JP5182909B2 - 発光デバイス - Google Patents
発光デバイス Download PDFInfo
- Publication number
- JP5182909B2 JP5182909B2 JP2006037339A JP2006037339A JP5182909B2 JP 5182909 B2 JP5182909 B2 JP 5182909B2 JP 2006037339 A JP2006037339 A JP 2006037339A JP 2006037339 A JP2006037339 A JP 2006037339A JP 5182909 B2 JP5182909 B2 JP 5182909B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- waveguide
- emitting device
- sheet
- waveguides
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Liquid Crystal (AREA)
- Light Guides In General And Applications Therefor (AREA)
- Optical Couplings Of Light Guides (AREA)
- Optical Integrated Circuits (AREA)
Description
AlInGaP/GaAs系可視光LEDの例を図15に示す(簡単のため、基本的な層構造のみを示す)。この材料系では、赤色から緑色の可視光を発光できるLEDを実現できる。まず、n型GaAs基板1上に、n型(Alx Ga1-x )0.5 In0.5 Pクラッド層2(0<x<1)、それよりバンドキャップの小さいアンドープ(Aly Ga1-y )0.5 In0.5 P活性層3(0<y<1,y<x)、p型(Alx Ga1-x )0.5 In0.5 Pクラッド層4を結晶成長する。最上部(p側)には、ワイヤボンドのための円形電極8をn型GaAs基板1の底面にはn側全面電極9を形成する。
このLEDチップ10は、そのままでは扱いにくいので、パッケージ(外囲器)が必要である。その1例として大型SMD(Surface Mount Device)パッケージ20がある。この光学的構造を図16に示す。
次に、LDの特徴である導波路構造(メサストライプ)5を最上部(p型)に形成する。このメサストライプの横を選択的にn型(Alx Ga1-x)0.5 In0.5 P電流ブロック層6:p型(Alx Ga1-x)0.5 In0.5 P電流ブロック層7で埋め込む。これによりp−n逆接合ができるため電流がブロックされる。そして電流はストライプ5部分にのみ効率よく集中して注入される。この上にp型(Alx Ga1-x)0.5 In0.5 P第二グラット層4′を結晶成長し、p側全面電極8を形成する。また、LEDと同様に、n側全面電極9をn型GaAs基板1の底面に形成する。光出力を取り出すのは、端面の導波路端からのみである。この場合、発光面は波長オーダーのサイズ(1 ミクロン程度)の非常に微小な点である。
発光を平準化させるには、照明やバックライトの分野では、一般に導光板が用いられる。しかし、導光板は、サイドから光を入力し、その光を幾何光学的に分散させるために、その構造自体が厚くなる欠点がある。
導光板をバックライトに使用した例を図20に示す。サイドから導光板30にRGB三原色のLEDパッケージ20、21、22からの光を入射させた場合、混色して白色化するためには、サイドから所定の距離が必要であり、その間は白色化できずに各色がバラバラに出てしまう。それを覆い隠すことは可能であるが、隠された部分はロスとなる。
また、LED等の点光源を平面状に並べてバックライトを構成する方法もある。この様子を図21に示す。それぞれのLED素子20〜28を実装(マウント等)するためにプリント基板40が必要であり、素子からの放熱も考慮しなくてはいけない。バックライト面全体が発熱で熱くなってしまう(簡単のため、プリント基板の煩雑な配線は省略した)。この方法は、指向性点光源を並べることになり、LED20〜28の部分のみ輝度が突出し易い。
ここで、導波路を利用した発光素子を議論する(LDも含まれる)。導波路は、そもそも導波方向以外に光は漏れない。端面からのみ入出力が可能である。しかし、導波光を導波路に沿って線状に取り出す方法がある。Bragg散乱次数が二次以上の回折格子を導波路に沿って形成する。この回折格子に結合した導波光を、いわゆる放射モード光(radiation mode)として取り出すものである(回折格子は一種の単純なホログラムである。同様にホログラフィックな位相パターンによって導波路に沿って出力を取り出せる)。
これらの放射モード(radiation mode)に関する解析は、例えば、非特許文献1〜4等に詳細が掲載されている。また、発明者もこのGCSELに関して、特許文献1〜4等に開示されている。GCSELは、半導体ウエーハそのものにモノリシック(monolithic)に形成するものであり、長尺もしくは大面積で薄い面状発光体という本発明の目的には不向きである。発熱や実装の問題のある発光素子自身とは分離させ、安価で大面積可能な材料で、導波路に沿ってホログラフィックに光を取り出す工夫が必要である。
(1)CCFL等の放電管は、電圧が高く厚い。
(2)LEDやLDを用いた指向性点光源の平面アレイは、点の輝度が高く、面全体で均一性が得にくい。また、発光素子には電流を流す必要があり、素子自身の発熱とその放熱が問題である。さらに、素子の高さが平面発光板の厚さを限定する。
(3)LEDやLDは、温度が上昇すると波長が長波長にシフトする。そのため、色度の温度安定性が悪い。つまり、色の変化が起き易い。
(4)導光板に側面から光を入力する平面光源は、単色のLEDからの出力を混色させるための領域が必要である。また、幾何光学的な厚さが必要であり、それほど薄くはできない。また、平面上の所望の領域のみを所望の波長で効率よく照明するような制御性にとぼしい。
(5)導波路に沿って二次以上の回折格子を形成して放射モード光を取り出す発光デバイスは、コヒーレンシが良いため眼の安全や干渉の心配がある。導波路自体は非常に狭い幅なので点状から線状の光源となりうるが、面状の光源ではない。
本発明の発光デバイスの一態様は、導波モード光を外部に取り出すホログラフィックな光学構造を有する平面導波路と、この表面導波路を囲むように形成された透明シートと、前記平面導波路の片端もしくは両端に配置されて前記平面導波路に光結合する発光体と、前記透明シートの少なくとも一方の表面もしくは前記透明シートの少なくとも一方の表面に近接して形成された光学拡散機能を有するシートとを具備し、前記発光体は、前記発光体が光結合する前記平面導波路の片端もしくは両端に配置されているか、或いは前記発光体と前記平面導波路の端面との間に前記発光体からの光を導波する他の平面導波路が介在するように配置されていることを特徴としている。
図1は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図18と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート(透明シート)210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路コア200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路コア200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。図18に示す従来技術と異なるのは、比較的コヒーレンシの良い放射モード光400を拡散散乱させる光拡散板(光学拡散機能を有するシート)500、501が導波クラッドシート210の上下に設けられていることである。放射モード出力400は、この拡散散乱によって、広い角度から視認されるようになる。また、細い線状の光源であった導波路200が拡散板500、501では、拡散されて幅の広い発光面として視認される。導波路200からの放射モード発光は、放射角が狭いために効率の良い発光メカニズムといえる。即ち、この放射モード発光体と、可視光照明としての応用に合致する光拡散板との組み合わせが特徴的な効果を生じる結果となる。
図2は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図18及び図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。
この実施例の発光デバイスでは、光ファイバーを用いている点で図1及び図18の構造とは相違している。即ち、基板40上に設けられた発光源であるLEDパッケージ20からの光は、一旦光ファイバー600に集光され、遠く離れた場所から導波路200に結合される。
この実施例の発光デバイスは、図1と基本構造が同じであり、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。
この実施例では光拡散シート500、501が導波路クラッドシート210の上下に一体化して密着していることに特徴がある。導波路クラッドシート210の表面が拡散効果を持つように凹凸加工が施されているようにしても良い。
導波路クラッドシートと拡散シートを一体化することによりアセンブリを低コスト化が可能になると共に非常に扱い易くなるために応用性に富むようになる。光源は、LEDに限らず、LDでも良い。両者は、同じ導波路を持つデバイスであり、放射角の狭いLDの方が導波路への光結合を向上させることが出来る。
この実施例の発光デバイスは、図1と基本構造が同じであり、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。
この実施例では蛍光体入り光拡散シート700、701が導波路クラッドシート210の上下に貼り付けるか蛍光体そのものを導波路クラッドシート210に塗布することに特徴がある。ここに用いる蛍光体としては、例えば、YAG(Yttrium Aluminum Garnet) がある。
導波路に導入される光の波長は470nmの青色である。青色の放射モード光400により黄色の蛍光体であるYAGが励起され、黄色の発光も得られる。青色の放射モードもYAG蛍光体によって散乱されるため、実施例1の光拡散板と同様の効果も得られる。結果的に青色と黄色の光が混色することにより疑似白色が得られる。即ち、この実施例では白色平面光源が実現している。
また、二次の回折格子100から得られる放射モード光は、その周期によって波長が選択されるため、波長の変化が少ない利点を有する。LEDは一般に温度上昇により長波長側にピーク波長がシフトする。これにより蛍光体の励起効率も変化し、色味としては複雑に変化する。LEDの波長変化があっても回折格子のフィルタ作用により放射モード光の波長がフィクスされる。したがって、この実施例では回折格子を使う発光機構により波長の温度変化の少ない安定した色度が得られる。
また、実施例2のようにファイバ600を使えば、LEDパッケージ20を導波路クラッドシート210から距離を置くことができる。つまり、バックライト用平面光源である導波路クラッドシートからLEDを離すことにより、LEDの温度制御がより容易になり、その点からも色度や輝度の制御性が向上する。光源としては、LEDに限らず、LDでも良い。両者は、同じ導波路を持つデバイスであり、放射角の狭いLDの方が導波路への光結合を向上させることが出来る。
図5は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。
この実施例では反射板を用いることに特徴がある。実施例1では導波路200への上下両方向への放射モード光をそのまま拡散して利用するものである。実際の応用、とくにバックライトへの応用では、一方の面のみを照明することが多い。このため、この実施例では導波路200の下方には光拡散板の代わりに反射板510を設ける。これは鏡面の金属が蒸着されているものを用いる。導波路200の上方には実施例1と同様に光拡散板500を用いる。
図6は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図18と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子100を持つ導波路(コア)200とそれを囲む導波路クラッドシート210とより構成されている。LEDパッケージ20からの出力(導波モード光)は、導波路200に入力され、導波路200に沿って進む。図では導波モード光300は矢印で示される。回折次数が二次の場合は導波路コア200の上下、ほぼ垂直な方向に放射モード光出力400を取り出すことができる。図1に示す発光デバイスと異なるのは、LEDパッケージが一対であることに特徴がある。また、実施例1と同様に、比較的コヒーレンシの良い放射モード光400を拡散散乱させる光拡散板500、501が導波クラックシート210の上下に設けられている。
これを克服する方法の1つがこの実施例で行われる導波路200の両端から光を入力することである。これにより均一性を向上させることができる。また、2つのLEDパッケージ20、21の出力を独立に制御することにより導波路200に沿う放射モード光400の分布を調整することができる。光源としてLDを使うことができる。
図7は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路(コア)とそれを囲む導波路クラッドシート210とより構成されている。
この実施例は複数のLEDパッケージ(この実施例では3個)を用いることに特徴がある。即ち、LEDパッケージ20、21、22を並列して用いる。並列に配置したLEDパッケージ20、21、22からの出力(導波モード光)は、それぞれ導波路200、201、202に入力され、導波路200、201、202に沿って進む。回折次数が二次の場合は導波路200、201、202の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。また、細い線状の光源であった導波路200、201、202が光拡散板では、拡散されて幅の広い発光面として視認される。導波路200、201、202からの放射モード発光は、放射角が狭いために効率の良い発光メカニズムといえる。即ち、この放射モード発光体と、可視光照明としての応用に合致する光拡散板との組み合わせが特徴的な効果を生じる結果となる。
図8は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路(コア)とそれを囲む導波路クラッドシート210とより構成されている。
この実施例は複数のLEDパッケージ(この実施例では3個)を用いることに特徴があり、基本構造が実施例7のものと同じである。即ち、実施例7の発光デバイスに光ファイバ600、601、602を配するものである。光拡散板や反射板の図示は省略する。
ここで、導波路クラッドシート210は、共通の透明シートである。複数の導波路200、201、202を1つの透明シートに内包することでシートを面方向に広く拡張できる。つまり、面光源としての応用が広がる。また、導波路200、201、202にそれぞれ異なる波長(例えば、RBGの三原色)を割り当てることで隣接する複数の細線導波路を1つの混色ユニットと考えることができる。さらに、その混色ユニットを繰り返すことで白色を含む混色応用としてその応用範囲が広がる。また、光ファイバを配することにより、導波路クラッドシートから離れた位置にLEDパッケージを配置することができる。
図9は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路とそれを囲む導波路クラッドシートとより構成されている。
この実施例は1つのLEDパッケージと複数の導波路(この実施例では3本)とを用いることに特徴がある。即ち、LEDパッケージ20からの出力(導波モード光)は、導波路200、201、202に入力され、導波路200、201、202に沿って進む。回折次数が二次の場合は導波路200、201、202の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。
細い線状の光源であった導波路200、201、202が光拡散板では、拡散されて幅の広い発光面として視認される。導波路200、201、202からの放射モード発光は、放射角が狭いために効率の良い発光メカニズムといえる。即ち、この放射モード発光体と、可視光照明としての応用に合致する光拡散板との組み合わせが特徴的な効果を生じる結果となる。
また、図9で示した発光デバイスを1つのユニットとして、更に、この構造を横方向に展開することもできる。これにより光源素子の個数を減らしてアセンブリの手間を減らすことが可能になる。このフレア構造は他の実施例の発光デバイスの入力部にも適用することが可能である。
図10は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路とそれを囲む導波路クラッドシートとより構成されている。
この実施例は1つのLEDパッケージと複数の導波路(この実施例では3本)とを用い、さらに光ファイバを用いることに特徴がある。即ち、LEDパッケージ20からの出力(導波モード光)は、導波路200、201、202に入力され、導波路200、201、202に沿って進む。回折次数が二次の場合は導波路200、201、202の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。
この実施例ではLEDパッケージ20とフレア構造230の間に光ファイバ600を介在させる。これにより、電気回路や発熱を考慮する必要のある駆動機構と光のみを必要とする主要機能部分とを距離的に分離することが出来る。光源は、LEDに限らず、LDを用いても良い。両者は、同じ導波路を持つデバイスであり、放射角の狭いLDの方が導波路への光結合を向上させることが出来る。
図11は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路(コア)とそれを囲む導波路クラッドシートとより構成されている。
この実施例は複数の導波路(この実施例では3本)を配列して収納した導波路クラッドシート210、211、212を積層して用いることに特徴がある。そのために、導波路クラッドシート210、211、212に収納された導波路にはそれぞれ対応するLEDパッケージ(図示しない)が配列され、積み重ねられている。即ち、並列に配置し積み重ねたLEDパッケージからの出力(導波モード光)は、それぞれ導波路に入力され、導波路に沿って進む。回折次数が二次の場合は導波路の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上、導波路クラッドシート212の下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。
図12は、この実施例の発光デバイスの斜視図(光拡散板の表示は省略する)である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路とそれを囲む導波路クラッドシートとより構成されている。
この実施例は、複数の導波路(この実施例では3本)を平面的に配列させて1つの導波路クラッドシートに収納し、この複数の導波路を1つのLEDパッケージを光源とし、光ファイバを介して導波することに特徴があり、さらに、それぞれ1つのLEDパッケージを光源とする導波路クラッドシートを積層する構造(この実施例では3層)に特徴がある。
図13は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路とそれを囲む導波路クラッドシートとより構成されている。
この実施例は複数のLEDパッケージ(この実施例では3個)を用いる。即ち、LEDパッケージ20、21、22を並列して用いる。並列に配置したLEDパッケージ20、21、22からの出力(導波モード光)は、それぞれ導波路200、201、202に入力され、導波路200、201、202に沿って進む。回折次数が二次の場合は導波路200、201、202の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。また、細い線状の光源であった導波路200、201、202が光拡散板では、拡散されて幅の広い発光面として視認される。導波路200、201、202からの放射モード発光は、放射角が狭いために効率の良い発光メカニズムといえる。即ち、この放射モード発光体と、可視光照明としての応用に合致する光拡散板との組み合わせが特徴的な効果を生じる結果となる。
また、回折格子からの出力は、回折格子の周期によって波長も選別でき、更に、回折格子の深さ、形状によって取り出す出力を制御することもできる(深いほど大きな出力がえられる)。但し導波路面内で微細な回折格子の深さや形状を変化させるのは難しいので回折格子領域の幅や長さを変えることで出力を変化する方が実現性が高い。回折格子そのものよりもその領域は遥かに大きいので、レジストとマスクによって容易にパターニングできるからである。
これにより導波路クラッドシート210面内での発光領域の出力は均一化できる。光源はLEDに限らず、LDを用いても良い。両者は、同じ導波路を持つデバイスであり、放射角の狭いLDの方が導波路への光結合を向上させることが出来る。
図14を参照して実施例14を説明する。図14は、この実施例の発光デバイスの斜視図である。この発光デバイスは、図1と導波路の基本構造が同じである。即ち、Bragg散乱次数を持つ回折格子を持つ導波路とそれを囲む導波路クラッドシートとより構成されている。
この実施例は配列された複数の導波路を囲む1つの導波路クラッドシートを用いる。導波路に対応するLEDパッケージ(図示しない)は、各導波路にそれぞれ対応させても良いし、1つのLEDパッケージを全ての導波路に対応させても良い。LEDパッケージの出力(導波モード光)は、それぞれ導波路200、201、202、・・・に入力され、導波路200、201、202、・・・に沿って進む。回折次数が二次の場合は導波路200、201、202、・・・の上下、ほぼ垂直な方向に放射モード光出力を取り出すことができる。また、比較的コヒーレンシの良い放射モード光を拡散散乱させる光拡散板(図示しない)が導波路クラッドシート210の上下に設けられている。放射モード出力は、この拡散散乱によって、広い角度から視認されるようになる。
この実施例では、赤色フィルタ800、801、802の位置にのみ赤色の放射モード出力が放射されるように、導波路200、201、202、・・・に回折格子100、101、102を配置している。回折格子自身が波長選択性を持つフィルタ機能を持つことを考慮すると、最終的にはLCDの波長フィルタが不要になる。
以上、実施例で説明したように、本発明は、LEDやLDのような半導体光源を用いながら、薄くて扱い易く所望の位置に所望の波長の発光領域を限定でき、無駄な発光の少ない効率の良い可視光の発光デバイスを提供する。また、発光位置の制御性能によって白色等の混色の実現も容易になる。
また、導波路に沿う二次以上の回折格子を介して放射モード光を取り出す発光デバイスは、コヒーレンシが良いために目の安全や干渉の心配があったが、光拡散板や蛍光体シート等によってこの問題が回避できる。
2・・・n型(Alx Ga1-x )0.5 In0.5 Pクラッド層(0<x<1)
3・・・アンドープ(Aly Ga1-y )0.5 In0.5 P活性層(0<x<1、0<y<1)
4・・・p型(Alx Ga1-x )0.5 In0.5 Pクラッド層
5・・・メサストライプ
6・・・n型(Alx Ga1-x )0.5 In0.5 P電流ブロック層
7・・・p型(Alx Ga1-x )0.5 In0.5 P電流ブロック層
8・・・p側円形ボンディングパッド(p側全面電極)
9・・・n側全面電極
10・・・LEDチップ
11・・・カソード側リードフレーム
12・・・銀ペースト
13・・・アノード側リードフレーム
14・・・金ワイヤ
15・・・白色樹脂(外囲器)
16・・・透明樹脂(エポキシ)
20、21、22、23、24、25、26、27、28・・・LEDパッケージ
30・・・導光板
40・・・プリント板
50・・・光取出窓
100、101、102、103、104、105、106、107、108・・・回折格子形成領域
110・・・1/4波長位相シフト
200、201、202、203、204、205、206、207、208・・・導波路(コア)
210、211、212・・・導波路クラッドシート
220・・・光源結合用平面導波路
230・・・光源結合用平面導波路のフレア構造
240、241、242・・・光分配用分岐導波路
250、251、252・・・光分配用分岐導波路クラッドシート
300・・・導波モード光
400・・・放射モード光
500、501・・・光拡散板(光学拡散機能を有する構造)
510・・・反射板
600、601、602・・・光ファイバ
700、701・・・蛍光体入りシート(蛍光体塗布層)
800、801、802・・・LCDのカラーフィルタ
Claims (7)
- 導波モード光を外部に取り出すホログラフィックな光学構造を有する平面導波路を囲む透明シートと、前記平面導波路の片端もしくは両端に配置されて前記平面導波路に光結合する発光体と、前記透明シートの少なくとも一方の表面もしくは前記透明シートの少なくとも一方の表面に近接して形成された光学拡散機能を有するシートとを具備し、前記発光体は、前記発光体が光結合する前記平面導波路の片端もしくは両端に配置されているか、或いは前記発光体と前記平面導波路の端面との間に前記発光体からの光を導波する他の平面導波路が介在するように配置されていることを特徴とする発光デバイス。
- 前記透明シートの少なくとも一方の表面に発光体の波長に励起されて発光する蛍光体が形成されているか、前記透明シートの少なくとも一方の表面に近接して発光体の波長に励起されて発光する蛍光体が含まれるシートを設けることを特徴とする請求項1に記載の発光デバイス。
- 前記平面導波路は、複数形成され、前記平面導波路の内、少なくとも一本は、他の平面導波路とは異なる波長の光が導波されるように構成されていることを特徴とする請求項1または請求項2のいずれかに記載の発光デバイス。
- 前記透明シートが複数枚積層されていることを特徴とする請求項1乃至請求項3のいずれかに記載の発光デバイス。
- 前記導波モード光を外部に取り出すホログラフィックな光学構造は前記導波モード光波長に対して二次以上のBragg回折格子機能を有することを特徴とする請求項1乃至請求項4のいずれかに記載の発光デバイス。
- 前記平面導波路が形成された前記透明シートもしくは前記積層された透明シートの少なくとも一方の面に接するか、もしくは近接して反射面が配され、かつ、前記反射面は、前記導波路から前記反射面と反対方向に出射される光線と、位相的に強め合う干渉を起こす位置に配されていることを特徴とする請求項1乃至請求項5のいずれかに記載の発光デバイス。
- 前記平面導波路に光結合する前記発光体がLEDもしくは半導体レーザーであることを特徴とする請求項1乃至請求項6のいずれかに記載の発光デバイス。
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006037339A JP5182909B2 (ja) | 2006-02-15 | 2006-02-15 | 発光デバイス |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2006037339A JP5182909B2 (ja) | 2006-02-15 | 2006-02-15 | 発光デバイス |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2007219030A JP2007219030A (ja) | 2007-08-30 |
JP5182909B2 true JP5182909B2 (ja) | 2013-04-17 |
Family
ID=38496430
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2006037339A Expired - Fee Related JP5182909B2 (ja) | 2006-02-15 | 2006-02-15 | 発光デバイス |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5182909B2 (ja) |
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9739921B2 (en) | 2014-10-20 | 2017-08-22 | Mitsubishi Electric Corporation | Surface light source device and liquid crystal display device |
Families Citing this family (8)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US20120300138A1 (en) * | 2010-01-26 | 2012-11-29 | Sharp Kabushiki Kaisha | Lighting device, display device and television receiver |
US10191196B2 (en) | 2014-11-20 | 2019-01-29 | Samsung Electronics Co., Ltd. | Backlight unit for holographic display apparatus and holographic display apparatus including the same |
JP6566313B2 (ja) * | 2015-03-13 | 2019-08-28 | パナソニックIpマネジメント株式会社 | 表示装置および発光装置 |
WO2016171115A1 (ja) * | 2015-04-21 | 2016-10-27 | 日本碍子株式会社 | グレーティング素子および照明装置 |
WO2016170803A1 (ja) * | 2015-04-21 | 2016-10-27 | 日本碍子株式会社 | グレーティング素子および照明装置 |
WO2017006797A1 (ja) * | 2015-07-03 | 2017-01-12 | 日本碍子株式会社 | 光学素子および発光装置 |
JPWO2017006796A1 (ja) * | 2015-07-03 | 2018-04-19 | 日本碍子株式会社 | グレーティング素子および発光装置 |
KR102659194B1 (ko) | 2016-07-26 | 2024-04-19 | 삼성전자주식회사 | 홀로그래픽 디스플레이 장치용 박형 백라이트 유닛 및 이를 포함하는 홀로그래픽 디스플레이 장치 |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US6011602A (en) * | 1995-11-06 | 2000-01-04 | Seiko Epson Corporation | Lighting apparatus with a light guiding body having projections in the shape of a trapezoid |
JP2865618B2 (ja) * | 1996-05-31 | 1999-03-08 | 嶋田プレシジョン株式会社 | 導光板および導光板アセンブリ |
-
2006
- 2006-02-15 JP JP2006037339A patent/JP5182909B2/ja not_active Expired - Fee Related
Cited By (1)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
US9739921B2 (en) | 2014-10-20 | 2017-08-22 | Mitsubishi Electric Corporation | Surface light source device and liquid crystal display device |
Also Published As
Publication number | Publication date |
---|---|
JP2007219030A (ja) | 2007-08-30 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5182909B2 (ja) | 発光デバイス | |
JP4934331B2 (ja) | 面状発光デバイス | |
US8419251B2 (en) | Light emitting device and method for manufacturing same, lighting fixture, and lighting system | |
EP3264542B1 (en) | Light-emitting device | |
US7781958B2 (en) | Light emitting device | |
JP4642054B2 (ja) | 面発光装置 | |
US11165223B2 (en) | Semiconductor light source | |
US20060139926A1 (en) | Light-emitting device, and illumination apparatus and display apparatus using the light-emitting device | |
KR20090130016A (ko) | 반도체칩 및 광도파로층을 포함한 장치 | |
JP2010257603A (ja) | 発光装置及びこの発光装置を用いた表示装置 | |
TWI842937B (zh) | 面發光光源 | |
JP2008251685A (ja) | 発光装置及び発光モジュール | |
KR20190118977A (ko) | 발광장치 | |
JP2008004645A (ja) | 発光デバイス | |
JP2012059737A (ja) | 発光装置、バックライトユニット、液晶表示装置及び照明装置 | |
JP4956064B2 (ja) | 高輝度発光デバイス | |
JP2007266484A (ja) | アイセーフレーザ光源装置およびそれを用いた通信機器ならびに照明機器 | |
US20150200340A1 (en) | Light-emitting device | |
US11828971B2 (en) | Light-emitting module and planar light source | |
US20220199867A1 (en) | Light emitting device and planar light source | |
US9735544B2 (en) | Surface emitting laser element | |
KR20120030871A (ko) | 발광 소자 패키지 및 이를 이용한 라이트 유닛 | |
KR20110087596A (ko) | Led 패키지 및 이를 구비한 에지형 백 라이트 유닛 | |
JP2006261222A (ja) | 発光素子および照明装置 | |
JP2013258119A (ja) | 発光装置、および表示装置 |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20090209 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20111122 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120111 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120529 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120711 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121218 |
|
A711 | Notification of change in applicant |
Free format text: JAPANESE INTERMEDIATE CODE: A712 Effective date: 20121227 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20130111 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20160125 Year of fee payment: 3 |
|
LAPS | Cancellation because of no payment of annual fees |