JP5171268B2 - Elastic fabric - Google Patents

Elastic fabric Download PDF

Info

Publication number
JP5171268B2
JP5171268B2 JP2007556050A JP2007556050A JP5171268B2 JP 5171268 B2 JP5171268 B2 JP 5171268B2 JP 2007556050 A JP2007556050 A JP 2007556050A JP 2007556050 A JP2007556050 A JP 2007556050A JP 5171268 B2 JP5171268 B2 JP 5171268B2
Authority
JP
Japan
Prior art keywords
fiber
decomposed
fibers
fabric
elastic
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007556050A
Other languages
Japanese (ja)
Other versions
JPWO2007086593A1 (en
Inventor
徹太郎 二三四
金吾 田中
克彦 柳
拓也 末廣
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Seiren Co Ltd
Original Assignee
Seiren Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Seiren Co Ltd filed Critical Seiren Co Ltd
Priority to JP2007556050A priority Critical patent/JP5171268B2/en
Publication of JPWO2007086593A1 publication Critical patent/JPWO2007086593A1/en
Application granted granted Critical
Publication of JP5171268B2 publication Critical patent/JP5171268B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Classifications

    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M13/00Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment
    • D06M13/322Treating fibres, threads, yarns, fabrics or fibrous goods made from such materials, with non-macromolecular organic compounds; Such treatment combined with mechanical treatment with compounds containing nitrogen
    • D06M13/35Heterocyclic compounds
    • D06M13/352Heterocyclic compounds having five-membered heterocyclic rings
    • DTEXTILES; PAPER
    • D06TREATMENT OF TEXTILES OR THE LIKE; LAUNDERING; FLEXIBLE MATERIALS NOT OTHERWISE PROVIDED FOR
    • D06MTREATMENT, NOT PROVIDED FOR ELSEWHERE IN CLASS D06, OF FIBRES, THREADS, YARNS, FABRICS, FEATHERS OR FIBROUS GOODS MADE FROM SUCH MATERIALS
    • D06M2200/00Functionality of the treatment composition and/or properties imparted to the textile material
    • D06M2200/25Resistance to light or sun, i.e. protection of the textile itself as well as UV shielding materials or treatment compositions therefor; Anti-yellowing treatments

Description

本発明は、伸縮性布帛に関し、特に、同一布帛上に少なくとも2種の異なる伸縮弾性領域を有し、必要に応じて色柄表現が施された伸縮性布帛に関する。   The present invention relates to a stretchable fabric, and more particularly, to a stretchable fabric having at least two different stretchable elastic regions on the same fabric and having a color pattern expressed as necessary.

近年、様々な手法を用いた運動機能性向上、疲労回復機能、疲労軽減機能、体型補整、または体型矯正などの機能を狙った高機能性布帛が開発されており、様々な分野で製品への展開が拡大してきている。その1つとしてポリウレタン繊維などの弾性繊維を使用した高い伸縮性をもった布帛があり、これらはスポーツやインナー分野で用いられている。これらの製品は着用時の不快感を軽減させ、目的に応じ必要な部位に必要な応力を与えた製品である。
必要な部位毎に応力を出す手法として、使用する糸の繊度や種類を変えたり組織を変更するなどの織編条件を変化させる手法、所定部分へ樹脂を付与する方法、所定部分を抜蝕加工する方法および布帛やテープ状物を所定場所に積層する方法などがある。
織編条件を変化させる方法は、応力差は得られやすく、応力もコントロールし易いが、糸の繊度や糸種を変えたり組織を変えることで、見た目に違和感ができるおそれや、着用感が悪くなるおそれがある。
樹脂を付与する方法は樹脂付与領域における布帛の伸縮性を変化させる方法であり、布帛内で自在に応力をコントロールし易いが、樹脂を付与するため布帛の風合が硬くなり易く、着用感は悪くなるおそれがある。また樹脂付与部の通気性低下、繰返し着用時もしくは洗濯による樹脂破壊、割れ、剥がれ等が生じ耐久性が懸念される。
布帛やテープ状物を積層する方法は接着、縫製等の方法を採用するため応力差は得られ易いが、これも接着剤樹脂により風合が硬くなったり、貼付けた部分の厚みが増大することで着用感が損なわれるおそれがある。また、積層した布帛などが剥離するおそれもある。縫製においては縫製部に段差や凹凸が生じ、肌面へのあたりが気になるなどの問題がある。
また、抜蝕加工方法についても多くの技術が開示されてきた。例えば、特開平2−91288号公報および特開平3−867号公報には、繊維脆化剤としてアミン類(トリエタノールアミン等)にて処理した繊維布帛シートを更にアルカリ処理することによって、変性ポリエステル繊維をアルカリ加水分解させる抜蝕方法が提案されている。しかしながら、繊維脆化剤としてアミン類を用いる上記の方法は、変性ポリエステル繊維以外の残存させるべき繊維も脆化させてしまい、強度を低下させるため使用できる繊維の種類に制限があった。
更に、抜蝕加工を行った場合、抜蝕部は弾性繊維が布帛の表面に露出しやすくなる。このため太陽光等の紫外線に布帛が暴露されると弾性繊維が脆化して伸縮性の低下を起こすという問題があった。
In recent years, high-performance fabrics aimed at functions such as improvement of motor functionality, fatigue recovery function, fatigue reduction function, body shape correction, or body shape correction using various methods have been developed. Development is expanding. One of them is a highly stretchable fabric using elastic fibers such as polyurethane fibers, and these are used in sports and inner fields. These products are products that reduce discomfort at the time of wearing and give necessary stress to necessary parts according to the purpose.
As a technique to generate stress for each required part, a technique to change the weaving and knitting conditions such as changing the fineness and type of yarn used or changing the structure, a method of applying resin to a predetermined part, and a process for removing a predetermined part And a method of laminating a cloth or tape-like material in a predetermined place.
The method of changing the weaving and knitting conditions is easy to obtain a stress difference and easy to control the stress, but changing the fineness of the yarn and the yarn type or changing the structure may cause a sense of incongruity and poor wear. There is a risk.
The method of applying the resin is a method of changing the stretchability of the fabric in the resin application region, and it is easy to control the stress freely in the fabric, but since the resin is applied, the texture of the fabric is likely to be hard, and the feeling of wear is May be worse. In addition, there is a concern about durability due to a decrease in air permeability of the resin-applied part, resin breakage, cracking, peeling, etc. due to repeated wearing or washing.
The method of laminating fabrics and tape-like materials employs methods such as bonding and sewing, so it is easy to obtain a stress difference, but this also makes the texture harder due to the adhesive resin and increases the thickness of the pasted part. There is a risk that the feeling of wearing will be impaired. In addition, the laminated fabric may be peeled off. In sewing, there is a problem that a step or unevenness is generated in the sewing part, and the contact with the skin surface is anxious.
In addition, many techniques have been disclosed for the removal processing method. For example, in JP-A-2-91288 and JP-A-3-867, a modified polyester is obtained by further alkali-treating a fiber fabric sheet treated with amines (such as triethanolamine) as a fiber embrittlement agent. An extraction method for alkali hydrolysis of fibers has been proposed. However, the above method using amines as a fiber embrittlement agent causes embrittlement of fibers other than the modified polyester fiber, and there is a limit to the types of fibers that can be used to reduce the strength.
Furthermore, when performing the erosion process, the erosion part tends to expose the elastic fiber on the surface of the fabric. Therefore, when the fabric is exposed to ultraviolet rays such as sunlight, there is a problem that the elastic fiber becomes brittle and the stretchability is lowered.

発明の目的
本発明の目的は、上記従来技術の問題点を解決することにあり、特に、風合や、着用感を損なわず、また、通気性や耐久性に優れた、異なる弾性率を有する伸縮部を有する伸縮性布帛を提供することであり、特には、弾性繊維の脆化を抑えた、抜蝕部と非抜蝕部からなる伸縮性布帛を提供することにある。
発明の要約
本発明は、第1に、抜蝕性非弾性繊維、非抜蝕性非弾性繊維および弾性繊維によって構成され、抜蝕部と非抜蝕部とをもち、前記抜蝕性非弾性繊維がカチオン可染性ポリエステル繊維からなり、前記弾性繊維が耐アルカリ性ポリウレタン繊維からなり、前記非抜蝕性非弾性繊維の強度係数(繊度(dtex)×単糸強度(CN/dtex)×単位面積当たりの密度(コース×ウエルまたはタテ密度×ヨコ密度)×抜蝕部の抜蝕する前の非抜蝕性非弾性繊維の混率)170,000以上であり、前記耐アルカリ性ポリウレタン繊維が6%濃度の苛性ソーダ水溶液に常温で5分間浸漬後の強度維持率が60%以上の耐アルカリ性ポリウレタン繊維であることを特徴とする伸縮性布帛である。
本発明は、第に、抜蝕処理前の構成繊維の割合が、前記カチオン可染性ポリエステル繊維が30〜55%、前記非抜蝕性非弾性繊維が25〜55%、前記ポリウレタン繊維が10〜45%である上記1に記載の伸縮性布帛である。
本発明は、第に、前記抜蝕部の破壊強度が200KPa以上である上記1または2に記載の伸縮性布帛である。
本発明は、第に、前記非抜蝕性非弾性繊維がナイロン繊維であり、前記弾性繊維がエーテル系ポリウレタン繊維である上記1〜のいずれかに記載の伸縮性布帛である。
本発明は、第に、紫外線吸収剤が付与されている上記1〜のいずれかに記載の伸縮性布帛である。
本発明は、第に、前記紫外線吸収剤の付与が構造中に塩素を含むベンゾトリアゾール系紫外線吸収剤の後加工による付与である上記5に記載の伸縮性布帛である。
本発明は、第に、カーボンアーク灯光を40時間照射した後の前記抜蝕部の応力保持率が90%以上であり、前記抜蝕部の30%の伸長時の応力が前記非抜蝕部の30%伸長時の応力の20〜85%であり、且つ、前記抜蝕部の前記弾性繊維の破断強度が前記非抜蝕部の前記弾性繊維の破断強度の90%以上である上記1〜のいずれかに記載の伸縮性布帛である。
発明の効果
本発明の抜蝕部と非抜蝕部とをもつ布帛は、抜蝕した非弾性繊維以外の非弾性繊維や弾性繊維の強度低下を抑え、所定の部分の抜蝕された伸縮性の異なる部分を有し、長期間に亘って良好な伸縮性を示す。
The object of the present invention is to solve the above-mentioned problems of the prior art, and in particular, it does not impair the texture and the feeling of wear, and has different elastic moduli excellent in air permeability and durability. An object of the present invention is to provide a stretchable fabric having a stretchable portion, and in particular, to provide a stretchable fabric composed of an extracted portion and a non-extracted portion that suppresses embrittlement of elastic fibers.
SUMMARY OF THE INVENTION A first aspect of the present invention is composed of an extractable inelastic fiber, a non-extractable inelastic fiber, and an elastic fiber, and has an extracted portion and a non- extracted portion, and the extractable inelasticity. fibers made from cationic dyeable polyester fiber, wherein the elastic fibers are made from alkali-resistant polyurethane fibers, wherein the non-fiber-decomposed non intensity coefficient of elastic fibers (fineness (dtex) × single yarn strength (CN / dtex) × unit area Ri der mixing ratio) is 170,000 or more non-fiber-decomposed of inelastic fiber before the fiber-decomposed in the density of (course × well or vertical density × horizontal density) × fiber-decomposed part per the alkali resistance polyurethane fibers 6 % strength strength retention after immersion for 5 minutes at room temperature in aqueous caustic soda solution is stretchable fabric, wherein the alkali resistance polyurethane fibers der Rukoto more than 60%.
The present invention, in the second, the proportion of the structural fiber before the fiber-decomposed process, the cationic dyeable polyester fiber is 30 to 55%, the non-fiber-decomposed of inelastic fibers 25 to 55 percent, the polyurethane fibers 2. The stretchable fabric according to 1 above, which is 10 to 45%.
The present invention, in the third, breaking strength of the fiber-decomposed part is stretch fabric according to claim 1 or 2 is at least 200 KPa.
The present invention, in the fourth, the non-fiber-decomposed of inelastic fibers is a nylon fiber, the elastic fiber is a stretch fabric according to any one of 1 to 3 is an ether-based polyurethane fibers.
The present invention, in the fifth, is a stretch fabric according to any one of 1-4 to ultraviolet absorber has been granted.
The present invention, in the sixth, application of the ultraviolet absorber is a stretch fabric according to the above 5 is imparted by machining after the benzotriazole ultraviolet absorber containing chlorine in their structure.
The present invention, in the seventh, carbon arc lamp light said after irradiation 40 h fiber-decomposed part stress retention of at least 90%, 30% elongation at the stress the non fiber-decomposed of the fiber-decomposed part a 30% 20% to 85% of the elongation at the stress of parts, and, above 1 the breaking strength of the elastic fibers of the fiber-decomposed part is not less than 90% of the breaking strength of the elastic fibers of the non-fiber-decomposed part The stretchable fabric according to any one of 6 to 6 .
Effect of the Invention A fabric having a discharge portion and a non-discharge portion according to the present invention suppresses a decrease in strength of non-elastic fibers and elastic fibers other than the extracted non-elastic fibers, and a predetermined portion of the stretched elastic properties is removed. And exhibit good stretchability over a long period of time.

本発明の布帛は、ポリエステル系繊維を含む2種以上の非弾性繊維と耐アルカリ性ポリウレタン繊維繊維で構成され、ポリエステル系非弾性繊維が選択的に抜蝕された抜蝕部と非抜蝕部とが形成された布帛であり、好ましくは、非弾性繊維が抜蝕性繊維であるカチオン可染性ポリエステル繊維と非抜蝕性繊維であるナイロン繊維からなり、弾性繊維がエーテル系ポリウレタン繊維からなることを特徴とする伸縮性布帛である。
耐アルカリ性ポリウレタン繊維の耐アルカリ性は、6%濃度の苛性ソーダ水溶液に常温(20℃)で5分間浸漬後の強度保持率を測定することで確認でき、その値が60%以上であることが好ましい。
本発明において用いられる非弾性繊維としては、抜蝕されないものと抜蝕されるものの2種類を用いる。
本発明では抜蝕される非弾性繊維としてはカチオン可溶性ポリエステル系繊維が用いられる。常圧タイプまたは高圧タイプのカチオン可染性ポリエステル繊維が好ましいが、抜蝕性に優れる点で、常圧タイプのカチオン可染性ポリエステル繊維が特に好ましい。
抜蝕されない非弾性繊維としては、綿や麻等の天然繊維、ポリエステル繊維やポリアミド繊維等の合成繊維、またはレーヨンなどの再生繊維やセルロースアセテート等の半合成繊維のいずれであっても良く、特に限定されないが、強度係数が170,000以上であるものが用いられる。通常は、ナイロン繊維やポリエチレンテレフタレート繊維が好ましく用いられる。特に、強度、耐久性や染色堅牢度の点でナイロン繊維が好ましい。
本発明では上記の抜蝕性の異なる複数種の非弾性繊維と組合せて弾性繊維を用いるが、弾性繊維としては上記したように耐アルカリ性ポリウレタン弾性繊維が用いられる。
具体的には、耐抜蝕性の点で、6%濃度の苛性ソーダに常温で5分間浸漬後の強度維持率が60%以上であるポリウレタン繊維を用いることが好ましく、特に、エーテル系ポリウレタン繊維が好ましい。苛性ソーダ浸漬後のポリウレタンの強度保持率が60%未満であると抜蝕部に必要な応力が得られないおそれがある。
また、本発明で用いる布帛は、抜蝕処理前において、カチオン可染性ポリエステル繊維が30〜55%、非抜蝕性非弾性繊維が25〜55%、弾性繊維が10〜30%の割合で構成されていることが好ましい。カチオン可染性ポリエステルが45%未満であると非抜蝕部に必要な応力が得られないおそれがあり、55%より多くなると、抜蝕部と非抜蝕部の応力差が大きくなり着用感が損なわれるおそれがある。
また、抜蝕されない非弾性繊維繊維の割合が25%未満であると必要な破裂強度が得られないおそれがあり、55%より多くなると伸縮性が損なわれるおそれがある。
また、弾性繊維の割合が、10%未満であると必要な応力が得られないおそれがあり、45%を超えると染色加工時に洗濯堅牢度等の堅牢度が確保できないおそれがある。
また、非抜蝕性非弾性繊維の強度係数は170,000以上であることが必要であり、強度係数が170,000未満であると抜蝕部の破裂強度が十分得られないおそれがある。
更に、抜蝕部の破裂強度は200KPa以上であることが好ましい。
本発明で使用される弾性繊維と2種以上の非弾性繊維は、それぞれ単独、混紡、混繊、合撚、交撚、引き揃え糸等の適宜の糸形状で用いることができる。糸の繊度は、特に限定されない。
布帛の形態は、編物、織物などが挙げられるが、特に限定されない。
上述のような構成により得られた布帛に抜蝕処理を行うことにより、抜蝕部と非抜蝕部とが形成された布帛が得られる。抜蝕部は主に弾性繊維と非抜蝕性非弾性繊維からなり、非抜蝕部は、弾性繊維と抜蝕性非弾性繊維と非抜蝕性非弾性繊維から構成される。但し、抜蝕部においても、抜蝕の処理条件を弱くすることにより、抜蝕性非弾性繊維の一部を残すこともできる。
抜蝕処理は、抜蝕性非弾性繊維であるカチオン可染性ポリエステル繊維を抜蝕し、他の構成繊維を抜蝕しない適宜の抜蝕加工剤を布帛に付与することによって行うことができる。
抜蝕加工剤としては、従来から知られた抜蝕加工剤であるグアニジン弱酸塩、フェノール類、アルコール類、アルカリ金属水酸化物、アルカリ土類金属水酸化物などが挙げられる。抜蝕加工剤の濃度は適宜決めることができる。また、抜蝕助剤として第4級アンモニウム塩を用いることもできる。抜蝕加工剤を布帛に付与した後80〜170℃で加熱蒸気にて1〜30分蒸熱処理を行うことで他の成分にほとんど影響を与えることなく抜蝕すべき非弾性繊維を抜蝕することができる。
布帛への抜蝕加工剤の付与方法としては、浸漬法、パッド・ロール法、カレンダー法、インクジェットプリント法、パッディング法、捺染法、スプレー法などから選ばれる少なくとも1つの方法を用いることができ、抜蝕加工剤含有液が抜蝕したい部分に均一に付与できれば特に限定されない。
本発明では、用いる繊維内部に、更には後加工により抜蝕部と非抜蝕部をもつ伸縮性布帛に、紫外線吸収剤を付与することが好ましい。
特に、弾性繊維として、フェノール系酸化防止剤、または有機系紫外線吸収剤を含んだ状態にて紡糸されたエーテル系ポリウレタン繊維を用いることが好ましい。更には有機系紫外線吸収剤としてベンゾトリアゾール系紫外線吸収剤を使用することが好ましい。フェノール系酸化防止剤、または有機系紫外線吸収剤はポリウレタンの紡糸工程までに添加できればよく、繊維となる樹脂の重合反応に影響を及ぼさない程度に原料に配合しておくこともできる。更に、繊維となる樹脂の重合が完結した後に配合することもできるが、樹脂の重合終了後から紡糸前までの間に配合することが好ましい。紡糸の際に使用する紡糸装置や紡糸条件は、特に限定されるものではなく、樹脂の組成、用途、目的、糸物性などによって公知の任意の方法を選択することができる。
また、構造中に塩素を含むベンゾトリアゾール系紫外線吸収剤を後加工で付与することが好ましい。構造中に塩素を含むベンゾトリアゾール系紫外線吸収剤としては、2−(2’−ヒドロキシ−3’−t−ブチル−5’−メチルフェニル)−5−クロロベンゾトリアゾール、2−(2’−ヒドロキシ−3’,5’−ジ−t−ブチルフェニル)−5−クロロベンゾトリアゾールなどが挙げられる。上記のような塩素を含むベンゾトリアゾール系紫外線吸収剤は、ポリウレタン繊維中のアミノ末端基とイオン結合するため、紫外線による脆化を効果的に抑制することができる。構造中に塩素を含むベンゾトリアゾール系紫外線吸収剤以外の紫外線吸収剤を使用すると、紫外線によるポリウレタン繊維の脆化を十分に抑制できないおそれがある。
上記のベンゾトリアゾール系紫外線吸収剤の付与は、布帛を得た後、任意の工程で行うことができるが、特に、布帛を染色加工する際に、染料と共にベンゾトリアゾール系紫外線吸収剤を付与することが好ましい。その際、ベンゾトリアゾール系紫外線吸収剤は、布帛重量に対して、0.1〜20.0重量%付与するのが好ましく、特に3.0〜8.0重量%付与するのが好ましい。ベンゾトリアゾール系紫外線吸収剤の付与量が0.1重量%未満であると、紫外線によるポリウレタン繊維の脆化を防止できないおそれがある。また、ベンゾトリアゾール系紫外線吸収剤の付与量が20.0重量%を超えると、ポリウレタン繊維の高伸縮性が阻害されやすくなったり、或いは布帛を染色しても鮮明な色相を発現しにくくなる傾向が生じる。
上述のように、有機系紫外線吸収剤を紡糸前と製布後の後加工の2度付与することが好ましい。
上記の布帛にベンゾトリアゾール系紫外線吸収剤を付与した後、熱処理を施す。熱処理を施すことにより、ベンゾトリアゾール系紫外線吸収剤はポリウレタン繊維に吸着される。この熱処理は、染色加工後において通常行われる仕上セットの工程で行うことができる。熱処理条件は100℃以上の温度で数秒〜数分程度の時間行うことが好ましい。
本発明の伸縮性布帛は抜蝕部におけるカーボンアーク灯の40時間照射後の応力保持率がカーボンアーク照射前の90%以上であることが好ましい。応力保持率が90%未満であると、着用時に抜蝕部が破れたり、伸縮性低下を起こし易くなるおそれがある。
また、抜蝕部の30%伸長時の応力は非抜蝕部の30%伸長時の応力の20〜85%が好ましい。応力比が20%未満であると締め付け感が得られにくく、伸長後の回復が十分になされていないおそれがあり、運動機能性向上、体型補正などの効果が得られないおそれがある。
応力比が85%より大きくなると抜蝕部と非抜蝕部の応力差が得られにくく、意図する機能効果が得られなくなるおそれがある。
また、抜蝕部の弾性繊維の破断強度が非抜蝕部の弾性繊維の破断強度の90%以上であることが好ましい。破断強度比が90%未満であると着用時に抜蝕部が破れたり、伸縮性低下を起こし易くなるおそれがある。
これらの特性は上記した非処理布帛と抜蝕処理と紫外線吸収剤の組合せにより容易に達成することができる。
本発明の伸縮性布帛は、上記抜蝕部、非抜蝕部の任意の領域に柄および色等が付されたものとすることもできる。
The fabric of the present invention is composed of two or more kinds of non-elastic fibers including polyester fibers and alkali-resistant polyurethane fiber fibers, and a discharge portion and a non-discharge portion where the polyester non-elastic fibers are selectively discharged. Preferably, the non-elastic fiber is made of a cationic dyeable polyester fiber, which is an extractable fiber, and a nylon fiber, which is a non-extractable fiber, and the elastic fiber is made of an ether-based polyurethane fiber. A stretchable fabric characterized by
The alkali resistance of the alkali-resistant polyurethane fiber can be confirmed by measuring the strength retention after immersion in a 6% strength aqueous caustic soda solution at room temperature (20 ° C.) for 5 minutes, and the value is preferably 60% or more.
As the inelastic fiber used in the present invention, two types are used, one that is not removed and one that is removed.
In the present invention, a cation-soluble polyester fiber is used as the inelastic fiber to be removed. An atmospheric pressure type or high pressure type cationic dyeable polyester fiber is preferred, but an atmospheric pressure type cationic dyeable polyester fiber is particularly preferred from the viewpoint of excellent dischargeability.
Non-elastic fibers that are not eroded may be any of natural fibers such as cotton and hemp, synthetic fibers such as polyester fibers and polyamide fibers, regenerated fibers such as rayon, and semi-synthetic fibers such as cellulose acetate. Although not limited, those having an intensity coefficient of 170,000 or more are used. Usually, nylon fibers and polyethylene terephthalate fibers are preferably used. In particular, nylon fibers are preferable in terms of strength, durability, and dyeing fastness.
In the present invention, an elastic fiber is used in combination with a plurality of types of non-elastic fibers having different discharging properties. As described above, an alkali-resistant polyurethane elastic fiber is used as the elastic fiber.
Specifically, in terms of corrosion resistance, it is preferable to use a polyurethane fiber having a strength maintenance ratio of 60% or more after being immersed in caustic soda of 6% concentration at room temperature for 5 minutes. preferable. If the strength retention of polyurethane after immersion in caustic soda is less than 60%, the stress required for the removed portion may not be obtained.
In addition, the fabric used in the present invention has a ratio of 30 to 55% of cationic dyeable polyester fiber, 25 to 55% of non-extractable inelastic fiber, and 10 to 30% of elastic fiber before the discharge treatment. It is preferable to be configured. If the cationic dyeable polyester is less than 45%, the stress required for the non-extracted portion may not be obtained. If it exceeds 55%, the difference in stress between the extracted portion and the non-extracted portion becomes large, and the feeling of wear May be damaged.
Moreover, there exists a possibility that required bursting strength may not be acquired when the ratio of the non-elastic fiber fiber which is not discharged is less than 25%, and there exists a possibility that a stretching property may be impaired when it exceeds 55%.
Further, if the proportion of the elastic fiber is less than 10%, a necessary stress may not be obtained, and if it exceeds 45%, fastness such as washing fastness may not be ensured during dyeing.
Further, the strength coefficient of the non-extractable inelastic fiber needs to be 170,000 or more, and if the strength coefficient is less than 170,000, the burst strength of the extracted portion may not be obtained sufficiently.
Furthermore, the burst strength of the extracted portion is preferably 200 KPa or more.
The elastic fiber and the two or more types of non-elastic fibers used in the present invention can be used in an appropriate yarn shape such as single, mixed spinning, mixed fiber, mixed twist, cross-twist, and aligned yarn. The fineness of the yarn is not particularly limited.
Examples of the form of the fabric include a knitted fabric and a woven fabric, but are not particularly limited.
By performing a discharge treatment on the fabric obtained by the above-described configuration, a fabric in which a discharge portion and a non-discharge portion are formed is obtained. The extracted portion is mainly composed of elastic fibers and non-extractable non-elastic fibers, and the non-extracted portion is composed of elastic fibers, extractable inelastic fibers, and non-extractable inelastic fibers. However, part of the extractable inelastic fiber can also be left in the removed portion by weakening the removal treatment conditions.
The discharging process can be performed by discharging a cationic dyeable polyester fiber, which is a discharging inelastic fiber, and applying an appropriate discharging agent that does not discharge other constituent fibers to the fabric.
Examples of the pitting processing agent include guanidine weak acid salts, phenols, alcohols, alkali metal hydroxides, alkaline earth metal hydroxides, and the like, which are conventionally known pitting processing agents. The concentration of the removal processing agent can be appropriately determined. Moreover, a quaternary ammonium salt can also be used as an extraction assistant. After applying the removal processing agent to the fabric, the non-elastic fiber to be discharged is discharged without affecting the other components by performing steam heat treatment at 80 to 170 ° C. for 1 to 30 minutes with heating steam. be able to.
As a method for applying the removal processing agent to the fabric, at least one method selected from a dipping method, a pad / roll method, a calendar method, an ink jet printing method, a padding method, a textile printing method, a spray method, and the like can be used. There is no particular limitation as long as the removal processing agent-containing liquid can be uniformly applied to the portion to be removed.
In the present invention, it is preferable that an ultraviolet absorber is applied to the stretchable fabric having a removed portion and a non-extracted portion by post-processing in the fiber to be used.
In particular, it is preferable to use an ether-based polyurethane fiber spun in a state containing a phenol-based antioxidant or an organic ultraviolet absorber as the elastic fiber. Furthermore, it is preferable to use a benzotriazole ultraviolet absorber as the organic ultraviolet absorber. The phenolic antioxidant or the organic ultraviolet absorber only needs to be added before the polyurethane spinning step, and can be added to the raw material to the extent that it does not affect the polymerization reaction of the resin that becomes the fiber. Furthermore, it can be blended after the polymerization of the resin to be fibers is completed, but it is preferably blended after the polymerization of the resin until before spinning. The spinning apparatus and spinning conditions used for spinning are not particularly limited, and any known method can be selected depending on the resin composition, application, purpose, yarn physical properties, and the like.
Moreover, it is preferable to give the benzotriazole type ultraviolet absorber which contains chlorine in a structure by post-processing. Examples of the benzotriazole ultraviolet absorber containing chlorine in the structure include 2- (2′-hydroxy-3′-t-butyl-5′-methylphenyl) -5-chlorobenzotriazole and 2- (2′-hydroxy). -3 ', 5'-di-t-butylphenyl) -5-chlorobenzotriazole. The benzotriazole-based ultraviolet absorber containing chlorine as described above is ionically bonded to the amino terminal group in the polyurethane fiber, so that embrittlement due to ultraviolet rays can be effectively suppressed. If an ultraviolet absorber other than the benzotriazole-based ultraviolet absorber containing chlorine in the structure is used, there is a possibility that the embrittlement of the polyurethane fiber due to ultraviolet rays cannot be sufficiently suppressed.
The above benzotriazole UV absorber can be applied in any step after the fabric is obtained, and in particular, when the fabric is dyed, the benzotriazole UV absorber is added together with the dye. Is preferred. At that time, the benzotriazole-based ultraviolet absorber is preferably applied in an amount of 0.1 to 20.0% by weight, particularly preferably 3.0 to 8.0% by weight, based on the weight of the fabric. If the applied amount of the benzotriazole-based ultraviolet absorber is less than 0.1% by weight, the polyurethane fiber may not be embrittled by ultraviolet rays. Moreover, when the application amount of the benzotriazole-based ultraviolet absorber exceeds 20.0% by weight, the high stretchability of the polyurethane fiber tends to be inhibited, or even if the fabric is dyed, a clear hue tends not to be expressed. Occurs.
As described above, it is preferable to apply the organic ultraviolet absorber twice before spinning and after processing after fabric production.
After the benzotriazole-based ultraviolet absorber is applied to the fabric, heat treatment is performed. By performing the heat treatment, the benzotriazole ultraviolet absorber is adsorbed on the polyurethane fiber. This heat treatment can be performed in a finishing set process that is normally performed after dyeing. The heat treatment conditions are preferably performed at a temperature of 100 ° C. or higher for a period of several seconds to several minutes.
In the stretchable fabric of the present invention, the stress retention after 40 hours irradiation of the carbon arc lamp in the discharged portion is preferably 90% or more before the carbon arc irradiation. If the stress retention rate is less than 90%, the extracted portion may be torn at the time of wearing, or the stretchability may be easily lowered.
Further, the stress at 30% elongation of the extracted portion is preferably 20 to 85% of the stress at 30% elongation of the non-extracted portion. When the stress ratio is less than 20%, it is difficult to obtain a feeling of tightening, there is a possibility that recovery after stretching may not be sufficiently performed, and there is a possibility that effects such as improvement of motor functionality and correction of body shape may not be obtained.
If the stress ratio is greater than 85%, it is difficult to obtain a stress difference between the extracted portion and the non-extracted portion, and the intended functional effect may not be obtained.
Moreover, it is preferable that the breaking strength of the elastic fiber in the extracted portion is 90% or more of the breaking strength of the elastic fiber in the non-extracted portion. If the rupture strength ratio is less than 90%, there is a possibility that the extracted portion is torn at the time of wearing or the stretchability is liable to be lowered.
These characteristics can be easily achieved by a combination of the above-mentioned non-treated fabric, a discharge treatment, and an ultraviolet absorber.
In the stretchable fabric of the present invention, a pattern, a color, and the like may be added to any region of the above-described discharged portion and the non-extracted portion.

以下、本発明の実施例を比較例と共にあげ、本発明を具体的に説明するが、本発明は以下の実施例によって限定されるものではない。なお、実施例、比較例中の「%」は、「重量%」を表わす。
また、実施例中の特性値の測定法を以下に示す。いずれも、断りのない限り、20℃、65%RH雰囲気下で測定した。
(抜蝕部の非抜蝕部に対する応力比率)
オートグラフ(株式会社島津製作所製)を用い、幅25mm、引張り長さ100mm、チャック掴み代長100mmの試料を準備し、300mm/minの速度で180mm(80%伸長)まで伸ばした後、荷重を取り去り初期設定の100mmまで回復させる。この動作を3回繰り返し3回目のSSカーブより30%伸長時の荷重(30%伸張力)を読み取り、応力値とした。非抜蝕部の応力値をS、抜蝕部の応力値をSとして下記式1より算出した。
応力比率(%)=S÷S×100 (1)
(抜蝕部の弾性繊維と非抜蝕部の弾性繊維の破断強度比)
オートグラフ(株式会社島津製作所製)を使用して20℃、65%RH雰囲気下で、引張り長さ100mm、チャック掴み代長100mmの弾性繊維を準備し、300mm/minの速度で伸長し破断させ破断時の強力を測定する。非抜蝕部の生地から採取した弾性繊維での破断時の強度をAとし、抜蝕部の生地から採取した弾性繊維の破断時の強度をAとする。破断強度比率は以下の式2に従って算出する。
破断強度比率(%)=A÷A×100 (2)
(紫外線照射後の応力保持率)
布帛への紫外線照射は、JIS L0842−1988に従い、カーボンアーク灯法(63℃)により実施した。紫外線カーボンアーク灯式耐光性試験機を用い40時間照射する。次に応力保持率は以下の方法で評価した。オートグラフ(株式会社島津製作所製)を使用して幅25mm、引張り長さ100mm、チャック掴み代長100mmの試料を準備し、300mm/minの速度で180mm(80%伸長)まで伸ばした後、荷重を取り去り初期設定の100mmまで回復させる。この動作を3回繰り返し3回目のSSカーブより30%伸長時の荷重(30%伸張応力)を読み取る。
前記耐光試験を施す前の抜蝕部の布帛の3回目の30%伸長応力を未処理の値としTとし、耐光試験を施した後の抜蝕部の布帛の3回目の30%伸長応力をT とする。応力保持率は以下の式3のように計算する。
応力保持率(%)=T÷T×100 (3)
(ポリウレタン繊維の耐アルカリ性評価試験)
使用するポリウレタン繊維を、6%濃度の苛性ソーダ水溶液に常温で5分間浸漬後自然乾燥させ、該ウレタン繊維を50%伸長させた状態で160℃で10分間湿熱処理をした後、40℃のお湯で洗浄した後自然乾燥させた。その後、オートグラフ(株式会社島津製作所製 引張強度試験機)にて引張破断強度をn=5で測定した。未処理のポリウレタン繊維との破断強度比率を算出した。
(非抜蝕性非弾性繊維の強度係数)
強度係数=繊度(dtex)×単糸強度(CN/dtex)×単位面積当たりの密度(コース×ウエルまたはタテ密度×ヨコ密度)×抜蝕部の抜蝕する前の非抜蝕性非弾性繊維の混率
単糸強度は、Nyは5CN/dtexで、PETは6CN/dtexで計算した。
〔実施例1〕
6ナイロン繊維(東レ(株)製、33dtex/26f)と、常圧可染タイプのカチオン可染性ポリエステル繊維(三菱レーヨン(株)製 56dtex/36f)、およびエーテルポリウレタン繊維(東洋紡(株)製 エスパT−71、単糸繊度44dtex 耐アルカリ強度試験65%)からなる、経編のアトラス組織により、ナイロン繊維40.0重量%、常圧カチオン可染性ポリエステル繊維40.0重量%、ポリウレタン繊維20.0重量%からなる複合布帛(厚さ1mm)を用いた。
布帛の表面に、第4級アンモニウム塩を含む下記の処方1からなる処理液をスクリーンプリント機を用いてストライプ状に印捺し、その後、温度110℃の過熱蒸気にて15分間蒸熱処理を行い、捺染糊に含まれる第4級アンモニウム塩を布帛に吸収させた。次に、水洗処理を30℃の水にて10分間行い、更に60℃にて10分間の湯洗いを行うことにより、繊維布帛シート表面に付着している捺染糊と残留している第4級アンモニウム塩を完全に取り除いた。次に、抜蝕処理として、温度90℃、1.2重量%濃度の水酸化ナトリウム水溶液中に30分間浸漬後、撹拌処理を行った後取り出し、付着している水酸化ナトリウムを完全に除去するために、更に70℃の温水にて5分間の水洗を3回行った。その後、乾燥機にて130℃で2分間乾燥した。
[処方1]
ラッコールCT−2000 20%
(明成化学工業(株)製、第4級アンモニウム塩)
フジケミHEC BL30 40%
(富士化学(株)製、ヒドロキシエチルセルロース)
水 40%
その後、紫外線吸収剤として2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)−5−クロロ−ベンゾトリアゾール20.0%owf、酢酸1.0cc/l、の水溶液に上記布帛を100℃で30分間浸漬処理を行った。評価結果を表1に示す。
〔実施例2〕
実施例1で用いた布帛に、下記の処方2からなる処理液を固形分換算で2g/mになるようにパッディング法で投与し、170℃で2分間乾燥してインク受理層を形成した。
[処方2]
DKSファインガムHEL−1 2%
(第一工業製薬(株)製、エーテル化カルボキシメチルセルロース)
MSリキッド 5%
(明成化学工業(株)製、ニトロベンゼンスルホン酸塩、還元防止剤、
有効成分30%)
水 93%
次にインク受理層を形成した布帛に下記処方3の抜蝕用インクをオンデマンド方式シリアル走査型インクジェット印捺装置を用いてストライプ状に印捺した。
[処方3]
炭酸グアニジン(繊維分解剤) 20%
尿素(溶解安定剤) 5%
ジエチレングリコール(乾燥防止剤) 5%
水 70%
更に、布帛を乾燥した後、HTスチーマーを用いて160℃で20分間湿熱処理した。更に、トライポールTK(第一工業製薬(株)製、ノニオン界面活性剤)を2g/L、ソーダ灰を2g/Lを含むソーピング浴にて、50℃で10分間処理して洗浄した後、水洗し、乾燥して抜蝕加工物を得た。
その後、紫外線吸収剤として2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)−5−クロロ−ベンゾトリアゾール20.0%owf、酢酸1.0cc/l、の水溶液に上記布帛を100℃で30分間浸漬処理を行った。評価結果を表1に示す。
〔実施例3〕
レギュラーポリエステル繊維(東レ(株)製、33dtex/26f)と、常圧可染タイプのカチオン可染性ポリエステル繊維(三菱レーヨン(株)製、33dtex/36f)、およびエーテルポリウレタン繊維(東洋紡(株)製 エスパT−71、単糸繊度44dtex 耐アルカリ強度試験65%)からなる、経編のハーフ組織により、レギュラーポリエステル繊維43.0重量%、常圧カチオン可染性ポリエステル繊維43.0重量%、ポリウレタン繊維14.0重量%からなる複合布帛(厚さ1mm)を用い、実施例1と同じ条件にて加工した。評価結果を表1に示す。
〔比較例1〕
6ナイロン繊維(東レ(株)製、33dtex/26f)と、常圧可染タイプのカチオン可染性ポリエステル繊維(三菱レーヨン(株)製 56dtex/36f)、およびエーテル・エステル系弾性糸(帝人(株)製 レクセ、単糸繊度44dtex 耐アルカリ強度保持率40%)からなる、経編のハーフ組織により、ナイロン繊維40.0重量%、常圧カチオン可染性ポリエステル繊維40.0重量%、エーテル・エステル系弾性糸20.0重量%からなる複合布帛(厚さ1mm)を用いた。
布帛の表面に、第4級アンモニウム塩を含む処方1からなる処理液をスクリーンプリント機を用いてストライプ状に印捺し、温度110℃にて2分間乾燥させた。その後、温度110℃の過熱蒸気にて15分間蒸熱処理を行い、捺染糊に含まれる第4級アンモニウム塩を布帛に吸収させた。次に、水洗処理を30℃の水にて10分間行い、更に60℃にて10分間の湯洗いを行うことにより、繊維布帛シート表面に付着している捺染糊と残留している第4級アンモニウム塩を完全に取り除いた。次に、抜蝕処理として、温度90℃、1.2重量%濃度の水酸化ナトリウム水溶液中に30分間浸漬、撹拌処理を行った後取り出し、付着している水酸化ナトリウムを完全に除去するために、更に70℃の温水にて5分間の水洗を3回行った。その後、乾燥機にて130℃で2分間乾燥した。
その後、塩素を含む紫外線吸収剤として2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)−5−クロロ−ベンゾトリアゾール20.0%owf、酢酸1.0cc/l、の水溶液に上記布帛を100℃で30分間浸漬処理を行った。評価を表2に示す。
〔比較例2〕
6ナイロン繊維(東レ(株)製、33dtex/26f)と、常圧可染タイプのカチオン可染性ポリエステル繊維(三菱レーヨン(株)製 56dtex/36f)、およびエーテルポリウレタン繊維(東洋紡(株)製 エスパT−71、単糸繊度44dtex 耐アルカリ強度保持率65%)からなる、経編のアトラス組織により、ナイロン繊維20.0重量%、常圧カチオン可染性ポリエステル繊維60.0重量%、ポリウレタン繊維20.0重量%からなる複合布帛(厚さ1mm)を用いた。
布帛の表面に、第4級アンモニウム塩を含む処方1からなる処理液をスクリーンプリント機を用いてストライプ状に印捺し、その後、温度110℃の過熱蒸気にて15分間蒸熱処理を行い、捺染糊に含まれる第4級アンモニウム塩を布帛に吸収させた。次に、水洗処理を30℃の水にて10分間行い、更に60℃にて10分間の湯洗を行うことにより、繊維布帛シート表面に付着している捺染糊と残留している第4級アンモニウム塩を完全に取り除いた。次に、抜蝕処理として、温度90℃、1.2重量%濃度の水酸化ナトリウム水溶液中に30分間浸漬後、撹拌処理を行った後取り出し、付着している水酸化ナトリウムを完全に除去するために、更に70℃の温水にて5分間の水洗を3回行った。その後、乾燥機にて130℃で2分間乾燥した。
その後、紫外線吸収剤として2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)−5−クロロ−ベンゾトリアゾール20.0%owf、酢酸1.0cc/l、の水溶液に上記布帛を100℃で30分間浸漬処理を行った。評価を表2に示す。
〔比較例3〕
6ナイロン繊維(東レ(株)製、33dtex/26f)と、常圧可染タイプのカチオン可染性ポリエステル繊維(三菱レーヨン(株)製、56dtex/36f)、およびエーテルポリウレタン繊維(東洋紡(株)製 エスパT−71、単糸繊度44dtex 耐アルカリ強度保持率65%)からなる、経編のアトラス組織により、ナイロン繊維30.0重量%、常圧カチオン可染性ポリエステル繊維45.0重量%、ポリウレタン繊維25.0重量%からなる複合布帛(厚さ1mm)に、処方2からなる処理液を固形分換算で2g/mになるようにパッディング法で付与し、170℃で2分間乾燥してインク受理層を形成した。
次にインク受理層を形成した布帛に処方3の抜蝕用インクをオンデマンド方式シリアル走査型インクジェット印捺装置を用いてストライプ状に印捺した。
更に、布帛を乾燥した後、HTスチーマーを用いて160℃で20分間湿熱処理した。更に、トライポールTK(第一工業製薬(株)製、ノニオン界面活性剤)を2g/L、ソーダ灰を2g/Lを含むソーピング浴にて、50℃で10分間処理して洗浄した後、水洗し、乾燥して抜蝕加工物を得た。その後、紫外線吸収剤として2−(2−ヒドロキシ−3,5−ジ−t−ブチルフェニル)−5−クロロ−ベンゾトリアゾール20.0%owf、酢酸1.0cc/l、の水溶液に上記布帛を100℃で30分間浸漬処理を行った。評価結果を表2に示す。

Figure 0005171268
Figure 0005171268
EXAMPLES Hereinafter, although the Example of this invention is given with a comparative example and this invention is demonstrated concretely, this invention is not limited by the following Examples. In the examples and comparative examples, “%” represents “% by weight”.
Moreover, the measuring method of the characteristic value in an Example is shown below. All were measured in an atmosphere of 20 ° C. and 65% RH unless otherwise noted.
(Stress ratio of the removed part to the unexposed part)
Using an autograph (manufactured by Shimadzu Corporation), prepare a sample with a width of 25 mm, a tensile length of 100 mm, and a chuck grip length of 100 mm, and after extending it to 180 mm (80% elongation) at a speed of 300 mm / min, Remove and restore to the default of 100 mm. This operation was repeated three times, and the load at the time of 30% extension (30% extension force) was read from the SS curve for the third time and used as a stress value. The stress value of the non-excavated part was calculated from the following formula 1 with S 0 as the stress value of the extracted part and S 1 .
Stress ratio (%) = S 1 ÷ S 0 × 100 (1)
(Break strength ratio between elastic fibers in the extracted part and elastic fibers in the non-extracted part)
Using an autograph (manufactured by Shimadzu Corporation), an elastic fiber having a tensile length of 100 mm and a chuck grip length of 100 mm is prepared in an atmosphere of 20 ° C. and 65% RH, and stretched and broken at a speed of 300 mm / min. Measure the strength at break. The strength at break in the elastic fibers taken from the fabric of the non-fiber-decomposed part and A 0, the strength at break of the elastic fibers taken from fabric fiber-decomposed part and A 1. The breaking strength ratio is calculated according to the following formula 2.
Breaking strength ratio (%) = A 1 ÷ A 0 × 100 (2)
(Stress retention after UV irradiation)
The fabric was irradiated with ultraviolet rays by a carbon arc lamp method (63 ° C.) according to JIS L0842-1988. Irradiate for 40 hours using an ultraviolet carbon arc lamp type light resistance tester. Next, the stress retention was evaluated by the following method. Using an autograph (manufactured by Shimadzu Corporation), prepare a sample with a width of 25 mm, a tensile length of 100 mm, and a chuck grip length of 100 mm, and after extending it to 180 mm (80% elongation) at a speed of 300 mm / min, load To recover to the initial setting of 100 mm. This operation is repeated three times, and the load at the time of 30% elongation (30% elongation stress) is read from the third SS curve.
The third 30% elongation stress of the fabric of the removed portion before the light resistance test is set to T 0 as an untreated value, and the third 30% elongation stress of the fabric of the removed portion after the light resistance test is performed. It is referred to as T 1. The stress retention rate is calculated as in Equation 3 below.
Stress retention (%) = T 1 ÷ T 0 × 100 (3)
(Evaluation test for alkali resistance of polyurethane fiber)
The polyurethane fiber to be used is immersed in a 6% strength aqueous caustic soda solution at room temperature for 5 minutes and then naturally dried. The urethane fiber is subjected to wet heat treatment at 160 ° C. for 10 minutes with 50% elongation, and then with hot water at 40 ° C. After washing, it was naturally dried. Then, the tensile breaking strength was measured by n = 5 with an autograph (manufactured by Shimadzu Corporation). The breaking strength ratio with the untreated polyurethane fiber was calculated.
(Intensity coefficient of non-fiber-decomposed non elastic textiles)
Non fiber-decomposed of inelastic before fiber-decomposed intensity coefficient = fineness (dtex) × single yarn strength (CN / dtex) × density per unit area (Course × well or vertical density × horizontal density) × fiber-decomposed part Fiber mixing rate The single yarn strength was calculated with 5 CN / dtex for Ny and 6 CN / dtex for PET.
[Example 1]
6 nylon fiber (manufactured by Toray Industries, Inc., 33 dtex / 26f), pressure dyeable type cationic dyeable polyester fiber (manufactured by Mitsubishi Rayon Co., Ltd., 56 dtex / 36f), and ether- based polyurethane fiber (Toyobo Co., Ltd.) Made of ESPAR T-71, single yarn fineness 44 dtex, alkali resistance test 65%), warp knitted atlas structure, nylon fiber 40.0 wt%, atmospheric pressure cationic dyeable polyester fiber 40.0 wt%, polyurethane A composite fabric (thickness 1 mm) composed of 20.0% by weight of fibers was used.
On the surface of the fabric, a treatment liquid comprising the following formulation 1 containing a quaternary ammonium salt is printed in a stripe shape using a screen printing machine, and then steamed with superheated steam at a temperature of 110 ° C. for 15 minutes, The quaternary ammonium salt contained in the printing paste was absorbed into the fabric. Next, washing treatment with water at 30 ° C. is performed for 10 minutes, followed by washing with hot water at 60 ° C. for 10 minutes, so that the printing paste adhering to the fiber fabric sheet surface and the remaining fourth grade The ammonium salt was completely removed. Next, as a pitting process, after being immersed in an aqueous solution of sodium hydroxide having a temperature of 90 ° C. and a concentration of 1.2% by weight for 30 minutes, it is taken out after being stirred, and the adhered sodium hydroxide is completely removed. For this purpose, washing with warm water at 70 ° C. for 5 minutes was performed three times. Then, it dried for 2 minutes at 130 degreeC with the dryer.
[Prescription 1]
Lakkor CT-2000 20%
(Meisei Chemical Industry Co., Ltd., quaternary ammonium salt)
Fujikemi HEC BL30 40%
(Hydroxyethyl cellulose, manufactured by Fuji Chemical Co., Ltd.)
40% water
Thereafter, the above fabric was added to an aqueous solution of 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chloro-benzotriazole 20.0% owf and acetic acid 1.0 cc / l as an ultraviolet absorber. Immersion treatment was performed at 100 ° C. for 30 minutes. The evaluation results are shown in Table 1.
[Example 2]
To the fabric used in Example 1, a treatment liquid having the following formulation 2 was administered by a padding method so as to be 2 g / m 2 in terms of solid content, and dried at 170 ° C. for 2 minutes to form an ink receiving layer. did.
[Prescription 2]
DKS Fine Gum HEL-1 2%
(Daiichi Kogyo Seiyaku Co., Ltd., etherified carboxymethylcellulose)
MS Liquid 5%
(Meisei Chemical Industry Co., Ltd., nitrobenzene sulfonate, reduction inhibitor,
30% active ingredient)
93% water
Next, a discharge ink of the following prescription 3 was printed in a stripe shape on the fabric on which the ink receiving layer was formed using an on-demand type serial scanning ink jet printing apparatus.
[Prescription 3]
Guanidine carbonate (fiber degradation agent) 20%
Urea (dissolution stabilizer) 5%
Diethylene glycol (anti-drying agent) 5%
70% water
Further, after the fabric was dried, it was wet-heat treated at 160 ° C. for 20 minutes using an HT steamer. Furthermore, after treating and washing at 50 ° C. for 10 minutes in a soaping bath containing 2 g / L of Tripole TK (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant) and 2 g / L of soda ash, It was washed with water and dried to obtain a discharge processed product.
Thereafter, the above fabric was added to an aqueous solution of 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chloro-benzotriazole 20.0% owf and acetic acid 1.0 cc / l as an ultraviolet absorber. Immersion treatment was performed at 100 ° C. for 30 minutes. The evaluation results are shown in Table 1.
Example 3
Regular polyester fiber (manufactured by Toray Industries, Inc., 33 dtex / 26f), atmospheric pressure dyeable type cationic dyeable polyester fiber (manufactured by Mitsubishi Rayon Co., Ltd., 33 dtex / 36f), and ether- based polyurethane fiber (Toyobo Co., Ltd.) ) Made of ESPAR T-71, single yarn fineness 44 dtex, alkali resistance strength test 65%), with a half structure of warp knitting, regular polyester fiber 43.0% by weight, atmospheric pressure cationic dyeable polyester fiber 43.0% by weight A composite fabric (thickness: 1 mm) composed of 14.0% by weight of polyurethane fiber was processed under the same conditions as in Example 1. The evaluation results are shown in Table 1.
[Comparative Example 1]
6 nylon fiber (manufactured by Toray Industries, Inc., 33 dtex / 26f), pressure dyeable type cationic dyeable polyester fiber (manufactured by Mitsubishi Rayon Co., Ltd., 56 dtex / 36f), and ether ester elastic yarn (Teijin ( Co., Ltd. made of Lexe, single yarn fineness 44 dtex, alkali resistance retention 40%), warp knitted half structure, nylon fiber 40.0 wt%, atmospheric pressure cationic dyeable polyester fiber 40.0 wt%, ether A composite fabric (thickness 1 mm) made of 20.0% by weight of ester elastic yarn was used.
On the surface of the fabric, a treatment liquid comprising Formula 1 containing a quaternary ammonium salt was printed in a stripe shape using a screen printing machine and dried at a temperature of 110 ° C. for 2 minutes. Thereafter, steaming was performed for 15 minutes with superheated steam at a temperature of 110 ° C., and the quaternary ammonium salt contained in the printing paste was absorbed into the fabric. Next, washing treatment with water at 30 ° C. is performed for 10 minutes, followed by washing with hot water at 60 ° C. for 10 minutes, so that the printing paste adhering to the fiber fabric sheet surface and the remaining fourth grade The ammonium salt was completely removed. Next, in order to completely remove the adhering sodium hydroxide, it is removed after 30 minutes immersion and stirring treatment in a 90 wt. Further, washing with warm water at 70 ° C. for 5 minutes was performed three times. Then, it dried for 2 minutes at 130 degreeC with the dryer.
Thereafter, as an ultraviolet absorber containing chlorine, an aqueous solution of 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chloro-benzotriazole 20.0% owf, acetic acid 1.0 cc / l. The fabric was subjected to an immersion treatment at 100 ° C. for 30 minutes. The evaluation is shown in Table 2.
[Comparative Example 2]
6 nylon fiber (manufactured by Toray Industries, Inc., 33 dtex / 26f), pressure dyeable type cationic dyeable polyester fiber (manufactured by Mitsubishi Rayon Co., Ltd., 56 dtex / 36f), and ether- based polyurethane fiber (Toyobo Co., Ltd.) Made of ESPAR T-71, single yarn fineness 44 dtex, alkali resistance retention rate 65%), with a warp knitted atlas structure, nylon fiber 20.0% by weight, atmospheric pressure cationic dyeable polyester fiber 60.0% by weight, A composite fabric (thickness 1 mm) composed of 20.0% by weight of polyurethane fibers was used.
On the surface of the fabric, a treatment liquid comprising Formula 1 containing a quaternary ammonium salt is printed in a stripe shape using a screen printing machine, and then steamed with superheated steam at a temperature of 110 ° C. for 15 minutes to obtain a printing paste. The fabric was made to absorb the quaternary ammonium salt contained in the fabric. Next, washing with water at 30 ° C. for 10 minutes, and further washing with hot water at 60 ° C. for 10 minutes, the printing paste adhering to the fiber fabric sheet surface and the remaining fourth grade The ammonium salt was completely removed. Next, as a pitting process, after being immersed in an aqueous solution of sodium hydroxide having a temperature of 90 ° C. and a concentration of 1.2% by weight for 30 minutes, it is taken out after being stirred, and the adhered sodium hydroxide is completely removed. For this purpose, washing with warm water at 70 ° C. for 5 minutes was performed three times. Then, it dried for 2 minutes at 130 degreeC with the dryer.
Thereafter, the above fabric was added to an aqueous solution of 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chloro-benzotriazole 20.0% owf and acetic acid 1.0 cc / l as an ultraviolet absorber. Immersion treatment was performed at 100 ° C. for 30 minutes. The evaluation is shown in Table 2.
[Comparative Example 3]
6 nylon fibers (Toray Industries Co., Ltd., 33 dtex / 26f) and atmospheric-pressure dyeing type cationic dyeable polyester fiber (Mitsubishi Rayon Co., Ltd., 56 dtex / 36f), and ether-based polyurethane fibers (Toyobo (strain ) Made of ESPAR T-71, single yarn fineness 44dtex, alkali resistance retention 65%), with a warp knitted atlas structure, nylon fiber 30.0% by weight, atmospheric pressure cationic dyeable polyester fiber 45.0% by weight Then, a treatment liquid consisting of the formulation 2 was applied to a composite fabric (thickness 1 mm) made of 25.0% by weight of polyurethane fiber by a padding method so as to be 2 g / m 2 in terms of solid content, and at 170 ° C. for 2 minutes. The ink receiving layer was formed by drying.
Next, the discharge ink of Formulation 3 was printed in a stripe shape on the fabric on which the ink receiving layer was formed, using an on-demand type serial scanning ink jet printing apparatus.
Further, after the fabric was dried, it was wet-heat treated at 160 ° C. for 20 minutes using an HT steamer. Furthermore, after treating and washing at 50 ° C. for 10 minutes in a soaping bath containing 2 g / L of Tripole TK (Daiichi Kogyo Seiyaku Co., Ltd., nonionic surfactant) and 2 g / L of soda ash, It was washed with water and dried to obtain a discharge processed product. Thereafter, the above fabric was added to an aqueous solution of 2- (2-hydroxy-3,5-di-t-butylphenyl) -5-chloro-benzotriazole 20.0% owf and acetic acid 1.0 cc / l as an ultraviolet absorber. Immersion treatment was performed at 100 ° C. for 30 minutes. The evaluation results are shown in Table 2.
Figure 0005171268
Figure 0005171268

本発明の伸縮性布帛は、風合や、着用感を損なわず、また通気性や耐久性に優れ、スポーツやインナー分野の衣服等として用いるのに適している。   The stretchable fabric of the present invention does not impair the feel and wearing feeling, is excellent in breathability and durability, and is suitable for use as clothes in sports and inner fields.

Claims (7)

抜蝕性非弾性繊維、非抜蝕性非弾性繊維および弾性繊維によって構成され、抜蝕部と非抜蝕部とをもち、前記抜蝕性非弾性繊維がカチオン可染性ポリエステル繊維からなり、前記弾性繊維が耐アルカリ性ポリウレタン繊維からなり、前記非抜蝕性非弾性繊維の強度係数(繊度(dtex)×単糸強度(CN/dtex)×単位面積当たりの密度(コース×ウエルまたはタテ密度×ヨコ密度)×抜蝕部の抜蝕する前の非抜蝕性非弾性繊維の混率)170,000以上であり、前記耐アルカリ性ポリウレタン繊維が6%濃度の苛性ソーダ水溶液に常温で5分間浸漬後の強度維持率が60%以上の耐アルカリ性ポリウレタン繊維であることを特徴とする伸縮性布帛。It is composed of an extractable inelastic fiber, a non-extractable inelastic fiber and an elastic fiber, and has an extracted portion and a non- extracted portion, and the extractable inelastic fiber is made of a cationic dyeable polyester fiber, the elastic fibers are made from alkali-resistant polyurethane fibers, wherein the non-fiber-decomposed resistant inelastic fiber strength factor (fineness (dtex) × single yarn strength (CN / dtex) × density per unit area (course × well or vertical density × Ri der mixing ratio) is 170,000 or more non-fiber-decomposed of inelastic fiber before the fiber-decomposed in horizontal density) × fiber-decomposed part, at normal temperature for 5 minutes in an aqueous sodium hydroxide solution of the alkali-resistant polyurethane fiber concentration of 6% stretch fabric strength retention is characterized alkali-resistant polyurethane fibers der Rukoto more than 60% after. 抜蝕処理前の構成繊維の割合が、前記カチオン可染性ポリエステル繊維が30〜55%、前記非抜蝕性非弾性繊維が25〜55%、前記ポリウレタン繊維が10〜45%である請求項1に記載の伸縮性布帛。Fiber-decomposed percentage of pretreatment of constituent fibers is, the cationic dyeable polyester fiber is 30 to 55%, according to claim wherein the non-fiber-decomposed of inelastic fibers 25 to 55 percent, the polyurethane fiber is 10 to 45% stretch fabric according to 1. 前記抜蝕部の破壊強度が200KPa以上である請求項1または2に記載の伸縮性布帛。The stretchable fabric according to claim 1 or 2, wherein the fracture strength of the extracted portion is 200 KPa or more. 前記非抜蝕性非弾性繊維がナイロン繊維であり、前記弾性繊維がエーテル系ポリウレタン繊維である請求項1乃至3のいずれか1項記載の伸縮性布帛。 The non-fiber-decomposed of inelastic fibers is a nylon fiber, stretch fabric according to any one of claims 1 to 3 wherein the elastic fiber is an ether-based polyurethane fibers. 紫外線吸収剤が付与されている請求項1乃至4のいずれか1項記載の伸縮性布帛。The stretchable fabric according to any one of claims 1 to 4 , which is provided with an ultraviolet absorber. 前記紫外線吸収剤の付与が構造中に塩素を含むベンゾトリアゾール系紫外線吸収剤の後加工による付与である請求項5に記載の伸縮性布帛。Stretch fabric according to claim 5 which is imparted by the machining after a benzotriazole ultraviolet absorber containing chlorine granted structure of the ultraviolet absorber. カーボンアーク灯光を40時間照射した後の前記抜蝕部の応力保持率が90%以上であり、前記抜蝕部の30%の伸長時の応力が前記非抜蝕部の30%伸長時の応力の20〜85%であり、且つ、前記抜蝕部の前記弾性繊維の破断強度が前記非抜蝕部の前記弾性繊維の破断強度の90%以上である請求項1乃至6のいずれか1項記載の伸縮性布帛。Carbon arc lamp light said after irradiation 40 h fiber-decomposed part stress retention of 90% or more, the stress at 30% elongation of the stress at 30% elongation of the fiber-decomposed part is the non-fiber-decomposed part of a 20% to 85%, and, wherein any one of claims 1 to 6 is elastic fiber 90% of the breaking strength above the breaking strength of the non-fiber-decomposed part of the elastic fibers of the fiber-decomposed part stretch fabric according to.
JP2007556050A 2006-01-24 2007-01-24 Elastic fabric Active JP5171268B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007556050A JP5171268B2 (en) 2006-01-24 2007-01-24 Elastic fabric

Applications Claiming Priority (4)

Application Number Priority Date Filing Date Title
JP2006015531 2006-01-24
JP2006015531 2006-01-24
PCT/JP2007/051538 WO2007086593A1 (en) 2006-01-24 2007-01-24 Stretch fabric
JP2007556050A JP5171268B2 (en) 2006-01-24 2007-01-24 Elastic fabric

Publications (2)

Publication Number Publication Date
JPWO2007086593A1 JPWO2007086593A1 (en) 2009-06-25
JP5171268B2 true JP5171268B2 (en) 2013-03-27

Family

ID=38309368

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007556050A Active JP5171268B2 (en) 2006-01-24 2007-01-24 Elastic fabric

Country Status (3)

Country Link
JP (1) JP5171268B2 (en)
TW (1) TWI391545B (en)
WO (1) WO2007086593A1 (en)

Cited By (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220105436A (en) * 2021-01-20 2022-07-27 김세진 Elastic band

Families Citing this family (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
WO2007074833A1 (en) * 2005-12-26 2007-07-05 Mitsubishi Rayon Co., Ltd. Fabric composed of regions different in stretchability and process for production thereof
JP2013079464A (en) * 2011-10-04 2013-05-02 Teijin Frontier Co Ltd Fabric and clothing material
JP7049772B2 (en) * 2017-03-15 2022-04-07 セーレン株式会社 Fabrics, clothing products, and methods for manufacturing fabrics
CN107227506A (en) * 2017-08-09 2017-10-03 太仓市天茂化纤有限公司 A kind of fibers material with very good alkali resistance
US11105025B2 (en) 2018-05-29 2021-08-31 Nike, Inc. Spacer textile having tie yarns of one or more lengths
JP2020076182A (en) * 2018-11-05 2020-05-21 三菱ケミカル株式会社 Knitted fabric having partial opal finish part
CN110106731A (en) * 2019-05-29 2019-08-09 腾飞科技股份有限公司 Mix cotton local elasticity moulding process

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921081A (en) * 1995-06-30 1997-01-21 Mitsubishi Rayon Co Ltd Etched polyester-based fiber fabric and its production
JP2000282377A (en) * 1999-03-31 2000-10-10 Seiren Co Ltd Erosion removal processing for fiber textile
JP2005163238A (en) * 2003-12-04 2005-06-23 Nippon Kayaku Co Ltd Composition, light fastness increasing agent for hydrophobic fiber and dyeing method by using the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0921081A (en) * 1995-06-30 1997-01-21 Mitsubishi Rayon Co Ltd Etched polyester-based fiber fabric and its production
JP2000282377A (en) * 1999-03-31 2000-10-10 Seiren Co Ltd Erosion removal processing for fiber textile
JP2005163238A (en) * 2003-12-04 2005-06-23 Nippon Kayaku Co Ltd Composition, light fastness increasing agent for hydrophobic fiber and dyeing method by using the same

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20220105436A (en) * 2021-01-20 2022-07-27 김세진 Elastic band
KR102542818B1 (en) * 2021-01-20 2023-06-12 김세진 Elastic band

Also Published As

Publication number Publication date
TWI391545B (en) 2013-04-01
TW200736445A (en) 2007-10-01
WO2007086593A1 (en) 2007-08-02
JPWO2007086593A1 (en) 2009-06-25

Similar Documents

Publication Publication Date Title
JP5171268B2 (en) Elastic fabric
WO2007049710A1 (en) Opal-finished fabric
US20140366345A1 (en) Process for improving weavability of a yarn
JP5209868B2 (en) Fabric having partially different air permeability, garment using the fabric, and method for producing fabric
JP6515715B2 (en) A erosion-treated woven or knitted fabric containing a modified polyester fiber and a method for producing the same
JP2008038332A (en) Burnt-out cloth for curtain
EP3080350A1 (en) A process of making a yarn having weavability features and a process of weaving such yarn
JP5850642B2 (en) Deodorant fabric with excellent washing durability
JP3805557B2 (en) Discharge processing method for fiber fabric sheet
WO2012008548A1 (en) Core-sheath type composite fiber
ES2315642T3 (en) PROCEDURE FOR THE PRODUCTION OF A DYED AND FINISHED LYOCELL FIBER FABRIC.
JP2013133562A (en) Fabric superior in deodorant performance
CN111005219B (en) Processing method of cellulose fiber and protein fiber blended molten metal splash protection flame-retardant fabric and flame-retardant fabric prepared by same
JP5650448B2 (en) Fabric having different water absorption, method for producing the same and apparel using the same
WO1999035324A1 (en) Process for the treatment of warp knitted fabrics
JP5430383B2 (en) Processing method for imparting windproof property to fabric
JP7383427B2 (en) Partially etched fabric
JP2023047019A (en) mask
JP5639347B2 (en) Mixed yarn or fabric dyed product of polyamide fiber, cellulose fiber and polyurethane fiber
JP5823120B2 (en) Method for processing cellulose fiber-containing fabric and processed fabric containing cellulose fiber
JP5019943B2 (en) Method for producing clothing having body shape correction function
JP2010163719A (en) Method for mercerization on composite fiber structure of polylactic acid fiber and cotton or cellulosic fiber
JP2010144277A (en) Denim product and method for producing the same
JP3419671B2 (en) Processing method of artificial cellulose fiber
JPH06184921A (en) Production of printed fabric similar in surface change to stonewash

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100114

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111206

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120203

RD03 Notification of appointment of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7423

Effective date: 20120207

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121225

R150 Certificate of patent or registration of utility model

Ref document number: 5171268

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250