【0001】
【発明の属する技術分野】
本発明は、電気接点材、抵抗溶接用電極、半導体用リードフレーム、複合超電導線、電気伝導性バネ、磁場発生用コイル、ワイヤーハーネス、熱交換器、摺動通電部材、放電加工用ワイヤー材、放電加工用電極材等に用いられる高導電性金属と高融点で高硬度の金属からなる焼結合金とその製造方法に関する。
【0002】
【従来の技術】
高導電性金属と高融点で高硬度の金属からなる焼結合金自体は、古くから知られており、例えば、特許文献1には、AgあるいはCuのような電気伝導性に優れた金属母材にW、Mo、Re、Ta、Ru、Nb等の高融点で高硬度の金属粒子を均一に分散した高導電性を有する高硬度焼結金属材料が開示されており、その製造法として、HP、あるいはHIPにより加圧焼結する方法が採られている。
【0003】
ところが、HPでは、単純形状の板材しか作製できないために、連続生産ができないだけでなく、HP後にワイヤーカットやフライス盤、マシニングセンタなどによる電気加工、機械加工を行う必要があり、コストが嵩む原因となっている。
【0004】
また、HIP法はその炉の設置、保守に莫大なコストがそもそも必要である。
利用が可能であるとしても、通常の焼結に比べて高価であるアルゴンガスやその他の希ガスを大量に必要とするために、やはりコスト高となる。さらに、数量が少ないときは著しく効率が悪くなる。
【0005】
また、特許文献2には、出発原料として、Cuのような導電性金属と、高融点で高硬度の金属のそれぞれの金属単体粉末を使用した際、理論密度の焼結体が得られないという欠点を排除するために、CuとWそれぞれの酸化物を出発原料とし、これを機械的に高速混合し、それに続いて還元処理し、これを成形焼結することにより、理論密度に近い密度を有するとされた放熱用のCu−W合金が開示されているが、とくに、接点材料あるいは放電加工電極への適用のため必要な特性を得るための条件についての解明は充分になされてはいない。
【0006】
また、特許文献3には、スケルトン構造の焼結体にCuを溶浸する溶浸法によってその密度を高めた放電加工用電極用のCu−W合金が開示されている。ところが、溶浸法によって得られた合金は、高融点で高硬度の金属を主体としたスケルトン構造の焼結体を得る際に、これを均一な組織とすることが難しく、そのため、その空隙に高導電性金属を溶かし込むことで得られた合金の組成が安定しないことから、放電加工電極に適用した場合、放電加工特性が安定しないという問題がある。また、スケルトン構造の焼結体を得ることと、これに高導電性金属を溶かし込むことの二段階の作業を必要とし、手間とコストがかかるという問題点もあった。
【0007】
【特許文献1】
特開平9−167520号公報
【0008】
【特許文献2】
特開平10−60553号公報
【0009】
【特許文献3】
特願2002−203224号公報
【0010】
【発明が解決しようとする課題】
本発明は、係る焼結合金を、安価な手段で、かつ、安定して高密度化でき、とくに、低中負荷用電気接点あるいは放電加工に適した合金とするための手段を提供するものである。
【0011】
【課題を解決するための手段】
本発明は、AgあるいはCuのような高導電性金属の酸化粉末と、W、Mo、Re、Ta、Ru、Nbあるいは少なくともそれらの2種以上を含む合金あるいは金属間化合物である高融点で高硬度の金属の酸化粉末を混合、粉砕し、水素雰囲気中で共還元して得られた混合微細金属粉末を加圧成形後、焼結によって得られた高導電性金属中に高融点で高硬度の金属粒子が一様に分散した合金であって、前記高融点で高硬度の金属粒子の平均粒径が1μm以下であり、それ自体が高密度の焼結合金である。
【0012】
以上の焼結合金を用いることにより、前記課題を解決できる接点材料および放電加工用電極を得ることができる。すなわち、放電加工用電極については微細な高融点粒子が均一に分散しているために長寿命で精度良い加工を行うことができる。また、電気接点材料としては硬度、導電性が従来の方法にて得られたものと同等である電気接点材料が、HP法やHIP法を用いる従来方法と比較して安価に得られる。
【0013】
前記の酸化物の混合粉末を共還元して、混合金属粉末とするためには、共還元の条件として、700℃〜900℃で水素雰囲気であることが品質および量産効率の観点から最も適している。
【0014】
また、とくに、接点用材料については前記焼結後の合金は、鍛造、圧延、絞り加工等のような塑性加工が可能で、共還元して得られた混合微細金属粉末を加圧成形後、焼結によって得られた比較的高密度の高導電性で高硬度の焼結金属を常温下で鍛造、圧延、絞り加工等のような塑性加工をして、内蔵されるポアを圧縮し、これを加熱処理することで消滅させて、高密度化が達成できる。
【0015】
得られた接点は、高導電性の延性金属を80容積%以上含み、高融点で高硬度の金属粒子を均一に微細分散させた金属材料であり、一般の溶製金属材料と同様に鍛造、圧延、絞り加工等のような塑性加工が可能で、熱処理を適宜施すことができる。そのため、鍛造、圧延、絞り加工、等のような塑性加工が可能で熱処理を施して高密度化が達成できる。
【0016】
また、焼結、鍛造、圧延、絞り加工等のような塑性加工が可能で、さらには、熱処理温度は、構成金属粒子の粒成長を抑制し、最終製品寸法精度を保持するために、液相出現温度以下である方がよい。
【0017】
放電加工用電極については、従来技術である溶浸法で作製したものは溶浸ムラが現れるために、使用時の放電が不均一になり、電極の消耗が速くなり、また、被加工物の面が粗れる。
【0018】
これに対し、本発明の製造方法を用いると、平均粒径が1μm以下の高融点で高硬度の金属粒子が均一に分散しているために、ムラなく放電ができ、高い面精度を得ることができ、消耗も安定する。
【0019】
さらに放電加工用電極については、その特性を改善するためのドープ剤を任意添加配合できる。例えば、その特性を改善するために、ホウ素、ホウ化物またはホウ酸化物のうち1種以上、あるいは、水素化物を0.05〜10.0質量%添加することができる。
【0020】
【発明の実施の形態】
以下、本発明を高硬度で高融点の金属としてWを、高導電性金属としてCuを用いたCu−W合金に適用した実施例に基づいて、その実施の形態を説明する。
【0021】
実施例1
本発明を電気接点材に適用した例について示す。
【0022】
平均粒径が0.55μmのWO3粉末と、平均粒径が3.3μmのCu2O粉末の混合粉末を水溶媒で4時間、アトライター混合機による混合粉砕を行った後、800℃の水素気流中2時間で共還元して、Cu−5容積%W合金粉末とした。この合金粉末をφ20mm × 1.5mmのサイズに約900MPaで加圧成形後、水素雰囲気の下で、900℃で1時間焼結した。得られた焼結体は、平均粒径が0.4μmのW粒子が均一に分散した組織であり、この焼結体を冷間鍛造として鍛造圧30トンにて3回の鍛造を連続的に行い、その後に900℃で60分の熱処理を行い高密度化した。
【0023】
比較例として、従来の技術であるHP法にて行った例を示す。実施例1と同様の粒度組成と成分組成を持つCu−5容積%W合金粉末をパンチ面形状52.5mm×52.5mmのモールドにて20MPaで加圧、950℃の大気中1時間の条件でHP処理して焼結体を得た。
【0024】
本発明の実施例と比較例の試料について導電率、室温硬さについて測定した。
測定の結果、本発明の試料は導電率85.1(IACS%)、硬さ144(Hv)であり、比較例の試料は導電率84.0(IACS%)、硬さ144(Hv)であった。電気接点材料として使用する際には、その用途や使用時の電流電圧、使用環境などに応じて求められる特性は変わるが、使用可否の目安となる値は導電率70(IACS%)以上、かつ、硬さ130(Hv)以上である。本発明の電気接点材は充分な特性を有していた。
【0025】
同様の方法にて組成を変えCu−W合金を作製した。Wが0.5〜20容積%の試料について同様の評価測定を行ったところいずれも導電率は72.0〜95.4(IACS%)、硬さは135〜160(Hv)と良好な値を示した。しかしながら、本発明の範囲外であるCu−0.4容積%W合金は硬さが充分でなく121(Hv)であり、また、同じく範囲外であるCu−25容積%W合金は導電率が63(IACS%)であり、望む特性は得られなかった。
【0026】
また、上記Cuの代わりに高熱導電性金属であるAgやAu、Ptを使用したところ同等の効果が得られた。さらにWの代わりに高融点で高硬度であるMoを使用した際も同様の効果が得られた。
【0027】
本発明の実施例の試料は、導電率が比較例と同等に高い値を示した。導電率が高いと、電気が熱に変換されにくいために、電気ロスが少なく、また接点部の発熱も少なく押さえられ、接点部の寿命や部分的温度上昇の防止に効果がある。また、機械的摩耗による寿命を左右する材料の硬さについても従来の方法のものと比較して同等であった。本発明の試料は実際の電気接点材料を製造する際には、製品形状に近い形状にて成形および焼結を行うことができる。そのために単純な板形状しか焼結できずに、また、焼結後に機械加工や電気加工により大幅に加工が必要なHP法を用いる方法と比較して大きく製造コストを下げることができた。
【0028】
以上のように本発明の場合、焼結後、鍛造と熱処理を施すことでHP材と同等の導電性と硬さを示し、中、低負荷の電気接点の用途に使用できるものであった。
【0029】
また、比較例としてHP法を用いた方法を示したが、その他の従来技術としては、焼結後にHIPする方法が上げられる。しかしながら、この方法は一度焼結した後にHIP炉で加熱および加圧処理するため、HP法以上にコスト高になることは明らかである。
【0030】
従来HP法またはHIP法にて製作していた方法と比較して、焼結後の加工またはHIP処理に対する費用が必要ないために著しく低コストで製作することができる。
【0031】
実施例2
この実施例は、本発明を放電加工用電極に適用した例を示す。
【0032】
平均粒径が0.55μmのWO3粉末と、平均粒径が3.3μmのCu2O粉末の混合粉末を水溶媒で4時間、アトライター混合機による混合粉砕を行った後、800℃の水素気流中2時間で共還元して、Cu−50容積%W合金粉末とした。この合金粉末を約100MPaで加圧成形後、水素雰囲気の下で、1200℃で1時間焼結し、切削加工でφ7mm×50mmに成形した。また、同様の条件にてCuとWの量を変えて実験を行った。
【0033】
また、ホウ化物については、SrOとB2O3の複合酸化物を1000℃で1時間の焼成を行いSrB2O4としたものをWO3とCu2Oをアトライターで混合する際に1.0質量%添加し、上記と同一条件で放電加工用合金を得た。また、SrB2O4量を変え、同様の実験を行った。
【0034】
水素化チタン、水素化ジルコニウムについても同様にWO3とCu2Oをアトライターで混合する際に添加し、上記と同一条件で放電加工用合金を得た。
【0035】
比較例として、溶浸法を用いて同様の成分組成を持つCu−50容積%W合金を作製し、被加工材にはWC−Co系超硬合金を用いて、トランジスター型放電加工機での放電加工速度、消耗性、表面粗さについての比較を行った。電極の消耗率の評価は、(電極消耗体積/加工体積)×100(%)の計算式にて求めた。さらに、高導電性金属をAg、高融点で高硬度の金属をMoとして、同様の実験を行った。以上の実施例と比較例の材料の組成にて実験を行った結果を表1中の試料No.1〜No.7及びNo.31〜No.33に示す。
【0036】
その結果、放電加工速度が速く、かつ消耗も少ない加工が可能であり、また、被加工面の面粗さも低減でき、優れた放電加工電極が得られた。
【0037】
さらに、この放電加工電極材に各種ドープ剤を添加し、ドープ剤を添加しない場合とともに、比較例として溶浸法によって作製した例を比較例として、それぞれの放電加工電極材の加工速度における電極消耗率を調べた。本発明の実施例である試料No.12〜No.14及びNo.21〜No.23は、比較例である試料No.11,No.15及びNo.16の試料に比べ、その特性は各段に優れていることが判る。
また、本発明の実施例の場合も、ドープ剤の添加によって、その特性はさらに改善されていることがわかる。これらの結果も表1に併せて示す。
【0038】
【表1】
【0039】
【発明の効果】
1. 粉末を製品形状に近い形でかつ連続して圧粉成形できるため、歩留および生産性が向上しかつ生産コストが低くなる。
【0040】
2. 焼結時に加圧を必要としないため連続焼結が可能であり、生産性が向上しかつ生産コストが低くなる。
【0041】
3. さらに鍛造、熱処理を適宜施すことで従来の金属材料と同等の接点材料に適した高導電性、高硬度金属材料を得ることができる。
【0042】
4. また、本発明の合金を放電加工電極に適用した場合、放電加工速度が速く、かつ消耗も少ない加工が可能であり、また、被加工面の面粗さも改善できる。
【0043】
5. さらに、ホウ化物その他のドープ剤を添加することにより、さらに放電加工速度、消耗性、面粗さといった放電加工特性が優れた合金となり、水素化物の添加ではホウ化物を添加した合金よりも優れた放電加工特性の合金となる。[0001]
TECHNICAL FIELD OF THE INVENTION
The present invention provides an electric contact material, a resistance welding electrode, a semiconductor lead frame, a composite superconducting wire, an electrically conductive spring, a magnetic field generating coil, a wire harness, a heat exchanger, a sliding energizing member, a wire material for electric discharge machining, The present invention relates to a sintered alloy composed of a highly conductive metal and a metal having a high melting point and a high hardness used for an electrode material for electric discharge machining and a method for producing the same.
[0002]
[Prior art]
A sintered alloy itself comprising a highly conductive metal and a metal having a high melting point and high hardness has been known for a long time. For example, Patent Document 1 discloses a metal base material having excellent electrical conductivity such as Ag or Cu. Discloses a high-hardness sintered metal material having high conductivity in which high-melting-point and high-hardness metal particles such as W, Mo, Re, Ta, Ru, and Nb are uniformly dispersed. Alternatively, pressure sintering is performed by HIP.
[0003]
However, in the case of HP, since only a sheet material having a simple shape can be manufactured, not only cannot continuous production be performed, but also it is necessary to perform electric processing and machining using a wire cut, a milling machine, a machining center, and the like after the HP, which increases costs. ing.
[0004]
In addition, the HIP method requires enormous costs for installation and maintenance of the furnace.
Even if it can be used, the cost is still high because a large amount of argon gas or other rare gas is required as compared with normal sintering. Further, when the quantity is small, the efficiency becomes extremely low.
[0005]
Further, Patent Document 2 discloses that when a single metal powder of a conductive metal such as Cu and a metal having a high melting point and a high hardness is used as a starting material, a sintered body having a theoretical density cannot be obtained. In order to eliminate disadvantages, each oxide of Cu and W is used as a starting material, and these are mixed at a high speed mechanically, subsequently subjected to a reduction treatment, and molded and sintered to obtain a density close to the theoretical density. Although a heat-dissipating Cu-W alloy is disclosed, it has not been sufficiently clarified, in particular, about conditions for obtaining characteristics required for application to a contact material or an electric discharge machining electrode.
[0006]
Patent Document 3 discloses a Cu-W alloy for an electric discharge machining electrode whose density is increased by an infiltration method in which Cu is infiltrated into a sintered body having a skeleton structure. However, it is difficult for the alloy obtained by the infiltration method to have a uniform structure when obtaining a sintered body having a skeleton structure mainly composed of a metal having a high melting point and a high hardness. Since the composition of the alloy obtained by dissolving a highly conductive metal is not stable, there is a problem that when applied to an electric discharge machining electrode, electric discharge machining characteristics are not stable. Further, a two-stage operation of obtaining a sintered body having a skeleton structure and dissolving a highly conductive metal into the sintered body is required, and there is also a problem that labor and cost are required.
[0007]
[Patent Document 1]
Japanese Patent Application Laid-Open No. 9-167520
[Patent Document 2]
JP-A-10-60553
[Patent Document 3]
Japanese Patent Application No. 2002-203224
[Problems to be solved by the invention]
The present invention provides a means for making such a sintered alloy inexpensive, and can be stably densified, and in particular, an alloy suitable for low-medium load electrical contacts or electric discharge machining. is there.
[0011]
[Means for Solving the Problems]
The present invention relates to a high melting point metal oxide having high melting point which is an oxide powder of a highly conductive metal such as Ag or Cu, and an alloy or an intermetallic compound containing W, Mo, Re, Ta, Ru, Nb or at least two or more thereof. After mixing and pulverizing a metal oxide powder of hardness, co-reducing in a hydrogen atmosphere, and pressing the mixed fine metal powder, high melting point and high hardness in the highly conductive metal obtained by sintering Is an alloy in which the metal particles are uniformly dispersed, and the high-melting-point, high-hardness metal particles have an average particle size of 1 μm or less, and are themselves high-density sintered alloys.
[0012]
By using the above sintered alloy, it is possible to obtain a contact material and an electrode for electric discharge machining that can solve the above-mentioned problems. That is, since the high-melting-point particles are uniformly dispersed in the electrode for electric discharge machining, machining can be performed with a long life and high accuracy. Further, as the electrical contact material, an electrical contact material having the same hardness and conductivity as those obtained by the conventional method can be obtained at a lower cost than the conventional method using the HP method or the HIP method.
[0013]
In order to co-reduce the mixed powder of the oxide to obtain a mixed metal powder, a hydrogen atmosphere at 700 ° C. to 900 ° C. is most suitable as a condition for co-reduction from the viewpoint of quality and mass production efficiency. I have.
[0014]
In particular, for the contact material, the alloy after sintering can be subjected to plastic working such as forging, rolling, drawing, etc., and after press-molding the mixed fine metal powder obtained by co-reduction, Sintered metal of relatively high density and high conductivity and hardness obtained by sintering is subjected to plastic working such as forging, rolling, drawing at room temperature, and the built-in pores are compressed. Can be eliminated by heat treatment to achieve high density.
[0015]
The obtained contact is a metal material containing 80% by volume or more of a highly conductive ductile metal, and a metal particle having a high melting point and high hardness is uniformly and finely dispersed. Plastic working such as rolling and drawing can be performed, and heat treatment can be appropriately performed. Therefore, plastic working such as forging, rolling, drawing, and the like can be performed, and high density can be achieved by performing heat treatment.
[0016]
In addition, plastic processing such as sintering, forging, rolling, drawing, etc. is possible, and the heat treatment temperature is controlled by the liquid phase to suppress the grain growth of the constituent metal particles and maintain the final product dimensional accuracy. It is better to be below the appearance temperature.
[0017]
Regarding electrodes for electrical discharge machining, those produced by the conventional infiltration method show uneven infiltration, so that the discharge during use becomes uneven, the electrode wears faster, and The surface becomes rough.
[0018]
On the other hand, when the manufacturing method of the present invention is used, since the metal particles having a high melting point and a high hardness having an average particle diameter of 1 μm or less are uniformly dispersed, discharge can be performed without unevenness and high surface accuracy can be obtained. And wear is stable.
[0019]
Further, a doping agent for improving the characteristics of the electrode for electric discharge machining can be optionally added and blended. For example, in order to improve its properties, one or more of boron, boride and boride, or hydride can be added in an amount of 0.05 to 10.0% by mass.
[0020]
BEST MODE FOR CARRYING OUT THE INVENTION
An embodiment of the present invention will be described below based on an example in which the present invention is applied to a Cu-W alloy using W as a metal having a high hardness and a high melting point and Cu as a highly conductive metal.
[0021]
Example 1
An example in which the present invention is applied to an electric contact material will be described.
[0022]
A mixed powder of a WO 3 powder having an average particle diameter of 0.55 μm and a Cu 2 O powder having an average particle diameter of 3.3 μm was mixed and pulverized with an aqueous solvent for 4 hours using an attritor mixer, and then 800 ° C. Co-reduction was performed in a hydrogen stream for 2 hours to obtain a Cu-5% by volume W alloy powder. This alloy powder was compacted to a size of φ20 mm × 1.5 mm at about 900 MPa, and then sintered at 900 ° C. for 1 hour under a hydrogen atmosphere. The obtained sintered body has a structure in which W particles having an average particle size of 0.4 μm are uniformly dispersed, and the sintered body is subjected to cold forging and continuously forged three times at a forging pressure of 30 tons. After that, heat treatment was performed at 900 ° C. for 60 minutes to increase the density.
[0023]
As a comparative example, an example in which the conventional method is used to perform the HP method will be described. A Cu-5% by volume W alloy powder having the same particle size composition and component composition as in Example 1 was pressed at 20 MPa in a mold having a punch surface shape of 52.5 mm × 52.5 mm, under the conditions of 950 ° C. in the atmosphere for 1 hour. To obtain a sintered body.
[0024]
The electrical conductivity and the room temperature hardness of the samples of the examples of the present invention and the comparative examples were measured.
As a result of the measurement, the sample of the present invention had a conductivity of 85.1 (IACS%) and a hardness of 144 (Hv), and the sample of the comparative example had a conductivity of 84.0 (IACS%) and a hardness of 144 (Hv). there were. When used as an electrical contact material, the required characteristics vary depending on the application, current and voltage at the time of use, use environment, and the like. However, a guideline of the feasibility of use is a conductivity of 70 (IACS%) or more, and , Hardness 130 (Hv) or more. The electric contact material of the present invention had sufficient characteristics.
[0025]
The composition was changed in the same manner to produce a Cu-W alloy. When the same evaluation and measurement were performed on samples having W of 0.5 to 20% by volume, the conductivity was 72.0 to 95.4 (IACS%), and the hardness was 135 to 160 (Hv), which were good values. showed that. However, the Cu-0.4% by volume W alloy outside the range of the present invention has insufficient hardness of 121 (Hv), and the Cu-25% by volume W alloy also out of the range has a conductivity of 121 (Hv). 63 (IACS%), and the desired characteristics could not be obtained.
[0026]
In addition, when a high thermal conductive metal such as Ag, Au, or Pt was used instead of Cu, an equivalent effect was obtained. Further, the same effect was obtained when Mo having a high melting point and high hardness was used instead of W.
[0027]
The sample of the example of the present invention showed a value as high as the conductivity of the comparative example. When the conductivity is high, electricity is not easily converted to heat, so that the electric loss is small, and the heat generation of the contact portion is also suppressed to a small extent, which is effective in preventing the life of the contact portion and preventing a partial rise in temperature. Further, the hardness of the material which determines the life due to the mechanical wear was equivalent to that of the conventional method. When manufacturing the actual electrical contact material, the sample of the present invention can be molded and sintered in a shape close to the product shape. Therefore, only a simple plate shape could be sintered, and the manufacturing cost could be greatly reduced as compared with the method using the HP method, which requires much processing by mechanical processing or electric processing after sintering.
[0028]
As described above, in the case of the present invention, by performing forging and heat treatment after sintering, the same conductivity and hardness as those of the HP material were exhibited, and the medium could be used for medium and low load electrical contacts.
[0029]
Although the method using the HP method has been shown as a comparative example, another conventional technique is a method of performing HIP after sintering. However, it is obvious that this method is more expensive than the HP method because it is heated and pressurized in a HIP furnace after sintering once.
[0030]
Compared with a method conventionally manufactured by the HP method or the HIP method, the method can be manufactured at a remarkably low cost because no cost is required for processing after sintering or HIP processing.
[0031]
Example 2
This embodiment shows an example in which the present invention is applied to an electrode for electric discharge machining.
[0032]
A mixed powder of a WO 3 powder having an average particle diameter of 0.55 μm and a Cu 2 O powder having an average particle diameter of 3.3 μm was mixed and pulverized with an aqueous solvent for 4 hours using an attritor mixer, and then 800 ° C. Co-reduction was performed in a hydrogen stream for 2 hours to obtain a Cu-50% by volume W alloy powder. This alloy powder was press-formed at about 100 MPa, sintered in a hydrogen atmosphere at 1200 ° C. for 1 hour, and formed into a φ7 mm × 50 mm by cutting. Further, an experiment was performed under the same conditions while changing the amounts of Cu and W.
[0033]
Regarding the boride, the composite oxide of SrO and B 2 O 3 was baked at 1000 ° C. for 1 hour to obtain SrB 2 O 4 , which was mixed with WO 3 and Cu 2 O using an attritor. 0.0% by mass, and an alloy for electrical discharge machining was obtained under the same conditions as described above. Further, the same experiment was performed while changing the amount of SrB 2 O 4 .
[0034]
Similarly, titanium hydride and zirconium hydride were added when WO 3 and Cu 2 O were mixed by an attritor, and an alloy for electrical discharge machining was obtained under the same conditions as described above.
[0035]
As a comparative example, a Cu-50% by volume W alloy having the same component composition was prepared by using an infiltration method, and a WC-Co-based cemented carbide was used as a work material, and a transistor-type electric discharge machine was used. A comparison was made on the electric discharge machining speed, wearability, and surface roughness. The evaluation of the consumption rate of the electrode was obtained by a calculation formula of (electrode consumption volume / working volume) × 100 (%). Further, a similar experiment was performed using Ag as a highly conductive metal and Mo as a metal having a high melting point and high hardness. Table 1 shows the results of an experiment conducted on the compositions of the materials of the above-described examples and comparative examples. 1 to No. 7 and No. 7 31-No. 33.
[0036]
As a result, machining with a high electric discharge machining speed and little wear was possible, and the surface roughness of the surface to be machined was reduced, so that an excellent electric discharge machining electrode was obtained.
[0037]
In addition, a case in which various dopants were added to this electric discharge machining electrode material and no dopant was added, and a case in which the electrode was consumed at a machining speed of each electric discharge machining electrode material was used as a comparative example, in which a comparative example was prepared by an infiltration method. The rate was checked. Sample No. which is an example of the present invention. 12-No. 14 and No. 21-No. Sample No. 23 is a comparative example. 11, No. 15 and No. It can be seen that the characteristics of each sample are superior to those of the 16 samples.
Also, in the case of the embodiment of the present invention, it can be seen that the characteristics are further improved by the addition of the dopant. These results are also shown in Table 1.
[0038]
[Table 1]
[0039]
【The invention's effect】
1. Since the powder can be continuously compacted in a shape close to the product shape, the yield and productivity are improved and the production cost is reduced.
[0040]
2. Since no pressure is required during sintering, continuous sintering is possible, which improves productivity and lowers production costs.
[0041]
3. Further, by appropriately performing forging and heat treatment, a highly conductive and hard metal material suitable for a contact material equivalent to a conventional metal material can be obtained.
[0042]
4. In addition, when the alloy of the present invention is applied to an electric discharge machining electrode, machining can be performed with a high electric discharge machining speed and little wear, and the surface roughness of the surface to be machined can be improved.
[0043]
5. Furthermore, the addition of borides and other dopants makes the alloy excellent in EDM characteristics such as electric discharge machining speed, wearability, and surface roughness, and the addition of hydrides is superior to the alloys with boride addition. It becomes an alloy with electrical discharge machining characteristics.