JP5178998B2 - Lithium secondary battery and lithium secondary battery pack - Google Patents

Lithium secondary battery and lithium secondary battery pack Download PDF

Info

Publication number
JP5178998B2
JP5178998B2 JP2005225810A JP2005225810A JP5178998B2 JP 5178998 B2 JP5178998 B2 JP 5178998B2 JP 2005225810 A JP2005225810 A JP 2005225810A JP 2005225810 A JP2005225810 A JP 2005225810A JP 5178998 B2 JP5178998 B2 JP 5178998B2
Authority
JP
Japan
Prior art keywords
compound
secondary battery
lithium secondary
electrolyte
lithium
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005225810A
Other languages
Japanese (ja)
Other versions
JP2006073513A (en
Inventor
竜一 清水
滝太郎 山口
チョルス ジョン
ヒョンゼ ジョン
ヤンチュル チャン
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Samsung SDI Co Ltd
Original Assignee
Samsung SDI Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Samsung SDI Co Ltd filed Critical Samsung SDI Co Ltd
Priority to JP2005225810A priority Critical patent/JP5178998B2/en
Publication of JP2006073513A publication Critical patent/JP2006073513A/en
Application granted granted Critical
Publication of JP5178998B2 publication Critical patent/JP5178998B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、リチウム二次電池およびリチウム二次電池パックに関するものであり、特に、過放電特性に優れたリチウム二次電池およびリチウム二次電池パックに関するものである。   The present invention relates to a lithium secondary battery and a lithium secondary battery pack, and more particularly, to a lithium secondary battery and a lithium secondary battery pack excellent in overdischarge characteristics.

近年、ビデオカメラやヘッドホン式ステレオ等の電子機器の高性能化、小型化には目覚ましいものがあり、これらの電子機器の電源となる二次電池の高容量化の要求も高まってきている。負極活物質として炭素質材料を用いると共に、正極活物質としてリチウムコバルト酸化物(LiCoO)を用いたリチウム二次電池は、リチウムのドープ・脱ドープを利用することにより、デンドライト成長やリチウムの粉末化を抑制しうるため、優れたサイクル寿命性能を備え、また、高エネルギー密度化、高容量化も達成することが可能とされている。 In recent years, electronic devices such as video cameras and headphone stereos have been remarkably improved in performance and size, and the demand for higher capacity secondary batteries serving as power sources for these electronic devices has also increased. A lithium secondary battery using a carbonaceous material as a negative electrode active material and lithium cobalt oxide (LiCoO 2 ) as a positive electrode active material can be used for dendrite growth and lithium powder by utilizing lithium doping / dedoping. Therefore, it is possible to achieve excellent cycle life performance, and to achieve high energy density and high capacity.

一方、上記のリチウム二次電池においては、過放電されると充放電特性が劣化するという問題がある。すなわち、電池を使用する電子機器に異常があった場合あるいはその電子機器にカットオフ電圧が設定されていない場合等、放電電圧が0Vとなった段階で開路しても、その開路電圧は復帰せず、その後に充放電させてみると、電池容量は著しく低下し、場合よっては内部短絡を起こす。このように0Vまで過放電した場合の充放電特性は、二次電池の実用上極めて重要なものであって、上記充放電特性の劣化に対する対策は不可欠となっている。   On the other hand, the above-described lithium secondary battery has a problem that charge / discharge characteristics deteriorate when overdischarged. In other words, even when the electronic device using the battery has an abnormality or when the cutoff voltage is not set for the electronic device, the open circuit voltage is not restored even when the discharge voltage is 0V. However, if the battery is charged and discharged after that, the battery capacity is remarkably reduced, and an internal short circuit is caused in some cases. Thus, the charge / discharge characteristics in the case of overdischarge to 0 V are extremely important for practical use of the secondary battery, and measures against the deterioration of the charge / discharge characteristics are indispensable.

過放電時の劣化及び短寿命化の原因は、過放電の末期過程において負極集電体である銅の電位が、3.5V(vs.Li)以上という高い正極の作動電位に引っぱられ、銅の析出溶解電位である3.45V(vs.Li)を超えてしまうため、銅の溶解反応が起こってしまうことにある。
そこで最近では、リチウム二次電池に過放電保護回路を取り付けることで、電子機器側に異常が生じた場合にはリチウム二次電池の放電を停止させることで、過放電による電池容量の低下を極力抑える手段が提案されている。また、このような保護回路は、通常、過充電保護と過放電保護の両機能を有した保護回路が使用されている。
特開平9−63652号公報
The cause of deterioration and shortening of the service life at the time of overdischarge is that the potential of copper as the negative electrode current collector is pulled to a high positive electrode operating potential of 3.5 V (vs. Li) or more in the final stage of overdischarge. This exceeds the precipitation dissolution potential of 3.45 V (vs. Li), which causes a copper dissolution reaction.
Therefore, recently, by attaching an overdischarge protection circuit to the lithium secondary battery, if an abnormality occurs on the electronic device side, the discharge of the lithium secondary battery is stopped to minimize the decrease in battery capacity due to overdischarge. Means to suppress have been proposed. In addition, as such a protection circuit, a protection circuit having both overcharge protection and overdischarge protection functions is usually used.
Japanese Patent Laid-Open No. 9-63652

しかし、従来のリチウム二次電池においては、過放電保護回路を取り付ける手間とコストが発生し、また使用する電子機器によっては過放電保護回路を個別に設計する必要があった。   However, in the conventional lithium secondary battery, it takes time and cost to install the overdischarge protection circuit, and it is necessary to design the overdischarge protection circuit individually depending on the electronic device to be used.

本発明は、上記事情に鑑みてなされたものであって、過放電時の負極集電体の溶解を防止して、過放電保護回路が不要となるリチウム二次電池およびリチウム二次電池パックを提供することを目的とする。また本発明は、過充電用添加剤や高分子電解質等を用いて過充電保護回路が不要な設計の電池に適用することによって、保護回路のない低コスト且つ安全なリチウム二次電池およびリチウム二次電池パックを提供することを目的とする。   The present invention has been made in view of the above circumstances, and includes a lithium secondary battery and a lithium secondary battery pack that prevent dissolution of the negative electrode current collector during overdischarge and eliminates the need for an overdischarge protection circuit. The purpose is to provide. Further, the present invention is applied to a battery having a design that does not require an overcharge protection circuit using an overcharge additive, a polymer electrolyte, or the like, so that a low-cost and safe lithium secondary battery and a lithium secondary battery without a protection circuit are provided. It aims at providing the next battery pack.

上記の目的を達成するために、本発明は以下の構成を採用した。
本発明のリチウム二次電池は、リチウムを吸蔵、放出が可能な正極と、Cu若しくはCu合金からなる負極集電体に接合されてリチウムを吸蔵、放出が可能な負極と、リチウムイオンを伝導する電解質とを具備してなり、前記電解質に官能基を二以上有し且つCu若しくはCu合金と強い親和性を有するCu親和性化合物が添加されていることを特徴とする。
また、前記Cu親和性化合物としては、2つのニトリル基を有するジニトリル化合物、3つのニトリル基を有するトリニトリル化合物、2つのニトリル基を有しかつ分子中にチオエーテル基を有するチオジアルキルニトリル化合物のうちの1種または2種以上を例示できる。
特に、前記Cu親和性化合物が、前記ジニトリル化合物と前記トリニトリル化合物との混合物または前記トリニトリル化合物と前記チオジアルキルニトリル化合物との混合物であることが好ましい。
In order to achieve the above object, the present invention employs the following configuration.
The lithium secondary battery of the present invention conducts lithium ions, a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium bonded to a negative electrode current collector made of Cu or Cu alloy, and the like. And a Cu affinity compound having two or more functional groups and having a strong affinity for Cu or a Cu alloy is added to the electrolyte.
The Cu affinity compound includes a dinitrile compound having two nitrile groups, a trinitrile compound having three nitrile groups, a thiodialkylnitrile compound having two nitrile groups and a thioether group in the molecule. 1 type or 2 types or more can be illustrated.
In particular, the Cu affinity compound is preferably a mixture of the dinitrile compound and the trinitrile compound or a mixture of the trinitrile compound and the thiodialkylnitrile compound.

上記の構成によれば、電解質に添加したCu親和性化合物が負極集電体の表面に高濃度で蓄積される。これにより、負極集電体を構成するCuまたはCu合金の溶解電位が向上する。このため、リチウム二次電池が過放電状態に至った場合でも負極集電体が溶解するおそれがなく、電池容量の低下を防止することができる。また、本発明では、分子中にニトリル基を2つ有するジニトリル化合物や、分子中にニトリル基を3つ有するトリニトリル化合物や、2つのニトリル基を有しかつ分子中にチオエーテル基を有するチオジアルキルニトリル化合物がCu等に対する吸着性に優れることから、分子中にニトリル基が1つしかないニトリル化合物よりもCu等の溶解防止能力に優れている。   According to the above configuration, the Cu affinity compound added to the electrolyte is accumulated at a high concentration on the surface of the negative electrode current collector. Thereby, the dissolution potential of Cu or Cu alloy constituting the negative electrode current collector is improved. For this reason, even when the lithium secondary battery reaches an overdischarged state, there is no possibility that the negative electrode current collector is dissolved, and a reduction in battery capacity can be prevented. In the present invention, a dinitrile compound having two nitrile groups in the molecule, a trinitrile compound having three nitrile groups in the molecule, and a thiodialkylnitrile having two nitrile groups and having a thioether group in the molecule Since the compound is excellent in adsorptivity to Cu or the like, the ability to prevent dissolution of Cu or the like is superior to a nitrile compound having only one nitrile group in the molecule.

また、本発明のリチウム二次電池においては、前記電解質中における前記Cu親和性化合物の濃度が0.1質量%以上50質量%以下の範囲であることが好ましい。
また、本発明のリチウム二次電池においては、前記ジニトリル化合物が、スクシノニトリル、グルタロニトリル、アジポニトリルのいずれか1種以上であることが好ましい。
また、本発明のリチウム二次電池においては、前記トリニトリル化合物がシクロヘキサントリカルボニトリルであることが好ましい。
また、本発明のリチウム二次電池においては、前記チオジアルキルニトリル化合物がチオジプロピオニトリルであることが好ましい。
Moreover, in the lithium secondary battery of this invention, it is preferable that the density | concentration of the said Cu affinity compound in the said electrolyte is the range of 0.1 to 50 mass%.
In the lithium secondary battery of the present invention, the dinitrile compound is preferably at least one of succinonitrile, glutaronitrile, and adiponitrile.
In the lithium secondary battery of the present invention, the trinitrile compound is preferably cyclohexanetricarbonitrile.
In the lithium secondary battery of the present invention, the thiodialkylnitrile compound is preferably thiodipropionitrile.

また、本発明のリチウム二次電池においては、前記電解質がポリマー電解質と難燃性電解質の少なくともいずれか一方であることが好ましい。
また、本発明のリチウム二次電池パックは、先のいずれかに記載のリチウム二次電池を具備し、電池充放電時の異常を電池電圧検知によって制御する電子保護回路を具備しないことを特徴とする。
In the lithium secondary battery of the present invention, it is preferable that the electrolyte is at least one of a polymer electrolyte and a flame retardant electrolyte.
Moreover, the lithium secondary battery pack of the present invention comprises any of the lithium secondary batteries described above, and does not comprise an electronic protection circuit that controls battery charge / discharge abnormality by battery voltage detection. To do.

本発明のリチウム二次電池によれば、過放電時の負極集電体の溶解を防止することができ、過放電保護回路を不要にすることができ、過放電保護回路を取り付ける手間とコストを削減できる。また、本発明のリチウム二次電池パックによれば、過放電保護回路が不要になるので、携帯型電話機の電源として最適な、軽量高性能な電池パックを実現できる。   According to the lithium secondary battery of the present invention, dissolution of the negative electrode current collector during overdischarge can be prevented, an overdischarge protection circuit can be dispensed with, and labor and cost for attaching the overdischarge protection circuit can be reduced. Can be reduced. In addition, according to the lithium secondary battery pack of the present invention, since an overdischarge protection circuit is not required, it is possible to realize a lightweight and high-performance battery pack that is optimal as a power source for a mobile phone.

以下、本発明の実施の形態を図面を参照して説明する。
本実施形態のリチウム二次電池は、リチウムを吸蔵、放出が可能な正極と、Cu若しくはCu合金からなる負極集電体に接合されてリチウムを吸蔵、放出が可能な負極と、正極と負極の間に配置されたセパレータと、リチウムイオンを伝導する電解質とを具備してなり、前記電解質には、官能基を二以上有し且つCu若しくはCu合金と強い親和性を有するCu親和性化合物が添加されて構成されている。具体的には、電解質にジニトリル化合物、トリニトリル化合物、チオジアルキルニトリル化合物、またはこれらの混合物が添加されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
The lithium secondary battery according to the present embodiment includes a positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium by being bonded to a negative electrode current collector made of Cu or Cu alloy, and a positive electrode and a negative electrode. It comprises a separator disposed between and an electrolyte that conducts lithium ions, and a Cu affinity compound having two or more functional groups and a strong affinity for Cu or Cu alloy is added to the electrolyte. Has been configured. Specifically, a dinitrile compound, a trinitrile compound, a thiodialkylnitrile compound, or a mixture thereof is added to the electrolyte.

正極は、正極活物質粉末に、ポリフッ化ビニリデン等の結着材とカーボンブラック等の導電助材とが混合されてシート状等に成形されてなるものである。この正極は正極集電体に接合されている。正極集電体には、アルミニウム、ステンレス等の金属箔若しくは金属網を例示できる。
また、正極活物質としては、コバルト、マンガン、ニッケルから選ばれる少なくとも一種とリチウムとの複合酸化物のいずれか1種以上のものが好ましく、具体的には、LiMn、LiCoO、LiNiO、LiFeO、V等が好ましい。またTiS、MoS、有機ジスルフィド化合物または有機ポリスルフィド化合物等のリチウムを吸蔵・放出が可能なものを用いても良い。
The positive electrode is formed by mixing a positive electrode active material powder with a binder such as polyvinylidene fluoride and a conductive additive such as carbon black, and forming the sheet into a sheet or the like. The positive electrode is bonded to the positive electrode current collector. Examples of the positive electrode current collector include metal foils or metal nets such as aluminum and stainless steel.
Further, as the positive electrode active material, at least one selected from the group consisting of a complex oxide of lithium and at least one selected from cobalt, manganese, and nickel is preferable. Specifically, LiMn 2 O 4 , LiCoO 2 , LiNiO 2 , LiFeO 2 , V 2 O 5 and the like are preferable. Moreover, you may use what can occlude / release lithium, such as TiS, MoS, an organic disulfide compound, or an organic polysulfide compound.

負極は、負極活物質粉末に、ポリフッ化ビニリデン等の結着材と、必要に応じてカーボンブラック等の導電助材とが混合されてシート状等に成形されたものである。この負極は負極集電体に接合されている。負極集電体には、CuまたはCu合金からなる金属箔または金属網を例示できる。
また負極活物質としては、人造黒鉛、天然黒鉛、黒鉛化炭素繊維、黒鉛化メソカーボンマイクロビーズ、非晶質炭素等の炭素質材料を例示できる。また、リチウムと合金化が可能な金属質物単体やこの金属質物と炭素質材料を含む複合物も負極活物質として例示できる。リチウムと合金化が可能な金属としては、Al、Si、Sn、Pb、Zn、Bi、In、Mg、Ga、Cd等を例示できる。また負極活物質として金属リチウム箔も使用できる。
The negative electrode is formed by mixing a negative electrode active material powder with a binder such as polyvinylidene fluoride and, if necessary, a conductive additive such as carbon black, and forming the sheet. This negative electrode is joined to the negative electrode current collector. Examples of the negative electrode current collector include a metal foil or a metal net made of Cu or a Cu alloy.
Examples of the negative electrode active material include carbonaceous materials such as artificial graphite, natural graphite, graphitized carbon fiber, graphitized mesocarbon microbeads, and amorphous carbon. Moreover, the metal substance simple substance which can be alloyed with lithium, and the composite containing this metal substance and carbonaceous material can be illustrated as a negative electrode active material. Examples of metals that can be alloyed with lithium include Al, Si, Sn, Pb, Zn, Bi, In, Mg, Ga, and Cd. A metal lithium foil can also be used as the negative electrode active material.

またセパレータは、多孔質のポリプロピレンフィルム、多孔質のポリエチレンフィルム等、公知のセパレータを適宜使用できる。   As the separator, a known separator such as a porous polypropylene film or a porous polyethylene film can be appropriately used.

次に電解質は、リチウムイオンを伝導するものであって、非水溶媒とリチウム塩とCu親和性化合物とが含有されて構成されている。   Next, the electrolyte conducts lithium ions and includes a nonaqueous solvent, a lithium salt, and a Cu affinity compound.

Cu親和性化合物のうち、ジニトリル化合物は、分子中に2つのニトリル基を有しており、負極集電体を構成するCuまたはCu合金との親和性に優れている。このため、電解質に添加されたジニトリル化合物は、負極集電体の表面において高濃度で蓄積される。これにより、負極集電体を構成するCuまたはCu合金の溶解電位が上昇する。このため、リチウム二次電池が過放電状態に至った場合でも負極集電体が溶解するおそれがなく、電池容量の低下を防止することができる。
同様に、Cu親和性化合物のうち、トリニトリル化合物は、分子中に3つのニトリル基を有しており、負極集電体を構成するCuまたはCu合金との親和性により優れており、電解質に添加されたトリニトリル化合物は、負極集電体の表面において高濃度で蓄積される。これにより、負極集電体を構成するCuまたはCu合金の溶解電位が上昇し、リチウム二次電池が過放電状態に至った場合でも負極集電体が溶解するおそれがなく、電池容量の低下を防止することができる。
更に、チオジアルキルニトリル化合物は、分子中に2つのニトリル基を有し、かつ分子中にチオエーテル基(−S−)を有しており、合計で3つの官能基を有している。
このチオジアルキルニトリル化合物は、負極集電体を構成するCuまたはCu合金との親和性に優れており、電解質に添加されたチオジアルキルニトリル化合物は負極集電体の表面において高濃度で蓄積され、これにより、負極集電体を構成するCuまたはCu合金の溶解電位が上昇し、リチウム二次電池が過放電状態に至った場合でも負極集電体が溶解するおそれがなく、電池容量の低下を防止することができる。
Of the Cu affinity compounds, the dinitrile compound has two nitrile groups in the molecule and is excellent in affinity with Cu or Cu alloy constituting the negative electrode current collector. For this reason, the dinitrile compound added to the electrolyte is accumulated at a high concentration on the surface of the negative electrode current collector. Thereby, the dissolution potential of Cu or Cu alloy constituting the negative electrode current collector is increased. For this reason, even when the lithium secondary battery reaches an overdischarged state, there is no possibility that the negative electrode current collector is dissolved, and a reduction in battery capacity can be prevented.
Similarly, among the Cu affinity compounds, the trinitrile compound has three nitrile groups in the molecule, and is superior in affinity with Cu or Cu alloy constituting the negative electrode current collector, and is added to the electrolyte. The obtained trinitrile compound is accumulated at a high concentration on the surface of the negative electrode current collector. As a result, the dissolution potential of Cu or Cu alloy constituting the negative electrode current collector increases, and even when the lithium secondary battery reaches an overdischarged state, the negative electrode current collector is not likely to be dissolved, and the battery capacity is reduced. Can be prevented.
Further, the thiodialkylnitrile compound has two nitrile groups in the molecule and a thioether group (-S-) in the molecule, and has a total of three functional groups.
This thiodialkylnitrile compound is excellent in affinity with Cu or Cu alloy constituting the negative electrode current collector, and the thiodialkylnitrile compound added to the electrolyte is accumulated at a high concentration on the surface of the negative electrode current collector, As a result, the dissolution potential of Cu or Cu alloy constituting the negative electrode current collector increases, and even when the lithium secondary battery reaches an overdischarged state, the negative electrode current collector is not likely to be dissolved, and the battery capacity is reduced. Can be prevented.

このような溶解電位を上昇させ得るジニトリル化合物の具体例として、マロノニトリル、スクシノニトリル、グルタロニトリル、アジポニトリル、グルタロニトリル、ピメロニトリル、スベロニトリル、アゼラニトリル、セバコニトリル、ウンデカンジニトリル、ドデカンジニトリル、3−へキセンジニトリル、フタロニトリル、イソフタロニトリル、テトラフタロニトリル、メチルグルタロトリル、ジメチルマロノニトリル、tert−ブチルマロノニトリル、オキシジプロピオニトリル、エチレングリコールビスプロピオニトリルエーテル等を例示できる。これらのうち、特に好ましいものは、スクシノニトリル(NC(CHCN)、グルタロニトリル(NC(CHCN)、アジポニトリル(NC(CHCN)である。
また、トリニトリル化合物の具体例としては、シクロヘキサントリカルボニトリル、トリスシアノエチルアミン、トリスシアノエトキシプロパン等を例示できる。これらのうち、特に好ましいものは、シクロヘキサントリカルボニトリルである。
また、チオジアルキルニトリル化合物の具体例としてはチオジプロピオニトリル等を例示できる。
Specific examples of the dinitrile compound capable of increasing the dissolution potential include malononitrile, succinonitrile, glutaronitrile, adiponitrile, glutaronitrile, pimelonitrile, suberonitrile, azeronitrile, sebacononitrile, undecandinitrile, dodecandinitrile, 3- Examples include hexenedinitrile, phthalonitrile, isophthalonitrile, tetraphthalonitrile, methylglutarotolyl, dimethylmalononitrile, tert-butylmalononitrile, oxydipropionitrile, ethylene glycol bispropionitrile ether, and the like. Of these, succinonitrile (NC (CH 2 ) 2 CN), glutaronitrile (NC (CH 2 ) 3 CN), and adiponitrile (NC (CH 2 ) 4 CN) are particularly preferable.
Specific examples of the trinitrile compound include cyclohexanetricarbonitrile, triscyanoethylamine, triscyanoethoxypropane, and the like. Of these, cyclohexanetricarbonitrile is particularly preferred.
Moreover, thiodipropionitrile etc. can be illustrated as a specific example of a thiodialkyl nitrile compound.

また本発明においては、ジニトリル化合物とトリニトリル化合物との混合物またはトリニトリル化合物とチオジアルキルニトリル化合物との混合物を電解質に添加しても良い。
この場合、ジニトリル化合物とトリニトリル化合物の混合物としては、スクシノニトリルとシクロヘキサントリカルボニトリルの混合物を例示できる。また、トリニトリル化合物とチオジアルキルニトリル化合物との混合物としては、シクロヘキサントリカルボニトリルとチオジプロピオニトリルの混合物を例示できる。
In the present invention, a mixture of a dinitrile compound and a trinitrile compound or a mixture of a trinitrile compound and a thiodialkylnitrile compound may be added to the electrolyte.
In this case, examples of the mixture of the dinitrile compound and the trinitrile compound include a mixture of succinonitrile and cyclohexanetricarbonitrile. Moreover, as a mixture of a trinitrile compound and a thiodialkyl nitrile compound, a mixture of cyclohexanetricarbonitrile and thiodipropionitrile can be exemplified.

これらのCu親和性化合物においては、分子内の官能基間の距離が重要であって、分子内の官能基間の距離が大きすぎると、CuまたはCu合金との親和性が低下するため、効果が小さくなる。また、分子内の官能基間の距離が小さすぎると、CuまたはCu合金との親和性よりもリチウムイオンとの親和性が大きくなり、電池容量低下の原因となるので好ましくない。なお、分子内の官能基は、非プロトン性の電子供与基であれば、ニトリル基やチオエーテル基に限るものではなく、ニトロ基、メトキシ基、エトキシ基、ジメチルアミノ基、フェニル基、ピリジニル基等を例示できる。   In these Cu affinity compounds, the distance between the functional groups in the molecule is important, and if the distance between the functional groups in the molecule is too large, the affinity with Cu or Cu alloy is reduced, so the effect Becomes smaller. Further, if the distance between the functional groups in the molecule is too small, the affinity with lithium ions becomes larger than the affinity with Cu or Cu alloy, which causes a decrease in battery capacity. The functional group in the molecule is not limited to a nitrile group or a thioether group as long as it is an aprotic electron donating group, such as a nitro group, methoxy group, ethoxy group, dimethylamino group, phenyl group, pyridinyl group, etc. Can be illustrated.

電解質中におけるCu親和性化合物の濃度は、0.1質量%以上50質量%以下の範囲が好ましく、0.5質量%以上15質量%以下の範囲がより好ましい。濃度が0.1質量%未満では溶解電位向上の効果が十分でなく、濃度が50質量%を越えると電解質のリチウムイオン伝導度が低下してしまう。   The concentration of the Cu affinity compound in the electrolyte is preferably in the range of 0.1% by mass to 50% by mass, and more preferably in the range of 0.5% by mass to 15% by mass. If the concentration is less than 0.1% by mass, the effect of improving the dissolution potential is not sufficient, and if the concentration exceeds 50% by mass, the lithium ion conductivity of the electrolyte is lowered.

次に、電解質に含有される溶媒としては、環状カーボネートと鎖状カーボネートの混合物を例示できる。
環状カーボネートとしては、例えば、エチレンカーボネート、ブチレンカーボネート、プロピレンカーボネート、γ−ブチロラクトン等のうちの1種以上を含むものが好ましい。これらの環状カーボネートはリチウムイオンと溶媒和しやすいため、電解質自体のイオン伝導度を高めることができる。
また鎖状カーボネートとしては、例えば、ジメチルカーボネート、メチルエチルカーボネート、ジエチルカーボネートのうちの1種以上を含むものが好ましい。これらの鎖状カーボネートは低粘度であるので、電解質自体の粘度を下げてイオン伝導度を高めることができる。ただし、これら鎖状カーボネートは引火点が低いので、過剰に添加すると電解質の引火点を下げてしまうので過剰添加しないように注意を払う必要がある。
Next, examples of the solvent contained in the electrolyte include a mixture of a cyclic carbonate and a chain carbonate.
As cyclic carbonate, what contains 1 or more types in ethylene carbonate, butylene carbonate, propylene carbonate, (gamma) -butyrolactone, etc. is preferable, for example. Since these cyclic carbonates easily solvate with lithium ions, the ionic conductivity of the electrolyte itself can be increased.
Moreover, as chain carbonate, what contains 1 or more types in dimethyl carbonate, methyl ethyl carbonate, and diethyl carbonate, for example is preferable. Since these chain carbonates have a low viscosity, the viscosity of the electrolyte itself can be lowered to increase the ionic conductivity. However, since these chain carbonates have a low flash point, if added excessively, the flash point of the electrolyte is lowered, so care must be taken not to add excessively.

更にリチウム塩としては、LiPF、LiBF、Li[N(SO)]、Li[B(OCOCF]、Li[B(OCOC]を用いることができる。これらリチウム塩の電解質における濃度は、0.5モル/L以上2.0モル/L以下であることが好ましい。電解質中にこれらのリチウム塩が含まれることで、電解質自体のイオン伝導度を高めることができる。 Further, LiPF 6 , LiBF 4 , Li [N (SO 2 C 2 F 6 ) 2 ], Li [B (OCOCF 3 ) 4 ], Li [B (OCOC 2 F 5 ) 4 ] should be used as the lithium salt. Can do. The concentration of these lithium salts in the electrolyte is preferably 0.5 mol / L or more and 2.0 mol / L or less. By including these lithium salts in the electrolyte, the ionic conductivity of the electrolyte itself can be increased.

また、電解質は、ポリマー電解質、難燃性電解質またはポリマー電解質に難燃性電解質を含浸させたものであっても良い。
ポリマー電解質としては、PEO、PPO、PAN、PVDF、PMA、PMMA等のポリマーを例示でき、これらのポリマーにCu親和性化合物を含浸させても良く、これらのポリマーにCu親和性化合物を含む上記溶媒を含浸させても良く、これらのポリマーにCu親和性化合物を含む下記の有機フッ素化エーテル化合物を含浸させても良い。
また、難燃性電解質としては、HCF(CFCHOCFCFH、CFCFCHOCFCFHCF、HCFCFCHOCFCFH、HCFCFCHOCFCFHCF、HCF(CFCHOCFCFHCFのいずれか1種以上の有機フッ素化エーテル化合物を溶媒として含むものを例示でき、これら有機フッ素化エーテル化合物に上記のCu親和性化合物を添加することで、本実施形態の電解質を構成できる。
The electrolyte may be a polymer electrolyte, a flame retardant electrolyte, or a polymer electrolyte impregnated with a flame retardant electrolyte.
Examples of polymer electrolytes include polymers such as PEO, PPO, PAN, PVDF, PMA, PMMA, etc. These polymers may be impregnated with Cu affinity compounds, and the above solvents containing Cu affinity compounds in these polymers These polymers may be impregnated, and these polymers may be impregnated with the following organic fluorinated ether compounds containing a Cu affinity compound.
As the flame retardant electrolyte, HCF 2 (CF 2) 3 CH 2 OCF 2 CF 2 H, CF 3 CF 2 CH 2 OCF 2 CFHCF 3, HCF 2 CF 2 CH 2 OCF 2 CF 2 H, HCF 2 CF 2 CH 2 OCF 2 CFHCF 3 , HCF 2 (CF 2 ) 3 CH 2 OCF 2 CFHCF 3 containing one or more organic fluorinated ether compounds as a solvent can be exemplified. By adding the Cu affinity compound, the electrolyte of this embodiment can be configured.

以上、説明したように、本実施形態のリチウム二次電池によれば、電解質にCu親和性化合物が添加されており、このCu親和性化合物が負極集電体の表面に高濃度で蓄積されて負極集電体の溶解電位が向上するので、リチウム二次電池が過放電状態に至った場合でも負極集電体が溶解するおそれがなく、電池容量の低下を防止することができる。   As described above, according to the lithium secondary battery of this embodiment, the Cu affinity compound is added to the electrolyte, and this Cu affinity compound is accumulated at a high concentration on the surface of the negative electrode current collector. Since the dissolution potential of the negative electrode current collector is improved, even when the lithium secondary battery reaches an overdischarged state, the negative electrode current collector is not likely to be dissolved, and the battery capacity can be prevented from decreasing.

以下、各実験例により本発明を更に詳細に説明する。
(実験例1)
この実験例1では、電解質にジニトリル化合物を添加してリチウム二次電池を製造し、過放電試験を行って負極集電体の溶出の有無を調査した。
電池の製造は次のようにして行った。まず、平均粒径10μmのLiCoOからなる正極活物質と、ポリフッ化ビニリデンからなる結着剤と、平均粒径3μmの炭素粉末からなる導電助材とを混合し、更にN−メチル−2−ピロリドンを混合して正極スラリーとした。この正極スラリーを、ドクターブレード法により厚み20μmのアルミニウム箔からなる正極集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして正極集電体上に、正極活物質、結着剤および導電助材からなる正極を形成した。
Hereinafter, the present invention will be described in more detail with reference to experimental examples.
(Experimental example 1)
In Experimental Example 1, a lithium secondary battery was manufactured by adding a dinitrile compound to the electrolyte, and an overdischarge test was performed to investigate the presence or absence of elution of the negative electrode current collector.
The battery was manufactured as follows. First, a positive electrode active material made of LiCoO 2 having an average particle size of 10 μm, a binder made of polyvinylidene fluoride, and a conductive additive made of carbon powder having an average particle size of 3 μm were mixed, and further N-methyl-2- Pyrrolidone was mixed to make a positive electrode slurry. This positive electrode slurry was applied onto a positive electrode current collector made of an aluminum foil having a thickness of 20 μm by a doctor blade method and dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone. Rolled. Thus, the positive electrode which consists of a positive electrode active material, a binder, and a conductive support material was formed on the positive electrode current collector.

次に、平均粒径が15μmの人造黒鉛の95重量部に、5重量部のポリフッ化ビニリデンからなる結着剤とを混合し、更にN−メチル−2−ピロリドンを混合して負極スラリーとした。この負極スラリーを、ドクターブレード法により厚み14μmのCu箔からなる負極集電体上に塗布し、真空雰囲気中で120℃、24時間乾燥させてN−メチル−2−ピロリドンを揮発させた後、圧延した。このようにして負極集電体上に、負極活物質および結着剤からなる負極を形成した。   Next, 95 parts by weight of artificial graphite having an average particle size of 15 μm was mixed with a binder composed of 5 parts by weight of polyvinylidene fluoride, and further mixed with N-methyl-2-pyrrolidone to form a negative electrode slurry. . This negative electrode slurry was applied onto a negative electrode current collector made of Cu foil having a thickness of 14 μm by a doctor blade method, and dried in a vacuum atmosphere at 120 ° C. for 24 hours to volatilize N-methyl-2-pyrrolidone. Rolled. In this way, a negative electrode composed of a negative electrode active material and a binder was formed on the negative electrode current collector.

次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とがEC:DEC=30:70の割合で混合させてなる混合溶媒に、濃度1.3モル/LのLiPFを混合し、更に濃度3質量%のスクシノニトリルを添加して電解液を調製した。 Next, LiPF 6 having a concentration of 1.3 mol / L is mixed in a mixed solvent in which ethylene carbonate (EC) and diethyl carbonate (DEC) are mixed at a ratio of EC: DEC = 30: 70, and the concentration is further increased. An electrolyte solution was prepared by adding 3% by mass of succinonitrile.

更に、上記の正極と負極の間にポリプロピレン製多孔質セパレータを配置してからこれらを渦巻き状に捲回し、次にこれらをラミネート型の電池ケースに収納し、更に上記の電解液を注液してから電池ケースを密閉することにより、実施例1のリチウム二次電池を製造した。   Furthermore, after placing a polypropylene porous separator between the positive electrode and the negative electrode, they are wound in a spiral shape, and then stored in a laminate-type battery case, and further injected with the electrolyte. After that, the battery case was sealed to manufacture the lithium secondary battery of Example 1.

また、電解液にスクシノニトリルを添加しないこと以外は上記実施例1と同様にして、比較例1のリチウム二次電池を製造した。
なお、実施例1および比較例1の放電容量の設計値は820mAhである。
Further, a lithium secondary battery of Comparative Example 1 was produced in the same manner as in Example 1 except that succinonitrile was not added to the electrolytic solution.
In addition, the design value of the discharge capacity of Example 1 and Comparative Example 1 is 820 mAh.

実施例1および比較例1のリチウム二次電池について、過放電試験を行なって放電時間と電池電圧との関係を調べた。過放電試験は、予め電池電圧が4.2Vになるまで充電を行なってから、300mAの電流で3Vまで放電し、次に3mAで2.7Vまで放電し、最後に1mAで0Vまで放電する条件で行なった。
放電時間と電池電圧との関係を図1に示す。
About the lithium secondary battery of Example 1 and Comparative Example 1, the overdischarge test was done and the relationship between discharge time and battery voltage was investigated. In the overdischarge test, the battery is charged in advance until the battery voltage reaches 4.2V, discharged to 3V at a current of 300 mA, then discharged to 2.7 V at 3 mA, and finally discharged to 0 V at 1 mA. It was done in.
The relationship between the discharge time and the battery voltage is shown in FIG.

図1に示すように、実施例1では、1mA放電時の放電曲線がほぼ直線的に低下している。この挙動から実施例1では、放電中における負極集電体(Cu)の溶出はほとんど起きていないものと考えられる。一方、比較例1では、1mA放電時の放電末期の放電曲線にプラトー領域が見られた。このプラトーは負極集電体(Cu)の溶解に対応するものである。すなわち、比較例1のリチウム二次電池では、過放電時にCuの溶解が起きていたものと考えられる。   As shown in FIG. 1, in Example 1, the discharge curve at the time of 1 mA discharge is almost linearly lowered. From this behavior, in Example 1, it is considered that the elution of the negative electrode current collector (Cu) during discharge hardly occurred. On the other hand, in Comparative Example 1, a plateau region was found in the discharge curve at the end of discharge during 1 mA discharge. This plateau corresponds to the dissolution of the negative electrode current collector (Cu). That is, in the lithium secondary battery of Comparative Example 1, it is considered that Cu was dissolved during overdischarge.

以上の結果から、電解質にスクシノニトリル(ジニトリル化合物)を添加することにより、過放電時の負極集電体の溶出を防止できることがわかる。   From the above results, it can be seen that by adding succinonitrile (dinitrile compound) to the electrolyte, elution of the negative electrode current collector during overdischarge can be prevented.

(実験例2)
種々のジニトリル化合物を電解液に添加してリチウムポリマー二次電池を製造し、リチウム二次電池の過放電サイクル特性および初期特性を評価した。このリチウムポリマー二次電池は、過充電保護回路が不要な設計で製造した。
電池の製造は次のようにして行った。まず、上記実施例1と同様にして、Al箔からなる正極集電体上に、正極活物質、結着剤および導電助材からなる正極を形成した。また、実施例1と同様にして、Cu箔からなる負極集電体上に、負極活物質および結着剤からなる負極を形成した。
(Experimental example 2)
Various dinitrile compounds were added to the electrolyte to produce lithium polymer secondary batteries, and overdischarge cycle characteristics and initial characteristics of the lithium secondary batteries were evaluated. This lithium polymer secondary battery was manufactured with a design that does not require an overcharge protection circuit.
The battery was manufactured as follows. First, in the same manner as in Example 1, a positive electrode made of a positive electrode active material, a binder, and a conductive additive was formed on a positive electrode current collector made of an Al foil. In the same manner as in Example 1, a negative electrode made of a negative electrode active material and a binder was formed on a negative electrode current collector made of Cu foil.

次に、エチレンカーボネート(EC)とガンマブチロラクトン(GBL)とジエチルカーボネート(DEC)とがEC:GBL:DEC=30:50:20の割合で混合させてなる混合溶媒に、濃度1.3モル/LのLiPFを混合し、濃度3質量%のフルオロエチレンカーボネート(FEC)を添加し、更に濃度1〜10質量%のスクシノニトリルを添加し、更にポリマー電解質形成材料としてジアクリルモノマーと重合開始剤を添加することにより、ポリマー電解質用の電解液を調製した。 Next, in a mixed solvent obtained by mixing ethylene carbonate (EC), gamma butyrolactone (GBL) and diethyl carbonate (DEC) at a ratio of EC: GBL: DEC = 30: 50: 20, a concentration of 1.3 mol / L LiPF 6 is mixed, fluoroethylene carbonate (FEC) with a concentration of 3% by mass, succinonitrile with a concentration of 1 to 10% by mass is added, and polymerization with a diacryl monomer is started as a polymer electrolyte forming material By adding the agent, an electrolytic solution for the polymer electrolyte was prepared.

更に、上記の正極と負極の間にポリプロピレン製多孔質セパレータを配置してからこれらを渦巻き状に捲回し、次にこれらをラミネート型の電池ケースに収納し、更に上記の電解液を注液してから電池ケースを密閉し、80℃で4時間加熱することにより電池内でポリマー電解質を形成させた。このようにして、試験例1ないし試験例4のリチウムポリマー二次電池を製造した。また、スクシノニトリルを添加しないこと以外は上記試験例1〜4と同様にして、比較例1のリチウムポリマー二次電池を製造した。   Furthermore, after placing a polypropylene porous separator between the positive electrode and the negative electrode, they are wound in a spiral shape, and then stored in a laminate-type battery case, and further injected with the electrolyte. Then, the battery case was sealed and heated at 80 ° C. for 4 hours to form a polymer electrolyte in the battery. In this way, lithium polymer secondary batteries of Test Examples 1 to 4 were manufactured. Further, a lithium polymer secondary battery of Comparative Example 1 was produced in the same manner as in Test Examples 1 to 4 except that succinonitrile was not added.

各リチウム二次電池について、初期特性として、164mA放電時の2サイクル目の放電容量を測定した。また、過放電特性として、過放電サイクル試験を行なった。過放電サイクル試験は、予め電池電圧が4.2Vになるまで充電を行なってから、300mAの電流で3Vまで放電し、次に3mAで2.7Vまで放電し、最後に1mAで0Vまで放電する充放電を1サイクルとし、この充放電サイクルを3回繰り返し行なった。
表1に、各試験例について、スクシノニトリルの濃度と、初期容量ならびに過放電サイクル3回目の容量の評価結果を示す。
About each lithium secondary battery, the discharge capacity of the 2nd cycle at the time of 164 mA discharge was measured as an initial characteristic. Moreover, the overdischarge cycle test was done as an overdischarge characteristic. In the overdischarge cycle test, the battery is charged in advance until the battery voltage reaches 4.2 V, then discharged to 3 V at a current of 300 mA, then discharged to 2.7 V at 3 mA, and finally discharged to 0 V at 1 mA. Charging / discharging was made into 1 cycle, and this charging / discharging cycle was repeated 3 times.
Table 1 shows the evaluation results of the succinonitrile concentration, initial capacity, and capacity at the third overdischarge cycle for each test example.

Figure 0005178998
Figure 0005178998

表1に示すように、リチウムポリマー二次電池においては、スクシノニトリルの添加量が3質量%以上になると、過放電特性が改善されることがわかる。また、このリチウムポリマー二次電池は過充電保護回路が不要な設計であるので、保護回路のない電池を実現できたことがわかる。   As shown in Table 1, in the lithium polymer secondary battery, it is understood that the overdischarge characteristics are improved when the amount of succinonitrile added is 3% by mass or more. In addition, since this lithium polymer secondary battery is designed without an overcharge protection circuit, it can be seen that a battery without a protection circuit could be realized.

(実験例3)
Cu親和性化合物の種類および添加量を変えた場合の過放電サイクル特性を評価した。
電池の製造は次のようにして行った。まず、上記実施例1と同様にして、Al箔からなる正極集電体上に、正極活物質、結着剤および導電助材からなる正極を形成した。また、実施例1と同様にして、Cu箔からなる負極集電体上に、負極活物質および結着剤からなる負極を形成した。
(Experimental example 3)
The overdischarge cycle characteristics when the type and amount of the Cu affinity compound were changed were evaluated.
The battery was manufactured as follows. First, in the same manner as in Example 1, a positive electrode made of a positive electrode active material, a binder, and a conductive additive was formed on a positive electrode current collector made of an Al foil. In the same manner as in Example 1, a negative electrode made of a negative electrode active material and a binder was formed on a negative electrode current collector made of Cu foil.

次に、エチレンカーボネート(EC)とジエチルカーボネート(DEC)とがEC:DEC=30:70の割合で混合させてなる混合溶媒に、濃度1.3モル/LのLiPFを混合し、更にCu親和性化合物を添加することにより、電解液を調製した。 Next, LiPF 6 having a concentration of 1.3 mol / L is mixed with a mixed solvent obtained by mixing ethylene carbonate (EC) and diethyl carbonate (DEC) at a ratio of EC: DEC = 30: 70, and Cu An electrolyte solution was prepared by adding an affinity compound.

更に、上記の正極と負極の間にポリプロピレン製多孔質セパレータを配置してからこれらを渦巻き状に捲回し、次にこれらをラミネート型の電池ケースに収納し、更に上記の電解液を注液してから電池ケースを密閉した。このようにして、試験例5ないし試験例11のラミネート型のリチウム二次電池を製造した。   Furthermore, after placing a polypropylene porous separator between the positive electrode and the negative electrode, they are wound in a spiral shape, and then stored in a laminate-type battery case, and further injected with the electrolyte. After that, the battery case was sealed. Thus, laminate type lithium secondary batteries of Test Example 5 to Test Example 11 were manufactured.

各試験例のリチウム二次電池について、上記の実験例2と同様にして、過放電サイクル特性を評価した。表2に、各試験例について、ジニトリル化合物の種類、濃度ならびに過放電特性の評価結果を示す。また上記の比較例1の電池も同様に評価した。尚、表2中、TDPNはチオジプロピオニトリルであり、SNはスクシノニトリルであり、CTNはシクロヘキサントリカルボニトリルである。また、SNとCTNの混合比は質量比でSN/CTN=1/1であり、TDPNとCTNの混合比は質量比でTDPN/CTN=1/1である。   About the lithium secondary battery of each test example, it carried out similarly to said Experimental example 2, and evaluated the overdischarge cycle characteristic. Table 2 shows the evaluation results of the type and concentration of the dinitrile compound and overdischarge characteristics for each test example. The battery of Comparative Example 1 was also evaluated in the same manner. In Table 2, TDPN is thiodipropionitrile, SN is succinonitrile, and CTN is cyclohexanetricarbonitrile. The mixing ratio of SN and CTN is SN / CTN = 1/1 by mass ratio, and the mixing ratio of TDPN and CTN is TDPN / CTN = 1/1 by mass ratio.

Figure 0005178998
Figure 0005178998

表2に示すように、電解質が非水電解液であるリチウム二次電池においては、ジニトリル化合物の濃度が0.5%程度でも良好な結果を示すことがわかる。また、スクシノニトリル、グルタロニトリル、アジポニトリルのいずれについても過放電サイクル特性の改善の効果が見られることがわかる。
更に、TDPN単独、SNとCTNの混合物またはTDPNとCTNとの混合物であっても、0.5〜1%程度の添加量で良好な特性を示すことがわかる。
更に、上記実験例2のリチウムポリマー二次電池よりも低濃度で効果のあるのは、ポリマー電解質系より液系の方が、負極集電体表面においてジニトリル化合物が高濃度で蓄積されやすいためであると考えられる。
As shown in Table 2, in the lithium secondary battery in which the electrolyte is a non-aqueous electrolyte, it can be seen that good results are obtained even when the concentration of the dinitrile compound is about 0.5%. Moreover, it turns out that the effect of the improvement of an overdischarge cycle characteristic is seen also about any of a succinonitrile, glutaronitrile, and adiponitrile.
Furthermore, it can be seen that even with TDPN alone, a mixture of SN and CTN, or a mixture of TDPN and CTN, good characteristics are exhibited with an addition amount of about 0.5 to 1%.
Furthermore, the lower concentration than the lithium polymer secondary battery of Experimental Example 2 is more effective because the liquid system is more likely to accumulate dinitrile compounds at a higher concentration on the surface of the negative electrode current collector than the polymer electrolyte system. It is believed that there is.

図1は、実施例1および比較例1について、放電電圧と放電時間との関係を示すグラフである。FIG. 1 is a graph showing the relationship between the discharge voltage and the discharge time for Example 1 and Comparative Example 1.

Claims (6)

リチウムを吸蔵、放出が可能な正極と、Cu若しくはCu合金からなる負極集電体に接合されてリチウムを吸蔵、放出が可能な負極と、リチウムイオンを伝導する電解質とを具備してなり、官能基を二以上有し且つCu若しくはCu合金と強い親和性を有するCu親和性化合物が前記電解質に添加されており、
前記Cu親和性化合物が、2つのニトリル基を有するジニトリル化合物、3つのニトリル基を有するトリニトリル化合物、2つのニトリル基を有しかつ分子中にチオエーテル基を有するチオジアルキルニトリル化合物のうちの2種以上であり、前記ジニトリル化合物と前記トリニトリル化合物との混合物または前記トリニトリル化合物と前記チオジアルキルニトリル化合物との混合物であることを特徴とするリチウム二次電池。
A positive electrode capable of inserting and extracting lithium, a negative electrode capable of inserting and extracting lithium bonded to a negative electrode current collector made of Cu or Cu alloy, and an electrolyte that conducts lithium ions. A Cu affinity compound having two or more groups and having a strong affinity with Cu or a Cu alloy is added to the electrolyte;
The Cu affinity compound is a dinitrile compound having two nitrile groups, a trinitrile compound having three nitrile groups, two or more kinds of thiodialkylnitrile compounds having two nitrile groups and having a thioether group in the molecule The lithium secondary battery is a mixture of the dinitrile compound and the trinitrile compound or a mixture of the trinitrile compound and the thiodialkylnitrile compound.
前記電解質中における前記Cu親和性化合物の濃度が0.1質量%以上50質量%以下の範囲であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein a concentration of the Cu affinity compound in the electrolyte is in a range of 0.1 mass% to 50 mass%. 前記ジニトリル化合物が、スクシノニトリル、グルタロニトリル、アジポニトリルのいずれか1種または2種以上であることを特徴とする請求項1に記載のリチウム二次電池。   2. The lithium secondary battery according to claim 1, wherein the dinitrile compound is one or more of succinonitrile, glutaronitrile, and adiponitrile. 前記トリニトリル化合物がシクロヘキサントリカルボニトリルであり、前記チオジアルキルニトリル化合物がチオジプロピオニトリルであることを特徴とする請求項1に記載のリチウム二次電池。   The lithium secondary battery according to claim 1, wherein the trinitrile compound is cyclohexanetricarbonitrile, and the thiodialkylnitrile compound is thiodipropionitrile. 前記電解質がポリマー電解質と難燃性電解質の少なくともいずれか一方であることを特徴とする請求項1ないし請求項4のいずれかに記載のリチウム二次電池。   The lithium secondary battery according to any one of claims 1 to 4, wherein the electrolyte is at least one of a polymer electrolyte and a flame retardant electrolyte. 請求項1ないし請求項のいずれかに記載のリチウム二次電池を具備し、電池充放電時の異常を電池電圧検知によって制御する電子保護回路を具備しないことを特徴とするリチウム二次電池パック。 Comprises a lithium secondary battery according to any one of claims 1 to 5, the lithium rechargeable battery pack, characterized in that does not include an electronic protection circuit for controlling the battery voltage detecting abnormality when the battery charge and discharge .
JP2005225810A 2004-08-03 2005-08-03 Lithium secondary battery and lithium secondary battery pack Active JP5178998B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005225810A JP5178998B2 (en) 2004-08-03 2005-08-03 Lithium secondary battery and lithium secondary battery pack

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004226620 2004-08-03
JP2004226620 2004-08-03
JP2005225810A JP5178998B2 (en) 2004-08-03 2005-08-03 Lithium secondary battery and lithium secondary battery pack

Publications (2)

Publication Number Publication Date
JP2006073513A JP2006073513A (en) 2006-03-16
JP5178998B2 true JP5178998B2 (en) 2013-04-10

Family

ID=36153875

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005225810A Active JP5178998B2 (en) 2004-08-03 2005-08-03 Lithium secondary battery and lithium secondary battery pack

Country Status (1)

Country Link
JP (1) JP5178998B2 (en)

Families Citing this family (23)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
TWI302760B (en) * 2004-01-15 2008-11-01 Lg Chemical Ltd Electrochemical device comprising aliphatic nitrile compound
KR100644074B1 (en) 2004-12-02 2006-11-10 주식회사 엘지화학 COPPER COLLECTOR FOR SECONDARY BATTERY COMPRISING Cu-NITRILE COMPOUND COMPLEX FORMED ON SURFACE THEREOF
TWI341605B (en) 2006-02-15 2011-05-01 Lg Chemical Ltd Non-aqueous electrolyte and electrochemical device with an improved safety
KR100941299B1 (en) * 2006-07-07 2010-02-11 주식회사 엘지화학 Additive having cyano group for non-aqueous electrolyte and electrochemical device using the same
JP4936440B2 (en) 2006-10-26 2012-05-23 日立マクセルエナジー株式会社 Non-aqueous secondary battery
US8795884B2 (en) 2008-05-07 2014-08-05 Hitachi Maxell, Ltd. Nonaqueous secondary battery and electronic device
KR101050333B1 (en) * 2008-07-07 2011-07-19 삼성에스디아이 주식회사 Lithium secondary battery
JP2011091019A (en) * 2009-01-30 2011-05-06 Equos Research Co Ltd Collector for positive electrode of secondary battery, collector for negative electrode of secondary battery, positive electrode of secondary battery, negative electrode of secondary battery, and secondary battery
CN102326286B (en) * 2009-02-18 2014-04-02 旭化成电子材料株式会社 Electrolytic solution for lithium-ion secondary battery, and lithium-ion secondary battery
JP2011070861A (en) * 2009-03-31 2011-04-07 Equos Research Co Ltd Battery case and lithium ion battery using it
EP2442397B1 (en) 2009-06-10 2016-10-05 Asahi Kasei Kabushiki Kaisha Electrolytic solution and lithium-ion secondary battery utilizing the same
JP2011071083A (en) * 2009-08-28 2011-04-07 Equos Research Co Ltd Lithium ion battery
WO2011024837A1 (en) * 2009-08-28 2011-03-03 株式会社エクォス・リサーチ Electrolyte for lithium-ion cell
JP5668913B2 (en) * 2009-08-28 2015-02-12 株式会社エクォス・リサーチ Lithium ion battery
JP2011071114A (en) * 2009-08-28 2011-04-07 Equos Research Co Ltd Positive active material for lithium ion battery and lithium ion battery using the same
JP2011124125A (en) * 2009-12-11 2011-06-23 Sanyo Electric Co Ltd Nonaqueous electrolyte secondary battery
US8962179B2 (en) * 2010-08-30 2015-02-24 Samsung Sdi Co., Ltd. Secondary battery
US9230746B2 (en) 2010-12-06 2016-01-05 Ube Industries, Ltd Nonaqueous electrolytic solution and electrochemical device using the same
JP5998013B2 (en) * 2012-11-02 2016-09-28 株式会社日本触媒 Electric storage device and electrolyte
CN105340038B (en) * 2013-06-26 2019-10-11 大金工业株式会社 Electrolyte and electrochemical device
KR102160709B1 (en) * 2017-04-14 2020-09-28 주식회사 엘지화학 Polymer solid electrolyte and lithium secondary battery comprising the same
KR20220009894A (en) 2020-07-16 2022-01-25 주식회사 엘지에너지솔루션 Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery comprising the same
CN117015893A (en) * 2021-03-24 2023-11-07 松下新能源株式会社 Nonaqueous electrolyte secondary battery and method for manufacturing nonaqueous electrolyte secondary battery

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH07176322A (en) * 1993-12-21 1995-07-14 Mitsubishi Cable Ind Ltd Electrolytic solution for li secondary battery
JPH1021958A (en) * 1996-07-04 1998-01-23 Shin Kobe Electric Mach Co Ltd Lithium ion secondary battery
JP4041998B2 (en) * 1996-12-28 2008-02-06 株式会社ジーエス・ユアサコーポレーション Method for producing non-aqueous electrolyte battery
JP3634728B2 (en) * 2000-08-25 2005-03-30 三洋電機株式会社 Non-aqueous electrolyte battery
JP4609751B2 (en) * 2002-07-15 2011-01-12 宇部興産株式会社 Lithium secondary battery

Also Published As

Publication number Publication date
JP2006073513A (en) 2006-03-16

Similar Documents

Publication Publication Date Title
JP5178998B2 (en) Lithium secondary battery and lithium secondary battery pack
US7776475B2 (en) Lithium rechargeable battery and lithium rechargeable battery pack
US10454138B2 (en) Non-aqueous electrolyte additive, non-aqueous electrolyte comprising the same, and lithium secondary battery including non-aqueous electrolyte
JP4561843B2 (en) Nonaqueous electrolyte battery and negative electrode
US10601069B2 (en) Non-aqueous electrolyte additive, and non-aqueous electrolyte for lithium secondary battery comprising the same and lithium secondary battery
JP4284541B2 (en) Secondary battery
US11876177B2 (en) Non-aqueous electrolyte solution for lithium secondary battery and lithium secondary battery including the same
US9620780B2 (en) Anode for secondary battery and lithium secondary battery including same
CN101192663A (en) An electrode for a rechargeable lithium battery and a rechargeable lithium battery fabricated therefrom
JP6868969B2 (en) Non-aqueous secondary battery and non-aqueous electrolyte used for it
JP2012182012A (en) Electrode for lithium secondary battery and lithium secondary battery using the same
KR100669330B1 (en) Rechargeable lithium battery and rechargeable lithium battery pack
EP2928005B1 (en) Electrolyte for long cycle life secondary battery and secondary battery containing the same
JP6767151B2 (en) Non-aqueous electrolyte and non-aqueous secondary battery
JP4595205B2 (en) Nonaqueous electrolyte secondary battery
KR20220008347A (en) Electrolyte, lithium-sulfur secondary battery and module
JP2014035807A (en) Battery pack
JP5410441B2 (en) Lithium secondary battery containing additives for improving high temperature characteristics
JP2004265832A (en) Electrolyte and battery using it
JP6662522B2 (en) Lithium sulfur battery
KR100826084B1 (en) Additives for lithium secondarty battery
JP2016207447A (en) Nonaqueous electrolyte secondary battery
JP4923661B2 (en) Method for producing non-aqueous electrolyte secondary battery
WO2018173452A1 (en) Non-aqueous electrolytic solution and non-aqueous electrolyte secondary battery
JP2007294654A (en) Electrochemical capacitor

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080611

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110823

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20111124

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120529

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120823

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20130109

R150 Certificate of patent or registration of utility model

Ref document number: 5178998

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250