄をして、その後、真空乾燥し、再度アセトンに分散・洗浄後、自然乾燥を行った。そしてエポキシ樹脂で包埋し、完全硬化させた後、トリミングと切片切り出しを行い、その断面の透過型電子顕微鏡(以下TEMと略記する)で、観察を行い、樹脂被覆層の表面の凹凸を観察した。1視野1μm幅の観察を5視野行い、凹部と凸部の高さの最大値(凹凸の最大値)を測定する。
(2)平均表面粗さ:Ra
原子間力顕微鏡(AFM)を用いて樹脂被覆金属顔料の1視野5μm四方のラインプロファイル(300スキャン)を求めた。これより算術平均表面粗さを求めた。同様の操作を合計3視野以上について行い、それらの算術平均値を求めてRaとした。
(3)表面粗さ曲線の凹凸の平均高さ:Rc
前記(2)で求めたものと同じラインプロファイルにより、表面粗さ曲線の凹凸の平均高さを求めた。同様の操作を合計3視野以上について行い、それらの算術平均を求めてRcとした。
[Evaluation 5 (Measurement of surface roughness and average roughness of resin-coated metal pigment)]
(1) Measurement of surface irregularities First, as a pretreatment, the resin-coated metal pigment was subjected to ultrasonic cleaning with excess methanol and chloroform, then vacuum-dried, dispersed and washed again in acetone, and then naturally dried. . Then, after embedding with epoxy resin and completely curing, trimming and sectioning are performed, and the cross section is observed with a transmission electron microscope (hereinafter abbreviated as TEM), and the unevenness of the surface of the resin coating layer is observed. did. 5 views of 1 μm width per field of view are performed, and the maximum value of the height of the concave and convex portions (maximum value of the unevenness) is measured.
(2) Average surface roughness: Ra
Using an atomic force microscope (AFM), a line profile (300 scans) of 5 μm square per field of the resin-coated metal pigment was determined. From this, the arithmetic average surface roughness was determined. The same operation was performed for a total of three or more fields of view, and the arithmetic average value thereof was obtained as Ra.
(3) Average height of irregularities on the surface roughness curve: Rc
The average height of the irregularities of the surface roughness curve was determined by the same line profile as that determined in (2) above. The same operation was performed for a total of three or more fields of view, and the arithmetic average thereof was obtained as Rc.

評価1〜3の結果を表1に示す。
The results of evaluations 1 to 3 are shown in Table 1.

評価4〜5の結果を表2に示す。
The results of evaluations 4 to 5 are shown in Table 2.

本発明の樹脂被覆金属顔料は、メタリック塗料用、印刷インキ用、プラスチック練り込み用途に好適に使用可能であり、塗膜にしたときの密着性、耐薬品性に優れ、色調の低下が少ないので、自動車用、家電用等の塗料として利用性が高い。   The resin-coated metal pigment of the present invention can be suitably used for metallic paints, printing inks, and plastic kneading applications, and is excellent in adhesion and chemical resistance when formed into a coating film, and has little deterioration in color tone. It is highly usable as a paint for automobiles and home appliances.

Claims (6)

金属顔料100重量部に対して0.1〜50重量部の樹脂が前記金属顔料の表面に付着している樹脂被覆金属顔料であって、反応槽での樹脂被覆処理中に、前記金属顔料を含むスラリー液の一部を外部循環型容器に循環させ、この外部循環型容器に対して超音波による振動処理を付加することにより得られる樹脂被覆金属顔料。   A resin-coated metal pigment in which 0.1 to 50 parts by weight of resin is attached to the surface of the metal pigment with respect to 100 parts by weight of the metal pigment, and the metal pigment is added during the resin coating treatment in a reaction vessel. A resin-coated metal pigment obtained by circulating a part of the slurry liquid contained in an external circulation container and applying vibration treatment by ultrasonic waves to the external circulation container. 前記振動処理の付加が、該外部循環型容器の外側に直接超音波振動子を貼付し、外部の壁を通して内部のスラリー液に超音波を付加することにより行われる、請求項1に記載の樹脂被覆金属顔料。   The resin according to claim 1, wherein the addition of the vibration treatment is performed by attaching an ultrasonic vibrator directly to the outside of the external circulation container and applying ultrasonic waves to the internal slurry liquid through an external wall. Coated metal pigment. 金属顔料100重量部に対して0.1〜50重量部の樹脂が前記金属顔料の表面に付着している樹脂被覆金属顔料の製造方法であって、樹脂被覆処理中に超音波による振動を付加することを含み、前記振動処理の付加が、反応槽での樹脂被覆処理中に前記金属顔料を含むスラリー液の一部を外部循環型容器に循環させ、この外部循環型容器に対して超音波による振動処理を付加することにより行われる、樹脂被覆金属顔料の製造方法。 A method for producing a resin-coated metal pigment in which 0.1 to 50 parts by weight of resin is attached to the surface of the metal pigment with respect to 100 parts by weight of the metal pigment, and vibrations by ultrasonic waves are added during the resin coating process. look including that the addition of the vibration process, a portion of the slurry containing the metallic pigment in the resin coating treatment in the reaction vessel was circulated to an external recycling containers, ultra against the external circulation type container A method for producing a resin-coated metal pigment , which is carried out by adding vibration treatment with sound waves . 前記振動処理の付加が、該外部循環型容器の外側に直接超音波振動子を貼付し、外部の壁を通して内部のスラリー液に超音波を付加することにより行われる、請求項3に記載の樹脂被覆金属顔料の製造方法。The resin according to claim 3, wherein the addition of the vibration treatment is performed by attaching an ultrasonic vibrator directly to the outside of the external circulation type container and applying ultrasonic waves to the internal slurry liquid through an external wall. A method for producing a coated metal pigment. 金属顔料がアルミニウム顔料である、請求項1又は2に記載の樹脂被覆金属顔料。The resin-coated metal pigment according to claim 1 or 2, wherein the metal pigment is an aluminum pigment. 金属顔料がアルミニウム顔料である、請求項3又は4に記載の樹脂被覆金属顔料の製造方法。The method for producing a resin-coated metal pigment according to claim 3 or 4, wherein the metal pigment is an aluminum pigment.
JP2012098372A 2012-04-24 2012-04-24 Resin-coated metal pigment and method for producing the same Active JP5188635B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2012098372A JP5188635B2 (en) 2012-04-24 2012-04-24 Resin-coated metal pigment and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2012098372A JP5188635B2 (en) 2012-04-24 2012-04-24 Resin-coated metal pigment and method for producing the same

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2011531728A Division JP5224561B2 (en) 2009-09-18 2009-09-18 Resin-coated metal pigment and method for producing the same

Publications (3)

Publication Number Publication Date
JP2012162733A JP2012162733A (en) 2012-08-30
JP2012162733A5 JP2012162733A5 (en) 2012-11-29
JP5188635B2 true JP5188635B2 (en) 2013-04-24

Family

ID=46842416

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2012098372A Active JP5188635B2 (en) 2012-04-24 2012-04-24 Resin-coated metal pigment and method for producing the same

Country Status (1)

Country Link
JP (1) JP5188635B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP2886612A1 (en) * 2013-12-17 2015-06-24 Kronos International, Inc. Method for coating the surface of inorganic particles, in particular titanium dioxide particles
EP4279267A1 (en) * 2021-01-12 2023-11-22 Asahi Kasei Kabushiki Kaisha Metal pigment, application of metal pigment, and method for manufacturing metal pigment

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6440566A (en) * 1987-08-07 1989-02-10 Toyo Aluminium Kk Aluminum flakes with both high corrosion resistance and gloss
GB8902293D0 (en) * 1989-02-02 1989-03-22 Tioxide Group Plc Treatment process
ATE168128T1 (en) * 1992-05-29 1998-07-15 Tioxide Group Services Ltd METHOD FOR PRODUCING COATED INORGANIC PARTICLES
JP2000044835A (en) * 1998-07-27 2000-02-15 Asahi Chem Ind Co Ltd Resin-coated metallic pigment and metallic coating material produced by using the pigment
JP4614023B2 (en) * 1999-06-14 2011-01-19 Dic株式会社 Pigment dispersing apparatus and pigment dispersing method
JP4455193B2 (en) * 2004-07-09 2010-04-21 株式会社日本触媒 Resin-coated metal particles and method for producing the same
KR101285519B1 (en) * 2005-10-13 2013-07-17 도요 알루미늄 가부시키가이샤 Coated metal pigment, method for production of the pigment, and coating composition comprising the pigment
JP2009227798A (en) * 2008-03-21 2009-10-08 Asahi Kasei Chemicals Corp New resin-coated metal pigment

Also Published As

Publication number Publication date
JP2012162733A (en) 2012-08-30

Similar Documents

Publication Publication Date Title
JP5224561B2 (en) Resin-coated metal pigment and method for producing the same
JP2009227798A (en) New resin-coated metal pigment
TW425419B (en) A novel resin-coated metallic pigment and a metallic coating material using the same
JP5153160B2 (en) Metal pigment composition
JP5148831B2 (en) Aluminum pigment
JPS62253668A (en) Novel resin-coated metallic pigment and its production
JP4684429B2 (en) New aluminum pigment
JP5188635B2 (en) Resin-coated metal pigment and method for producing the same
JP6940957B2 (en) Resin-attached aluminum pigments, paint compositions, paint films, articles with paint films, ink compositions, and printed matter.
JP5622280B2 (en) Water-based paint composition and coated article
JP7315312B2 (en) Resin compound-adhered aluminum pigment and method for producing the same
JP5558775B2 (en) Water-based paint composition and coating method
JP2010180322A (en) Method for producing resin-coated metal pigment
JP7389223B2 (en) Aluminum pigment with resin compound attached and method for producing the same
JP6218281B2 (en) Resin-attached metal pigment
JP5934990B2 (en) Metal pigment composition
CN103923500B (en) The manufacture method of resin-coated metal pigment
JP2021085037A (en) Conductive pigment paste, coating material, and conductive coating film
JP2014088508A (en) Resin-coated metallic pigment and coating composition
JP2022070167A (en) Resin coated-metal pigment
JP2019167510A (en) Compound-adhered aluminum pigment
JP2023115765A (en) Colored metallic pigment
JP2017057309A (en) Resin-adhered aluminum pigment, coating material and ink
JP2019167511A (en) Compound-adhered aluminum pigment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20120912

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121012

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20121012

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20121031

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121102

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121227

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130122

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130122

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160201

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5188635

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350