JP5179970B2 - 木材強度評価方法及び構造物の改修診断方法 - Google Patents

木材強度評価方法及び構造物の改修診断方法 Download PDF

Info

Publication number
JP5179970B2
JP5179970B2 JP2008168618A JP2008168618A JP5179970B2 JP 5179970 B2 JP5179970 B2 JP 5179970B2 JP 2008168618 A JP2008168618 A JP 2008168618A JP 2008168618 A JP2008168618 A JP 2008168618A JP 5179970 B2 JP5179970 B2 JP 5179970B2
Authority
JP
Japan
Prior art keywords
wood
compressive strength
drill
value
test piece
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008168618A
Other languages
English (en)
Other versions
JP2010008258A (ja
Inventor
楠  寿博
長仁 木林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Takenaka Corp
Original Assignee
Takenaka Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Takenaka Corp filed Critical Takenaka Corp
Priority to JP2008168618A priority Critical patent/JP5179970B2/ja
Publication of JP2010008258A publication Critical patent/JP2010008258A/ja
Application granted granted Critical
Publication of JP5179970B2 publication Critical patent/JP5179970B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Investigating Strength Of Materials By Application Of Mechanical Stress (AREA)

Description

本発明は、木造構造物の改修の要否判定に用いられる木材強度評価方法及び構造物の改修診断方法に関する。
木造構造物の改修工事の増加に伴い、改修工事前に対象構造物の健全性(改修要否)を診断することが求められている。特に、使用されている構造部材(木材)をできるだけ残して改修工事を行いたい場合では、劣化状況を踏まえた構造部材の強度性能(例えば圧縮強度)の把握が必要となる。しかし、構造部材の強度性能まで含めた健全性の評価方法は確立されていない。
木材の劣化状況のみを客観的に評価する方法の例としては、ピン打込み深さ測定法、超音波測定法、釘引き抜き抵抗測定法が挙げられる。ピン打込み深さ測定法は、一定の力で木材にピン(長さ4cm、または、7cm)を打込み、木材内部へのピンの貫入深さにより健全性を判断するものである。超音波測定法は、木材を挟んだ2つのセンサ間の超音波伝播時間を測定し、伝播速度の大小から健全性を判断するものである。釘引き抜き抵抗測定法は、一定の力で打込んだ釘の引き抜き抵抗力から健全性を判断するものである。
一方、他の評価方法として、木材の腐朽評価方法が挙げられる(例えば、特許文献1、2参照)。特許文献1の木材劣化診断方法では、評価対象木材をインパクトハンマーで打撃して、得られた計測波形から打撃速度と最大打撃力を求めて劣化度を診断している。特許文献2の木材腐朽評価方法では、評価対象木材の一部を試料片として採取し、培地とともに密封容器に収容して、所定期間経過後に密封容器内から発生する水素の濃度に基づいて木材の腐朽度を評価している。
しかし、上記評価方法は、いずれも構造部材の劣化部分を特定するのみで、当該構造部材の強度性能まで把握するものではなかった。
特開2002−257700 特開2004−286590
本発明は、評価対象木材の圧縮強度を評価することができる木材強度評価方法及び構造物の改修診断方法を得ることを目的とする。
本発明の請求項1に係る木材強度評価方法は、ドリルを評価対象木材の互いに直交する2方向から交差しないように貫入させ、得られた2つの抵抗値を平均した平均抵抗値と、予め得られている木材へのドリル貫入時の平均抵抗値と木材の圧縮強度値との関係式とに基づいて、評価対象木材の圧縮強度値を求める。
上記構成によれば、木材について、ドリル貫入時の平均抵抗値と、圧縮強度値との相関データによって、予め関係式が求められている。そして、評価対象木材にドリルを貫入して得られた抵抗値を関係式に代入するだけで、評価対象木材の圧縮強度の予測値が得られる。これにより、従来、劣化箇所の有無のみしか分からなかった評価対象木材で、圧縮強度測定を行わずに、圧縮強度を評価することができる。
上記構成によれば、木材の繊維方向、半径方向、及び接線方向の互いに直交する方向で、ドリル貫入時の抵抗値に多少のばらつきがあっても、平均化することで、方向による測定値のばらつきを低減することができる。
本発明の請求項に係る構造物の改修診断方法は、請求項1に記載の木材強度評価方法で得られた評価対象木材の圧縮強度値と、木材の基準圧縮強度値とを比較して、前記評価対象木材を備えた構造物の改修の要否を診断する。
上記構成によれば、評価対象木材にドリルを貫入して抵抗値を測定することにより、評価対象木材をほとんど破損することなく圧縮強度値が推定でき、この圧縮強度値を用いて、構造物の改修の要否まで容易に診断可能となる。
本発明は、上記構成としたので、評価対象木材の圧縮強度を評価することができる。
本発明の木材強度評価方法及び構造物の改修診断方法の実施形態を図面に基づき説明する。ここでは、ドイツのInstrumenta_Mechanik_Labor_GmbH社製で、型式IML-RESI_F300のドリル貫入抵抗測定機レジストグラフ(Resistograph:登録商標)を用いた評価方法について説明する。
図1に示すように、レジストグラフ10は、評価対象木材Tに向かう方向を長手方向とする略直方体状の箱体からなる本体部12と、本体部12の底面側に設けられ、測定者が把持して本体部12を支持する把持部14とを有している。
本体部12の内側には、評価対象木材Tに向かう方向を軸方向とするドリル22と、ドリル22の回転駆動(矢印R方向)及び直進駆動(矢印X方向)を行う駆動部(図示省略)が収納されている。ドリル22は、直径1.5mmの鋼鉄製シャフトの先に3mm幅の錐が付いた特殊合金ドリルである。また、ドリル22は、本体部12の評価対象木材Tと対向する面に形成された開口を通って、評価対象木材Tに向けて移動可能となっている。
また、本体部12の内側には、ドリル22を評価対象木材Tに貫入させたときに受ける内部抵抗(貫入抵抗)を測定して数値化する測定部(図示省略)と、測定部で得られた測定値を記憶するための記憶部(図示省略)とが設けられている。なお、測定部で測定されたドリル22の貫入抵抗は、記憶部に記憶されるだけでなく、本体部12の上部に設けられたチャートレコーダ18に波形グラフとして出力される。
ドリル22の評価対象木材Tへの貫入時の座標分解能は0.1mmとなっている。なお、ドリル22の長さは、上記型式では300mmとなっているが、用途に応じてレジストグラフ10の型式を選択することで、400mm、500mmが選択できる。また、ドリル22が移動する前述の開口の周囲3箇所には、評価対象木材Tに当接される円錐状の楔部20が設けられている。
一方、把持部14の底部には、充電器が接続され、レジストグラフ10の駆動部に電源供給を行うバッテリー部16が設けられている。また、把持部14には、測定者が把持部14を把持して押すことでON、OFFが切り替わり、レジストグラフ10の動作開始又は動作停止を行うスイッチ24が設けられている。
レジストグラフ10は、評価対象木材Tの硬さに応じて2種類の測定レベル(レベル1、レベル2)が選択可能となっている。概ねレベル1は針葉樹木材、レベル2は広葉樹木材が対象となっている。
図2には、レジストグラフ10を用いて、測定厚さ100mmの木材にドリル22を貫入させたときの貫入抵抗値の測定結果の一例がグラフで示されている。なお、図2のグラフは、得られたデータをスムージング処理して表示しているため、滑らかな曲線となっているが、実際のグラフは、上下に貫入抵抗値がばらついたものとなる。
グラフの横軸は、評価対象木材Tの表面からのドリル22の貫入深度であり、縦軸は、ドリル22貫入時に測定される貫入抵抗値である。なお、横軸の1目盛りは10mmに相当するが、縦軸の1目盛りは単位が設定されたものではなく、ドリル22の貫入抵抗を相対的に比較するための値として用いられている。
図2のグラフは、劣化の無い健全木材について測定したものである。ここで、複数のピークが見られる貫入深度は木材の年輪に相当する位置であり、当該位置が硬いことを表している。なお、腐朽等による劣化部分がある木材を用いたときは、劣化部分の貫入深度において、貫入抵抗値がゼロか、ゼロに近い状態のまま推移するため、劣化箇所を判定することが可能である。
次に、試験片の作成方法について説明する。なお、この試験片は、レジストグラフ10(図1参照)による貫入抵抗と、後述する圧縮強度との相関データを得るために準備するものである。
図3(a)には、試験片を得るために選定された解体時の木造構造物30の大梁32が示されている。ここで、大梁32は、べいまつの集成材で構成されており、腐朽領域A(図の網掛け領域)と、腐朽領域Aに比べて健全(腐朽が比較的進んでいない状態)と思われる健全領域Bとが存在しているものとして説明する。
腐朽領域Aの有無の判断は、貫入抵抗測定等により行う客観的な方法による判断でなくともよく、目視、打診、触診、臭覚といった経験的な判断で行ってもよい。これは、健全領域Bの貫入抵抗値に比較して低い貫入抵抗値が得られればよいためである。ここで、試験片を得るため、腐朽領域A及び健全領域Bを含む直方体状のブロック34を大梁32から切り出す。
続いて、図3(b)に示すように、切り出されたブロック34は、さらに複数のブロック36、38に切り分けられ、さらに、ブロック36、38を構成する各ラミナの層毎に、接着層を含まないように、板材36A〜36E、板材38A〜38Eが切り出される。切り出された板材36A〜36E、板材38A〜38Eの厚さは20〜25mmとなっている。
続いて、図3(c)に示すように、個々の板材36A〜36E、板材38A〜38Eを短冊切りにして、棒状材40A〜40Eを作成する。そして、各棒状材40A〜40Eの腐朽領域A及び健全領域Bから、それぞれ20mm×20mm×40mmの試験片を切り出す。なお、この試験片は、同じ部位で隣接した2枚を1セットとして切り出し、一方を第1試験片42、他方を第2試験片44とする。
ここで、貫入抵抗と圧縮強度の相関に着目した理由について説明する。貫入抵抗は、ドリル22を木材に貫入したときの貫入しにくさを表している。このため、ドリル22の貫入抵抗は、一般に木材の密度が高くなるほど大きくなる。一方、木材の圧縮強度は、一般に木材の密度が高くなるほど大きくなる。
これらの関係から、貫入抵抗が大きいときは圧縮強度も大きく、貫入抵抗と圧縮強度はほぼ比例関係として評価出来ると考えられる。この関係式を予め測定により求めておけば、現地での測定が容易な貫入抵抗から、現地での測定が困難な圧縮強度が予測できると考えた。
次に、第1試験片42を用いた貫入抵抗測定方法について説明する。
図4に示すように、木材は、繊維方向(矢印L方向)、半径方向(矢印R方向)、接線方向(矢印T方向)の互いに直交する3軸を有する。木材の強度的性質は、これらの軸方向によって大きく異なるが、さらに年輪として認識される色の濃い夏材部(夏から初秋にかけて成長した部分:晩材ともいう)と、色の薄い春材部(春から初夏にかけて成長した部分:早材ともいう)で強度的性質が異なっている。
この木材の強度的性質の異方性を考慮して、第1試験片42へのドリル22(図1参照)の貫入方向を2方向(矢印D1、D2方向)とする。なお、矢印D1方向と矢印D2方向は、平面視にて略直交となるように設定している。また、図4において、a=b=20mm、c=40mmとなっている。
第1試験片42の貫入抵抗測定では、まず、レジストグラフ10(図1参照)のドリル22を第1試験片42の側面(L−R面)に垂直で、且つなるべく断面中心を通るように矢印D1方向に貫入して、貫入抵抗測定を行う。
続いて、矢印D1方向の測定によって形成された貫通穴と交差せず、第1試験片42の側面(L−T面)に垂直で且つなるべく断面中心を通るように、ドリル22を矢印D2方向に貫入して貫入抵抗測定を行う。得られた測定データは、それぞれ積分平均され、D1、D2方向の平均貫入抵抗値(X1、X2とする)が得られる。
ここで、実際には、図4のような貫入方向と年輪方向の関係になるとは限らず、年輪方向が各試験片の断面に対して様々な角度をとることになる。この角度の影響、即ち角度の違いによる測定値のばらつきを低減するため、略直交する2方向(D1、D2方向)の平均貫入抵抗値X1、X2をさらに平均して平均抵抗値Mを得る。M=(X1+X2)/2である。この平均抵抗値Mを第1試験片42の貫入抵抗値として用いる。
なお、試験片としてべいまつを用いているため、レジストグラフ10の測定感度は、基本的にレベル1を用いればよいが、ここではレベル2の測定感度でも測定を行う。
次に、第2試験片44を用いた圧縮強度測定方法について説明する。
圧縮強度測定は、JIS−Z2101(木材の試験方法)に準じた試験方法により行う。なお、第2試験片44の長手方向は繊維方向と平行となっており、圧縮強度値σは、第2試験片44の横断面積をA[mm]、最大荷重をPm[N]として、σ=Pm/A[N/mm]で求める。
次に、貫入抵抗と圧縮強度の関係式を求める方法について説明する。
第1試験片42で得られた平均抵抗値Mを横軸とし、第2試験片44で得られた圧縮強度値σを縦軸として、複数の第1試験片42及び第2試験片44で得られたデータを用いて回帰分析を行う。これにより得られた回帰式(一次回帰直線)を貫入抵抗と圧縮強度の関係式とする。なお、参考として、5%下限直線についても求める。
ここで、図5には、木材の貫入抵抗と圧縮強度の関係式を求める上記の手順をまとめたフローチャートが示されている。図5において、まず、ステップS1として、腐朽した構造物又は健全な構造物の木材から試験片を切り出す。続いて、ステップS2として、試験片を第1試験片42と第2試験片44に切り分ける。
続いて、ステップS3では、第1試験片42の貫入抵抗をレジストグラフ10で測定する。一方、ステップS4では、第2試験片44の圧縮強度を圧縮試験により測定する。
続いて、ステップS5として、貫入抵抗測定の平均抵抗値Mと、圧縮強度値σとの複数の相関データから一次回帰式を求める。これらの手順を事前に行うことにより、レジストグラフ10(図1参照)の貫入抵抗と圧縮強度の関係式を準備する。
ここで、図6、図7に、例として、レジストグラフ10のレベル1、レベル2測定におけるn=104(組)の平均抵抗値Mと圧縮強度値σの測定データを示す。なお、図6、図7は、レジストグラフ10の感度設定をレベル1、2として、同一の第1試験片42を貫入抵抗測定したものであって、測定数n=104(共用)である。また、圧縮強度値は、レベル1、レベル2共に、第2試験片44で得られた圧縮強度値を用いている。
図6及び図7の図中に記載した回帰式により、ドリル22の貫入抵抗に対する評価対象木材Tの圧縮強度を算定(推定)することができる(図中のRは相関係数である)。なお、試験片(第1試験片42、第2試験片44)は、完全に腐朽劣化したものばかりでなく、健全部分を多く含むもの、あるいは、試験片全体がほとんど健全であるものも含まれるが、健全部分の有無に関わらず、求められた平均抵抗値に対して当該部分の圧縮強度は一義的に決まる。このため、本実施形態の測定結果は、健全材にも適用が可能である。
また、図6、図7は、べいまつの構造用集成材の試験片を用いた測定結果であるが、上記のように求められた平均抵抗値に対して圧縮強度が一義的に決まるので、樹種の違い(軟らかいもの、堅いもの)によって、これらの関係式が大きく異なることは無いものと考える。このため、他樹種を用いてもドリル22の貫入抵抗と圧縮強度の関係が得られると考える。特に、レジストグラフ10のレベル2の感度を用いれば、比較的堅い部類の木材の健全性評価に適用が可能となる。
図6、図7の測定に用いたn=104組の試験片の含水率は、抵抗式含水率計を用いて測定したところ、11〜14%となっていた。これは、木材が劣化していても、採集(切り出し)した時点で既に乾燥しているためと思われる。
次に、本発明の実施形態の作用について説明する。ここでは、図5のフローチャートに従って、予め貫入抵抗と圧縮強度の関係式(回帰式)が準備されているものとする。
図8には、木材の強度評価方法及び構造物の改修診断方法のフローチャートが示されている。まず、ステップS1として、改修診断が必要とされた現地の木造構造物の評価対象木材Tにレジストグラフ10(図1参照)のドリル22を貫入して、平均抵抗値M(評価抵抗値)を得る。ここで、ドリル22の貫入は、評価対象木材Tの互いに直交する2方向について行い、得られた2つの抵抗値の平均値を評価抵抗値とする。
続いて、ステップS2として、貫入抵抗値と圧縮強度の関係式に評価抵抗値を代入し、評価対象木材Tの圧縮強度値σを求める。なお、貫入抵抗と圧縮強度の関係式は、基本的に一次回帰式を用いるが、5%下限の直線式を用いることも可能である。
続いて、ステップS3として、ステップS2で得られた評価対象木材Tの圧縮強度値σと木材の基準圧縮強度値とを比較して、評価対象木材Tを備えた現地の木造構造物の改修の要否を診断する。ここでは、木材の基準圧縮強度値として、平成12年建設省告示第1452号の木材の基準強度Fc(圧縮強度)を用いる。なお、基準強度Fcは樹種、区分、等級によって異なるので、評価対象木材Tの樹種、区分、等級に合わせて設定する。
例えば、本実施形態で用いたべいまつの甲種構造材一級では、Fc=27.0[N/mm]となっている。これにより、前述の回帰式で得られた圧縮強度値σが27.0[N/mm]より小さい値のときは、現地の評価対象木材が交換または補強が必要と診断する。また、得られた圧縮強度値σが27.0[N/mm]以上のときは、交換又は補強は不要と診断する。
以上説明したように、本発明の木材強度評価方法及び構造物の改修診断方法によれば、木材について、レジストグラフ10のドリル22貫入時の平均抵抗値Mと、圧縮強度値σとの相関データによって、予め回帰式が求められている。そして、評価対象木材Tにドリル22を貫入して得られた評価抵抗値を回帰式に代入するだけで、評価対象木材Tの圧縮強度の推定値が得られる。これにより、従来、劣化箇所の有無のみしか分からなかった評価対象木材Tで、サンプルを採取して強度試験を行うことなく圧縮強度を評価することができる。
また、木材の繊維方向、半径方向、及び接線方向の互いに直交する方向で、ドリル22貫入抵抗値に多少のばらつきがあっても、平均化することで、方向による測定値のばらつきを低減することができる。
さらに、評価対象木材Tにドリル22を貫入して平均抵抗値Mを測定するだけで圧縮強度値σが推定でき、得られた圧縮強度値σと木材の基準強度とを比較して現地の木造構造物の改修の要否まで診断可能となるので、改修診断が容易となる。
また、貫入抵抗値の測定では、評価対象木材Tに直径3mm程度の穴が形成されるのみで、穴の周囲にもともと存在する節や傷、表面汚れ等に混ざり、穴がほとんど認識されないため、非破壊検査に近い状態で強度推定及び改修診断が行える。
また、評価対象木材Tが大断面の部材であっても、簡単な現地測定の結果から、部材内部を含めて精度良く圧縮強度を推定できるので、現地で評価対象木材Tを切り出して実験室で試験を行う場合に比べて、解体、搬送、実験等のコストが不要となる。さらに、評価対象木材Tの強度推定を短時間で行えるので、耐震補強の計画、実施が迅速に行える。
なお、本発明は上記の実施形態に限定されない。
評価対象木材Tの樹種は、べいまつに限らず、杉、ひのき、からまつなどの各種針葉樹や、けやき、栗などの各種広葉樹を含め、レジストグラフ10での測定が可能な木材のほとんどを対象とすることが出来る。
本実施形態では、貫入抵抗値と圧縮強度値の相関データ数n=104としたが、これに限らず、任意にデータ数を設定できる。精度良い回帰式を得るという観点からは、n数は多いほど望ましく、且つ貫入抵抗値の分布が広くなるように試験片を準備する必要がある。
本発明の実施形態に係るレジストグラフの概略図である。 本発明の実施形態に係るレジストグラフで得られるドリルの貫入深度に対する貫入抵抗値のグラフである。 (a)〜(c)本発明の実施形態に係る試験片の切り出し方法を示す工程図である。 本発明の実施形態に係る試験片の斜視図である。 本発明の実施形態に係る木材の貫入抵抗と圧縮強度の関係式の作成方法を示すフローチャートである。 本発明の実施形態に係る試験片をレジストグラフのレベル1の感度で測定したときの平均抵抗値と圧縮強度の関係を示すグラフである。 本発明の実施形態に係る試験片をレジストグラフのレベル2の感度で測定したときの平均抵抗値と圧縮強度の関係を示すグラフである。 本発明の実施形態に係る木材の強度評価方法及び構造物の改修診断方法を示すフローチャートである。
符号の説明
10 レジストグラフ
22 ドリル(ドリル)
42 第1試験片(第1試験片)
44 第2試験片(第2試験片)
T 評価対象木材(評価対象木材)

Claims (2)

  1. ドリルを評価対象木材の互いに直交する2方向から交差しないように貫入させ、得られた2つの抵抗値を平均した平均抵抗値と、
    予め得られている木材へのドリル貫入時の平均抵抗値と木材の圧縮強度値との関係式とに基づいて、評価対象木材の圧縮強度値を求める木材強度評価方法。
  2. 請求項1に記載の木材強度評価方法で得られた評価対象木材の圧縮強度値と、木材の基準圧縮強度値とを比較して、前記評価対象木材を備えた構造物の改修の要否を診断する構造物の改修診断方法
JP2008168618A 2008-06-27 2008-06-27 木材強度評価方法及び構造物の改修診断方法 Expired - Fee Related JP5179970B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008168618A JP5179970B2 (ja) 2008-06-27 2008-06-27 木材強度評価方法及び構造物の改修診断方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008168618A JP5179970B2 (ja) 2008-06-27 2008-06-27 木材強度評価方法及び構造物の改修診断方法

Publications (2)

Publication Number Publication Date
JP2010008258A JP2010008258A (ja) 2010-01-14
JP5179970B2 true JP5179970B2 (ja) 2013-04-10

Family

ID=41588951

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008168618A Expired - Fee Related JP5179970B2 (ja) 2008-06-27 2008-06-27 木材強度評価方法及び構造物の改修診断方法

Country Status (1)

Country Link
JP (1) JP5179970B2 (ja)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739928C1 (ru) * 2020-04-30 2020-12-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Способ экспресс-диагностики резонансных свойств древесины после долгого выдерживания в потолочной конструкции старых сооружений

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6165128B2 (ja) * 2014-12-24 2017-07-19 住友林業株式会社 木材及び木質材料の硬さ試験器
JP2017078690A (ja) * 2015-10-22 2017-04-27 株式会社竹中工務店 木造部材の密度算出方法、及び木造部材のヤング率算出方法
JP6851614B2 (ja) * 2016-09-28 2021-03-31 株式会社コシイプレザービング 被検木材の腐朽診断装置と該装置を用いた腐朽診断方法、及び木材設備の補修方法

Family Cites Families (14)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5399986A (en) * 1977-02-10 1978-08-31 Hitachi Koki Kk Measuring apparatus for hardness of woods
JPS6336274Y2 (ja) * 1981-05-26 1988-09-27
JPS57197468A (en) * 1981-05-29 1982-12-03 Shimizu Constr Co Ltd Wood strength measurer
JPS5816542U (ja) * 1981-07-24 1983-02-01 株式会社フジクラ 硬度測定器
JPH074176A (ja) * 1993-06-14 1995-01-10 Hitachi Constr Mach Co Ltd シールド工事における地山崩壊探査方法
JP3206482B2 (ja) * 1997-03-27 2001-09-10 株式会社イナックス 木材の診断方法及び木材の診断用接続材
JP3238682B2 (ja) * 1999-03-15 2001-12-17 株式会社ナカジマ 木材のプレカット方法および装置
JP3616814B2 (ja) * 2000-07-19 2005-02-02 独立行政法人森林総合研究所 木質材料の内部強度推定方法とその装置
JP2002257700A (ja) * 2001-02-27 2002-09-11 Mitsubishi Heavy Ind Ltd 木材劣化診断装置、及び、木材劣化診断方法
JP4170047B2 (ja) * 2002-08-28 2008-10-22 前田建設工業株式会社 多種多様な土を盛土材として適用する時の事前評価方法及び改良方法
JP4076401B2 (ja) * 2002-08-29 2008-04-16 前田建設工業株式会社 盛土の品質管理方法
JP3953435B2 (ja) * 2003-03-20 2007-08-08 義久 藤井 木材腐朽評価方法および装置
JP2004294154A (ja) * 2003-03-26 2004-10-21 Taiheiyo Cement Corp 湿式耐火被覆材層の健全度診断方法
JP3919015B2 (ja) * 2004-08-11 2007-05-23 独立行政法人農業・食品産業技術総合研究機構 音響トモグラフィを用いた樹木内部の非破壊検査方法及び装置

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
RU2739928C1 (ru) * 2020-04-30 2020-12-29 Федеральное государственное бюджетное образовательное учреждение высшего образования "Поволжский государственный технологический университет" Способ экспресс-диагностики резонансных свойств древесины после долгого выдерживания в потолочной конструкции старых сооружений

Also Published As

Publication number Publication date
JP2010008258A (ja) 2010-01-14

Similar Documents

Publication Publication Date Title
Tannert et al. In situ assessment of structural timber using semi-destructive techniques
Kloiber et al. Prediction of mechanical properties by means of semi-destructive methods: A review
Kloiber et al. Mechanical properties of wood examined by semi-destructive devices
Feio Inspection and diagnosis of historical timber structures: NDT correlations and structural behaviour
JP5179970B2 (ja) 木材強度評価方法及び構造物の改修診断方法
Kloiber et al. Conventional compressive strength parallel to the grain and mechanical resistance of wood against pin penetration and microdrilling established by in-situ semidestructive devices
Íñiguez-González et al. Reference conditions and modification factors for the standardization of nondestructive variables used in the evaluation of existing timber structures
Kloiber et al. Comparative evaluation of acoustic techniques for detection of damages in historical wood
Ross Stress wave timing nondestructive evaluation tools for inspecting historic structures: a guide for use and interpretation
CA2361979A1 (en) Pole testing system
Riggio et al. Hardness test
Drdácký et al. In Situ Compression Stress-Deformation Measurements along the Timber Depth Profile
Lear et al. Resistance drilling
Kloiber et al. Experimental verification of a new tool for wood mechanical resistance measurement
Jaskowska-Lemańska et al. Impact of the direction of non-destructive test with respect to the annual growth rings of pine wood
Teder et al. Overview of some non-destructive methods for in-situ assessment of structural timber
CN106839960A (zh) 一种用于木结构榫卯节点尺寸及内部缺陷的无损检测方法
Divos et al. Evaluation of historical wooden structures using nondestructive methods
Ross et al. Inspection of timber bridges using stress wave timing nondestructive evaluation tools
Walach et al. The impact of moisture content of wood on the results of non-destructive tests
Faggiano et al. Combined non-destructive and destructive tests for the mechanical characterization of old structural timber elements
Giuriani et al. A penetration test to evaluate wood decay and its application to the Loggia monument
Brashaw et al. Condition assessment of timber bridges. 2, Evaluation of several stress-wave tools
Zamperini The study of timber structures based on in situ investigation
Šmak et al. Dowelled joints in timber structures experiment-design-realization

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110328

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120522

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A02 Decision of refusal

Free format text: JAPANESE INTERMEDIATE CODE: A02

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121122

A911 Transfer of reconsideration by examiner before appeal (zenchi)

Free format text: JAPANESE INTERMEDIATE CODE: A911

Effective date: 20121130

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20130108

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130110

LAPS Cancellation because of no payment of annual fees