JP5169686B2 - Camshaft lubricator - Google Patents

Camshaft lubricator Download PDF

Info

Publication number
JP5169686B2
JP5169686B2 JP2008247651A JP2008247651A JP5169686B2 JP 5169686 B2 JP5169686 B2 JP 5169686B2 JP 2008247651 A JP2008247651 A JP 2008247651A JP 2008247651 A JP2008247651 A JP 2008247651A JP 5169686 B2 JP5169686 B2 JP 5169686B2
Authority
JP
Japan
Prior art keywords
oil passage
camshaft
variable mechanism
working chamber
phase variable
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008247651A
Other languages
Japanese (ja)
Other versions
JP2010077910A (en
Inventor
耕二 波多野
芳夫 谷田
孝至 猪飼
真治 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008247651A priority Critical patent/JP5169686B2/en
Publication of JP2010077910A publication Critical patent/JP2010077910A/en
Application granted granted Critical
Publication of JP5169686B2 publication Critical patent/JP5169686B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings

Abstract

<P>PROBLEM TO BE SOLVED: To supply oil pressure from a head side oil passage formed on a bearing member to a phase variable mechanism without a large drop thereof and give no harmful effect on a rolling bearing itself when a camshaft is supported by a bearing member of a cylinder head through the rolling bearing. <P>SOLUTION: An adjacent bearing member 20 positioned adjacently to the phase variable mechanism 30 is supported by the camshaft 1 through the rolling bearing 50. Annular space A, B (annular groove parts 25, 26) having centers on the camshaft 1 are formed between the adjacent bearing member 20 and the surfaces of diameter expanded flange parts 2, 3 formed on the camshaft 1 opposing in an axial direction. Head side oil passages 61, 65 and camshaft side oil passage 62, 66 (67) are communicated to the annular spaces A, B. <P>COPYRIGHT: (C)2010,JPO&amp;INPIT

Description

本発明は、カム軸給油装置に関するものである。 The present invention relates to a camshaft oiling device.

エンジン、特に自動車用エンジンでは、吸気弁あるいは排気弁の開閉時期を位相変更するものが多くなっている。この位相変更のため、吸気弁用や排気弁のカム軸の一端部に油圧式の位相可変機構を設けて、この位相可変機構への油圧供給態様を変更することによって、クランク軸に対するカム軸の位相を変更するものがある。そして、油圧式の位相可変機構に対する給油を、カム軸を支持するシ軸受部材内のヘッド側油路から、カム軸内の油路を介して行うことも一般的に行われている。 Many engines, particularly automobile engines, change the phase of the opening / closing timing of intake valves or exhaust valves. For this phase change, a hydraulic phase variable mechanism is provided at one end of the camshaft of the intake valve or exhaust valve, and by changing the hydraulic supply mode to this phase variable mechanism, the camshaft relative to the crankshaft is changed. Some change the phase. In general, oil supply to the hydraulic phase variable mechanism is performed from the head side oil passage in the bearing member supporting the cam shaft through the oil passage in the cam shaft.

特許文献1には、シリンダヘッドに設けた軸受部材に対して、ころがり軸受の一種となるローラ軸受を介してカム軸を回転可能に支持した場合に、ローラ軸受の保持器の軸方向一端側の側方において側方油路を形成して、この側方油路を介して、上記軸受部材に形成されたヘッド側油路とカム軸内に形成されたカム軸側油路とを連通させることが開示されている。そして、特許文献1には、ローラ軸受の保持器の軸方向端部に、上記側方油路をシールするシール部を構成することも開示されている。また、特許文献2には、カム軸をすべり軸受で支持する場合に、カム軸とすべり軸受との摺動面を介して、ヘッド側油路とカム軸側油路とを連通させるものが開示されている。 In Patent Document 1, when a cam shaft is rotatably supported via a roller bearing, which is a kind of rolling bearing, with respect to a bearing member provided in a cylinder head, one end side in the axial direction of a roller bearing retainer is disclosed. A side oil passage is formed on the side, and the head side oil passage formed in the bearing member and the cam shaft side oil passage formed in the cam shaft are communicated with each other through the side oil passage. Is disclosed. Patent Document 1 also discloses that a seal portion that seals the lateral oil passage is formed at the axial end portion of the roller bearing retainer. Patent Document 2 discloses that when the cam shaft is supported by a slide bearing, the head side oil passage and the cam shaft side oil passage communicate with each other via a sliding surface between the cam shaft and the slide bearing. Has been.

特開2008−101714号公報JP 2008-101714 A 特開平9−250310号公報JP 9-250310 A

ところで、カム軸をころがり軸受で支持した場合に、ころがり軸受そのものは油圧保持機能がきわめて弱く、このため、ころがり軸受内の空間を利用してヘッド側油路とカム軸側油路とを連通させることは、油圧漏れつま位相可変機構への供給油圧の低下となって、事実上採用できないものとなる。また、ころがり軸受内に大量の油が流入されると、ころがり抵抗の増大となってしまって好ましくないものともなる。さらに、特許文献1に記載のように、ローラ軸受の保持器の軸方向一端側の側方に側方油路を形成することは、ローラ軸受に関連した部分の軸方向長さが長くなる。 By the way, when the camshaft is supported by a rolling bearing, the rolling bearing itself has a very weak hydraulic pressure holding function. For this reason, the head-side oil passage and the camshaft-side oil passage are communicated using the space in the rolling bearing. This is a decrease in the hydraulic pressure supplied to the hydraulic leakage toe phase variable mechanism, which is virtually impossible to employ. In addition, if a large amount of oil flows into the rolling bearing, the rolling resistance increases, which is not preferable. Furthermore, as described in Patent Document 1, forming a lateral oil passage on the side of one end side in the axial direction of the cage of the roller bearing increases the axial length of the portion related to the roller bearing.

本発明は以上のような事情を勘案してなされたもので、その目的は、カム軸をころがり軸受を介してシリンダヘッドの軸受部材に支持する場合に、軸受部材に形成されたヘッド側油路からの油圧を大きく低下させることなく位相可変機構へ供給できるようにし、しかもころがり軸受そのものにも悪影響を与えることのないようにしたカム軸給油装置を提供することにある。 The present invention has been made in view of the above circumstances, and its object is to provide a head-side oil passage formed in the bearing member when the camshaft is supported by the bearing member of the cylinder head via the rolling bearing. Another object of the present invention is to provide a camshaft oiling device that can supply the oil pressure from the shaft to the phase variable mechanism without greatly reducing the oil pressure, and that does not adversely affect the rolling bearing itself.

前記目的を達成するため、本発明にあっては次のような第1の解決手法を採択してある。すなわち、特許請求の範囲における請求項1に記載のように、
一端部に油圧式の位相可変機構が設けられたカム軸をシリンダヘッドの軸受部材で回転可能に支持し、該軸受部材に形成されたヘッド側油路から該カム軸に形成されたカム軸側油路を経由して該位相可変機構に給油するカム軸給油装置において、
前記軸受部材のうち前記位相可変機構の隣りに位置する隣接軸受部材が、ころがり軸受を介して前記カム軸を支持しており、
記カム軸が軸方向に変位するのを規制し、かつ前記ころがり軸受を軸方向から挟むようにして一対の拡径鍔部が設けられ
前記一対の拡径鍔部と前記隣接軸受部材との軸方向に近接状態で対向する対向面間にそれぞれ、前記カム軸を中心として前記ころがり軸受よりも径方向外方側において円環状の空間を形成する環状溝部が、該拡径鍔部ないし隣接軸受部材に形成され、
前記位相可変機構の進角用作動室に連なる進角用油路と、遅角用作動室に連なる遅角用油路とを有し、
前記ヘッド側油路が、前記進角用作動室に給油するための進角用ヘッド側油路と、前記遅角用作動室に給油するための遅角用ヘッド側油路とを有し、
前記一対の環状溝部のうち一方の環状溝部に対して前記進角用ヘッド側油路と進角用油路とが連通され、他方の環状溝部に対して前記遅角用ヘッド側油路と遅角用油路とが連通されている、
ようにしてある。
In order to achieve the above object, the following first solution is adopted in the present invention. That is, as described in claim 1 in the claims,
A cam shaft provided with a hydraulic phase variable mechanism at one end is rotatably supported by a bearing member of a cylinder head, and a cam shaft side formed on the cam shaft from a head side oil passage formed on the bearing member In a camshaft lubrication device that lubricates the phase variable mechanism via an oil passage,
An adjacent bearing member located next to the phase variable mechanism among the bearing members supports the camshaft via a rolling bearing,
Before hear beam axis is restricted from being displaced in the axial direction, and said rolling bearing so as to sandwich the axial direction a pair of enlarged diameter flange portion provided,
Respectively between the facing surfaces opposed to each other in close proximity in the axial direction between the adjacent bearing member and said pair of enlarged diameter flange portion, the rolling annular space in the diametrically outside of the bearing about said cam shaft The annular groove to be formed is formed in the enlarged diameter flange or the adjacent bearing member,
An advance oil passage continuing to the advance working chamber of the phase variable mechanism; and a retard oil passage continuing to the retard working chamber;
The head-side oil passage has an advance-angle head-side oil passage for supplying oil to the advance-angle working chamber, and a retard-angle head-side oil passage for supplying oil to the retard-angle working chamber;
The advance angle head side oil passage and the advance angle oil passage communicate with one annular groove portion of the pair of annular groove portions, and the retard angle head side oil passage communicates with the other annular groove portion. The corner oilway is in communication,
It is like that.

上記解決手法によれば、軸受部材のうち位相可変機構に隣接する隣接軸受部材は、位相可変機構に巻回されるチェーンやタイミングベルト等からの張力によって軸方向と交差する方向への外力を受けるために特に回転抵抗が大きくなるが、この隣接軸受部材でのカム軸の支持をころがり軸受でもって行うことにより、回転抵抗を大幅に低下させることができる。また、油は、ヘッド側油路から円環状の空間を介して、大きな油圧低下をきたすことなく位相可変機構へと供給されることになる。勿論、位相可変機構への油圧供給経路として、ころがり軸受内の空間を利用しないようにしてあるので、ころがり軸受内に多量の油が流入してその回転抵抗が増大してしまうことも生じないものとなる。さらに、ころがり軸受の側方に油路形成用の余分な空間を別途形成する必要もなくなり、しかも拡径鍔部によってカム軸の軸方向の位置決めを行うことができる。
以上に加えて、2つの環状溝部を2つの拡径鍔部に分けて形成することにより、2つの環状溝部を1つの拡径鍔部に対して径方向に位置を変えて形成する場合に比して、拡径鍔部の外形を小さくすることができ、この分拡径鍔部と隣接軸受部材との間の抵抗を小さくすることができる。また、一対の拡径鍔部によって、カム軸が軸方向両方向へ不用意に変位してしまう事態を確実に防止できる。
According to the above solution, the adjacent bearing member adjacent to the phase varying mechanism among the bearing members receives an external force in a direction intersecting the axial direction due to a tension from a chain or a timing belt wound around the phase varying mechanism. Therefore, the rotational resistance is particularly increased. However, the rotational resistance can be greatly reduced by supporting the camshaft with the adjacent bearing member with the rolling bearing. Further, the oil is supplied from the head side oil passage to the phase variable mechanism through the annular space without causing a great decrease in hydraulic pressure. Of course, since the space in the rolling bearing is not used as a hydraulic pressure supply path to the phase variable mechanism, a large amount of oil does not flow into the rolling bearing and its rotational resistance does not increase. It becomes. Further, it is not necessary to separately form an extra space for oil passage formation on the side of the rolling bearing, and the cam shaft can be positioned in the axial direction by the enlarged diameter flange portion.
In addition to the above, by dividing the two annular groove portions into two enlarged diameter flange portions, the two annular groove portions can be formed in a different radial direction relative to one enlarged diameter flange portion. As a result, the outer diameter of the enlarged diameter collar can be reduced, and the resistance between the enlarged diameter collar and the adjacent bearing member can be reduced accordingly. In addition, the pair of enlarged diameter flanges can reliably prevent the cam shaft from being inadvertently displaced in both axial directions.

上記第1の解決手法を前提とした好ましい態様は、特許請求の範囲における請求項2〜請求項に記載のとおりである。すなわち、
前記カム軸に前記一対の拡径鍔部が形成され、
前記環状溝部が前記一対の拡径鍔部のみに形成されている、
ようにしてある(請求項2対応)。この場合、通常シリンダヘッドとそれとは別部材のキャップ部材とで軸受部材が構成されることを考慮すると、軸物であるカム軸の拡径鍔部に対する環状溝部の加工が容易である。
A preferred mode based on the first solution is as set forth in claims 2 to 5 in the claims. That is,
The pair of enlarged diameter flanges are formed on the cam shaft,
The annular groove is formed only in the pair of enlarged diameter flanges,
(Corresponding to claim 2). In this case, considering that the bearing member is usually constituted by a cylinder head and a cap member different from the cylinder head, it is easy to process the annular groove portion with respect to the enlarged diameter flange portion of the cam shaft which is a shaft object.

前記一対の拡径鍔部のうち前記位相可変機構に近い側の隣接拡径鍔部が、前記位相可変機構の端壁部によって構成され、他方の拡径鍔部が前記カム軸に形成されている、ようにしてある(請求項対応)。この場合、位相可変機構の端壁部を拡径鍔部として兼用させて、カム軸を簡素化の上で好ましいものとなる。 Of the pair of enlarged diameter flanges, an adjacent enlarged diameter flange part closer to the phase variable mechanism is configured by an end wall part of the phase variable mechanism, and the other enlarged diameter flange part is formed on the cam shaft. It is, are then way (claim 3 corresponds). In this case, the end wall portion of the phase variable mechanism is also used as the enlarged diameter flange portion, which is preferable for simplifying the cam shaft.

前記位相可変機構が、前記進角用作動室と遅角用作動室とのいずれか一方を圧縮する方向へ付勢する付勢手段を有し、
前記一対の拡径鍔部のうち前記位相可変機構に遠い側に位置する遠方拡径鍔部に形成された前記環状溝部が、前記進角用作動室と遅角用作動室とのうち前記付勢手段によって圧縮されない側の作動室用とされている、
ようにしてある(請求項対応)。この場合、位相可変機構から遠い位置にある環状溝部から位相可変機構への油圧供給経路は長くなってその分油圧供給の抵抗が大きくなるが、この油圧供給抵抗の大きくなる油路から供給される油圧が付勢手段の付勢力に抗しなくすむようにして、進角用作動室への油圧供給と遅角用作動室への油圧供給とで油圧供給時間が大きく相違してしまうような事態を防止あるいは抑制する上で好ましいものとなる。
The phase variable mechanism has an urging unit that urges either the advance working chamber or the retard working chamber in a compressing direction.
The annular groove formed in the far diameter enlarged collar portion located on the side farther from the phase variable mechanism of the pair of diameter enlarged collar portions is the attachment of the advance working chamber and the retard working chamber. For the working chamber on the side not compressed by the biasing means,
(Corresponding to claim 4 ). In this case, the hydraulic pressure supply path from the annular groove located far from the phase variable mechanism to the phase variable mechanism becomes longer, and the resistance of the hydraulic pressure supply increases accordingly. By preventing the hydraulic pressure from resisting the urging force of the urging means, it is possible to prevent a situation in which the hydraulic pressure supply time greatly differs between the hydraulic pressure supply to the advance working chamber and the hydraulic pressure supply to the retard working chamber. This is preferable in terms of suppression.

前記隣接軸受部材に、前記ころがり軸受の下部に臨むドレン用油路が形成されている、ようにしてある(請求項対応)。この場合、ころがり軸受内に多量に油が滞留してしまう事態を確実に防止して、ころがり軸受の回転抵抗が増大してしまう事態を防止する上で好ましいものとなる。 A drain oil passage is formed in the adjacent bearing member so as to face a lower portion of the rolling bearing (corresponding to claim 5 ). In this case, it is preferable to reliably prevent a situation in which a large amount of oil stays in the rolling bearing and to prevent a situation in which the rotational resistance of the rolling bearing increases.

本発明によれば、カム軸の位置規制を図りながら、ころがり軸受を利用することによりカム軸の回転抵抗を低減しつつ、ヘッド側油路からの油圧を大きく低下させることなく位相可変機構へ供給することができる。また、ころがり軸受を配設する部分の軸方向長さを極力短くする上で好ましいものとなる。 According to the present invention, while restricting the position of the camshaft, using a rolling bearing, the rotational resistance of the camshaft is reduced, and the hydraulic pressure from the head side oil passage is supplied to the phase variable mechanism without greatly decreasing. can do. Further, it is preferable for shortening the axial length of the portion where the rolling bearing is disposed as much as possible.

以下本発明の実施形態について、自動車用エンジンのカム軸給油装置として適用した場合を例に説明する。図1において、1はカム軸であり、実施形態では排気弁駆動用とされている。カム軸1は、シリンダヘッド10に回転可能に支持されており、このシリンダヘッド10に設けたカム軸支持用の軸受部材が符合20で示される。なお、カム軸支持用の軸受部材は、カム軸1の軸方向に間隔をあけて複数設けられているが、図1では、カム軸1の一端側に設けた軸受部材20のみが示され、この軸受部材20が隣接軸受部材とされる。 Hereinafter, an embodiment of the present invention will be described by taking as an example a case where it is applied as a camshaft oiling device for an automobile engine. In FIG. 1, reference numeral 1 denotes a camshaft, which is used for driving an exhaust valve in the embodiment. The cam shaft 1 is rotatably supported by the cylinder head 10, and a cam shaft supporting bearing member provided on the cylinder head 10 is indicated by reference numeral 20. Note that a plurality of cam shaft support bearing members are provided at intervals in the axial direction of the cam shaft 1, but only the bearing member 20 provided on one end side of the cam shaft 1 is shown in FIG. The bearing member 20 is an adjacent bearing member.

カム軸1の一端側には、位相可変機構30が組付けられている。この位相可変機構30は、図2にも示すように、大別して、外側部材31と内側部材32とを有する。外側部材31は、その外周面に多数の歯部35を有する。この歯部35には、図示を略すクランク軸によって駆動されるチェーンやタイミングベルトが巻回(係合)されて、クランク軸と外側部材31とが常時一体回転される。 A phase variable mechanism 30 is assembled on one end side of the cam shaft 1. As shown in FIG. 2, the phase variable mechanism 30 roughly includes an outer member 31 and an inner member 32. The outer member 31 has a large number of teeth 35 on its outer peripheral surface. A chain or timing belt driven by a crankshaft (not shown) is wound around (engaged with) the tooth portion 35, and the crankshaft and the outer member 31 are always rotated integrally.

上記内側部材32は、カム軸1の一端に軸方向から当接された状態でカム軸1に固定されて、カム軸1と常時一体回転される。実施形態では、内側部材32は、そのカム軸1に対して図示を略す位置決めピンによって位置合わせがされた状態で、ボルト33によってカム軸1に固定されている。図2に示すように、外側部材31の内周面には、周方向に間隔をあけて複数の凹部36が形成されている。また、内側部材32の外周面には、凹部36内に突出する凸部37が形成されている。各凹部36内は、凸部37によって、進角用作動室38と遅角用作動室39とが画成されている。図2において、位相可変機構が時計回りに回転している状態で、進角用作動室38に油圧を供給すると(遅角用作動室39からは油圧排出)、内側部材32が外側部材31に対して図2中時計方向へ相対回転されて、カム軸1がクランク軸に対して進角される。逆に、遅角用作動室39に油圧を供給すると(進角用作動室38からは油圧排出)、内側部材32が外側部材31に対して図2中反時計方向へ相対回転されて、カム軸1がクランク軸に対して遅角される。 The inner member 32 is fixed to the cam shaft 1 while being in contact with one end of the cam shaft 1 from the axial direction, and is always rotated integrally with the cam shaft 1. In the embodiment, the inner member 32 is fixed to the camshaft 1 by a bolt 33 in a state in which the inner member 32 is aligned with a positioning pin (not shown) with respect to the camshaft 1. As shown in FIG. 2, a plurality of recesses 36 are formed on the inner peripheral surface of the outer member 31 at intervals in the circumferential direction. A convex portion 37 that protrudes into the concave portion 36 is formed on the outer peripheral surface of the inner member 32. Within each recess 36, an advance working chamber 38 and a retard working chamber 39 are defined by a projecting portion 37. In FIG. 2, when the hydraulic pressure is supplied to the advance working chamber 38 (the hydraulic pressure is discharged from the retard working chamber 39) while the phase variable mechanism is rotating clockwise, the inner member 32 moves to the outer member 31. In contrast, the camshaft 1 is rotated relative to the clockwise direction in FIG. 2 to advance the camshaft 1 with respect to the crankshaft. Conversely, when hydraulic pressure is supplied to the retarding working chamber 39 (hydraulic discharge from the advance working chamber 38), the inner member 32 is rotated relative to the outer member 31 counterclockwise in FIG. The shaft 1 is retarded with respect to the crankshaft.

内側部材32は、外側部材31に対して、付勢手段としてのコイルスプリング34によって進角方向に付勢されている。すなわち、進角用作動室38へ油圧供給したときは、コイルスプリング34の付勢力の助勢を受けつつ進角される一方、
遅角用作動室39へ油圧供給したときは、コイルスプリング34の付勢力に抗しつつ遅角されるようにされている。なお、外側部材31は、内側部材32に対して、軸方向の相対変位が規制されている。また、図1には、位相可変機構30内(実施形態では内側部材32内)に形成された進角用作動室38に常時連なる進角用内部油路が符合41で示され、遅角用作動室39に常時連なる遅角用内部油路が符合42で示される。
The inner member 32 is urged in the advance direction with respect to the outer member 31 by a coil spring 34 as urging means. That is, when the hydraulic pressure is supplied to the advance working chamber 38, the advance is made while being assisted by the urging force of the coil spring 34,
When the hydraulic pressure is supplied to the retarding working chamber 39, the retarding is performed while resisting the urging force of the coil spring 34. The outer member 31 is restricted from relative displacement in the axial direction with respect to the inner member 32. In FIG. 1, an advance angle internal oil passage continuously connected to the advance angle working chamber 38 formed in the phase variable mechanism 30 (in the inner member 32 in the embodiment) is indicated by reference numeral 41, and is used for the retard angle. A retarding internal oil passage that is always connected to the working chamber 39 is indicated by reference numeral 42.

前記軸受部材20は、特に図3に示すように、シリンダヘッド10に形成された下保持部21と、シリンダヘッド10に対してボルト22によって固定されたキャップ部材23とによって構成されている。そして、カム軸1が、ころがり軸受50を介して、下保持部21とキヤップ部材23とで上下方向から挟まれた状態で回転可能に支持されている。ころがり軸受50は、既知のように、外輪51と保持器52と多数の針状のローラ53とを有する。保持器52は、円筒状とされて、その周方向に間隔をあけて多数の収納空間が形成されていて、この各収納空間にそれぞれローラ53が収納、保持されている。このような保持器53によって、ローラ53の軸方向の位置決めと、ローラ53同士の周方向間隔の確保が行われている。なお、ころがり軸受50は、半割構造とされて、カム軸1に対してその径方向外方側から組み付けられるようになっている。 As shown in FIG. 3 in particular, the bearing member 20 includes a lower holding portion 21 formed in the cylinder head 10 and a cap member 23 fixed to the cylinder head 10 by bolts 22. The camshaft 1 is rotatably supported via a rolling bearing 50 in a state of being sandwiched between the lower holding portion 21 and the cap member 23 from the vertical direction. As known, the rolling bearing 50 includes an outer ring 51, a cage 52, and a large number of needle-shaped rollers 53. The retainer 52 has a cylindrical shape, and a large number of storage spaces are formed at intervals in the circumferential direction. A roller 53 is stored and held in each storage space. With such a cage 53, the roller 53 is positioned in the axial direction and the circumferential interval between the rollers 53 is ensured. The rolling bearing 50 has a half structure and is assembled to the cam shaft 1 from the radially outer side.

カム軸1には、軸受部材20を軸方向から挟むようにして、一対の拡径鍔部2,3が一体成形されている。この一対の拡径鍔部2,3によって、カム軸1が軸受部材20に対して軸方向に相対変位することが規制されている。この一対の拡径鍔部2、3はそれぞれ、その側面(軸方向端面)が軸受部材20の側面に対面するように、径方向外方側に伸びている。 A pair of enlarged diameter flanges 2 and 3 are integrally formed on the camshaft 1 so as to sandwich the bearing member 20 from the axial direction. The pair of enlarged diameter flange portions 2 and 3 restricts the cam shaft 1 from being displaced relative to the bearing member 20 in the axial direction. Each of the pair of enlarged diameter flange portions 2 and 3 extends radially outward so that the side surface (axial end surface) faces the side surface of the bearing member 20.

一対の拡径鍔部2,3は、隣接する軸受部材20(下保持部21あるいはキャップ部材23)に対して、軸方向に近接した状態で対向されており、この対向面間の隙間が極力小さくされた微少隙間とされている(軽く接触されて摺動される状態であってもよい)。拡径鍔部2の軸受部材20に対向する対向面には、カム軸1を中心とする円環状の環状溝部25が形成され、軸受部材20の側面とにより円環状の空間A(環状溝部25に対応)が形成されている。同様に、拡径鍔部3の軸受部材20に対向する対向面には、カム軸1を中心とする円環状の環状溝部26が形成され、軸受部材20の側面とにより円環状の空間B(環状溝部26に対応)が形成されている。各環状溝部25,26は、ころがり軸受50よりも径方向外方側に形成されている。 The pair of enlarged diameter flange portions 2 and 3 are opposed to the adjacent bearing member 20 (the lower holding portion 21 or the cap member 23) in a state of being close to each other in the axial direction, and a gap between the opposed surfaces is as much as possible. It is set as the small clearance made small (it may be in the state which is lightly contacted and slid). An annular annular groove 25 centered on the camshaft 1 is formed on the opposite surface of the enlarged diameter flange 2 facing the bearing member 20, and an annular space A (annular groove 25 is formed by the side surface of the bearing member 20. Is formed). Similarly, an annular groove portion 26 centering on the camshaft 1 is formed on the opposed surface of the enlarged diameter flange 3 facing the bearing member 20, and an annular space B ( Corresponding to the annular groove 26). Each of the annular groove portions 25 and 26 is formed on the radially outer side from the rolling bearing 50.

図1中左方に位置される円環状の空間A(環状溝部25)には、軸受部材20(キャップ部23)に形成されたヘッド側油路61が連通されている。このヘッド側油路61は、軸受部材20のうち拡径鍔部2に対向する面において開口されて、その開口位置は一定とされるが、カム軸1が回転されても環状溝部25に対して連通状態が維持されることになる。そして、この環状溝部25は、拡径鍔部2に形成されたカム軸側油路62を介して、位相可変機構30内の遅角用内部油路42に連通されている。このように、遅角用の油圧が、上記ヘッド側油路路61から、環状溝部25,カム軸側油路62,遅角用内部油路42を経て、遅角用作動室39に供給されることになる(遅角用作動室39からの油圧の排出は、この逆の経路で行われる)。図4には、環状溝部25を軸方向から見た状態が示される(環状溝部26においても図4と同様に形成されている)。 A head-side oil passage 61 formed in the bearing member 20 (cap portion 23) communicates with the annular space A (annular groove portion 25) located on the left side in FIG. The head-side oil passage 61 is opened on the surface of the bearing member 20 that faces the enlarged-diameter flange 2, and the opening position is constant. However, even if the camshaft 1 is rotated, Therefore, the communication state is maintained. The annular groove 25 is communicated with the retarding internal oil passage 42 in the phase variable mechanism 30 via the camshaft side oil passage 62 formed in the enlarged diameter flange portion 2. In this way, the retarding hydraulic pressure is supplied from the head side oil passage 61 to the retardation working chamber 39 via the annular groove 25, the camshaft side oil passage 62, and the retarding internal oil passage 42. (The hydraulic pressure is discharged from the retarding working chamber 39 through this reverse path). FIG. 4 shows a state in which the annular groove 25 is viewed from the axial direction (the annular groove 26 is also formed in the same manner as in FIG. 4).

図1中右方に位置される円環状の空間B(環状溝部26)には、軸受部材(キャップ部材23)に形成されたヘッド側油路65が連通されている。すなわち、ヘッド側油路65は、軸受部材20のうち拡径鍔部3に対向する面において開口されて、その開口位置は一定とされるが、カム軸1が回転されても環状溝部26に対して連通状態が維持されることになる。そして、環状溝部26は、カム軸1内に形成されたカム軸側油路66,67を介して、位相可変機構30内の進角用内部油路41と常時連通されている。このように、進角用の油圧が、上記ヘッド側油路65から、環状溝部26,カム軸側油路66,67,進角用内部油路41を経て、進角用作動室38に供給されることになる(進角用作動室38からの油圧の排出は、この逆の経路で行われる)。 A head-side oil passage 65 formed in the bearing member (cap member 23) is communicated with the annular space B (annular groove portion 26) located on the right side in FIG. In other words, the head-side oil passage 65 is opened in the surface of the bearing member 20 that faces the enlarged diameter flange portion 3, and the opening position thereof is constant, but even if the camshaft 1 is rotated, the annular groove portion 26 is formed. On the other hand, the communication state is maintained. The annular groove 26 is always in communication with the advance internal oil passage 41 in the phase variable mechanism 30 via cam shaft side oil passages 66 and 67 formed in the cam shaft 1. In this way, the hydraulic pressure for the advance angle is supplied from the head side oil passage 65 to the advance angle working chamber 38 through the annular groove 26, the cam shaft side oil passages 66 and 67, and the advance angle internal oil passage 41. (The hydraulic pressure is discharged from the advance working chamber 38 through this reverse path).

図1、図3において、軸受部材20には、下保持部21の上面に開口されたドレン油路24が形成されている。このドレン油路24は、下方へ伸びて、軸受部材20の側面から外部(動弁室)に開口されている。なお、ころがり軸受50の外輪51の底部には、ドレン油路24に連通される油の逃がし孔51aが形成されている(図3参照)。 1 and 3, the bearing member 20 is formed with a drain oil passage 24 opened on the upper surface of the lower holding portion 21. The drain oil passage 24 extends downward and opens to the outside (valve chamber) from the side surface of the bearing member 20. An oil escape hole 51a communicating with the drain oil passage 24 is formed at the bottom of the outer ring 51 of the rolling bearing 50 (see FIG. 3).

以上のような構成において、カム軸1は、ころがり軸受50によって軸受部材20が支持されているので、回転抵抗が小さいものとなる。特に、軸受部材20には、位相可変機構30に巻回されたチェーンあるいはタイミングベルトからの張力によって軸方向と直交する方向の大きな外力が作用することなるが、ころがり軸受50によって、カム軸1はスムーズに回転されることになる。 In the configuration as described above, since the bearing member 20 is supported by the rolling bearing 50, the cam shaft 1 has a small rotational resistance. In particular, the bearing member 20 is subjected to a large external force in the direction orthogonal to the axial direction due to the tension from the chain or timing belt wound around the phase variable mechanism 30, but the camshaft 1 is driven by the rolling bearing 50. It will rotate smoothly.

また、位相可変機構30への進角用あるいは遅角用の油圧は、円環状の空間AあるいはB(環状溝部25あるいは26)を介して、つまりころがり軸受50をバイパスして供給されることになり、ころがり軸受50部分からの大きな油圧もれを生じることなく、つまり大きな油圧低下を生じさせることなく、位相可変機構30へと供給されることになる。また、円環状の空間A、B(環状溝部25,26)へ供給された油圧の一部は、対向面間の適度な潤滑を行う一方、拡径鍔部2,3と軸受部材20との対向面間の微少隙間からころがり軸受50へ供給されて、ころがり軸受50を適度に潤滑するが、上記微少隙間からころがり軸受50に向けて多量の油が供給されてしまうことはない。 Further, the hydraulic pressure for the advance angle or the retard angle to the phase variable mechanism 30 is supplied via the annular space A or B (annular groove portion 25 or 26), that is, bypassing the rolling bearing 50. Thus, the oil pressure is supplied to the phase variable mechanism 30 without causing a large oil pressure leak from the rolling bearing 50 portion, that is, without causing a large decrease in the oil pressure. A part of the hydraulic pressure supplied to the annular spaces A and B (annular groove portions 25 and 26) performs appropriate lubrication between the opposing surfaces, while the enlarged diameter flange portions 2 and 3 and the bearing member 20 The roller bearing 50 is supplied to the rolling bearing 50 through a minute gap between the opposing surfaces to moderately lubricate the roller bearing 50, but a large amount of oil is not supplied to the roller bearing 50 from the minute gap.

なお、ころがり軸受50内に流出された油は、ドレン油路24によって排出されて、ころがり軸受50内に多量の油が貯溜されてしまうことが確実に防止される(ころがり軸受50内に多量の油が貯溜されることによる回転抵抗増大の防止)。また、カム軸1は、一対の拡径鍔部2,3によって、軸方向に不用意に変位してしまう事態が確実に防止される(精度よい位置決めの維持)。 Note that the oil that has flowed into the rolling bearing 50 is discharged through the drain oil passage 24, and it is reliably prevented that a large amount of oil is stored in the rolling bearing 50 (a large amount of oil in the rolling bearing 50). (Prevents increase in rotational resistance due to oil accumulation). Further, the cam shaft 1 is reliably prevented from being accidentally displaced in the axial direction by the pair of enlarged diameter flange portions 2 and 3 (maintaining accurate positioning).

コイルスプリング34の付勢力は、前述のように、進角を助勢する方向に設定されている。このため、位相可変機構30を遅角方向へすみやかに位相変更するため、遅角用作動室39への油圧供給が極力すみやかに行われるように、遅角用作動室39用の油圧供給経路の長さを、進角用作動室38用の油圧供給経路よりも短くなるようにしてある。すなわち、図1に示すように、位相可変機構30に近い側の拡径鍔部2に形成された環状溝部25を経由する短い油圧供給経路が、遅角用作動室39用として選択されている。これにより、油圧供給の応答性が、進角時と遅角時とでほぼ同じとされる。さらに、図1から明かなように、一対の環状溝部25,26は、一対の拡径鍔部25,26に分散して形成されると共に、カム軸1の同一半径上に位置されて、カム軸1の径方向において極力近い位置に位置設定されて、油路の長さを極力短くする上で好ましいものとなる。 As described above, the urging force of the coil spring 34 is set in the direction of assisting the advance angle. For this reason, in order to promptly change the phase of the phase variable mechanism 30 in the retarding direction, the hydraulic pressure supply path for the retarding working chamber 39 is set so that the hydraulic pressure is supplied to the retarding working chamber 39 as quickly as possible. The length is shorter than the hydraulic pressure supply path for the advance working chamber 38. That is, as shown in FIG. 1, a short hydraulic pressure supply path that passes through the annular groove 25 formed in the enlarged diameter flange portion 2 on the side close to the phase variable mechanism 30 is selected for the retarding working chamber 39. . Thereby, the response of the hydraulic pressure supply is made substantially the same at the advance angle and the retard angle. Further, as is apparent from FIG. 1, the pair of annular groove portions 25, 26 are formed in a distributed manner on the pair of enlarged diameter flange portions 25, 26, and are positioned on the same radius of the cam shaft 1 as cams. The position is set as close as possible in the radial direction of the shaft 1, which is preferable for shortening the length of the oil passage as much as possible.

図5は本発明の第2の実施形態を示すものであり、前記実施形態と同一構成要素には同一符合を付してその重複した説明は省略する(このことは、以下の第3の実施形態以下についても同じ)。本実施形態では、位相可変機構30に近い側の拡径鍔部2を、位相可変機構30の軸受部材20側の端壁部32aによって構成してある。これにより、カム軸1に一方の拡径鍔部2を形成することが不用となり、カム軸1の簡素化の上で好ましいものとなる。また、本実施形態では、ヘッド側油路61,65を、軸受部材20のうち下保持部21に設けるようにしてある(キャップ部材23まで油路を上方へ長く伸ばして形成することが不用になり、また下保持部21とキャップ部材23との合わせ面を介してヘッド側油路を形成することが不用になる)。 FIG. 5 shows a second embodiment of the present invention. The same components as those in the above embodiment are given the same reference numerals, and redundant description thereof is omitted (this is the case of the third embodiment described below). The same applies to the following forms). In this embodiment, the enlarged diameter flange portion 2 on the side close to the phase variable mechanism 30 is configured by the end wall portion 32 a on the bearing member 20 side of the phase variable mechanism 30. This makes it unnecessary to form the one enlarged diameter flange portion 2 on the cam shaft 1, which is preferable in simplifying the cam shaft 1. Further, in the present embodiment, the head side oil passages 61 and 65 are provided in the lower holding portion 21 of the bearing member 20 (it is unnecessary to form the oil passage long upward to the cap member 23). In addition, it is unnecessary to form the head side oil passage through the mating surface between the lower holding portion 21 and the cap member 23).

図6は、本発明の第3の実施形態を示すものである。本実施形態では、図1に示す実施形態に対して、ヘッド側油路61,65を軸受部材20のうち下保持部21に設けるようにした点において相違する。 FIG. 6 shows a third embodiment of the present invention. This embodiment is different from the embodiment shown in FIG. 1 in that the head side oil passages 61 and 65 are provided in the lower holding portion 21 of the bearing member 20.

図7は、参考例を示すものである。本参考例では、左右一対の拡径鍔部25,26のうち、位相可変機構30に近い一方の拡径鍔部25に対して、進角用および遅角用の各環状溝部25,26を形成したものとなっている。本参考例では、一方の拡径鍔部2に対して環状溝部25、26を集中して形成(加工)して、他方の拡径鍔部3の形成が容易となる。 FIG. 7 shows a reference example . In this reference example , of the pair of left and right enlarged diameter flanges 25 and 26, one of the enlarged diameter flanges 25 close to the phase variable mechanism 30 is provided with the respective annular groove portions 25 and 26 for advance and retard. It has been formed. In this reference example , the annular groove portions 25 and 26 are concentratedly formed (processed) with respect to one of the enlarged diameter flange portions 2, and the formation of the other enlarged diameter flange portion 3 is facilitated.

以上実施形態について説明したが、本発明は、実施形態に限定されるものではなく、特許請求の範囲の記載された範囲において適宜の変更が可能であり、例えば次のような場合をも含むものである。位相可変機構30は吸気弁用であってもよい(吸気弁用カム軸に組付けられる)。進角用および遅角用の環状溝部25,26を軸受部材20側に設けてもよい。拡径鍔部2を兼用する端壁部32aは、内側部材32に一体成形する場合以外に、内側部材32とは別部材で構成して、ボルト等の固定具等によって内側部材32に一体化したものであってもよい。例えば図1の実施形態において、一対の拡径鍔部2,3を、カム軸1と一体成形することなく、カム軸1と別部材で形成して、固定具等によってカム軸1に一体化したものであってもよい。コイルスプリング24による付勢方向は、実施形態とは逆の方向であってもよい。円環状の空間A、B(環状溝部25、26)に連通されるヘッド側油路61,65あるいいはカム軸側油路62,66,67は、1本に限らず、カム軸1の周方向に間隔をあけて複数設けるようにしてもよい。勿論、本発明の目的は、明記されたものに限らず、実質的に好ましいあるいは利点として表現されたものを提供することをも暗黙的に含むものである。 Although the embodiment has been described above, the present invention is not limited to the embodiment, and can be appropriately changed within the scope described in the scope of claims. For example, the invention includes the following cases. . The phase variable mechanism 30 may be used for the intake valve (assembled to the intake valve camshaft). The advance and retard annular grooves 25 and 26 may be provided on the bearing member 20 side . End wall portion 32a which serves to expand diameter collar portion 2, integrated into unless integrally molded to the inner member 32, the inner member 32 constituted by a separate member, the inner member 32 by a fixture such as a bolt or the like It may be what you did. For example, in the embodiment of FIG. 1, the pair of enlarged diameter flange portions 2 and 3 are formed separately from the cam shaft 1 without being integrally formed with the cam shaft 1, and are integrated with the cam shaft 1 by a fixture or the like. It may be what you did. The urging direction by the coil spring 24 may be opposite to the embodiment. The head side oil passages 61, 65 or the cam shaft side oil passages 62, 66, 67 communicated with the annular spaces A, B (annular grooves 25, 26) are not limited to one, A plurality may be provided at intervals in the circumferential direction. Of course, the object of the present invention is not limited to what is explicitly stated, but also implicitly includes providing what is substantially preferred or expressed as an advantage.

本発明の第1の実施形態を示す側面断面図。1 is a side cross-sectional view showing a first embodiment of the present invention. 図1のX2−X2線相当断面図。FIG. 2 is a cross-sectional view corresponding to line X2-X2 in FIG. 1. 図1のX3−X3線相当断面図。FIG. 3 is a cross-sectional view corresponding to line X3-X3 in FIG. 1. 図1のX4−X4線相当断面図。X4-X4 line equivalent sectional drawing of FIG. 本発明の第2の実施形態を示すもので、図1に対応した断面図。Sectional drawing which shows the 2nd Embodiment of this invention and respond | corresponds to FIG. 本発明の第3の実施形態を示すもので、図1に対応した断面図。Sectional drawing which shows the 3rd Embodiment of this invention and respond | corresponds to FIG. 参考例を示すもので、図1に対応した断面図。Sectional drawing which shows a reference example and respond | corresponds to FIG.

A、B:円環状の空間
1:カム軸
2:拡径鍔部
3:拡径鍔部
10:シリンダヘッド
20:軸受部材
21:下保持部
23:キャップ部材
24:ドレン油路
25:環状溝部(遅角用)
26:環状溝部(進角用)
30:位相可変機構
31:外側部材
32:内側部材
34:コイルスプリング(付勢手段)
36:凹部
37:凸部
38:進角用作動室
39:遅角用作動室
41:進角用内部油路
42:遅角用内部油路
50:ころがり軸受
51:外輪
52:保持器
53:ローラ
61:ヘッド側油路(遅角用)
62:カム軸側油路(遅角用)
65:ヘッド側油路(進角用)
66:カム軸側油路(進角用)
67:カム軸側油路(進角用)


A, B: Annular space 1: Cam shaft 2: Expanded flange portion 3: Expanded flange portion 10: Cylinder head 20: Bearing member 21: Lower holding portion 23: Cap member 24: Drain oil passage 25: Annular groove portion (For retarded angle)
26: annular groove (for advance angle)
30: Phase variable mechanism 31: Outer member 32: Inner member 34: Coil spring (biasing means)
36: concave portion 37: convex portion 38: advance working chamber 39: retard working chamber 41: advance internal oil passage 42: retard internal oil passage 50: rolling bearing 51: outer ring 52: cage 53: Roller 61: Head side oil passage (for retarded angle)
62: Cam shaft side oil passage (for retarded angle)
65: Head side oil passage (for advance angle)
66: Cam shaft side oil passage (for advance angle)
67: Cam shaft side oil passage (for advance angle)


Claims (5)

一端部に油圧式の位相可変機構が設けられたカム軸をシリンダヘッドの軸受部材で回転可能に支持し、該軸受部材に形成されたヘッド側油路から該カム軸に形成されたカム軸側油路を経由して該位相可変機構に給油するカム軸給油装置において、
前記軸受部材のうち前記位相可変機構の隣りに位置する隣接軸受部材が、ころがり軸受を介して前記カム軸を支持しており、
記カム軸が軸方向に変位するのを規制し、かつ前記ころがり軸受を軸方向から挟むようにして一対の拡径鍔部が設けられ
前記一対の拡径鍔部と前記隣接軸受部材との軸方向に近接状態で対向する対向面間にそれぞれ、前記カム軸を中心として前記ころがり軸受よりも径方向外方側において円環状の空間を形成する環状溝部が、該拡径鍔部ないし隣接軸受部材に形成され、
前記位相可変機構の進角用作動室に連なる進角用油路と、遅角用作動室に連なる遅角用油路とを有し、
前記ヘッド側油路が、前記進角用作動室に給油するための進角用ヘッド側油路と、前記遅角用作動室に給油するための遅角用ヘッド側油路とを有し、
前記一対の環状溝部のうち一方の環状溝部に対して前記進角用ヘッド側油路と進角用油路とが連通され、他方の環状溝部に対して前記遅角用ヘッド側油路と遅角用油路とが連通されている、
ことを特徴とするカム軸給油装置。
A cam shaft provided with a hydraulic phase variable mechanism at one end is rotatably supported by a bearing member of a cylinder head, and a cam shaft side formed on the cam shaft from a head side oil passage formed on the bearing member In a camshaft lubrication device that lubricates the phase variable mechanism via an oil passage,
An adjacent bearing member located next to the phase variable mechanism among the bearing members supports the camshaft via a rolling bearing,
Before hear beam axis is restricted from being displaced in the axial direction, and said rolling bearing so as to sandwich the axial direction a pair of enlarged diameter flange portion provided,
Respectively between the facing surfaces opposed to each other in close proximity in the axial direction between the adjacent bearing member and said pair of enlarged diameter flange portion, the rolling annular space in the diametrically outside of the bearing about said cam shaft The annular groove to be formed is formed in the enlarged diameter flange or the adjacent bearing member,
An advance oil passage continuing to the advance working chamber of the phase variable mechanism; and a retard oil passage continuing to the retard working chamber;
The head-side oil passage has an advance-angle head-side oil passage for supplying oil to the advance-angle working chamber, and a retard-angle head-side oil passage for supplying oil to the retard-angle working chamber;
The advance angle head side oil passage and the advance angle oil passage communicate with one annular groove portion of the pair of annular groove portions, and the retard angle head side oil passage communicates with the other annular groove portion. The corner oilway is in communication,
A camshaft oiling device characterized by that.
請求項1において、
前記カム軸に前記一対の拡径鍔部が形成され、
前記環状溝部が前記一対の拡径鍔部のみに形成されている、
ことを特徴とするカム軸給油装置。
In claim 1,
The pair of enlarged diameter flanges are formed on the cam shaft,
The annular groove is formed only in the pair of enlarged diameter flanges,
A camshaft oiling device characterized by that.
請求項において、
前記一対の拡径鍔部のうち前記位相可変機構に近い側の隣接拡径鍔部が、前記位相可変機構の端壁部によって構成され、他方の拡径鍔部が前記カム軸に形成されている、ことを特徴とするカム軸給油装置。
In claim 1 ,
Of the pair of enlarged diameter flanges, an adjacent enlarged diameter flange part closer to the phase variable mechanism is configured by an end wall part of the phase variable mechanism, and the other enlarged diameter flange part is formed on the cam shaft. It is, camshaft lubrication system, characterized in that.
請求項1ないし請求項3のいずれか1項において、
前記位相可変機構が、前記進角用作動室と遅角用作動室とのいずれか一方を圧縮する方向へ付勢する付勢手段を有し、
前記一対の拡径鍔部のうち前記位相可変機構に遠い側に位置する遠方拡径鍔部に形成された前記環状溝部が、前記進角用作動室と遅角用作動室とのうち前記付勢手段によって圧縮されない側の作動室用とされている、
ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 3 ,
The phase variable mechanism has an urging unit that urges either the advance working chamber or the retard working chamber in a compressing direction.
The annular groove formed in the far diameter enlarged collar portion located on the side farther from the phase variable mechanism of the pair of diameter enlarged collar portions is the attachment of the advance working chamber and the retard working chamber. For the working chamber on the side not compressed by the biasing means,
A camshaft oiling device characterized by that.
請求項1ないし請求項のいずれか1項において、
前記隣接軸受部材に、前記ころがり軸受の下部に臨むドレン用油路が形成されている、ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 4 ,
A camshaft oiling device, wherein a drain oil passage that faces a lower portion of the rolling bearing is formed in the adjacent bearing member.
JP2008247651A 2008-09-26 2008-09-26 Camshaft lubricator Expired - Fee Related JP5169686B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008247651A JP5169686B2 (en) 2008-09-26 2008-09-26 Camshaft lubricator

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008247651A JP5169686B2 (en) 2008-09-26 2008-09-26 Camshaft lubricator

Publications (2)

Publication Number Publication Date
JP2010077910A JP2010077910A (en) 2010-04-08
JP5169686B2 true JP5169686B2 (en) 2013-03-27

Family

ID=42208617

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008247651A Expired - Fee Related JP5169686B2 (en) 2008-09-26 2008-09-26 Camshaft lubricator

Country Status (1)

Country Link
JP (1) JP5169686B2 (en)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5488296B2 (en) * 2010-07-26 2014-05-14 株式会社ジェイテクト Rolling bearing and camshaft device
JP5758603B2 (en) * 2010-09-24 2015-08-05 トヨタ自動車株式会社 Oil supply device for internal combustion engine
US8800517B2 (en) 2010-12-01 2014-08-12 Caterpillar Inc. Cam shaft/cam gear assembly and thrust strategy for engine using same
JP5783310B2 (en) * 2014-08-12 2015-09-24 スズキ株式会社 Camshaft support structure

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0411917U (en) * 1990-05-22 1992-01-30
JP3265899B2 (en) * 1995-03-08 2002-03-18 トヨタ自動車株式会社 Valve timing control device for internal combustion engine
JP3780594B2 (en) * 1996-12-18 2006-05-31 トヨタ自動車株式会社 Valve timing control device for internal combustion engine
JP2002195012A (en) * 2000-12-22 2002-07-10 Toyota Motor Corp Valve-timing changing device of internal combustion engine
JP2005090696A (en) * 2003-09-19 2005-04-07 Nsk Ltd Roller bearing and internal combustion engine
JP4524672B2 (en) * 2006-01-10 2010-08-18 アイシン精機株式会社 Valve timing control device
JP5234706B2 (en) * 2006-09-04 2013-07-10 Ntn株式会社 Roller bearing, camshaft support structure and internal combustion engine

Also Published As

Publication number Publication date
JP2010077910A (en) 2010-04-08

Similar Documents

Publication Publication Date Title
JP2010084531A (en) Oil feeder for camshaft
US10858965B2 (en) Valve timing adjustment device
US11008903B2 (en) Valve timing adjustment device
US10858967B2 (en) Valve timing adjustment device and check valve
JP5394157B2 (en) Camshaft device
US20070240657A1 (en) Adjustable Camshaft, in Particular for Internal Combustion Engines for Motor Vehicles Having a Hydraulic Adjusting Device
JP5488296B2 (en) Rolling bearing and camshaft device
JP5169686B2 (en) Camshaft lubricator
US20110220049A1 (en) Engine having camshaft lubrication rail
JP6368008B2 (en) Valve timing control device for internal combustion engine
US11428126B2 (en) Valve timing adjustment device
US10260384B2 (en) Valve timing regulation device
JP4531031B2 (en) Bearing device provided with rolling bearing
US11401841B2 (en) Valve device
JP5417263B2 (en) Rolling bearing device for rotating shaft with oil passage
JP6892868B2 (en) Engine valve lifter with anti-rotation plug
JP2016191307A (en) Cam cap
JP4853676B2 (en) Valve timing adjustment device
JP6330466B2 (en) Camshaft bearing lubrication structure
JP4182677B2 (en) Camshaft lubrication device
JP2008095604A (en) Cam journal structure
JP2011038432A (en) Thrust regulating part structure of camshaft of engine
JP2010127181A (en) Hydraulic pressure vane type variable valve mechanism for engine
US10480424B2 (en) Internal-combustion engine valve timing control apparatus
JP4947029B2 (en) Camshaft bearing structure

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110802

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120904

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5169686

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees