JP5185495B2 - Metal material for separator and method for producing the same - Google Patents

Metal material for separator and method for producing the same Download PDF

Info

Publication number
JP5185495B2
JP5185495B2 JP2005085816A JP2005085816A JP5185495B2 JP 5185495 B2 JP5185495 B2 JP 5185495B2 JP 2005085816 A JP2005085816 A JP 2005085816A JP 2005085816 A JP2005085816 A JP 2005085816A JP 5185495 B2 JP5185495 B2 JP 5185495B2
Authority
JP
Japan
Prior art keywords
metal
particles
separator
base metal
titanium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2005085816A
Other languages
Japanese (ja)
Other versions
JP2006269256A (en
Inventor
雅史 小林
誠一 小山
博道 佐藤
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Equos Research Co Ltd
Toyota Motor Corp
Original Assignee
Equos Research Co Ltd
Toyota Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Equos Research Co Ltd, Toyota Motor Corp filed Critical Equos Research Co Ltd
Priority to JP2005085816A priority Critical patent/JP5185495B2/en
Publication of JP2006269256A publication Critical patent/JP2006269256A/en
Application granted granted Critical
Publication of JP5185495B2 publication Critical patent/JP5185495B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は、燃料電池のセパレータに用いられるセパレータ用金属材料に関する。   The present invention relates to a separator metal material used for a separator of a fuel cell.

固体高分子型燃料電池は、固体高分子電解質からなる膜がカーボン等の電極で挟まれ、さらにその電極がセパレータと称される集電用の電極で挟まれた構造とされている。従来、このセパレータ用の金属材料として、ステンレス、チタン、チタン合金等が用いられている。これらの金属は、表面に酸化皮膜が形成されることによって、優れた耐腐食性を示す。しかし、酸化皮膜の存在は、接触抵抗を高くするため、通電状態における発熱や電圧降下等の原因ともなり、問題となっている。   A polymer electrolyte fuel cell has a structure in which a membrane made of a solid polymer electrolyte is sandwiched between electrodes such as carbon, and the electrode is sandwiched between current collecting electrodes called separators. Conventionally, stainless steel, titanium, titanium alloys, and the like are used as the metal material for the separator. These metals exhibit excellent corrosion resistance by forming an oxide film on the surface. However, the presence of the oxide film raises the contact resistance, and causes heat generation and voltage drop in the energized state, which is a problem.

こうした不具合を解決するために、ステンレスの表面に貴金属のめっきを施すことも提案されている(特許文献1参照)。こうであれば、貴金属の優れた電気伝導性により、接触抵抗を極めて小さくすることができる。
特開平10−228914号公報
In order to solve such problems, it has also been proposed to plate a noble metal on the surface of stainless steel (see Patent Document 1). In this case, the contact resistance can be extremely reduced due to the excellent electrical conductivity of the noble metal.
JP-A-10-228914

しかし、貴金属の使用は製造コストの高騰化の原因となる。また、ステンレス上にめっきした場合、酸化皮膜の存在によりめっき皮膜が剥離し易いという不具合がある。   However, the use of precious metals causes an increase in manufacturing costs. Moreover, when plating on stainless steel, there is a problem that the plating film is easily peeled off due to the presence of the oxide film.

この問題点を解決するため、チタンマトリックス中にTiB系化合物を分散させたチタン系金属材料も提案されている(特許文献2)。このチタン系金属材料では、TiB系化合物が良好な電気伝導性を示すため、接触抵抗を小さくすることができる。また、貴金属を使用しないため、電極の製造コストも低廉となる。
特開2004−273370号公報
In order to solve this problem, a titanium metal material in which a TiB compound is dispersed in a titanium matrix has also been proposed (Patent Document 2). In this titanium-based metal material, the TiB-based compound exhibits good electrical conductivity, so that the contact resistance can be reduced. In addition, since no precious metal is used, the manufacturing cost of the electrode is low.
JP 2004-273370 A

しかし、TiB系化合物は極めて硬い化合物であるため、この材料で電極やセパレータを構成した場合には電極やセパレータへの加工が困難となり、プレス金型や切削用のバイト等、加工用の工具類の寿命も短くなり、ひいては電極やセパレータの加工コストが高くなってしまう。   However, since TiB-based compounds are extremely hard compounds, when electrodes and separators are made of this material, it becomes difficult to process the electrodes and separators, and tools for processing such as press dies and cutting tools are difficult. As a result, the processing cost of the electrode and the separator is increased.

本発明は、上記従来の実情に鑑みなされたものであり、接触抵抗が小さく、製造コスト及び加工コストが低廉なセパレータ用金属材料を提供することを解決すべき課題としている。   The present invention has been made in view of the above-described conventional situation, and an object to be solved is to provide a metal material for a separator having low contact resistance and low manufacturing cost and processing cost.

本発明の燃料電池のセパレータに用いられるセパレータ用金属材料はセパレータの母材金属の表面及び内部に炭素からなる粒体及び/又は金属(合金は除く)からなる粒体が分散し固定されていることを特徴とする。   In the separator metal material used in the fuel cell separator of the present invention, carbon particles and / or metal particles (excluding alloys) are dispersed and fixed on the surface and inside of the base metal of the separator. It is characterized by that.

本発明のセパレータ用金属材料では、母材金属の表面及び内部に、電気伝導性に優れた炭素からなる粒体及び/又は金属(合金は除く)からなる粒体が分散し固定され、その一部が母材金属表面に露出している。このため、たとえ母材金属の表面に酸化皮膜が形成され、電気の接触抵抗が高くなっても、表面に露出している炭素からなる粒体及び/又は金属(合金は除く)からなる粒体を介し、小さな抵抗で通電することができる。更には、当該炭からなる素粒子及び/又は金属(合金は除く)からなる粒子が母材金属内部にも分散されているので、当該粒子間で導電パスを形成することも可能になる。これにより、セパレータ金属材料全体として導電性が向上する。
また、一般的に炭素からなる粒体や金属(合金は除く)からなる粒体は柔らかいため、プレス加工、切削加工、旋盤加工等も容易に行うことができ、工具類の寿命も長くなる。このため、加工コストを低廉化することができる。さらには、貴金属めっき等の表面処理を行わなくても、良好な電気伝導性を示すため、製造コストも低廉となる。
なお、金属を合金化したり、金属に炭素を含有させたりするとこれらは硬くなるので好ましくない。
In the metal material for a separator of the present invention, particles made of carbon and / or particles made of metal (excluding alloys) having excellent electrical conductivity are dispersed and fixed on the surface and inside of the base metal. The part is exposed on the base metal surface. For this reason, even if an oxide film is formed on the surface of the base metal and the electrical contact resistance is increased, the particles made of carbon and / or the metal (excluding alloys) exposed on the surface are exposed. It is possible to energize with a small resistance. Furthermore, since elementary particles made of charcoal and / or particles made of metal (excluding alloys) are also dispersed inside the base metal, a conductive path can be formed between the particles. Thereby, electroconductivity improves as a separator metal material whole.
In general, particles made of carbon and particles made of metal (except for alloys) are soft, so that press work, cutting work, lathe work, etc. can be easily performed, and the tool life is extended. For this reason, processing cost can be reduced. Furthermore, even if surface treatment such as precious metal plating is not performed, the manufacturing cost is low because it exhibits good electrical conductivity.
Note that it is not preferable to alloy a metal or to add carbon to the metal because these become hard.

なお、母材金属中に分散されている炭素からなる粒体及び/又は金属(合金は除く)からなる粒体が母材金属材料と接触すると当該接触表面において炭素化、合金化等(例えば母材金属と炭素単体とが反応して生じた炭化物、金属単体が母材金属と反応して生じた金属間化合物、金属単体と母材金属との合金等)が生じるおそれがある。しかしながら、粒体の大部分は炭素単体、若しくは金属単体の状態が維持されているので、粒子としての柔らかさは維持されている。   When particles made of carbon and / or particles made of metal (excluding an alloy) dispersed in the base metal come into contact with the base metal material, carbonization, alloying, etc. (for example, the base) There is a possibility that a carbide generated by the reaction of the base metal and the carbon simple substance, an intermetallic compound generated by the reaction of the single metal with the base metal, an alloy of the single metal and the base metal, etc.). However, since most of the granules are maintained in the state of carbon alone or metal alone, the softness of the particles is maintained.

母材金属はチタン、チタン合金及びステンレスのいずれかであることが好ましい。これらの金属は耐腐食性に優れており、比較的低価格であるため、セパレータの長寿命化及び製造コストの低廉化が可能となる。ステンレスの種類としては特に限定はなく、マルテンサイト系、オーステナイト系、フェライト系のいずれのステンレスを用いることもできる。   The base metal is preferably any one of titanium, a titanium alloy, and stainless steel. Since these metals have excellent corrosion resistance and are relatively inexpensive, it is possible to extend the life of the separator and reduce the manufacturing cost. There are no particular limitations on the type of stainless steel, and any of martensitic, austenitic, and ferritic stainless steels can be used.

また、母材金属の表面及び内部に分散する金属(合金は除く)からなる粒体はSn、Au、Ag、Pd、Ru、Rh、Pt、Ta、Mo、W、Niの1種又は2種以上とすることができる。当然であるがこれらの合金は含まれない。Sn、Ta、Mo、W及びNiは、たとえ表面酸化膜が生じても、その表面酸化皮膜の電気抵抗は高くないため、接触抵抗が大きくなることはない。また、Au、Ag、Pd、Ru、Rh及びPtは、表面酸化皮膜が生じ難いため、やはり接触抵抗が大きくなることはない。   Moreover, the particle | grains which consist of the metal (except an alloy) disperse | distributed to the surface of a base metal, and an inside are 1 type or 2 types of Sn, Au, Ag, Pd, Ru, Rh, Pt, Ta, Mo, W, Ni. This can be done. Of course, these alloys are not included. Sn, Ta, Mo, W, and Ni do not increase the contact resistance even if a surface oxide film is formed because the electric resistance of the surface oxide film is not high. In addition, since Au, Ag, Pd, Ru, Rh, and Pt are unlikely to form a surface oxide film, the contact resistance does not increase.

母材金属中に分散する炭素からなる粒体及び/又は金属(合金は除く)からなる粒体の含有量は、0.1〜50原子%、さらに好ましくは1〜15原子%である。含有量が少ない場合には接触抵抗を小さくする効果が小さくなる。また、逆に多すぎる場合(例えば含有量が50原子%を超えるような場合)には、脆くなる等、機械的強度が低下するおそれがあり、これでセパレータを形成した場合には割れ等が発生することになるので好ましくない。
これら粒体は炭素単体や金属(合金は除く)単体の一次粒子であっても、当該一次粒子が凝集した二次粒子であってもよい。
分散された粒体と母材金属とは、接触する界面付近で一部合金化すると思われるが、母材金属全体が分散された粒体と合金化するものではない(例えば、母材金属全体がTiCに形成されるものではない)。したがって、機械的、物性的な性質(硬度等)は母材金属と変わらないし、これでセパレータを形成した場合も母材金属の性質が引き継がれる。
The content of carbon particles and / or metal particles (excluding alloys) dispersed in the base metal is 0.1 to 50 atom%, more preferably 1 to 15 atom%. When the content is small, the effect of reducing the contact resistance is small. On the other hand, when the amount is too large (for example, when the content exceeds 50 atomic%), the mechanical strength may be lowered, such as brittleness. Since it will occur, it is not preferable.
These granules may be primary particles of simple carbon or metal (excluding alloys), or secondary particles in which the primary particles are aggregated.
The dispersed particles and the base metal are thought to be partially alloyed near the contact interface, but the entire base metal is not alloyed with the dispersed particles (for example, the entire base metal) Is not formed in TiC). Therefore, mechanical and physical properties (hardness and the like) are not different from those of the base metal, and the properties of the base metal are inherited even when a separator is formed.

以下、本発明を具体化した実施形態を説明する。
母材金属中に炭素からなる粒体や金属(合金は除く)からなる粒体を分散させる方法としては、以下のように焼結法、溶融添加法、高温添加法、常温添加法等を用いることができる。
Hereinafter, embodiments embodying the present invention will be described.
As a method for dispersing carbon particles and metal particles (excluding alloys) in the base metal, a sintering method, a melt addition method, a high temperature addition method, a normal temperature addition method, etc. are used as follows. be able to.

(焼結法)
母材金属となるチタンやチタン合金やステンレス等の粉末と、母材金属に分散させる炭素からなる粒体、Sn、Au、Ag、Pd、Ru、Rh、Pt、Ta、Mo、W、Ni等の粉末とを混合し、焼結炉の中で焼結させることによって焼結体が得られる。この際、ホットプレス装置によって圧力をかけながら焼結すれば、さらに緻密なセパレータ用金属材料が得られる。焼結方法については、母材金属の種類や、母材金属に分散させる粒体の種類に応じ、適宜最適な焼結条件が選択される。たとえば、チタンが母材金属であり、チタンに分散させ粒体が炭素単体からなるものである場合には、焼結温度は500〜1000°C、好ましくは700〜800°Cである。分散させる炭素単体の割合としては、0.1〜50原子%、さらに好ましくは1〜15原子%である。また、焼結時間は5〜60分、さらに好ましくは5〜30分である。焼結時間が短いと、焼結が不十分となり、機械的強度が弱くなる。また、あまり長い若しくは炭素からなる粒体が原子量として50原子%を超えて添加されると、反応が進みチタンの炭化物が生じて分散された粒体が硬くなり、加工が困難となるおそれがある。
(Sintering method)
Powders such as titanium, titanium alloy, and stainless steel as a base metal, and particles made of carbon dispersed in the base metal, Sn, Au, Ag, Pd, Ru, Rh, Pt, Ta, Mo, W, Ni, etc. A sintered body is obtained by mixing the powder and sintering in a sintering furnace. At this time, if sintering is performed while applying pressure by a hot press apparatus, a denser metal material for a separator can be obtained. About a sintering method, optimal sintering conditions are suitably selected according to the kind of base material metal, and the kind of granule disperse | distributed to a base metal. For example, when titanium is a base metal and the particles are dispersed in titanium and made of simple carbon, the sintering temperature is 500 to 1000 ° C., preferably 700 to 800 ° C. As a ratio of the carbon simple substance to disperse, it is 0.1-50 atomic%, More preferably, it is 1-15 atomic%. The sintering time is 5 to 60 minutes, more preferably 5 to 30 minutes. If the sintering time is short, the sintering becomes insufficient and the mechanical strength becomes weak. Further, if particles that are too long or made of carbon are added in an amount exceeding 50 atomic% as an atomic weight, the reaction proceeds and titanium carbide is generated, and the dispersed particles become hard and processing may be difficult. .

(溶融添加法)
母材金属となるチタンやチタン合金やステンレス等を高温で溶融し、その中に母材金属に分散させる炭素からなる粒体や金属(合金は除く)からなる粒体を添加する。そして、すばやく冷却し、セパレータ用金属材料を得る。この方法では、母材金属に分散させる粒体を添加した後、長時間溶融状態を保持すると、母材金属と分散された粒体とが反応し、硬い化合物を生成するおそれがある。このため、粒体を添加した後、できる限りすばやく冷却することが重要である。
(Melt addition method)
Titanium, titanium alloy, stainless steel or the like, which is a base metal, is melted at a high temperature, and particles made of carbon or particles made of metal (excluding the alloy) dispersed in the base metal are added. And it cools quickly and obtains the metal material for separators. In this method, if the molten state is maintained for a long time after adding the particles to be dispersed in the base metal, the base metal and the dispersed particles may react to generate a hard compound. For this reason, it is important to cool as quickly as possible after adding the granules.

(高温添加法)
母材金属となるチタンやチタン合金やステンレス等を熱間圧延や熱間鍛造する際、母材金属に分散させる炭素からなる粒体や金属(合金は除く)からなる粒体を吹きつけながら圧延や鍛造を行うことにより、母材金属の表面に炭素からなる粒体や金属(合金は除く)からなる粒体を分散させることができる。この方法は、溶融添加法に比べて低温下で製造することができるため、硬い化合物を生成するおそれが少ないという利点がある。
(High temperature addition method)
When hot rolling or hot forging titanium, titanium alloy, stainless steel, etc., which are base metals, rolling while spraying carbon particles or metals (excluding alloys) dispersed in the base metal By performing or forging, particles made of carbon and particles made of metal (excluding alloys) can be dispersed on the surface of the base metal. Since this method can be produced at a lower temperature than the melt addition method, there is an advantage that there is less possibility of generating a hard compound.

(常温添加法)
冷間圧延や冷間鍛造する際、上記高温添加法と同様、母材金属に分散させる炭素からなる粒体や金属(合金は除く)からなる粒体の粉末を吹きつけながら圧延や鍛造を行うことによって、母材金属の表面に炭素からなる粒体や金属(合金は除く)からなる粒体を分散させることができる。この方法は、高温添加法に比べ、さらに低い温度で製造することができるため、硬い化合物を生成するおそれがさらに少なくなるという利点がある。
(Room temperature addition method)
When performing cold rolling or cold forging, as in the high temperature addition method, rolling or forging is performed while blowing particles of carbon or particles of metal (excluding alloys) dispersed in the base metal. By this, it is possible to disperse particles made of carbon or particles made of metal (excluding alloys) on the surface of the base metal. Since this method can be produced at a lower temperature than the high temperature addition method, there is an advantage that the risk of generating a hard compound is further reduced.

以下本発明を実施例によりさらに詳細に説明する。
(実施例1〜7)
実施例1〜7のセパレータ用金属材料は、母材金属としてチタンを用い、母材金属中に分散させる粒体としてグラファイト粉末を用い、上記焼結法によって製造した。
すなわち、チタン粉末とグラファイト粉末とを混合し、焼結炉内で減圧雰囲気下、750°Cで5分間の焼結を行う。そして冷却後、取り出し、これをセパレータ用金属材料とした。混合したグラファイトの原子%は、実施例1が0.1原子%、実施例2が1原子%、実施例3が6原子%、実施例4が16原子%、実施例5が25原子%、実施例6が40原子%、実施例7が50原子%である。
(比較例1)
比較例1では、チタン粉末のみを用いて、実施例1〜7と同様の条件で焼結を行った。
Hereinafter, the present invention will be described in more detail with reference to examples.
(Examples 1-7)
The metal materials for separators of Examples 1 to 7 were manufactured by the above sintering method using titanium as a base metal and graphite powder as particles to be dispersed in the base metal.
That is, titanium powder and graphite powder are mixed and sintered in a sintering furnace at 750 ° C. for 5 minutes in a reduced pressure atmosphere. And after cooling, it took out and made this into the metal material for separators. The atomic% of the mixed graphite is 0.1 atomic% in Example 1, 1 atomic% in Example 2, 6 atomic% in Example 3, 16 atomic% in Example 4, 25 atomic% in Example 5. Example 6 is 40 atomic% and Example 7 is 50 atomic%.
(Comparative Example 1)
In Comparative Example 1, sintering was performed using only titanium powder under the same conditions as in Examples 1-7.

<評 価>
上記実施例1〜7及び比較例1の焼結体について、4端子法により接触抵抗を測定した。その結果、図1に示すように、比較例1では約200mΩ・cm
と、接触抵抗が大きいのに対し、実施例1〜7では添加したグラファイトの量が増すに従って、接触抵抗が急激に低下することが分かった。
<Evaluation>
For the sintered bodies of Examples 1 to 7 and Comparative Example 1, the contact resistance was measured by the four-terminal method. As a result, as shown in FIG. 1, in Comparative Example 1, about 200 mΩ · cm 2
It was found that, in contrast to the large contact resistance, in Examples 1 to 7, the contact resistance rapidly decreased as the amount of added graphite increased.

この結果は次のように説明される。すなわち、実施例1〜7の焼結体では、図2に示すように、母材チタン1中にグラファイト粒子2が分散された状態となっている。このため、母材チタン1の表面に電気抵抗の大きな酸化皮膜1aが形成されているにもかかわらず、グラファイト粒子2によって電気的なコンタクトが形成され、接触抵抗が小さくなるのである。   This result is explained as follows. That is, in the sintered bodies of Examples 1 to 7, as shown in FIG. 2, the graphite particles 2 are dispersed in the base material titanium 1. For this reason, although the oxide film 1a having a large electric resistance is formed on the surface of the base material titanium 1, an electrical contact is formed by the graphite particles 2, and the contact resistance is reduced.

本発明は、燃料電池のセパレータの材料として用いることができる。   The present invention can be used as a material for a fuel cell separator.

チタン中のカーボン含有量と接触抵抗との関係を示すグラフである。It is a graph which shows the relationship between the carbon content in titanium, and contact resistance. 実施例の焼結体の模式断面図である。It is a schematic cross section of the sintered compact of an Example.

符号の説明Explanation of symbols

1…母材チタン
1a…酸化皮膜
2…グラファイト粒子
DESCRIPTION OF SYMBOLS 1 ... Base material titanium 1a ... Oxide film 2 ... Graphite particle

Claims (4)

燃料電池のセパレータに用いられるセパレータ用金属材料であって、セパレータの母材金属に炭素からなる粒体及び/又は金属(合金を除く)からなる粒体が分散し固定されているセパレータ用金属材料の製造方法であって、
前記母材金属の粉末と前記粒体とを、バインダーを用いることなく、混合する混合ステップと、
前記混合ステップで得られた混合体を焼結する焼結ステップと、を含み、
前記母材金属はチタンからなり、前記炭素からなる粒体はグラファイトからなり、前記焼結ステップにおいて前記混合体は減圧雰囲気の焼結炉内で焼結される、ことを特徴とするセパレータ用金属材料の製造方法。
Separator metal material used for a separator of a fuel cell, in which particles made of carbon and / or particles made of metal (excluding an alloy) are dispersed and fixed to a base metal of the separator A manufacturing method of
A mixing step of mixing the base metal powder and the particles without using a binder;
Sintering the mixture obtained in the mixing step, and
The separator metal, wherein the base metal is titanium, the carbon particles are graphite, and the mixture is sintered in a sintering furnace in a reduced pressure atmosphere in the sintering step. Material manufacturing method.
前記焼結ステップでは、前記グラファイト粒体の表面に炭化チタン層を形成する、ことを特徴とする請求項1に記載のセパレータ用金属材料の製造方法。   2. The method for producing a metal material for a separator according to claim 1, wherein in the sintering step, a titanium carbide layer is formed on a surface of the graphite particles. 前記金属(合金を除く)からなる粒体はSn、Au、Ag、Pd、Ru、Rh、Pt、Ta、Mo、W、Niの1種又は2種以上からなる金属(合金は除く)からなる粒体である、ことを特徴とする請求項1に記載のセパレータ用金属材料の製造方法。 Particles made of the above metals (excluding alloys) are made of one or more metals (excluding alloys) of Sn, Au, Ag, Pd, Ru, Rh, Pt, Ta, Mo, W, and Ni. It is a granule, The manufacturing method of the metal material for separators of Claim 1 characterized by the above-mentioned. チタンからなる母材金属であってその表面が酸化被膜に覆われる母材金属と、
該母材金属に分散されたグラファイト粒体と、を備えるセパレータ用金属材料であって、
前記母材金属内部に分散された前記グラファイト粒体の全表面は炭化チタン層となり、前記母材金属の表面に分散された前記グラファイト粒体はグラファイト自体を表出させる、ことを特徴とするセパレータ用金属材料。
A base metal made of titanium, whose surface is covered with an oxide film,
A separator metal material comprising graphite particles dispersed in the base metal,
The separator is characterized in that the entire surface of the graphite particles dispersed inside the base metal becomes a titanium carbide layer, and the graphite particles dispersed on the surface of the base metal expose the graphite itself. Metal materials.
JP2005085816A 2005-03-24 2005-03-24 Metal material for separator and method for producing the same Expired - Fee Related JP5185495B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005085816A JP5185495B2 (en) 2005-03-24 2005-03-24 Metal material for separator and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005085816A JP5185495B2 (en) 2005-03-24 2005-03-24 Metal material for separator and method for producing the same

Publications (2)

Publication Number Publication Date
JP2006269256A JP2006269256A (en) 2006-10-05
JP5185495B2 true JP5185495B2 (en) 2013-04-17

Family

ID=37204987

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005085816A Expired - Fee Related JP5185495B2 (en) 2005-03-24 2005-03-24 Metal material for separator and method for producing the same

Country Status (1)

Country Link
JP (1) JP5185495B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2012212644A (en) * 2010-10-26 2012-11-01 Kobe Steel Ltd Manufacturing method of fuel cell separator

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0878026A (en) * 1994-09-02 1996-03-22 Hitachi Metals Ltd Separator for solid electrolyte fuel cell and its manufacture
JP3904690B2 (en) * 1997-10-14 2007-04-11 日新製鋼株式会社 Low temperature fuel cell separator
JP2004095440A (en) * 2002-09-02 2004-03-25 Daido Steel Co Ltd Metal member for fuel cell, its manufacturing method, and fuel cell
JP4239695B2 (en) * 2003-06-09 2009-03-18 トヨタ自動車株式会社 Fuel cell separator and method of manufacturing the same
US20070057415A1 (en) * 2003-10-29 2007-03-15 Sumitomo Precision Products Co., Ltd. Method for producing carbon nanotube-dispersed composite material
JP2006179207A (en) * 2004-12-21 2006-07-06 Izuru Izeki Separator for fuel cell and its manufacturing method

Also Published As

Publication number Publication date
JP2006269256A (en) 2006-10-05

Similar Documents

Publication Publication Date Title
JP5201256B1 (en) Titanium material for polymer electrolyte fuel cell separator, production method thereof, and polymer electrolyte fuel cell using the same
JP5971446B1 (en) Ferritic stainless steel material, polymer electrolyte fuel cell separator and polymer electrolyte fuel cell using the same
JP4776240B2 (en) Electrode catalyst, method for producing the same, and fuel cell
JP6573661B2 (en) Sliding bearings or parts thereof, methods for their production and use of CuCrZr alloys as sliding bearing materials
US2470034A (en) Electric contact formed of a ruthenium composition
JP5152193B2 (en) Stainless steel material for polymer electrolyte fuel cell separator and polymer electrolyte fuel cell
EP2031687A1 (en) Pure titanium or titanium alloy separator for solid polymer fuel cell and method for producing the same
CN1047460C (en) Silver base electrical contact material
Wu et al. Influence of operation numbers on arc erosion of Ag/CuO electrical contact material
JP5244078B2 (en) Fuel cell separator and method for producing the same
JP2014525829A5 (en) Electrocatalyst composite material, method of producing the composite material, and method of using the same
JP5185495B2 (en) Metal material for separator and method for producing the same
JP2004190084A (en) Sintered alloy and manufacturing method therefor
JP6530267B2 (en) Electrode material for thermal fuse
CN1159485A (en) Copper-base powder alloy material for electric contact
JP4947850B2 (en) Method for producing Ag-oxide based electrical contact material
RU2224039C2 (en) Alloy on the basis of copper
WO2019107265A1 (en) Conductive end member and manufacturing method therefor
JP3846960B2 (en) Welding torch member and manufacturing method thereof
JPS637345A (en) Electrical contact material and its production
EP0273876A1 (en) Spot welding electrode and method for making it
KR101938500B1 (en) Metal material and current-carrying component using said metal material
JPWO2012039207A1 (en) Electrical contact material
JP2008223091A (en) Electrode for welding, and method for producing the same
Kim et al. The deterioration behavior of a metal hydride electrode based on the V0. 66Ti0. 22Ni0. 12 alloy

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080313

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20110304

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110726

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110920

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120417

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120618

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20121009

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121206

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130115

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130118

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20160125

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees