JP2011071114A - Positive active material for lithium ion battery and lithium ion battery using the same - Google Patents

Positive active material for lithium ion battery and lithium ion battery using the same Download PDF

Info

Publication number
JP2011071114A
JP2011071114A JP2010190365A JP2010190365A JP2011071114A JP 2011071114 A JP2011071114 A JP 2011071114A JP 2010190365 A JP2010190365 A JP 2010190365A JP 2010190365 A JP2010190365 A JP 2010190365A JP 2011071114 A JP2011071114 A JP 2011071114A
Authority
JP
Japan
Prior art keywords
positive electrode
active material
lithium ion
electrode active
ion battery
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Ceased
Application number
JP2010190365A
Other languages
Japanese (ja)
Inventor
Shigeto Okada
重人 岡田
Masatoshi Nagahama
昌俊 長濱
Norifumi Hasegawa
規史 長谷川
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Kyushu University NUC
Equos Research Co Ltd
Original Assignee
Kyushu University NUC
Equos Research Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Kyushu University NUC, Equos Research Co Ltd filed Critical Kyushu University NUC
Priority to JP2010190365A priority Critical patent/JP2011071114A/en
Publication of JP2011071114A publication Critical patent/JP2011071114A/en
Ceased legal-status Critical Current

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Landscapes

  • Secondary Cells (AREA)
  • Battery Electrode And Active Subsutance (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide a lithium ion battery charging and discharging by using Li<SB>2</SB>NiPO<SB>4</SB>F as a positive active material, and also to provide an electrochemical measuring method for examining electrochemical behavior such as charge-discharge characteristics of Li<SB>2</SB>NiPO<SB>4</SB>F. <P>SOLUTION: The positive active material for the lithium ion battery is a material in which part of M of Li<SB>2-x</SB>MPO<SB>4</SB>F (M is Co or Ni; and x=2 to 0) is replaced by one or two or more kinds selected from the group comprising Mg, Al, Ti, V, Mn, Fe, Cu, Zn, Zr, Nb, and Mo, which are different from M. <P>COPYRIGHT: (C)2011,JPO&INPIT

Description

本発明は、リチウムイオン電池用正極活物質及びそれを用いたリチウムイオン電池に関し、特には、正極活物質の改良によって放電電位を高め、電池のエネルギー密度の向上を図るものである。   The present invention relates to a positive electrode active material for a lithium ion battery and a lithium ion battery using the same, and in particular, improves the discharge potential and improves the energy density of the battery by improving the positive electrode active material.

従来、リチウムイオン電池用の正極活物質として、リチウムイオンに対してインターカレーションホストとなり得るLiCoOやLiNiO等の酸化物系正極活物質が用いられている。しかし、これらの酸化物系正極活物質における充放電は、中心金属であるCoやNiの3価/4価のレドックス反応を利用しているため、充電時に化学的にCoやNiが不安定な4価の状態となり、熱安定性に著しく劣るという問題を生じていた。 Conventionally, oxide-based positive electrode active materials such as LiCoO 2 and LiNiO 2 that can serve as intercalation hosts for lithium ions have been used as positive electrode active materials for lithium ion batteries. However, the charge and discharge in these oxide-based positive electrode active materials use the trivalent / tetravalent redox reaction of the central metals Co and Ni, so that Co and Ni are chemically unstable during charging. There was a problem that it was in a tetravalent state and was extremely inferior in thermal stability.

この問題を解決する正極活物質として、LiCoPOやLiFePO等のオリビン型結晶構造を有するリン酸塩も正極活物質が開発されている。この正極活物質は、CoやNiの3価/4価のレドックス反応の代わりに2価/3価のレドックス反応を用いることによって熱安定性が改善されており、さらには、中心金属の周りに電気陰性度の大きなヘテロ元素のポリアニオンであるリン酸基が配置されているため、放電電位が高くなり、エネルギー密度が上記酸化物系正極活物質よりも高くなる。 As positive electrode active materials for solving this problem, positive electrode active materials have also been developed for phosphates having an olivine type crystal structure such as LiCoPO 4 and LiFePO 4 . This positive electrode active material has improved thermal stability by using a divalent / trivalent redox reaction instead of a trivalent / tetravalent redox reaction of Co or Ni, and further, around the central metal. Since a phosphate group which is a polyanion of a heteroelement having a high electronegativity is arranged, the discharge potential is increased and the energy density is higher than that of the oxide-based positive electrode active material.

そして、さらには、これらLiCoPOやLiFePO等のオリビン型結晶構造を有するリン酸塩のエネルギー密度をさらに向上させるために、リン酸ポリアニオンPOの酸素の一部を酸素より電気陰性度の大きなフッ素で置換し、放電電位をさらに高めたLiCoPOFやLiNiPOF等のオリビンフッ化物系正極活物質が提案されている(特許文献1)。 Further, in order to further improve the energy density of the phosphate having an olivine type crystal structure such as LiCoPO 4 or LiFePO 4, a part of oxygen of the phosphate polyanion PO 4 has a higher electronegativity than oxygen. An olivine fluoride positive electrode active material such as Li 2 CoPO 4 F or Li 2 NiPO 4 F substituted with fluorine to further increase the discharge potential has been proposed (Patent Document 1).

特開2003−229126JP 2003-229126 A

しかし、上記特許文献1に記載のLiCoPOFは、放電電位は高いものの、一定の電流で放電した場合途中で正極電位が急速に低下し、充放電電気量が小さいという問題があった。 However, although Li 2 CoPO 4 F described in Patent Document 1 has a high discharge potential, there is a problem in that the positive electrode potential rapidly decreases in the middle when discharged at a constant current, and the amount of charge and discharge is small. .

本発明は、上記従来の実情に鑑みてなされたものであり、放電電圧が高く、充放電電気量が大きいオリビンフッ化物系正極活物質を提供することを解決すべき課題としている。   This invention is made | formed in view of the said conventional situation, and makes it the subject which should be solved to provide an olivine fluoride type | system | group positive electrode active material with a high discharge voltage and a large amount of charge / discharge electricity.

本発明者らは、LiCoPOFやLiNiPOFの充放電容量をさらに向上させるため、他の金属元素をドーパントとして添加することについて鋭意研究を行った。その結果、ドーパントとしてMg,Al,Ti,V,Mn,Fe,Cu、Zn、Zr、Nb及びMoの添加が効果的であることを見出し、本発明を完成するに至った。 In order to further improve the charge / discharge capacity of Li 2 CoPO 4 F and Li 2 NiPO 4 F, the present inventors have conducted intensive studies on adding other metal elements as dopants. As a result, it has been found that addition of Mg, Al, Ti, V, Mn, Fe, Cu, Zn, Zr, Nb and Mo as dopants is effective, and the present invention has been completed.

すなわち、本発明のリチウムイオン電池用正極活物質は、Li2-xMPOF(ただしMはCo又はNiのいずれかを示す。また、x=2〜0)のMの一部がMと異なるMg,Al,Ti,V,Mn,Fe,Cu、Zn、Zr、Nb及びMoからなる群より選択される1種又は2種以上によって置換されていることを特徴とする。 That is, the positive electrode active material for a lithium ion battery of the present invention is Li 2 -x MPO 4 F (wherein M represents either Co or Ni, and x = 2 to 0). It is characterized by being substituted by one or more selected from the group consisting of different Mg, Al, Ti, V, Mn, Fe, Cu, Zn, Zr, Nb and Mo.

ドーパントとしてはMg,Al,Ti,V,Mn,Fe,Cu、Zn、Zr、Nb及びMoからなる群より選択される1種又は2種以上が好ましく、その中でもMg,Ti,Mn,Zn及びNbからなる群より選択される1種又は2種以上が好ましい。また、ドーピングする元素の添加量については特に制限はなく、目的とする正極活物質の性質等に応じて適宜決定すればよいが、通常、化学量論比で0.001〜50%、望ましくは0.1〜20%、更に望ましくは1〜10%程度である。   The dopant is preferably one or more selected from the group consisting of Mg, Al, Ti, V, Mn, Fe, Cu, Zn, Zr, Nb and Mo, and among them, Mg, Ti, Mn, Zn and One or more selected from the group consisting of Nb are preferred. Moreover, there is no restriction | limiting in particular about the addition amount of the element to dope, and what is necessary is just to determine suitably according to the property etc. of the target positive electrode active material, Usually, 0.001-50% by a stoichiometric ratio, Desirably It is about 0.1 to 20%, more preferably about 1 to 10%.

本発明のリチウムイオン電池用正極活物質を用いることにより、充放電容量の大きいリチウムイオン電池用正極とすることができる。   By using the positive electrode active material for a lithium ion battery of the present invention, a positive electrode for a lithium ion battery having a large charge / discharge capacity can be obtained.

また、本発明のリチウムイオン電池用正極活物質を用いることにより、充放電容量の大きいリチウムイオン電池とすることができる。   Moreover, it can be set as a lithium ion battery with a large charging / discharging capacity | capacitance by using the positive electrode active material for lithium ion batteries of this invention.

実施例のリチウムイオン電池用正極活の作製に用いたLiNiPOFのXRDチャートである。Is an XRD chart of the Li 2 NiPO 4 F was used to prepare the positive electrode active for a lithium-ion battery of Example. 実施例1及び比較例1のリチウムイオン電池用正極活物質を用いた電極の定電流放電における放電電気量と正極電位との関係を示すグラフである。It is a graph which shows the relationship between the amount of discharge electricity and positive electrode potential in the constant current discharge of the electrode using the positive electrode active material for lithium ion batteries of Example 1 and Comparative Example 1. 実施例2のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 2. 実施例3のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 3. 実施例4のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 4. 実施例5のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 5. 実施例6のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 6. 実施例7のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 7. 実施例8のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 8. 実施例9のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 9. 実施例10のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 10. 実施例11のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 11. 実施例12のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 12. 実施例13のリチウムイオン電池用正極活物質を用いた電極のサイクリックボルタモグラム測定(1)の測定結果を示すグラフである。It is a graph which shows the measurement result of the cyclic voltammogram measurement (1) of the electrode using the positive electrode active material for lithium ion batteries of Example 13. SB:EC:DMC=50:10:40(容積比)におけるサイクリックボルタモグラム測定(2)の測定結果を示すグラフである。It is a graph which shows the measurement result of cyclic voltammogram measurement (2) in SB: EC: DMC = 50: 10: 40 (volume ratio). SB:EC:DMC=10:10:80(容積比)におけるサイクリックボルタモグラム測定(2)の測定結果を示すグラフである。It is a graph which shows the measurement result of cyclic voltammogram measurement (2) in SB: EC: DMC = 10: 10: 80 (volume ratio). SB:EC:DMC=10:5:85(容積比)におけるサイクリックボルタモグラム測定(2)の測定結果を示すグラフである。It is a graph which shows the measurement result of cyclic voltammogram measurement (2) in SB: EC: DMC = 10: 5: 85 (volume ratio). 実施例11のリチウムイオン電池用正極活物質を用いた電極の充放電特性である。It is the charging / discharging characteristic of the electrode using the positive electrode active material for lithium ion batteries of Example 11.

以下、本発明を具体化した実施例について詳細に述べる。
(実施例1)
実施例1では次の化学組成からなる正極活物質を調製した。
Li2Co0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4
すなわち、先ず、酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸コバルト(Co(CH3COO)・4H2O)と、ニオブ(V)エトキシド(Nb(OC2H5)5)と、硝酸マグネシウムと、硝酸マンガンと、チタンイソプロポキシド(Ti(i-OC3H7)4)と、リン酸二水素アンモニウム(NH4H2PO4)のLi源、Co源、Nb源、Mg源、Mn源、Ti源及びPO源が、化学量論比で1:0.97:0.01:0.01:0.005:0.005:1となるように秤量した後、めのう乳鉢を用いてよく混合した。そしてこの混合物を大気中500℃で12時間の仮焼を行なった後、再度粉砕混合し、780℃で48時間の本焼成を行った。こうして得られた焼成物をと化学量論比で等量のフッ化リチウム(LiF)を添加し、白金るつぼに入れた後、石英真空封管中で780℃で72時間の焼成を行い、正極活物質としてのLi2Co0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fを得た。この正極活物質のXRDパターンを図1に示す。
Hereinafter, embodiments embodying the present invention will be described in detail.
Example 1
In Example 1, a positive electrode active material having the following chemical composition was prepared.
Li 2 Co 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F
That is, first, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), cobalt acetate (Co (CH 3 COO) · 4H 2 O), niobium (V) ethoxide (Nb (OC 2 H 5 ) 5 ), Magnesium nitrate, manganese nitrate, titanium isopropoxide (Ti (i-OC 3 H 7 ) 4 ), and ammonium dihydrogen phosphate (NH 4 H 2 PO 4) Li source, Co source, Nb source, Mg The sources, Mn source, Ti source and PO 4 source were weighed so that the stoichiometric ratio was 1: 0.97: 0.01: 0.01: 0.005: 0.005: 1, and then mixed well using an agate mortar. The mixture was calcined at 500 ° C. for 12 hours in the atmosphere, and then pulverized and mixed again, followed by firing at 780 ° C. for 48 hours. The calcined product thus obtained was added with an equal amount of lithium fluoride (LiF) in a stoichiometric ratio, placed in a platinum crucible, and then baked at 780 ° C. for 72 hours in a quartz vacuum sealed tube. Li 2 Co 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F as an active material was obtained. The XRD pattern of this positive electrode active material is shown in FIG.

<リチウムイオン電池用正極の作製>
上述のようにして得られたLi2Co0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fと、カーボン(グラッシーカーボン粉砕品)とをめのう乳鉢で混合した後、さらにポリテトラフルオロエチレン(PTFE)粉末を加えて混合し、プレス成形により円盤状のペレットとした。これらの混合割合はLi2Co0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4F:カーボン:PTFE=60:35:5(重量比)とした。このペレットを2枚のPtメッシュに挟み、ホットプレス法(プレス条件:140℃、2分、500kg/cm2)によってホットプレスすることにより、リチウムイオン電池用正極を得た。
<Preparation of positive electrode for lithium ion battery>
Li 2 Co 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F obtained as described above and carbon (glassy carbon pulverized product) were mixed in an agate mortar, and further polytetrafluoroethylene (PTFE) powder Were added and mixed, and a disk-shaped pellet was formed by press molding. These mixing ratios were set to Li 2 Co 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F: carbon: PTFE = 60: 35: 5 (weight ratio). The pellet was sandwiched between two Pt meshes and hot pressed by a hot press method (press condition: 140 ° C., 2 minutes, 500 kg / cm 2 ) to obtain a positive electrode for a lithium ion battery.

<リチウムイオン電池用負極の作製>
リチウム薄板を上記リチウムイオン電池用正極と同形の円盤状に打ち抜いたものをリチウムイオン電池用負極とした。
<Preparation of negative electrode for lithium ion battery>
A lithium thin plate punched out into the same shape as the positive electrode for a lithium ion battery was used as a negative electrode for a lithium ion battery.

<リチウムイオン電池の組み立て>
リチウムイオン電池の組み立てには、SUS製コインセル2032型(SUS316L製)を用い、正極、セパレータ及び負極を順に重ね入れ、電解液を浸した後、かしめ機でかしめて密封し、リチウムイオン電池とした。セパレータはイオン透過性で絶縁性の高いポリプロピレン系特殊紙を用いた。また、電解液はセバコニトリル:エチレンカーボネート(EC):ジメチルカーボネート(DMC)=50::25:25の混合有機溶媒にLiBFを1mol/Lの濃度となるように溶解させた。
<Assembly of lithium-ion battery>
For the assembly of the lithium ion battery, a SUS coin cell 2032 type (made of SUS316L) was used. The positive electrode, the separator, and the negative electrode were sequentially stacked, immersed in the electrolyte, and then caulked and sealed to form a lithium ion battery. . The separator was made of polypropylene-based special paper that is ion-permeable and highly insulating. In addition, the electrolytic solution was LiBF 4 dissolved in a mixed organic solvent of sebacononitrile: ethylene carbonate (EC): dimethyl carbonate (DMC) = 50 :: 25: 25 to a concentration of 1 mol / L.

(比較例1)
比較例1では次の化学組成からなる正極活物質を調製した。
Li2CoPO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)
)と、酢酸コバルト(Co(CH3COO)・4H2O)、リン酸二水素アンモニウム(NH4H2PO4)のLi源、Co源、PO源が、化学量論比で1:1:1となるように秤量し、めのう乳鉢を用いてよく混合した(ドーパントとしてのNb源、Mg源、Mn源、Ti源は使用しなかった)。その後の処理については実施例1と同様にして正極活物質を作製し、リチウムイオン電池を組み立てた。
(Comparative Example 1)
In Comparative Example 1, a positive electrode active material having the following chemical composition was prepared.
Li 2 CoPO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O) as a raw material for the positive electrode active material
), Cobalt acetate (Co (CH 3 COO) · 4H 2 O), lithium dihydrogen phosphate (NH 4 H 2 PO 4) Li source, Co source, PO 4 source in a 1: 1: 1 stoichiometric ratio. And mixed well using an agate mortar (Nb source, Mg source, Mn source and Ti source as dopants were not used). About the subsequent process, it carried out similarly to Example 1, produced the positive electrode active material, and assembled the lithium ion battery.

−充放電特性の評価−
以上のようにして得られた実施例1及び比較例1のリチウムイオン電池について、定電流における充放電特性を測定した。すなわち、実施例1及び比較例1のリチウムイオン電池について、0.01Cの放電速度で放電し、放電電気量と正極電位との関係を求めた。その結果、図2に示すように、実施例1では放電電気量が123mAh/gまで正極電位の大きな低下は認められなかったのに対し、比較例1では放電電気量が82mAh/g付近から正極電位の低下が顕著となった。この結果から、実施例1のリチウムイオン電池は比較例1のリチウムイオン電池と比較して、ドーピングしたNb、Mn、Mg及びTi元素の影響により放電電気量が1.5倍程度まで顕著な電圧低下を起こさず、エネルギー密度が高くなることが分かった。
-Evaluation of charge / discharge characteristics-
Regarding the lithium ion batteries of Example 1 and Comparative Example 1 obtained as described above, charge / discharge characteristics at a constant current were measured. That is, the lithium ion batteries of Example 1 and Comparative Example 1 were discharged at a discharge rate of 0.01 C, and the relationship between the amount of discharge electricity and the positive electrode potential was determined. As a result, as shown in FIG. 2, in Example 1, the discharge potential was not significantly reduced to 123 mAh / g, whereas in Comparative Example 1, the discharge charge was from about 82 mAh / g to the positive electrode. The decrease in potential became significant. From this result, the lithium ion battery of Example 1 has a voltage that is significantly higher than the lithium ion battery of Comparative Example 1 by about 1.5 times the amount of discharge electricity due to the influence of doped Nb, Mn, Mg, and Ti elements. It was found that the energy density was increased without causing a decrease.

(実施例2)
実施例2では次の化学組成からなる正極活物質を調製した。
Li2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4
すなわち、先ず、酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、ニオブ(V)エトキシド(Nb(OC2H5)5)と、硝酸マグネシウムと、硝酸マンガンと、チタンイソプロポキシド(Ti(i-OC3H7)4)と、リン酸二水素アンモニウム(NH4H2PO4)のLi源、Ni源、Nb源、Mg源、Mn源、Ti源、PO源が、化学量論比で1:0.97:0.01:0.01:0.005:0.005:1となるように秤量した後、めのう乳鉢を用いてよく混合する。そしてこの混合物を大気中500℃で12時間の仮焼を行なった後、再度粉砕混合し、780℃で48時間の本焼成を行った。こうして得られた焼成物をと化学量論比で等量のフッ化リチウム(LiF)を添加し、白金るつぼに入れた後、石英真空封管中で710℃で72時間の焼成を行い、正極活物質としてのLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fを得た。
(Example 2)
In Example 2, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F
That is, first, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 · 4H 2 O), niobium (V) ethoxide (Nb (OC 2 H 5 ) 5 ), magnesium nitrate, manganese nitrate, titanium isopropoxide (Ti (i-OC 3 H 7 ) 4 ), Li source of ammonium dihydrogen phosphate (NH 4 H2PO4), Ni source, Nb source, Mg source, Mn source, Ti source, PO 4 source are weighed so that the stoichiometric ratio is 1: 0.97: 0.01: 0.01: 0.005: 0.005: 1, and then mixed well using an agate mortar To do. The mixture was calcined at 500 ° C. for 12 hours in the atmosphere, and then pulverized and mixed again, followed by firing at 780 ° C. for 48 hours. The calcined product thus obtained was added with an equal amount of lithium fluoride (LiF) in a stoichiometric ratio, placed in a platinum crucible, and then baked at 710 ° C. for 72 hours in a quartz vacuum sealed tube. Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F was obtained as an active material.

<リチウムイオン電池用正極の作製>
上述のようにして得られたLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fをめのう乳鉢に入れ、その上にAu板(厚さ0.5mm)を載せ、さらにその上にLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fをふりかけた後、乳棒で強く押し付けてLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4FとAu板とを圧着させることにより、リチウムイオン電池用正極を得た。
<Preparation of positive electrode for lithium ion battery>
Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F obtained as described above is placed in an agate mortar, and an Au plate (thickness 0.5 mm) is placed thereon, and further Li 2 Ni is placed thereon. 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F is sprinkled and then pressed strongly with a pestle to press the Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F and Au plate into a lithium ion battery A positive electrode was obtained.

(実施例3)
実施例3では次の化学組成からなる正極活物質を調製した。
Li2Ni0.99Zn0.01PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、炭酸亜鉛(ZnCO3)と、リン酸二水素アンモニウム(NH4H2PO4)のLi源、Ni源、Zn源、PO4源が、化学量論比で1:0.99:0.01:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Example 3)
In Example 3, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.99 Zn 0.01 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 · 4H 2 O), and zinc carbonate (ZnCO 3 ) Then, the lithium source of ammonium dihydrogen phosphate (NH 4 H 2 PO 4), Ni source, Zn source, and PO 4 source are weighed so that the stoichiometric ratio is 1: 0.99: 0.01: 1, and an agate mortar is used. And mixed well. About the subsequent process, it carried out similarly to Example 2, and produced the positive electrode active material, and produced the positive electrode for lithium ion batteries.

(実施例4)
実施例4では次の化学組成からなる正極活物質を調製した。
Li2Ni0.99Mg0.01PO4
すなわち、酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、硝酸マグネシウムと、リン酸二水素アンモニウム(NH4H2PO4)のLi源、Ni源、Mg源、PO源が、化学量論比で1:0.99:0.01:1となるように調製した。その他については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
Example 4
In Example 4, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.99 Mg 0.01 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 4H 2 O), magnesium nitrate, ammonium dihydrogen phosphate (NH 4 H2 PO4 Li source), Ni source, Mg source, PO 4 source, a stoichiometric ratio of 1: 0.99: 0.01 to prepare a 1. About others, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例5〜8)
実施例5〜8では、Li2NiPO4Fに対してNb、Ti、Mn及びMgを以下の割合でドーピングした正極活物質を調製した。
実施例5 Li2Ni0.95Nb0.03Ti0.01Mn0.005Mg0.005PO4
実施例6 Li2Ni0..95Nb0.01Ti0.03Mn0.005Mg0.005PO4
実施例7 Li2Ni0.955Nb0.01Ti0.01Mn0.02Mg0.005PO4
実施例8 Li2Ni0.955Nb0.01Ti0.01Mn0.005Mg0.02PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、ニオブ(V)エトキシド(Nb(OC2H5)5)と、チタンイソプロポキシド(Ti(i-OC3H7)4)と、硝酸マンガンと、硝酸マグネシウムと、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Nb源、Ti源、Mn源、Mg源及びPO源が、上記化学量論比となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Examples 5 to 8)
In Examples 5 to 8, positive electrode active materials were prepared by doping Nb, Ti, Mn, and Mg in the following proportions with respect to Li 2 NiPO 4 F.
Example 5 Li 2 Ni 0.95 Nb 0.03 Ti 0.01 Mn 0.005 Mg 0.005 PO 4 F
Example 6 Li 2 Ni 0.9.95 Nb 0.01 Ti 0.03 Mn 0.005 Mg 0.005 PO 4 F
Example 7 Li 2 Ni 0.955 Nb 0.01 Ti 0.01 Mn 0.02 Mg 0.005 PO 4 F
Example 8 Li 2 Ni 0.955 Nb 0.01 Ti 0.01 Mn 0.005 Mg 0.02 PO 4 F
In other words, lithium acetate hydrate (LiCH 3 COO 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 4H 2 O), niobium (V) ethoxide ( Nb (OC 2 H 5 ) 5 ), titanium isopropoxide (Ti (i-OC 3 H 7 ) 4 ), manganese nitrate, magnesium nitrate, and ammonium dihydrogen phosphate (NH 4 H2PO4) Li source, Ni source, Nb source, Ti source, Mn source, Mg source and PO 4 source were weighed so as to have the above stoichiometric ratio, and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例9)
実施例9では次の化学組成からなる正極活物質を調製した。
Li2Ni0.99Ti0.01PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、チタンイソプロポキシド(Ti(i-OC3H7)4)と、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Nb源、Ti源及びPO源が、化学量論比で2:0.99:0.01:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
Example 9
In Example 9, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.99 Ti 0.01 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 · 4H 2 O), and titanium isopropoxide (Ti Li source, Ni source, Nb source, Ti source and PO 4 source composed of (i-OC 3 H 7 ) 4 ) and ammonium dihydrogen phosphate (NH 4 H 2 PO 4) have a stoichiometric ratio of 2: 0.99. : Weighed to 0.01: 1 and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例10)
実施例10では次の化学組成からなる正極活物質を調製した。
Li2Ni0.99Nb0.01PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、ニオブ(V)エトキシド(Nb(OC2H5)5)と、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Nb源、Ti源、Mn源、Mg源及びPO源が、化学量論比で1:0.99:0.01:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Example 10)
In Example 10, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.99 Nb 0.01 PO 4 F
In other words, lithium acetate hydrate (LiCH 3 COO 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 4H 2 O), niobium (V) ethoxide ( Li, Ni source, Nb source, Ti source, Mn source, Mg source and PO 4 source consisting of Nb (OC 2 H 5 ) 5 ) and ammonium dihydrogen phosphate (NH 4 H 2 PO 4) are stoichiometric. The mixture was weighed so that the ratio was 1: 0.99: 0.01: 1 and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例11)
実施例11では次の化学組成からなる正極活物質を調製した。
Li2Ni0.98Co0.02PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、酢酸コバルト水和物(Ni(CH3COO)2・4H2O)と、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Co源、及びPO源が、化学量論比で1:0.98:0.02:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Example 11)
In Example 11, a positive electrode active material having the following chemical composition was prepared.
Li 2 Ni 0.98 Co 0.02 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), nickel acetate hydrate (Ni (CH 3 COO) 2 · 4H 2 O), and cobalt acetate hydrate ( and Ni (CH 3 COO) 2 · 4H 2 O), Li source consisting ammonium dihydrogen phosphate (NH 4 H2PO4), Ni source, Co source, and PO 4 sources in stoichiometric ratio 1: 0.98 : Weighed to 0.02: 1 and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例12)
実施例12では次の化学組成からなる正極活物質を調製した。
Li2Co0.75Ni0.24Mg0.01PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸コバルト水和物(Co(CH3COO)2・4H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、硝酸マグネシウムと、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Co源、Mg源及びPO源が、化学量論比で1:0.98:0.02:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Example 12)
In Example 12, a positive electrode active material having the following chemical composition was prepared.
Li 2 Co 0.75 Ni 0.24 Mg 0.01 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), cobalt acetate hydrate (Co (CH 3 COO) 2 · 4H 2 O), and nickel acetate hydrate ( Li source, Ni source, Co source, Mg source and PO 4 source consisting of Ni (CH 3 COO) 2 · 4H 2 O), magnesium nitrate, and ammonium dihydrogen phosphate (NH 4 H 2 PO 4) They were weighed so that the theoretical ratio was 1: 0.98: 0.02: 1 and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

(実施例13)
実施例13では次の化学組成からなる正極活物質を調製した。
Li2Co0.50Ni0.49Mg0.01PO4
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸コバルト水和物(Co(CH3COO)2・4H2O)と、酢酸ニッケル水和物(Ni(CH3COO)2・4H2O)と、硝酸マグネシウムと、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Co源、Mg源及びPO源が、化学量論比で1:0.98:0.02:1となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
(Example 13)
In Example 13, a positive electrode active material having the following chemical composition was prepared.
Li 2 Co 0.50 Ni 0.49 Mg 0.01 PO 4 F
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), cobalt acetate hydrate (Co (CH 3 COO) 2 · 4H 2 O), and nickel acetate hydrate ( Li source, Ni source, Co source, Mg source and PO 4 source consisting of Ni (CH 3 COO) 2 · 4H 2 O), magnesium nitrate, and ammonium dihydrogen phosphate (NH 4 H 2 PO 4) They were weighed so that the theoretical ratio was 1: 0.98: 0.02: 1 and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.

−評 価−
<サイクリックボルタモグラム測定(1)>
サイクリックボルタモグラム測定(1)では、上記のようにして調製した実施例2〜13のリチウムイオン電池用正極について、以下の条件によりサイクリックボルタモグラム測定を行った。
電解液はセバコニトリル:エチレンカーボネート(EC):ジメチルカーボネート(DMC)=50:25:25の混合有機溶媒にLiBFを1mol/Lの濃度となるように溶解させたものを用いた。ガラスセル中の電解液に実施例のリチウムイオン電池用正極を浸漬し、対極及び参照極として各々Li金属を用い、電位の掃引速度は100mV/秒(ただし、実施例7〜13では10mV/秒)とし、参照電極に対して3.0〜6.0V(ただし、実施例5〜13では3.0〜5.5V)の範囲で電位掃引を行った。
-Evaluation-
<Cyclic voltammogram measurement (1)>
In cyclic voltammogram measurement (1), cyclic voltammogram measurement was performed on the positive electrodes for lithium ion batteries of Examples 2 to 13 prepared as described above under the following conditions.
The electrolytic solution used was a solution of LiBF 4 dissolved in a mixed organic solvent of sebacononitrile: ethylene carbonate (EC): dimethyl carbonate (DMC) = 50: 25: 25 to a concentration of 1 mol / L. The positive electrode for the lithium ion battery of the example was immersed in the electrolyte in the glass cell, Li metal was used as the counter electrode and the reference electrode, respectively, and the potential sweep rate was 100 mV / second (however, in Examples 7 to 13, 10 mV / second) ) And a potential sweep was performed in the range of 3.0 to 6.0 V (3.0 to 5.5 V in Examples 5 to 13) with respect to the reference electrode.

その結果、実施例2のLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fを正極活物質として用いたリチウムイオン電池用正極では、図3に示すように、Li/Li+参照電極に対して5V付近にLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fの酸化還元に基づく明確な酸化還元ピークが観察された。なお、5Vの位置に現れる小さな酸化電流ピークは最初の掃引においてのみ現われ、2回目以降はほぼ消失した。この酸化電流ピークはAu電極についても同様の位置に酸化電流ピークが現れることから、Auに起因するピークと考えられる。
また、実施例3のLi2Ni0.99Zn0.01PO4Fを正極活物質として用いたリチウムイオン電池用正極、及び実施例4のLi2Ni0.99Mg0.01PO4Fを正極活物質として用いたリチウムイオン電池用正極においても、図4及び図5に示すように、実施例2の場合と同様、5V付近に正極活物質の酸化還元に基づく明確な酸化還元ピークが観察された。
As a result, in the positive electrode for a lithium ion battery using Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F of Example 2 as the positive electrode active material, the Li / Li + reference electrode was formed as shown in FIG. On the other hand, a clear redox peak based on the redox of Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F was observed in the vicinity of 5V. A small oxidation current peak appearing at a position of 5 V appeared only in the first sweep, and almost disappeared after the second sweep. This oxidation current peak is considered to be a peak due to Au because an oxidation current peak appears at the same position for the Au electrode.
Further, lithium using a positive electrode for a lithium ion battery using the Li 2 Ni 0.99 Zn 0.01 PO 4 F of Example 3 as the positive electrode active material, and Li 2 Ni 0.99 Mg 0.01 PO 4 F of Example 4 as the positive electrode active material Also in the positive electrode for ion batteries, as shown in FIGS. 4 and 5, as in Example 2, a clear redox peak based on the redox of the positive electrode active material was observed in the vicinity of 5 V.

また、実施例5〜13の正極活物質を用いたリチウムイオン電池用正極においても、図6〜14に示すように、Li/Li+参照電極に対して5.3V付近に酸化還元に基づく明確な酸化還元ピークが観察された。以上の結果から、実施例5〜13の正極活物質は、実施例1〜4と同様、5.3Vの前後で円滑な酸化還元反応を示し、過電圧もそれほど大きくは無く、優れた充放電特性を示すことが示された。 Moreover, also in the positive electrode for lithium ion batteries using the positive electrode active material of Examples 5-13, as shown in FIGS. 6-14, it is clear based on oxidation reduction in the vicinity of 5.3V with respect to a Li / Li + reference electrode. A good redox peak was observed. From the above results, the positive electrode active materials of Examples 5 to 13 show a smooth oxidation-reduction reaction at around 5.3 V as in Examples 1 to 4, and the overvoltage is not so large, and excellent charge / discharge characteristics. It was shown to show.

以上の結果から、Li2NiPO4FのNiの一部がMg,Ti,Mn,Co及びNbからなる群より選択される1種又は2種以上によって置換されている正極活物質は、円滑な充放電が可能であって、放電時の電位も高いことから、従来にない高電圧電池になることが分かった。 From the above results, the positive electrode active material in which a part of Ni in Li 2 NiPO 4 F is substituted by one or more selected from the group consisting of Mg, Ti, Mn, Co and Nb is smooth. Since charging / discharging is possible and the potential at the time of discharge is high, it has been found that the battery has an unprecedented high voltage.

<サイクリックボルタモグラム測定(2)>
サイクリックボルタモグラム測定(2)では、実施例2のLi2Ni0.97Nb0.01Mg0.01Mn0.005Ti0.005PO4Fを正極活物質として用いたリチウムイオン電池用正極について、セバコニトリル(SB)とエチレンカーボネート(EC)とジメチルカーボネート(DMC)を次に示す3種類の割合で測定した。その他の測定条件についてはサイクリックボルタモグラム測定(1)と同様であり、説明を省略する。
混合割合(容積比)
SB:EC:DMC=50:10:40
SB:EC:DMC=10:10:80
SB:EC:DMC=10:5:85
<Cyclic voltammogram measurement (2)>
In cyclic voltammogram measurement (2), for the positive electrode for a lithium ion battery using Li 2 Ni 0.97 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F of Example 2 as a positive electrode active material, sebacononitrile (SB) and ethylene carbonate ( EC) and dimethyl carbonate (DMC) were measured in the following three ratios. Other measurement conditions are the same as those in the cyclic voltammogram measurement (1), and the description thereof is omitted.
Mixing ratio (volume ratio)
SB: EC: DMC = 50: 10: 40
SB: EC: DMC = 10: 10: 80
SB: EC: DMC = 10: 5: 85

サイクリックボルタモグラム測定(2)の結果を図15〜17に示す。図15〜17及び図3から、セバコニトリル:エチレンカーボネート(EC):ジメチルカーボネート(DMC)の混合割合(容積比)を50:10:40、50:10:40、10:5:85及び50:25:25と変化させても、サイクリックボルタモグラムはそれほど変化せず、ほぼ同じ電位で酸化還元電流が観測された。以上の結果、少なくともこれらの混合割合の範囲内で、Li2Ni0.98Nb0.01Mg0.01Mn0.005Ti0.005PO4Fは、円滑な充放電が可能であって、放電時の電位も高いことから、従来にない高電圧電池になることが分かった。 The results of cyclic voltammogram measurement (2) are shown in FIGS. 15 to 17 and FIG. 3, the mixing ratio (volume ratio) of sebacononitrile: ethylene carbonate (EC): dimethyl carbonate (DMC) was 50:10:40, 50:10:40, 10: 5: 85 and 50: Even if it was changed to 25:25, the cyclic voltammogram did not change so much, and an oxidation-reduction current was observed at almost the same potential. As a result, Li 2 Ni 0.98 Nb 0.01 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F can be charged and discharged smoothly and has a high potential during discharge, at least within the range of these mixing ratios. It turned out that it becomes a high voltage battery which is not in the past.

−充放電特性の評価−
実施例11の正極活物質を用いたリチウムイオン電池について、定電流における放電特性を測定した。すなわち、実施例11のリチウムイオン電池用正極について、39μAの定電流で参照電極に対して5.5Vとなるまで充電し、19.5μAの定電流で参照電極に対して3Vとなるまで放電させた。その結果、その結果、図18に示すように、放電電位が4.8〜5.3Vでプラトーを有する高電圧正極であることが確認できた。平均の放電電位は約5Vになると推定される。
-Evaluation of charge / discharge characteristics-
About the lithium ion battery using the positive electrode active material of Example 11, the discharge characteristic in a constant current was measured. That is, the positive electrode for the lithium ion battery of Example 11 was charged with a constant current of 39 μA to 5.5 V with respect to the reference electrode, and discharged with a constant current of 19.5 μA to 3 V with respect to the reference electrode. It was. As a result, as shown in FIG. 18, it was confirmed that the discharge potential was 4.8 to 5.3 V and the plate was a high voltage positive electrode having a plateau. The average discharge potential is estimated to be about 5V.

(実施例14〜23)
実施例14〜23では、Li2CoPO4Fに対してNb、Ti、Mn及びMgを以下の割合でドーピングした正極活物質を調製した。
すなわち、正極活物質の原料として酢酸リチウム水和物(LiCH3COO・2H2O)と、酢酸コバルト水和物(Co(CH3COO)2・4H2O)と、ニオブ(V)エトキシド(Nb(OC2H5)5)と、チタンイソプロポキシド(Ti(i-OC3H7)4)と、硝酸マンガンと、硝酸マグネシウムと、リン酸二水素アンモニウム(NH4H2PO4)とからなるLi源、Ni源、Nb源、Ti源、Mn源、Mg源及びPO源が、下記化学量論比となるように秤量し、めのう乳鉢を用いてよく混合した。その後の処理については実施例2と同様にして、正極活物質を作製し、リチウムイオン電池用正極を作製した。
実施例14 Li2Co0.99Mg0.01PO4
実施例15 Li2Co0.98Mg0.02PO4
実施例16 Li2Co0.99Zn0.01PO4
実施例17 Li2Co0.99Ti0.01PO4
実施例18 Li2Co0.99Mn0.01PO4
実施例19 Li2Co0.98Mn0.02PO4
実施例20 Li2Co0.96Nb0.02Mg0.01Mn0.005Ti0.005PO4
実施例21 Li2Co0.96Nb0.01Mg0.02Mn0.005Ti0.005PO4
実施例22 Li2Co0.955Nb0.01Mg0.01Mn0.01Ti0.005PO4
実施例23 Li2Co0.955Nb0.01Mg0.01Mn0.01Ti0.005PO4
(Examples 14 to 23)
In Examples 14 to 23, a positive electrode active material in which Nb, Ti, Mn, and Mg were doped in the following ratio with respect to Li 2 CoPO 4 F was prepared.
That is, lithium acetate hydrate (LiCH 3 COO · 2H 2 O), cobalt acetate hydrate (Co (CH 3 COO) 2 · 4H 2 O), niobium (V) ethoxide ( Nb (OC 2 H 5 ) 5 ), titanium isopropoxide (Ti (i-OC 3 H 7 ) 4 ), manganese nitrate, magnesium nitrate, and ammonium dihydrogen phosphate (NH 4 H2PO4) Li source, Ni source, Nb source, Ti source, Mn source, Mg source and PO 4 source were weighed so as to have the following stoichiometric ratio, and mixed well using an agate mortar. About the subsequent process, it carried out similarly to Example 2, the positive electrode active material was produced, and the positive electrode for lithium ion batteries was produced.
Example 14 Li 2 Co 0.99 Mg 0.01 PO 4 F
Example 15 Li 2 Co 0.98 Mg 0.02 PO 4 F
Example 16 Li 2 Co 0.99 Zn 0.01 PO 4 F
Example 17 Li 2 Co 0.99 Ti 0.01 PO 4 F
Example 18 Li 2 Co 0.99 Mn 0.01 PO 4 F
Example 19 Li 2 Co 0.98 Mn 0.02 PO 4 F
Example 20 Li 2 Co 0.96 Nb 0.02 Mg 0.01 Mn 0.005 Ti 0.005 PO 4 F
Example 21 Li 2 Co 0.96 Nb 0.01 Mg 0.02 Mn 0.005 Ti 0.005 PO 4 F
Example 22 Li 2 Co 0.955 Nb 0.01 Mg 0.01 Mn 0.01 Ti 0.005 PO 4 F
Example 23 Li 2 Co 0.955 Nb 0.01 Mg 0.01 Mn 0.01 Ti 0.005 PO 4 F

−充放電特性の評価−
以上のようにして得られた実施例14〜23のリチウムイオン電池について、0.01Cの放電速度で放電し、放電電気量と正極電位との関係を求めた。実施例14〜23についての結果を、比較例1及び実施例1の結果とともに表1に示す。
-Evaluation of charge / discharge characteristics-
About the lithium ion battery of Examples 14-23 obtained as mentioned above, it discharged with the discharge rate of 0.01 C, and calculated | required the relationship between the amount of discharge electricity, and positive electrode potential. The results for Examples 14 to 23 are shown in Table 1 together with the results of Comparative Example 1 and Example 1.

Figure 2011071114
Figure 2011071114

表1に示すように、実施例14〜23では放電電気量が100mAh/gを超えているのに対し、比較例1では放電電気量が82mAh/gと小さく、正極電位の低下が顕著となった。この結果から、実施例14〜23のリチウムイオン電池は比較例1のリチウムイオン電池と比較して、ドーピングしたNb、Mn、Mg及びTi元素の影響により放電電気量が増大し、エネルギー密度が高くなることが分かった。   As shown in Table 1, in Examples 14 to 23, the amount of discharged electricity exceeds 100 mAh / g, whereas in Comparative Example 1, the amount of discharged electricity is as small as 82 mAh / g, and the positive electrode potential decreases significantly. It was. From this result, compared with the lithium ion battery of Comparative Example 1, the lithium ion batteries of Examples 14 to 23 have an increased discharge electricity amount due to the influence of doped Nb, Mn, Mg, and Ti elements, and the energy density is high. I found out that

本発明のリチウムイオン電池用正極活物質は、リチウムイオン電池に適用される。ここに、リチウムイオン電池は電解液、正極、負極、セパレータ及びケースを備えてなる。   The positive electrode active material for a lithium ion battery of the present invention is applied to a lithium ion battery. Here, the lithium ion battery includes an electrolytic solution, a positive electrode, a negative electrode, a separator, and a case.

(電解液)
電解液はLi塩(電解質)と有機溶媒とを含んでいる。
Li塩には、Liイオン電池用の一般的なLi塩を用いることができる。例えば、LiPF6(六フッ化リン酸リチウム)、LiBF(四フッ化ホウ酸リチウム)、LiTFSI(リチウムビス(トリフルオロメタンスルホニル)イミド)、LiTFS(トリフルオロメタンスルホン酸リチウム)、LiBETI(リチウムビス(ペンタフルオロエタンスルホニル)イミド)又はこれらの2種以上を用いることができる。
本発明の正極活物質は酸化還元電位が高いため、LiPF、及び/又はLiBFを使用することが好ましい。また、LiTFSIやLiTFSやLiBETIを用いる場合、LiPF又はLiBFを添加することが好ましい。
(Electrolyte)
The electrolytic solution contains a Li salt (electrolyte) and an organic solvent.
As the Li salt, a general Li salt for a Li ion battery can be used. For example, LiPF 6 (lithium hexafluorophosphate), LiBF 4 (lithium tetrafluoroborate), LiTFSI (lithium bis (trifluoromethanesulfonyl) imide), LiTFS (lithium trifluoromethanesulfonate), LiBETI (lithium bis ( Pentafluoroethanesulfonyl) imide) or two or more thereof can be used.
Since the positive electrode active material of the present invention has a high oxidation-reduction potential, it is preferable to use LiPF 6 and / or LiBF 4 . In the case of using a LiTFSI and LiTFS and LiBETI, it is preferable to add LiPF 6 or LiBF 4.

有機溶媒も通常のリチウムイオン電池に用いられる一般的なものである環状炭酸エステル、環状カルボン酸エステル及び鎖状炭酸エステルを単独で、あるいは組み合わせたものでは、充電時に有機溶媒が高電位において変質するため、好ましくない。このため、ニトリル化合物を有機溶媒として用いることが好ましい。ここで、ニトリル化合物としては、鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物、鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物及びシアノ酢酸エステルのうち少なくとも一つのニトリル化合物を挙げることができる。   In the case of organic solvents that are commonly used in ordinary lithium ion batteries, cyclic carbonates, cyclic carboxylates, and chain carbonates, alone or in combination, change the organic solvent at a high potential during charging. Therefore, it is not preferable. For this reason, it is preferable to use a nitrile compound as an organic solvent. Here, as the nitrile compound, a chain saturated hydrocarbon dinitrile compound in which a nitrile group is bonded to both ends of a chain saturated hydrocarbon compound, a chain ether in which a nitrile group is bonded to at least one terminal of a chain ether compound. Mention may be made of at least one nitrile compound among nitrile compounds and cyanoacetic acid esters.

鎖式飽和炭化水素化合物の両末端にニトリル基が結合した鎖式飽和炭化水素ジニトリル化合物としては、例えば、スクシノニトリルNC(CHCN、グルタロニトリルNC(CHCN、アジポニトリルNC(CHCN、セバコニトリルNC(CHCN、ドデカンジニトリルNC(CH10CNなどのような直鎖状のジニトリル化合物の他、2−メチルグルタロニトリルNCCH(CH)CHCHCN等のように分枝を有していても良い。これらの鎖式飽和炭化水素ジニトリル化合物は、炭素数は特に限定されないが20以下であることが好ましい。更に好ましくは7〜12である。 Examples of the chain saturated hydrocarbon dinitrile compound in which nitrile groups are bonded to both ends of the chain saturated hydrocarbon compound include succinonitrile NC (CH 2 ) 2 CN, glutaronitrile NC (CH 2 ) 3 CN, adiponitrile In addition to linear dinitrile compounds such as NC (CH 2 ) 4 CN, sebaconitrile NC (CH 2 ) 8 CN, dodecanedinitrile NC (CH 2 ) 10 CN, 2-methylglutaronitrile NCCH (CH 3 ) CH 2 CH 2 CN may have a branched as such. These chain saturated hydrocarbon dinitrile compounds are not particularly limited in carbon number, but are preferably 20 or less. More preferably, it is 7-12.

鎖式エーテル化合物の末端の少なくとも一つにニトリル基が結合した鎖式エーテルニトリル化合物としては、オキシジプロピオニトリルNCCHCH−O−CHCHCNや、3−メトキシプロピオニトリルCH−O−CHCHCN等が挙げられる。これらの鎖式エーテルニトリル化合物は、炭素数は特に限定されないが、20以下であることが好ましい。
シアノ酢酸エステルとしてはシアノ酢酸メチル、シアノ酢酸エチル、シアノ酢酸プロピル、シアノ酢酸ブチル等が挙げられる。これらのシアノ酢酸エステルは、炭素数は特に限定されないが、20以下であることが好ましい。
Examples of the chain ether nitrile compound in which a nitrile group is bonded to at least one end of the chain ether compound include oxydipropionitrile NCCH 2 CH 2 —O—CH 2 CH 2 CN and 3-methoxypropionitrile CH 3. -O-CH 2 CH 2 CN, and the like. These chain ether nitrile compounds are not particularly limited in carbon number, but are preferably 20 or less.
Examples of the cyanoacetate include methyl cyanoacetate, ethyl cyanoacetate, propyl cyanoacetate, and butyl cyanoacetate. These cyanoacetic acid esters are not particularly limited in carbon number, but are preferably 20 or less.

これらニトリル化合物は電解液において電位窓を特に正方向に広げる作用を奏する。
電位窓を広げる作用の観点からジニトリル化合物が好ましい。中でも、セバコニトリルの採用が更に好ましい。
ただし、ニトリル化合物は粘度が高いので、上述の鎖状炭酸エステル、環状炭酸エステル及び/又は環状カルボン酸エステルと併用することが好ましい。更に好ましくはニトリル化合物と鎖状炭酸エステル及び環状炭酸エステルとを併用する。鎖状炭酸エステルとしてはジメチルカーボネートを採用することができ、環状炭酸エステルとしてはエチレンカーボネートを採用することができる。
この場合、有機溶媒全体に占めるニトリル化合物の配合割合は1〜90容量%とすることが好ましい。更に好ましくは5〜70容量%であり、更に更に好ましくは、10〜50容量%である。
These nitrile compounds have the effect of expanding the potential window particularly in the positive direction in the electrolytic solution.
A dinitrile compound is preferable from the viewpoint of the action of expanding the potential window. Of these, the use of sebacononitrile is more preferable.
However, since a nitrile compound has high viscosity, it is preferable to use together with the above-mentioned chain carbonate ester, cyclic carbonate ester, and / or cyclic carboxylic acid ester. More preferably, a nitrile compound, a chain carbonate ester and a cyclic carbonate ester are used in combination. Dimethyl carbonate can be employed as the chain carbonate, and ethylene carbonate can be employed as the cyclic carbonate.
In this case, the blending ratio of the nitrile compound in the whole organic solvent is preferably 1 to 90% by volume. More preferably, it is 5-70 volume%, More preferably, it is 10-50 volume%.

Li塩の濃度は0.1mol/L以上、望ましくは1mol/L以上であって、飽和状態よりも低い濃度とする。例えば、Li塩の濃度が0.1mol/L未満であると、Liイオンによるイオン伝導が極端に小さくなり、電解液の電気抵抗が極端に高くなるので好ましくない。他方、飽和状態を超えると、温度等の環境変化によって溶解しているLi塩が析出するので好ましくない。   The concentration of the Li salt is 0.1 mol / L or more, preferably 1 mol / L or more, and is lower than the saturated state. For example, if the concentration of Li salt is less than 0.1 mol / L, ion conduction by Li ions becomes extremely small, and the electric resistance of the electrolytic solution becomes extremely high, which is not preferable. On the other hand, exceeding the saturation state is not preferable because the dissolved Li salt precipitates due to environmental changes such as temperature.

(正極)
正極は正極活物質と集電体とを備える。
(正極活物質)
正極活物質とは「負極よりも高い電位で結晶構造内にリチウムが挿入/離脱され、それに伴って酸化/還元が行われる物質」をいう。
本発明において、正極活物質としてはLi2-xMPOF(ただしMはCo又はNiのいずれかを示す。また、0≦x≦2)のMの一部がMと異なるMg, Al, Ti, V, Mn, Fe, Cu、Zn、Zr, Nb及びMoからなる群より選択される1種又は2種以上によって置換されているものを用いる。
MがNiのとき、正極活物質はそれ自身の及び/又はその表面皮膜の導電性が小さいので、これを集電体へ単に担持させてなるものではリチウムイオン電池の正極として機能しない場合がある。かかる正極活物質は金等の導電薄膜へハンマー等で物理的に打ち込み、電池の正極を形成することができる。物理的な打ち込みの方法として、正極活物質粉体をサンドブラストのように固体のまま直接金属板に吹き付けるエアロゾルデポジションもしくはエアロガスデポジション等を採用することもできる。
(Positive electrode)
The positive electrode includes a positive electrode active material and a current collector.
(Positive electrode active material)
The positive electrode active material refers to “a material in which lithium is inserted / extracted in the crystal structure at a higher potential than the negative electrode, and oxidation / reduction is performed accordingly”.
In the present invention, as the positive electrode active material, Li 2 -x MPO 4 F (wherein M represents either Co or Ni, and 0 ≦ x ≦ 2), part of M is different from M, Mg, Al, Those substituted by one or more selected from the group consisting of Ti, V, Mn, Fe, Cu, Zn, Zr, Nb and Mo are used.
When M is Ni, the positive electrode active material itself and / or its surface film has low conductivity, so that it may not function as the positive electrode of a lithium ion battery if it is simply supported on the current collector. . Such a positive electrode active material can be physically driven into a conductive thin film such as gold with a hammer or the like to form a positive electrode of a battery. As a physical implantation method, an aerosol deposition, an aerosol deposition, or the like in which the positive electrode active material powder is directly blown onto a metal plate in a solid state like sandblast can be employed.

(正極用集電体)
正極用集電体とは正極活物質を担持する導電性の基板である。
正極の集電体の成形材料は、充電時において安定であることが要求される。特に、酸化還元電位の高いオリビン型結晶構造を有するリン酸塩系及びオリビンフッ化物系の正極活物質を用いるときには、耐食性に優れた素材を使用することが好ましい。
例えば、電解質としてLiPF、LiBFを使用する場合、SUS304、SUS316、SUS316L、Ni、Al、Ti等を用いることができるが、使用する正極活物質の動作電位を考慮し、適宜選択することが好ましい。例えば、電解質としてLiPFを用いる場合は、Li/Li+電極に対して6Vでも使用することができるが、電解質としてLiBFを用いる場合、SUS304はLi/Li+電極に対し5.8V以下で充放電可能な場合のみ用いることができる。また、電解質としてLiTFSIを使用する場合、正極集電体表面に耐食性皮膜を形成させるべく、LiPFを共存させることが好ましい。LiBETI及びLiTFSもLiTFSIの場合と同様である。
また、Al等の導電金属材料へ導電性DLC(ダイヤモンドライクカーボン)を周知の方法で被覆したものを集電体として用いることもできる。電解質がLiBFやLiPFなど、容易にフッ化物皮膜を形成するようなリチウム塩の場合は、アルミニウム上へ厚いフッ化皮膜が形成し、耐食性は向上するものの、電子伝導性が低下し、ひいてはオーミック過電圧増加に伴う、高出力化が阻害されることとなる。Al等の導電金属材料へ導電性DLCを被覆すれば、フッ化物皮膜は導電性DLCの欠陥部分の極わずかな面積でのみ発生するだけである。このため、高電圧化しても電子伝導性の低下は無視できる程度となり、懸念されている高電圧化による出力低下は防ぐことが可能となる。
ここで、導電性ダイヤモンドライクカーボンとは、ダイヤモンド結合(炭素同士のSP混成軌道結合)とグラファイト結合(炭素同士のSP混成軌道結合)の両方の結合が混在しているアモルファス構造をとるカーボンのうち、導電性が1000Ωcm以下のものをいう。ただし、アモルファス構造以外に、部分的にグラファイト構造からなる結晶構造(すなわちSP混成軌道結合からなる六方晶系結晶構造)からなる相を有し、これにより導電性が発揮されるものも含まれる。グラファイトとダイヤモンドの中間の性質を有するダイヤモンドライクカーボンは、成膜時にダイヤモンドライクカーボンを構成する炭素原子のSP混成軌道結合とSP混成軌道結合の比率を調整することで、導電性を調節することができる。
勿論、上記耐食性導電性金属材料を導電性DLCで被覆してもよい。
集電体の形状及び構造は、正極活物質や電池の構造に応じて、任意に設計可能である。
(Current collector for positive electrode)
The positive electrode current collector is a conductive substrate carrying a positive electrode active material.
The molding material for the current collector of the positive electrode is required to be stable during charging. In particular, when using a phosphate-based and olivine fluoride-based positive electrode active material having an olivine-type crystal structure with a high redox potential, it is preferable to use a material excellent in corrosion resistance.
For example, when LiPF 6 or LiBF 4 is used as the electrolyte, SUS304, SUS316, SUS316L, Ni, Al, Ti, or the like can be used. However, it may be selected as appropriate in consideration of the operating potential of the positive electrode active material to be used. preferable. For example, when LiPF 6 is used as the electrolyte, it can be used even at 6 V with respect to the Li / Li + electrode. However, when LiBF 4 is used as the electrolyte, SUS304 is 5.8 V or less with respect to the Li / Li + electrode. It can be used only when charge / discharge is possible. Further, when LiTFSI is used as the electrolyte, it is preferable that LiPF 6 coexists in order to form a corrosion-resistant film on the surface of the positive electrode current collector. LiBETI and LiTFS are the same as in LiTFSI.
In addition, a conductive metal material such as Al coated with conductive DLC (diamond-like carbon) by a well-known method can be used as a current collector. When the electrolyte is a lithium salt such as LiBF 4 or LiPF 6 that easily forms a fluoride film, a thick fluoride film is formed on the aluminum and the corrosion resistance is improved, but the electronic conductivity is lowered, and consequently The increase in output accompanying the increase in ohmic overvoltage is impeded. If the conductive metal material such as Al is coated with the conductive DLC, the fluoride film is generated only in a very small area of the defective portion of the conductive DLC. For this reason, even if the voltage is increased, the decrease in electron conductivity is negligible, and it is possible to prevent the decrease in output due to the increased voltage, which is a concern.
Here, the conductive diamond-like carbon is carbon having an amorphous structure in which both diamond bonds (SP 3 hybrid orbital bonds between carbons) and graphite bonds (SP 2 hybrid orbital bonds between carbons) are mixed. Among them, the one whose conductivity is 1000 Ωcm or less. However, in addition to the amorphous structure, those having a phase composed of a crystal structure partially composed of a graphite structure (that is, a hexagonal crystal structure composed of SP 2 hybrid orbital bonds) and thereby exhibiting conductivity are also included. . Diamond-like carbon having properties intermediate between graphite and diamond adjusts the conductivity by adjusting the ratio of SP 2 hybrid orbital bonds and SP 3 hybrid orbital bonds of the carbon atoms constituting diamond-like carbon during film formation. be able to.
Of course, you may coat | cover the said corrosion-resistant electroconductive metal material with electroconductive DLC.
The shape and structure of the current collector can be arbitrarily designed according to the structure of the positive electrode active material and the battery.

(正極の前処理)
リチウムイオン電池用正極は、リチウムイオン電池に組み込む前に、ニトリル化合物を1容量%以上含む有機溶媒中にリチウム塩が溶解した前処理用電解液中に正電極を浸漬する浸漬処理工程を行い、さらに電極に正電圧を付与する正電圧処理工程を行なう。こうして前処理された電極は、ニトリル化合物を全く含まない電解液や、ニトリル化合物の添加量の少ない電解液を用いたリチウムイオン電池に用いても、電位窓が広く、高い電位においても電解液を分解し難くなる(特願2009−180007号参照)。このような広い電位窓の電極となる理由は、電極上に窒素を成分として含む耐食性の皮膜が形成されるためであると推測される。
(Pretreatment of positive electrode)
The positive electrode for a lithium ion battery performs an immersion treatment step of immersing the positive electrode in a pretreatment electrolytic solution in which a lithium salt is dissolved in an organic solvent containing 1% by volume or more of a nitrile compound before being incorporated in the lithium ion battery, Further, a positive voltage processing step for applying a positive voltage to the electrode is performed. The electrode thus pretreated has a wide potential window even when used in an electrolyte solution containing no nitrile compound or in a lithium ion battery using an electrolyte solution with a small amount of nitrile compound added. It becomes difficult to disassemble (see Japanese Patent Application No. 2009-180007). The reason why the electrode has such a wide potential window is presumed to be that a corrosion-resistant film containing nitrogen as a component is formed on the electrode.

(負極)
負極は負極活物質と集電体とを備える。
(負極活物質)
負極活物質とは「正極よりも低い電位で結晶構造内にリチウムが挿入/離脱され、それに伴って酸化/還元が行われる物質」をいう。
負極活物質としては、例えば、人造黒鉛、天然黒鉛、ハードカーボン等の種々の炭素材料やチタン酸リチウム(LiTi12)、HTi1225、HTi13、Feなどが挙げられる。また、これらを適宜混合した複合体も挙げることができる。さらには、Si微粒子やSi薄膜、これらのSiがSi−Ni、Si−Cu、Si−Nb、Si−Zn、Si−Sn等のSi系合金となった微粒子や薄膜が挙げられる。さらには、SiO酸化物、Si−SiO複合体、Si−SiO−カーボンなどの複合体等を挙げることができる。
(Negative electrode)
The negative electrode includes a negative electrode active material and a current collector.
(Negative electrode active material)
The negative electrode active material refers to “a material in which lithium is inserted / extracted in the crystal structure at a lower potential than the positive electrode, and oxidation / reduction is performed accordingly”.
Examples of the negative electrode active material include various carbon materials such as artificial graphite, natural graphite, and hard carbon, lithium titanate (Li 4 Ti 5 O 12 ), H 2 Ti 12 O 25 , H 2 Ti 6 O 13 , Fe 2 O 3 etc. are mentioned. Moreover, the composite material which mixed these suitably can also be mentioned. Further, there are Si fine particles and Si thin films, and fine particles and thin films in which these Si are Si-based alloys such as Si—Ni, Si—Cu, Si—Nb, Si—Zn, Si—Sn, and the like. Further, SiO oxide, Si-SiO 2 composite, Si-SiO 2 - can be given complex, etc., such as carbon.

(負極用集電体)
負極用の集電体は汎用的な導電性金属材料、Cu、Al、Ni、Ti、SUS304、SUS316等で形成することができる。
但し、電解液にニトリル化合物を用いたとき(他の有機溶剤との併用を含む)には、電解液中のLi塩に応じて適宜選択する必要がある。すなわち、電解質としてLiPF、LiBFを使用する場合、SUS304、316、316L、Ni、Al、Tiの使用が可能となる。ただし、使用する負極活物質の動作電位に応じて、適宜選択する必要がある。負極活物質としてカーボン系やSi系を使用する場合において、電解質としてLiBFを使用した場合は、Cu以外のAl、Ni、Ti、SUS304、SUS316等からなる集電体を使用することができる。負極活物質としてチタン酸リチウムやFe系の化合物を用いた場合は、Cuを含む上記材料の全てが適用可能である。一方、電解質としてLiPF使用時はAl、Ni及びTiが好ましく、SUS316、SUS316L及びCuは好ましくない。また、電解質としてLiTFSIや、LiBETI、やLiTFSを使用する場合、Ni、Ti、Al、Cu、SUS304、316及び316Lの何れも使用することができる。
(Current collector for negative electrode)
The current collector for the negative electrode can be formed of a general-purpose conductive metal material such as Cu, Al, Ni, Ti, SUS304, SUS316, or the like.
However, when a nitrile compound is used for the electrolytic solution (including combined use with other organic solvents), it is necessary to select appropriately according to the Li salt in the electrolytic solution. That is, when LiPF 6 or LiBF 4 is used as the electrolyte, SUS304, 316, 316L, Ni, Al, and Ti can be used. However, it is necessary to select appropriately according to the operating potential of the negative electrode active material to be used. In the case of using carbon or Si as the negative electrode active material, when LiBF 4 is used as the electrolyte, a current collector made of Al, Ni, Ti, SUS304, SUS316, or the like other than Cu can be used. In the case where lithium titanate or a Fe 2 O 3 based compound is used as the negative electrode active material, all of the above materials containing Cu are applicable. On the other hand, when LiPF 6 is used as the electrolyte, Al, Ni and Ti are preferable, and SUS316, SUS316L and Cu are not preferable. In addition, when LiTFSI, LiBETI, or LiTFS is used as the electrolyte, any of Ni, Ti, Al, Cu, SUS304, 316, and 316L can be used.

(正極用電子伝導部材)
正極活物質には導電性の小さいものがある。従って、正極活物質と集電体との間に導電性の電子伝導部材を介在させて、両者の間に十分な電子伝導パスを確保することが好ましい。
ここで電子伝導部材は正極活物質と集電体との間に電子伝導パスを形成できればその形態は特に限定されるものではなく、例えばアセチレンブラック等のカーボンブラック、グラファイト粉、ダイヤモンドライクカーボン、グラッシーカーボン等の導電性粉体(導電助剤)を用いることができる。ダイヤモンドライクカーボン及びグラッシーカーボンは、カーボンブラックやグラファイトよりもはるかに広い電位窓を有しており、高電位を付与した場合の耐食性に優れているため、好適に用いることができる。また、これらの導電助剤に金属微粒子が担持されていることも好ましい。金属微粒子としては、例えばPt、Au、Ni等が挙げられる。これらは、単独で用いても良いし、これらの合金であっても良い。
電子伝導材料として、正極活物質を被覆する導電性皮膜(DLC膜等)、正極活物質を埋入させた導電性薄膜(金の薄膜等)を用いることができる。
特に、LiNiPOF系の正極活物質は、それ自身の及び/又はその表面皮膜の導電性が小さいので、これを集電体へ単に担持させてなるものではリチウムイオン電池の正極として機能しない場合がある。LiNiPOF系の正極活物質の性能評価のために、これを金等の導電板などへハンマー等で物理的に打ち込み、電池の正極を形成することができる。
ここにLiNiPOF系正極活物質とはLiNiPOF及びこれへ適宜ドーパントをドープしたものを指す。
(Electroconductive member for positive electrode)
Some positive electrode active materials have low electrical conductivity. Therefore, it is preferable to provide a sufficient electron conduction path between the positive electrode active material and the current collector by interposing a conductive electron conduction member.
Here, the form of the electron conducting member is not particularly limited as long as an electron conducting path can be formed between the positive electrode active material and the current collector. For example, carbon black such as acetylene black, graphite powder, diamond-like carbon, glassy Conductive powder (conductive aid) such as carbon can be used. Diamond-like carbon and glassy carbon have a much wider potential window than carbon black and graphite, and are excellent in corrosion resistance when a high potential is applied, and therefore can be suitably used. Moreover, it is also preferable that metal fine particles are supported on these conductive assistants. Examples of the metal fine particles include Pt, Au, Ni and the like. These may be used alone or an alloy thereof.
As the electron conductive material, a conductive film (such as a DLC film) covering the positive electrode active material or a conductive thin film (such as a gold thin film) in which the positive electrode active material is embedded can be used.
In particular, since the Li 2 NiPO 4 F-based positive electrode active material has low conductivity of its own and / or its surface coating, it functions as a positive electrode of a lithium ion battery if it is simply supported on a current collector. May not. In order to evaluate the performance of the Li 2 NiPO 4 F-based positive electrode active material, it can be physically driven into a conductive plate such as gold with a hammer or the like to form the positive electrode of the battery.
Here, the Li 2 NiPO 4 F-based positive electrode active material refers to Li 2 NiPO 4 F and a material appropriately doped with dopant.

(負極用電子伝導部材)
正極用電子伝導部材と同様な物を用いることができる。
(Electroconductive member for negative electrode)
The thing similar to the electron conductive member for positive electrodes can be used.

(セパレータ)
セパレータは電解液中へ浸漬され、正極と負極とを分離し両者の短絡を防ぐとともに、Liイオンの通過を許容する。
かかるセパレータには、ポリエチレン、ポリプロピレン等のポリオレフィン系樹脂から成る多孔質フィルムが挙げられる。
(Separator)
The separator is immersed in the electrolytic solution, separates the positive electrode and the negative electrode, prevents a short circuit therebetween, and allows the passage of Li ions.
Examples of such separators include porous films made of polyolefin resins such as polyethylene and polypropylene.

(ケース)
ケースは電解液に対する耐食性を有する材質で形成される。その形状は、電池の目的用途に応じて任意に設計できる。
電解質としてLiPF、LiBFを使用する場合には、SUS304、316、316L、Ni、Al、Tiからなるケースを用いることができる。但し使用する正極、負極活物質の動作電位により適宜選択しなければならない場合もある。
ケースが集電体を兼ねる場合や集電体に電気的に結合される場合は、各電極の集電体形成材料と同一若しくは同種の材料で形成される。
(Case)
The case is formed of a material having corrosion resistance against the electrolytic solution. The shape can be arbitrarily designed according to the intended use of the battery.
When LiPF 6 or LiBF 4 is used as the electrolyte, a case made of SUS304, 316, 316L, Ni, Al, Ti can be used. However, there are cases where it is necessary to select appropriately depending on the operating potential of the positive electrode and negative electrode active material to be used.
When the case also serves as a current collector or is electrically coupled to the current collector, the case is formed of the same or the same material as the current collector forming material of each electrode.

この発明は、上記発明の実施形態の説明に何ら限定されるものではない。特許請求の範囲の記載を逸脱せず、当業者が容易に想到できる範囲で種々の変形態様もこの発明に含まれる。   The present invention is not limited to the description of the embodiment of the invention. Various modifications may be included in the present invention as long as those skilled in the art can easily conceive without departing from the description of the scope of claims.

Claims (2)

Li2-xMPOF(ただしMはCo又はNiのいずれかを示す。また、x=2〜0)のMの一部がMと異なるMg,Al,Ti,V,Mn,Fe,Ni,Cu、Zn、Zr,Nb及びMoからなる群より選択される1種又は2種以上によって置換されていることを特徴とするリチウムイオン電池用正極活物質。 Mg, Al, Ti, V, Mn, Fe, Ni in which M of Li 2 -x MPO 4 F (wherein M represents either Co or Ni, x = 2 to 0) is different from M , Cu, Zn, Zr, Nb and Mo are substituted with one or more selected from the group consisting of Mo and a positive electrode active material for a lithium ion battery. 請求項1に記載のリチウムイオン電池用正極活物質を用いたリチウムイオン電池。   The lithium ion battery using the positive electrode active material for lithium ion batteries of Claim 1.
JP2010190365A 2009-08-28 2010-08-27 Positive active material for lithium ion battery and lithium ion battery using the same Ceased JP2011071114A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010190365A JP2011071114A (en) 2009-08-28 2010-08-27 Positive active material for lithium ion battery and lithium ion battery using the same

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2009199086 2009-08-28
JP2010190365A JP2011071114A (en) 2009-08-28 2010-08-27 Positive active material for lithium ion battery and lithium ion battery using the same

Related Child Applications (2)

Application Number Title Priority Date Filing Date
JP2015015783A Division JP5779287B2 (en) 2009-08-28 2015-01-29 Method of using positive electrode active material, driving method of lithium ion battery using the same, and lithium ion battery to which this driving method is applied
JP2015015782A Division JP5779286B2 (en) 2009-08-28 2015-01-29 Positive electrode active material and lithium ion battery using the same

Publications (1)

Publication Number Publication Date
JP2011071114A true JP2011071114A (en) 2011-04-07

Family

ID=44016168

Family Applications (3)

Application Number Title Priority Date Filing Date
JP2010190365A Ceased JP2011071114A (en) 2009-08-28 2010-08-27 Positive active material for lithium ion battery and lithium ion battery using the same
JP2015015782A Active JP5779286B2 (en) 2009-08-28 2015-01-29 Positive electrode active material and lithium ion battery using the same
JP2015015783A Active JP5779287B2 (en) 2009-08-28 2015-01-29 Method of using positive electrode active material, driving method of lithium ion battery using the same, and lithium ion battery to which this driving method is applied

Family Applications After (2)

Application Number Title Priority Date Filing Date
JP2015015782A Active JP5779286B2 (en) 2009-08-28 2015-01-29 Positive electrode active material and lithium ion battery using the same
JP2015015783A Active JP5779287B2 (en) 2009-08-28 2015-01-29 Method of using positive electrode active material, driving method of lithium ion battery using the same, and lithium ion battery to which this driving method is applied

Country Status (1)

Country Link
JP (3) JP2011071114A (en)

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725321B2 (en) 2011-09-21 2017-08-08 Hyundai Motor Company Compositions and methods for manufacturing a cathode for lithium secondary battery
CN116632175A (en) * 2023-07-06 2023-08-22 深圳海辰储能控制技术有限公司 Composite positive plate, preparation method thereof and lithium ion battery
WO2023162758A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Solid electrolyte material

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN109659560B (en) * 2018-12-26 2020-07-07 贵州容百锂电材料有限公司 Lithium cobalt phosphate cathode material for lithium ion battery and preparation method
EP3998237A4 (en) * 2019-07-08 2023-08-09 Sumitomo Metal Mining Co., Ltd. Manufacturing method for positive electrode active material for lithium-ion secondary battery
JPWO2021006129A1 (en) * 2019-07-08 2021-01-14
EP3998238A4 (en) * 2019-07-08 2023-12-13 Sumitomo Metal Mining Co., Ltd. Positive electrode active material for lithium ion secondary batteries, and lithium ion secondary battery

Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2006073513A (en) * 2004-08-03 2006-03-16 Samsung Sdi Co Ltd Lithium secondary battery and lithium secondary battery pack
JP2006516172A (en) * 2001-10-26 2006-06-22 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal halide-, hydroxide-phosphate and electrode active material using the same
JP2006523368A (en) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド Electrodes containing mixed particles
JP2007073360A (en) * 2005-09-07 2007-03-22 Matsushita Electric Ind Co Ltd Manufacturing method of activator for non-aqueous electrolyte battery
WO2008123014A1 (en) * 2007-03-06 2008-10-16 Ube Industries, Ltd. tert-BUTYLPHENYL SULFONATE COMPOUND, NONAQUEOUS ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2009158240A (en) * 2007-12-26 2009-07-16 Equos Research Co Ltd Electrolytic solution for lithium ion battery
JP2010097934A (en) * 2008-09-17 2010-04-30 Equos Research Co Ltd Positive electrode for lithium-ion battery and lithium-ion battery

Patent Citations (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH09134724A (en) * 1995-11-07 1997-05-20 Nippon Telegr & Teleph Corp <Ntt> Non-aqueous electrolyte secondary battery
JP2006516172A (en) * 2001-10-26 2006-06-22 ヴァレンス テクノロジー インコーポレーテッド Alkali / transition metal halide-, hydroxide-phosphate and electrode active material using the same
JP2003229126A (en) * 2002-02-01 2003-08-15 Sangaku Renkei Kiko Kyushu:Kk Electrode active material for non-aqueous electrolyte secondary battery
JP2005522009A (en) * 2002-04-03 2005-07-21 ヴァレンス テクノロジー インコーポレーテッド Batteries comprising alkali-transition metal phosphates and preferred electrolytes
JP2006523368A (en) * 2003-04-03 2006-10-12 ヴァレンス テクノロジー インコーポレーテッド Electrodes containing mixed particles
JP2006073513A (en) * 2004-08-03 2006-03-16 Samsung Sdi Co Ltd Lithium secondary battery and lithium secondary battery pack
JP2007073360A (en) * 2005-09-07 2007-03-22 Matsushita Electric Ind Co Ltd Manufacturing method of activator for non-aqueous electrolyte battery
WO2008123014A1 (en) * 2007-03-06 2008-10-16 Ube Industries, Ltd. tert-BUTYLPHENYL SULFONATE COMPOUND, NONAQUEOUS ELECTROLYTE SOLUTION FOR LITHIUM SECONDARY BATTERY USING THE SAME, AND LITHIUM SECONDARY BATTERY USING THE SAME
JP2009158240A (en) * 2007-12-26 2009-07-16 Equos Research Co Ltd Electrolytic solution for lithium ion battery
JP2010097934A (en) * 2008-09-17 2010-04-30 Equos Research Co Ltd Positive electrode for lithium-ion battery and lithium-ion battery

Non-Patent Citations (2)

* Cited by examiner, † Cited by third party
Title
CSNC201300307086; 長濱昌俊,他2名: '"High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes"' 電気化学会第77回大会講演要旨集 , 20100326, P.47, 社団法人電気化学会 *
JPN6014017202; 長濱昌俊,他2名: '"High Voltage Performances of Li2NiPO4F Cathode with Dinitrile-Based Electrolytes"' 電気化学会第77回大会講演要旨集 , 20100326, P.47, 社団法人電気化学会 *

Cited By (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9725321B2 (en) 2011-09-21 2017-08-08 Hyundai Motor Company Compositions and methods for manufacturing a cathode for lithium secondary battery
WO2023162758A1 (en) * 2022-02-28 2023-08-31 パナソニックIpマネジメント株式会社 Solid electrolyte material
CN116632175A (en) * 2023-07-06 2023-08-22 深圳海辰储能控制技术有限公司 Composite positive plate, preparation method thereof and lithium ion battery

Also Published As

Publication number Publication date
JP5779287B2 (en) 2015-09-16
JP2015099793A (en) 2015-05-28
JP2015099792A (en) 2015-05-28
JP5779286B2 (en) 2015-09-16

Similar Documents

Publication Publication Date Title
JP5779286B2 (en) Positive electrode active material and lithium ion battery using the same
JP5672432B2 (en) Positive electrode for secondary battery
JP5668913B2 (en) Lithium ion battery
JP5672464B2 (en) Secondary battery and manufacturing method thereof
WO2010053200A1 (en) Positive electrode for secondary battery, secondary battery using same, collector, and battery using the collector
Isken et al. High flash point electrolyte for use in lithium-ion batteries
WO2011024837A1 (en) Electrolyte for lithium-ion cell
JP5375580B2 (en) Electrolyte for sodium ion battery
KR20160133521A (en) Long-life lithium-ion batteries
JP2014241304A (en) Current collector for secondary battery
JP2011165392A (en) Positive electrode active material, manufacturing method of positive electrode active material, and alkaline metal ion battery
JP2011071083A (en) Lithium ion battery
JP5445148B2 (en) Secondary battery and charging method thereof
JP2014182889A (en) Electrolytic solution, and lithium ion secondary battery including the same
JP2013214355A (en) Positive electrode for lithium ion battery
JP2010097934A (en) Positive electrode for lithium-ion battery and lithium-ion battery
JP2011124021A (en) Electrolyte for electrochemical device
JP5359823B2 (en) Positive electrode active material and secondary battery using the same
JP2015008154A (en) Battery case
JP2011181486A (en) Evaluation method of electrolyte for secondary battery
EP4220770A1 (en) Secondary battery charging method and charging system
JP2010186734A (en) Positive electrode for secondary battery, and secondary battery
JP2011070773A (en) Electrode for lithium ion battery
JP2010199063A (en) Catalytic metal-supported carbon
JP5445151B2 (en) Secondary battery and charging method thereof

Legal Events

Date Code Title Description
A80 Written request to apply exceptions to lack of novelty of invention

Free format text: JAPANESE INTERMEDIATE CODE: A80

Effective date: 20100909

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101013

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20101108

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20101106

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20130827

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20131101

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20140421

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20140520

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20140722

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20141216

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20150317

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20150511

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20150623

A045 Written measure of dismissal of application

Free format text: JAPANESE INTERMEDIATE CODE: A045

Effective date: 20151104