JP2010084531A - Oil feeder for camshaft - Google Patents

Oil feeder for camshaft Download PDF

Info

Publication number
JP2010084531A
JP2010084531A JP2008251485A JP2008251485A JP2010084531A JP 2010084531 A JP2010084531 A JP 2010084531A JP 2008251485 A JP2008251485 A JP 2008251485A JP 2008251485 A JP2008251485 A JP 2008251485A JP 2010084531 A JP2010084531 A JP 2010084531A
Authority
JP
Japan
Prior art keywords
annular
annular groove
camshaft
oil passage
cam shaft
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008251485A
Other languages
Japanese (ja)
Inventor
Koji Hatano
耕二 波多野
Yoshio Tanida
芳夫 谷田
Takashi Igai
孝至 猪飼
Shinji Kishi
真治 岸
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008251485A priority Critical patent/JP2010084531A/en
Publication of JP2010084531A publication Critical patent/JP2010084531A/en
Pending legal-status Critical Current

Links

Images

Classifications

    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C41/00Other accessories, e.g. devices integrated in the bearing not relating to the bearing function as such
    • F16C41/005Fluid passages not relating to lubrication or cooling
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C19/00Bearings with rolling contact, for exclusively rotary movement
    • F16C19/22Bearings with rolling contact, for exclusively rotary movement with bearing rollers essentially of the same size in one or more circular rows, e.g. needle bearings
    • F16C19/44Needle bearings
    • F16C19/46Needle bearings with one row or needles
    • F16C19/466Needle bearings with one row or needles comprising needle rollers and an outer ring, i.e. subunit without inner ring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4605Details of interaction of cage and race, e.g. retention or centring
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/46Cages for rollers or needles
    • F16C33/4617Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages
    • F16C33/4623Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages
    • F16C33/4635Massive or moulded cages having cage pockets surrounding the rollers, e.g. machined window cages formed as one-piece cages, i.e. monoblock cages made from plastic, e.g. injection moulded window cages
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/30Parts of ball or roller bearings
    • F16C33/66Special parts or details in view of lubrication
    • F16C33/6637Special parts or details in view of lubrication with liquid lubricant
    • F16C33/6659Details of supply of the liquid to the bearing, e.g. passages or nozzles
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C33/00Parts of bearings; Special methods for making bearings or parts thereof
    • F16C33/72Sealings
    • F16C33/76Sealings of ball or roller bearings
    • F16C33/78Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members
    • F16C33/7893Sealings of ball or roller bearings with a diaphragm, disc, or ring, with or without resilient members mounted to a cage or integral therewith
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F01MACHINES OR ENGINES IN GENERAL; ENGINE PLANTS IN GENERAL; STEAM ENGINES
    • F01LCYCLICALLY OPERATING VALVES FOR MACHINES OR ENGINES
    • F01L1/00Valve-gear or valve arrangements, e.g. lift-valve gear
    • F01L1/02Valve drive
    • F01L1/04Valve drive by means of cams, camshafts, cam discs, eccentrics or the like
    • F01L1/047Camshafts
    • F01L2001/0476Camshaft bearings
    • FMECHANICAL ENGINEERING; LIGHTING; HEATING; WEAPONS; BLASTING
    • F16ENGINEERING ELEMENTS AND UNITS; GENERAL MEASURES FOR PRODUCING AND MAINTAINING EFFECTIVE FUNCTIONING OF MACHINES OR INSTALLATIONS; THERMAL INSULATION IN GENERAL
    • F16CSHAFTS; FLEXIBLE SHAFTS; ELEMENTS OR CRANKSHAFT MECHANISMS; ROTARY BODIES OTHER THAN GEARING ELEMENTS; BEARINGS
    • F16C2360/00Engines or pumps
    • F16C2360/18Camshafts

Landscapes

  • Engineering & Computer Science (AREA)
  • General Engineering & Computer Science (AREA)
  • Mechanical Engineering (AREA)
  • Lubrication Of Internal Combustion Engines (AREA)
  • Rolling Contact Bearings (AREA)
  • Valve Device For Special Equipments (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To feed oil to a phase variable mechanism without largely decreasing oil pressure from a head-side oil path formed in a bearing member, with no adverse effect on a rolling bearing. <P>SOLUTION: A camshaft 1 is supported by a bearing member 20 through the rolling bearing 50. Each of ends in an axial direction of a retainer 52 of the rolling bearing 40 has annular ends 71, 72 for sealing in the axial direction. The annular ends 71, 72 respectively have ring-like outer annular grooves 73, 76 formed at their outer circumferential surfaces, and ring-like inner annular grooves 74, 77 formed at their inner circumferential surfaces. Each of annular ends 71, 72 has communicating hole 75(78) formed to communicate the outer annular groove 73(74) with the inner annular groove 74(77). An oil path 61 on advance head side communicates with the outer annular groove 73, and an oil path 65 on an advance camshaft side communicates with the inner annular groove 74. An oil path 62 on a retard head side communicates with the outer annular groove 76, and an oil path 66 on a retard camshaft side communicates with the inner annular groove 77. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、カム軸給油装置に関するものである。   The present invention relates to a camshaft oiling device.

エンジン、特に自動車用エンジンでは、吸気弁あるいは排気弁の開閉時期を位相変更するものが多くなっている。この位相変更のため、吸気弁用や排気弁のカム軸の一端部に油圧式の位相可変機構を設けて、この位相可変機構への油圧供給態様を変更することによって、クランク軸に対するカム軸の位相を変更するものがある。そして、油圧式の位相可変機構に対する給油を、カム軸を支持する軸受部材内のヘッド側油路から、カム軸内の油路を介して行うことも一般的に行われている。   Many engines, particularly automobile engines, change the phase of the opening / closing timing of intake valves or exhaust valves. For this phase change, a hydraulic phase variable mechanism is provided at one end of the camshaft of the intake valve or exhaust valve, and by changing the hydraulic supply mode to this phase variable mechanism, the camshaft relative to the crankshaft is changed. Some change the phase. In general, oil supply to the hydraulic phase variable mechanism is performed from the head side oil passage in the bearing member that supports the cam shaft through the oil passage in the cam shaft.

特許文献1には、シリンダヘッドに設けた軸受部材に対して、ころがり軸受の一種となるローラ軸受を介してカム軸を回転可能に支持した場合に、ローラ軸受の保持器の軸方向一端側の側方において側方油路を形成して、この側方油路を介して、上記軸受部材に形成されたヘッド側油路とカム軸内に形成されたカム軸側油路とを連通させることが開示されている。そして、特許文献1には、ローラ軸受の保持器の軸方向端部に、上記側方油路をシールするシール部を構成することも開示されている。また、特許文献2には、カム軸をすべり軸受で支持する場合に、カム軸とすべり軸受との摺動面を介して、ヘッド側油路とカム軸側油路とを連通させるものが開示されている。   In Patent Document 1, when a cam shaft is rotatably supported via a roller bearing, which is a kind of rolling bearing, with respect to a bearing member provided in a cylinder head, one end side in the axial direction of a roller bearing retainer is disclosed. A side oil passage is formed on the side, and the head side oil passage formed in the bearing member and the cam shaft side oil passage formed in the cam shaft are communicated with each other through the side oil passage. Is disclosed. Patent Document 1 also discloses that a seal portion that seals the lateral oil passage is formed at the axial end portion of the roller bearing retainer. Patent Document 2 discloses that when the cam shaft is supported by a slide bearing, the head side oil passage and the cam shaft side oil passage communicate with each other via a sliding surface between the cam shaft and the slide bearing. Has been.

特開2008−101714号公報JP 2008-101714 A 特開平9−250310号公報JP 9-250310 A

ところで、カム軸をころがり軸受で支持した場合に、ころがり軸受そのものは油圧保持機能がきわめて弱く、このため、ころがり軸受内の空間を利用してヘッド側油路とカム軸側油路とを連通させることは、油圧漏れつまり位相可変機構への供給油圧の低下となって、事実上採用できないものとなる。また、ころがり軸受内に大量の油が流入されると、ころがり抵抗の増大となってしまって好ましくないものともなる。さらに、特許文献1に記載のように、ローラ軸受の保持器の軸方向一端側の側方に側方油路を形成することは、ローラ軸受に関連した部分の軸方向長さが長くなったり、側方油路内の油圧によってローラ軸受が軸方向の力を受けてその軸方向の位置決めを精度よく維持する上で問題となり易い等の悪影響を生じさせる原因ともなる。   By the way, when the camshaft is supported by a rolling bearing, the rolling bearing itself has a very weak hydraulic pressure holding function. For this reason, the head side oil passage and the camshaft side oil passage are communicated using the space in the rolling bearing. This is a hydraulic leak, that is, a decrease in the hydraulic pressure supplied to the phase variable mechanism, which is practically impossible to employ. In addition, if a large amount of oil flows into the rolling bearing, the rolling resistance increases, which is not preferable. Furthermore, as described in Patent Document 1, forming a lateral oil passage on the side of one end side in the axial direction of the cage of the roller bearing may increase the axial length of the portion related to the roller bearing. Also, the oil pressure in the side oil passage causes the roller bearing to receive an axial force and cause adverse effects such as being likely to cause problems in maintaining the axial positioning with high accuracy.

本発明は以上のような事情を勘案してなされたもので、その目的は、カム軸をころがり軸受を介してシリンダヘッドの軸受部材に支持する場合に、軸受部材に形成されたヘッド側油路からの油圧を大きく低下させることなく位相可変機構へ供給できるようにし、しかもころがり軸受そのものにも悪影響を与えることのないようにしたカム軸給油装置を提供することにある。   The present invention has been made in view of the above circumstances, and its object is to provide a head-side oil passage formed in the bearing member when the camshaft is supported by the bearing member of the cylinder head via the rolling bearing. Another object of the present invention is to provide a camshaft oiling device that can supply the oil pressure from the shaft to the phase variable mechanism without greatly reducing the oil pressure, and that does not adversely affect the rolling bearing itself.

前記目的を達成するため、本発明にあっては次のような第1の解決手法を採択してある。すなわち、特許請求の範囲における請求項1に記載のように、
一端部に油圧式の位相可変機構が設けられたカム軸をシリンダヘッドの軸受部材で回転可能に支持し、該軸受部材に形成されたヘッド側油路から該カム軸に形成されたカム軸側油路を経由して該位相可変機構に給油するカム軸給油装置において、
前記軸受部材のうち前記位相可変機構の隣りに位置する隣接軸受部材が、ころがり軸受を介して前記カム軸を支持しており、
前記ころがり軸受が、多数のコロと、該多数のコロを周方向に所定間隔をあけて保持する保持器と、を有し、
前記保持器の軸方向各端部に、軸方向のシールを行う環状端部が形成され、
前記各環状端部の外周面にそれぞれ円環状の外側環状溝部が形成されると共に、該各環状端部の内周面にそれぞれ円環状の内側環状溝部が形成され、
前記各環状端部に、前記外側環状溝部と内側環状溝部とを連通する連通孔が形成され、
前記各環状端部のうち一方の環状端部の前記外側環状溝部に進角用ヘッド側油路が連通されると共に、該一方の環状端部の前記内側環状溝部に進角用カム軸側油路が連通され、
前記各環状端部のうち他方の環状端部の前記外側環状溝部に遅角用ヘッド側油路が連通されると共に、該他方の環状端部の前記内側環状溝部に遅角用カム軸側油路が連通されている、
ようにしてある。
In order to achieve the above object, the following first solution is adopted in the present invention. That is, as described in claim 1 in the claims,
A cam shaft provided with a hydraulic phase variable mechanism at one end is rotatably supported by a bearing member of a cylinder head, and a cam shaft side formed on the cam shaft from a head side oil passage formed on the bearing member In a camshaft lubrication device that lubricates the phase variable mechanism via an oil passage,
An adjacent bearing member located next to the phase variable mechanism among the bearing members supports the camshaft via a rolling bearing,
The rolling bearing has a large number of rollers and a cage that holds the large number of rollers at predetermined intervals in the circumferential direction,
An annular end portion that performs an axial seal is formed at each axial end portion of the cage,
An annular outer annular groove is formed on the outer peripheral surface of each annular end, and an annular inner annular groove is formed on the inner peripheral surface of each annular end.
In each of the annular ends, a communication hole that connects the outer annular groove and the inner annular groove is formed,
An advance angle head side oil passage is communicated with the outer annular groove portion of one of the annular end portions, and an advance angle cam shaft side oil is communicated with the inner annular groove portion of the one annular end portion. The road is connected,
A retard head side oil passage is communicated with the outer annular groove portion of the other annular end portion among the annular end portions, and a retard cam shaft side oil is communicated with the inner annular groove portion of the other annular end portion. The road is in communication,
It is like that.

上記解決手法によれば、軸受部材のうち位相可変機構に隣接する隣接軸受部材は、位相可変機構に巻回されるチェーンやタイミングベルト等からの張力によって軸方向と交差する方向への外力を受けるために特に回転抵抗が大きくなるが、この隣接軸受部材でのカム軸の支持をころがり軸受でもって行うことにより、回転抵抗を大幅に低下させることができる。また、進角用の油圧と遅角用の油圧は、互いに軸方向に離間した一対の環状端部を個別に通って位相可変機構へ供給されるので、進角用油圧と遅角用油圧との干渉防止の上でも好ましいものとなる。さらに、保持器を有効に利用して、進角用油路と遅角用油路を形成してあるので、構造も全体として簡単にすることができる。勿論、位相可変機構への油圧供給経路として、ころがり軸受内の空間を利用しないようにしてあるので、ころがり軸受内に多量の油が流入してその回転抵抗が増大してしまうことも生じないものとなる。さらに、ころがり軸受の側方に油路形成用の余分な空間を別途形成する必要もなくなる。
る。
According to the above solution, the adjacent bearing member adjacent to the phase varying mechanism among the bearing members receives an external force in a direction intersecting the axial direction due to a tension from a chain or a timing belt wound around the phase varying mechanism. Therefore, the rotational resistance is particularly increased. However, the rotational resistance can be greatly reduced by supporting the camshaft with the adjacent bearing member with the rolling bearing. Further, the advance hydraulic pressure and the retard hydraulic pressure are individually supplied to the phase variable mechanism through a pair of annular ends that are axially separated from each other. This is also preferable for preventing interference. Furthermore, since the advance oil passage and the retard oil passage are formed by effectively using the cage, the structure can be simplified as a whole. Of course, since the space in the rolling bearing is not used as the hydraulic pressure supply path to the phase variable mechanism, a large amount of oil does not flow into the rolling bearing and its rotational resistance does not increase. It becomes. Furthermore, it is not necessary to separately form an extra space for oil passage formation on the side of the rolling bearing.
The

上記第1の解決手法を前提とした好ましい態様は、特許請求の範囲における請求項2以下に記載のとおりである。すなわち、
前記各環状端部は、前記連通孔を挟んで軸方向外側部分と内側部分とが同一径とされ、
前記内側部分に、前記連通孔に連通されて前記コロに向けての油を供給するための油路が形成されている、
ようにしてある(請求項2対応)。この場合、内側部分に形成された油路を通して、コロに適度な量の潤滑用の油を供給することができる。
A preferred mode based on the first solution is as set forth in claim 2 and subsequent claims. That is,
Each annular end portion has the same diameter in the axially outer portion and the inner portion across the communication hole,
In the inner portion, an oil passage is formed for supplying oil toward the roller in communication with the communication hole.
(Corresponding to claim 2). In this case, an appropriate amount of lubricating oil can be supplied to the rollers through the oil passage formed in the inner portion.

前記各環状端部は、前記連通孔を挟んで軸方向外側部分に対して内側部分の外形が小さく設定されている、ようにしてある(請求項3対応)。この場合、内側部分の外周面を通して、コロに適度な量の潤滑用の油を供給することができる。特に、内側部分の周方向全周からコロに向けて潤滑用の油を供給することができる。   Each of the annular ends is configured such that the outer shape of the inner portion is set smaller than the outer portion in the axial direction across the communication hole (corresponding to claim 3). In this case, an appropriate amount of lubricating oil can be supplied to the rollers through the outer peripheral surface of the inner portion. In particular, lubricating oil can be supplied from the entire circumference of the inner portion toward the roller.

前記隣接軸受部材に、前記ころがり軸受の下部に臨むドレン用油路が形成されている、ようにしてある(請求項4対応)。この場合、ころがり軸受内に多量に油が滞留してしまう事態を確実に防止して、ころがり軸受の回転抵抗が増大してしまう事態を防止する上で好ましいものとなる。   The adjacent bearing member is formed with a drain oil passage facing the lower portion of the rolling bearing (corresponding to claim 4). In this case, it is preferable to reliably prevent a situation in which a large amount of oil stays in the rolling bearing and to prevent a situation in which the rotational resistance of the rolling bearing increases.

前記カム軸のうち前記コロに対応した位置に大径部が形成され、
前記各環状端部が、前記大径部を軸方向から挟持している、
ようにしてある(請求項5対応)。この場合、保持器そのものを利用して、保持器つまりコロが、カム軸に対して相対的に軸方向に変位してしまう事態を確実に規制することができる。
A large diameter portion is formed at a position corresponding to the roller of the cam shaft,
Each of the annular ends sandwiches the large diameter portion from the axial direction.
(Corresponding to claim 5). In this case, the cage itself, that is, the roller, can be reliably restricted from being displaced in the axial direction relative to the camshaft by using the cage itself.

前記各環状端部が、前記連通孔を挟んで外側部分が内側部分よりも大径とされ、
前記大径とされた前記各外側部分が、前記隣接軸受部材を軸方向から挟持している、
ようにしてある(請求項6対応)。この場合、保持器そのものを利用して、保持器つまりコロが、カム軸に対して相対的に軸方向に変位してしまう事態を確実に規制することができる。
Each of the annular end portions has an outer portion having a larger diameter than the inner portion with the communication hole interposed therebetween,
The outer portions having the large diameter sandwich the adjacent bearing member from the axial direction.
(Corresponding to claim 6). In this case, the cage itself, that is, the roller, can be reliably restricted from being displaced in the axial direction relative to the camshaft by using the cage itself.

前記保持器が合成樹脂によって形成され、
前記隣接軸受部材の内周面に、前記進角用ヘッド側油路に連なる円環状の進角用ヘッド側環状溝部が形成されると共に、前記遅角用ヘッド側油路に連なる円環状の遅角用ヘッド側環状溝部が形成され、
前記カム軸の外周面に、前記進角用カム軸側油路に連なる円環状の進角用カム軸側環状溝部が形成されると共に、前記遅角用カム軸側油路に連なる円環状の遅角用カム軸側環状溝部が形成され、
前記各外側環状溝部の周縁部にそれぞれ、前記各ヘッド側環状溝部内に個別に延出された円環状の外側リップ部が形成され、
前記各内側環状溝部の周縁部にそれぞれ、前記各カム軸側環状溝部内に延出された円環状の内側リップ部が形成されている、
ようにしてある(請求項7対応)。この場合、油圧供給を受けると、各リップ部が対応するヘッド側環状溝部およびカム軸側環状溝部内で弾性変形されることにより広がって、保持器に形成された各連通孔のヘッド側油路およびカム軸側油路に対するシール性を高めることができる。
The cage is made of synthetic resin;
An annular advance head-side annular groove continuous with the advance angle head-side oil passage is formed on the inner peripheral surface of the adjacent bearing member, and an annular delay connected with the retard angle head-side oil passage is formed. A corner head side annular groove is formed,
An annular advance cam shaft side annular groove continuous with the advance cam shaft side oil passage is formed on an outer peripheral surface of the cam shaft, and an annular advance connecting with the retard cam shaft side oil passage is formed. A retard camshaft-side annular groove is formed,
An annular outer lip portion individually extending into each head-side annular groove portion is formed on each peripheral edge portion of each outer annular groove portion,
An annular inner lip portion extending into each camshaft side annular groove portion is formed on each peripheral edge portion of each inner annular groove portion.
(Corresponding to claim 7). In this case, when the hydraulic pressure is supplied, each lip portion expands by elastic deformation in the corresponding head-side annular groove portion and camshaft-side annular groove portion, and the head-side oil passage of each communication hole formed in the cage. And the sealing performance with respect to the camshaft side oil passage can be enhanced.

本発明によれば、ころがり軸受を利用することによりカム軸の回転抵抗を低減しつつ、ヘッド側油路からの進角用および遅角用の各油圧を、大きく低下させることなくかつ互いに干渉させずに位相可変機構へ供給することができる。また、ころがり軸受を配設する部分の軸方向長さを極力短くする上で好ましいものとなり、しかも、位相可変機構への供給油圧によってころがり軸受が悪影響を受けこともないものとなる。   According to the present invention, the rolling shaft bearing is used to reduce the rotational resistance of the camshaft, and the hydraulic pressures for advance and retard from the head side oil passage are made to interfere with each other without greatly decreasing. Without being supplied to the phase variable mechanism. Further, it is preferable for shortening the axial length of the portion where the rolling bearing is disposed as much as possible, and the rolling bearing is not adversely affected by the hydraulic pressure supplied to the phase variable mechanism.

以下本発明の実施形態について、自動車用エンジンのカム軸給油装置として適用した場合を例に説明する。図1において、1はカム軸であり、実施形態では排気弁駆動用とされている。カム軸1は、シリンダヘッド10に回転可能に支持されており、このシリンダヘッド10に設けたカム軸支持用の軸受部材が符合20で示される。なお、カム軸支持用の軸受部材は、カム軸1の軸方向に間隔をあけて複数設けられているが、図1では、カム軸1の一端側に設けた軸受部材20のみが示され、この軸受部材20が隣接軸受部材とされる。   Hereinafter, an embodiment of the present invention will be described by taking as an example a case where it is applied as a camshaft oiling device for an automobile engine. In FIG. 1, reference numeral 1 denotes a camshaft, which is used for driving an exhaust valve in the embodiment. The cam shaft 1 is rotatably supported by the cylinder head 10, and a cam shaft supporting bearing member provided on the cylinder head 10 is indicated by reference numeral 20. Note that a plurality of cam shaft support bearing members are provided at intervals in the axial direction of the cam shaft 1, but only the bearing member 20 provided on one end side of the cam shaft 1 is shown in FIG. The bearing member 20 is an adjacent bearing member.

カム軸1の一端側には、位相可変機構30が組付けられている。この位相可変機構30は、図2にも示すように、大別して、外側部材31と内側部材32とを有する。外側部材31は、その外周面に多数の歯部35を有する。この歯部35には、図示を略すクランク軸によって駆動されるチェーンやタイミングベルトが巻回(係合)されて、クランク軸と外側部材31とが常時一体回転される。   A phase variable mechanism 30 is assembled on one end side of the cam shaft 1. As shown in FIG. 2, the phase variable mechanism 30 roughly includes an outer member 31 and an inner member 32. The outer member 31 has a large number of teeth 35 on its outer peripheral surface. A chain or timing belt driven by a crankshaft (not shown) is wound around (engaged with) the tooth portion 35, and the crankshaft and the outer member 31 are always rotated integrally.

上記内側部材32は、カム軸1の一端に対して軸方向から当接された状態で固定されて、カム軸1と常時一体回転される。実施形態では、内側部材32は、カム軸1に対して、図示を略す位置決めピンによって位置合わせされた状態で、ボルト33によって固定されている。図2に示すように、外側部材31の内周面には、周方向に間隔をあけて複数の凹部36が形成されている。また、内側部材32の外周面には、凹部36内に突出する凸部37が形成されている。各凹部36内は、凸部37によって、進角用作動室38と遅角用作動室39とが画成されている。図2において、位相可変機構30が時計回りに回転している状態において、進角用作動室38に油圧を供給すると(遅角用作動室39からは油圧排出)、内側部材32が外側部材31に対して図2中時計方向へ相対回転されて、カム軸1がクランク軸に対して進角される。逆に、遅角用作動室39に油圧を供給すると(進角用作動室38からは油圧排出)、内側部材32が外側部材31に対して図2中反時計方向へ相対回転されて、カム軸1がクランク軸に対して遅角される。   The inner member 32 is fixed in contact with one end of the cam shaft 1 from the axial direction, and is always rotated integrally with the cam shaft 1. In the embodiment, the inner member 32 is fixed to the camshaft 1 by bolts 33 while being aligned by a positioning pin (not shown). As shown in FIG. 2, a plurality of recesses 36 are formed on the inner peripheral surface of the outer member 31 at intervals in the circumferential direction. A convex portion 37 that protrudes into the concave portion 36 is formed on the outer peripheral surface of the inner member 32. Within each recess 36, an advance working chamber 38 and a retard working chamber 39 are defined by a projecting portion 37. In FIG. 2, when the hydraulic pressure is supplied to the advance working chamber 38 in a state where the phase variable mechanism 30 rotates clockwise (the hydraulic pressure is discharged from the retard working chamber 39), the inner member 32 becomes the outer member 31. 2, the cam shaft 1 is advanced relative to the crankshaft. Conversely, when hydraulic pressure is supplied to the retarding working chamber 39 (hydraulic discharge from the advance working chamber 38), the inner member 32 is rotated relative to the outer member 31 counterclockwise in FIG. The shaft 1 is retarded with respect to the crankshaft.

内側部材32は、外側部材31に対して、付勢手段としてのコイルスプリング34によって進角方向に付勢されている。すなわち、進角用作動室38へ油圧供給したときは、コイルスプリング34の付勢力の助勢を受けつつ進角される一方、
遅角用作動室39へ油圧供給したときは、コイルスプリング34の付勢力に抗しつつ遅角されるようにされている。なお、外側部材31は、内側部材32に対して、軸方向の相対変位が規制されている。また、図1には、位相可変機構30内(実施形態では内側部材32内)に形成された進角用作動室38に常時連なる進角用内部油路が符合41で示され、遅角用作動室39に常時連なる遅角用内部油路が符合42で示される。
The inner member 32 is urged in the advance direction with respect to the outer member 31 by a coil spring 34 as urging means. That is, when the hydraulic pressure is supplied to the advance working chamber 38, the advance is made while being assisted by the urging force of the coil spring 34,
When the hydraulic pressure is supplied to the retarding working chamber 39, the retarding is performed while resisting the urging force of the coil spring 34. The outer member 31 is restricted from relative displacement in the axial direction with respect to the inner member 32. In FIG. 1, an advance angle internal oil passage continuously connected to the advance angle working chamber 38 formed in the phase variable mechanism 30 (in the inner member 32 in the embodiment) is indicated by reference numeral 41, and is used for the retard angle. A retarding internal oil passage that is always connected to the working chamber 39 is indicated by reference numeral 42.

前記軸受部材20は、特に図3に示すように、シリンダヘッド10に形成された下保持部21と、シリンダヘッド10に対してボルト22によって固定されたキャップ部材23とによって構成されている。そして、カム軸1が、ころがり軸受50を介して、下保持部21とキヤップ部材23とで上下方向から挟まれた状態で回転可能に支持されている。ころがり軸受50は、既知のように、外輪51と保持器52と多数の針状のコロ(ローラ)53とを有する。保持器52は、円筒状とされて、その周方向に間隔をあけて多数の収納空間が形成されていて、この各収納空間にそれぞれコロ53が収納、保持されている(図6をも参照)。このような保持器53によって、コロ53の軸方向の位置決めと、コロ53同士の周方向間隔の確保が行われている。なお、ころがり軸受50は、半割構造とされて、カム軸1に対してその径方向外方側から組み付けられるようになっている。   As shown in FIG. 3 in particular, the bearing member 20 includes a lower holding portion 21 formed in the cylinder head 10 and a cap member 23 fixed to the cylinder head 10 by bolts 22. The camshaft 1 is rotatably supported via a rolling bearing 50 in a state of being sandwiched between the lower holding portion 21 and the cap member 23 from the vertical direction. As known, the rolling bearing 50 includes an outer ring 51, a cage 52, and a large number of needle-shaped rollers (rollers) 53. The cage 52 has a cylindrical shape, and a large number of storage spaces are formed at intervals in the circumferential direction. A roller 53 is stored and held in each of the storage spaces (see also FIG. 6). ). With such a retainer 53, the rollers 53 are positioned in the axial direction and the circumferential intervals between the rollers 53 are secured. The rolling bearing 50 has a half structure and is assembled to the cam shaft 1 from the radially outer side.

軸受部材20内には、ヘッド側油路として、進角用ヘッド側油路61と遅角用ヘッド側油路62とが形成されている。また、カム軸1内には、進角用カム軸側油路65と遅角用カム軸側油路66とが形成されている。進角用カム軸側油路65は、位相可変機構30内の進角用内部油路41に常時連通されている。同様に、遅角用のカム軸側油路66は、位相可変機構30内の遅角用内部油路42に常時連通されている。   In the bearing member 20, an advance angle head side oil passage 61 and a retard angle head side oil passage 62 are formed as head side oil passages. Further, an advance cam shaft side oil passage 65 and a retard angle cam shaft side oil passage 66 are formed in the cam shaft 1. The advance cam shaft side oil passage 65 is always in communication with the advance angle internal oil passage 41 in the phase variable mechanism 30. Similarly, the retarded camshaft side oil passage 66 is always in communication with the retarded internal oil passage 42 in the phase variable mechanism 30.

上記各ヘッド側油路61,62とカム軸側油路65,66とは、ころがり軸受50の保持器52を介して連通されており、この点について、図4〜図6を参照しつつ説明する。まず、保持器52の軸方向各端部は、円環状の環状端部71,72とされて、外輪51の内周面およびカム軸1の外周面に接触するようにされて、コロ53に対して軸方向からシールしている。   The head side oil passages 61 and 62 and the camshaft side oil passages 65 and 66 are communicated with each other via a cage 52 of the rolling bearing 50, and this point will be described with reference to FIGS. To do. First, the axial end portions of the cage 52 are formed as annular annular end portions 71 and 72 so as to come into contact with the inner peripheral surface of the outer ring 51 and the outer peripheral surface of the cam shaft 1. In contrast, it is sealed from the axial direction.

一方の環状端部71の外周面には、カム軸1を中心とする円環状の外側環状溝部73が形成されている。この環状端部71の内周面には、カム軸1を中心とする円環状の内側環状溝部74が形成されている。さらに、環状端部71には、内外の環状溝部73と74とを連通する連通孔75が複数形成されている(図4参照)。   An annular outer annular groove 73 centering on the camshaft 1 is formed on the outer peripheral surface of one annular end 71. An annular inner annular groove 74 centering on the camshaft 1 is formed on the inner peripheral surface of the annular end 71. Further, the annular end portion 71 is formed with a plurality of communication holes 75 for communicating the inner and outer annular groove portions 73 and 74 (see FIG. 4).

同様に、他方の環状端部72の外周面には、カム軸1を中心とする円環状の外側環状溝部76が形成されている。この環状端部72の内周面には、カム軸1を中心とする円環状の内側環状溝部77が形成されている。さらに、環状端部72には、内外の環状溝部76と77とを連通する連通孔78が複数形成されている(図4参照)。   Similarly, an annular outer annular groove 76 centering on the camshaft 1 is formed on the outer peripheral surface of the other annular end 72. An annular inner annular groove 77 centering on the cam shaft 1 is formed on the inner peripheral surface of the annular end 72. Further, the annular end portion 72 is formed with a plurality of communication holes 78 for communicating the inner and outer annular groove portions 76 and 77 (see FIG. 4).

ころがり軸受50の外輪51は、軸受部材20内に組まれて、軸受部材20と実質的に一体化されている(軸受部材20と同一構成要素とみることができる)。この外輪51は、保持器52を軸方向から挟持するフランジ部51a、51bを有している。この外輪51には、外側環状溝部73とヘッド側油路61に対して常時連通された油路としての開口部81が形成されると共に、外側環状溝部76とヘッド側油路62に対して常時連通された油路としての開口部82が形成されている。   The outer ring 51 of the rolling bearing 50 is assembled in the bearing member 20 and is substantially integrated with the bearing member 20 (can be regarded as the same component as the bearing member 20). The outer ring 51 has flange portions 51a and 51b that clamp the retainer 52 from the axial direction. The outer ring 51 is formed with an opening 81 as an oil passage that is always in communication with the outer annular groove 73 and the head-side oil passage 61, and at the same time with respect to the outer annular groove 76 and the head-side oil passage 62. An opening 82 is formed as a communicating oil passage.

前記内側環状溝部74は前記カム軸側油路65に常時連通され、前記内側環状溝部77は前記カム軸側油路66に常時連通されている。   The inner annular groove 74 is always in communication with the camshaft side oil passage 65, and the inner annular groove 77 is in continuous communication with the camshaft side oil passage 66.

図5に示すように、各環状端部71,72は、その連通孔75あるいは76を挟んだ外側部分71a、72aと内側部分71b、72bとは同一径とされている。つまり、外側部分71a、72aおよび内側部分71b、72b共に、軸方向のシール機能を発揮するように設定されている。コロ53への潤滑油の供給のため、各環状端部71,72のうち上記内側部分71b、72bの外周面には、例えば図6に示すように、外側環状溝部73あるいは76からコロに向けて伸びる油路85,86が例えば切欠溝の形式で形成されている。この油路85,86は、保持器52の周方向に間隔をあけて複数形成されている。なお、油路85.86は、例えば連通孔75、78の側面に開口する孔形式で形成する等、適宜の形式で形成することができる。また、油路85,86は、カム軸1の回転方向に向けて傾斜するようにしてもよい(例えば図6において、カム軸1の回転方向が図中下方となる場合に、油路85,86を、コロ53に向かうにつれて徐々に上方に向かうように傾斜させれば、コロ53へ向けての油の流れを促進できる(油の流れを促進させない場合は、逆方向の傾斜設定とすればよい)。   As shown in FIG. 5, the outer end portions 71a and 72a and the inner portions 71b and 72b sandwiching the communication hole 75 or 76 have the same diameter. That is, both the outer portions 71a and 72a and the inner portions 71b and 72b are set so as to exhibit an axial sealing function. In order to supply the lubricating oil to the rollers 53, the outer peripheral surfaces of the inner portions 71b and 72b of the respective annular end portions 71 and 72 are directed to the rollers from the outer annular groove portions 73 or 76, for example, as shown in FIG. The oil passages 85 and 86 extending in this manner are formed in the form of, for example, notches. A plurality of the oil passages 85 and 86 are formed at intervals in the circumferential direction of the cage 52. The oil passage 85.86 can be formed in an appropriate format, for example, in the form of a hole that opens to the side surfaces of the communication holes 75 and 78. The oil passages 85 and 86 may be inclined toward the rotation direction of the camshaft 1 (for example, in FIG. 6, when the rotation direction of the camshaft 1 is downward in the drawing, the oil passages 85 and 86 If 86 is inclined so as to gradually move upward as it goes to roller 53, the flow of oil toward roller 53 can be promoted (if the oil flow is not promoted, the inclination is set in the reverse direction). Good).

図1、図3において、軸受部材20には、下保持部21の上面に開口されたドレン油路24が形成されている。このドレン油路24は、下方へ伸びて、軸受部材20の側面から外部(動弁室)に開口されている。なお、ころがり軸受50の外輪51の底部には、ドレン油路24に連通される油の逃がし孔51aが形成されている(図3参照)。   1 and 3, the bearing member 20 is formed with a drain oil passage 24 opened on the upper surface of the lower holding portion 21. The drain oil passage 24 extends downward and opens to the outside (valve chamber) from the side surface of the bearing member 20. An oil escape hole 51a communicating with the drain oil passage 24 is formed at the bottom of the outer ring 51 of the rolling bearing 50 (see FIG. 3).

以上の構成において、前記ヘッド側油路61からの進角用の油圧は、外輪51に形成された開口部81,外側環状溝部73,連通孔75,内側環状溝部74、カム軸側油路65,位相可変機構30内の進角用用内部油路41を経て、進角用作動室38へ供給される(進角用作動室38からの油圧の排出はこの逆の経路で行われる)。   In the above configuration, the hydraulic pressure for advance from the head side oil passage 61 is the opening 81 formed in the outer ring 51, the outer annular groove 73, the communication hole 75, the inner annular groove 74, the camshaft side oil passage 65. , The oil is supplied to the advance working chamber 38 through the advance angle internal oil passage 41 in the phase varying mechanism 30 (the hydraulic pressure is discharged from the advance working chamber 38 through the reverse route).

また、前記ヘッド側油路62からの遅角用の油圧は、外輪51に形成された開口部82,外側環状溝部76,連通孔78,内側環状溝部77、カム軸側油路66,位相可変機構30内の遅角用内部油路42を経て、遅角用作動室39へ供給される(遅角用作動室39からの油圧の排出はこの逆の経路で行われる)。   Further, the retarding hydraulic pressure from the head side oil passage 62 includes an opening 82 formed in the outer ring 51, an outer annular groove 76, a communication hole 78, an inner annular groove 77, a cam shaft side oil passage 66, and a phase variable. The oil is supplied to the retarding working chamber 39 via the retarding internal oil passage 42 in the mechanism 30 (the hydraulic pressure is discharged from the retarding working chamber 39 through the reverse path).

上述のように、進角用の油圧と遅角用の油圧は、保持器52の軸方向に離れた環状端部71,72部分を経由して個別に位相可変機構30へ供給されることになる。また、環状端部71,72のシール作用によって、コロ53へ向けて多量の油が不必要に供給されてしまったり、保持器52の軸方向外方側から多量に油が漏れてしまう事態も防止される。油路85,86によって、進角用油圧あるいは遅角用油圧の一部が適量分だけコロ53に向けて供給されて、コロ53が適度に潤滑されることになる。また、ころ53部分に余分な油が供給されたときは、ドレン油路24を通してすみやかに排出されることになる(多量の油によってコロ53のころがり抵抗が増大してしまう事態の防止)。   As described above, the advance hydraulic pressure and the retard hydraulic pressure are individually supplied to the phase variable mechanism 30 via the annular end portions 71 and 72 of the cage 52 that are separated in the axial direction. Become. In addition, a large amount of oil is unnecessarily supplied toward the rollers 53 due to the sealing action of the annular end portions 71 and 72, or a large amount of oil leaks from the axially outer side of the cage 52. Is prevented. By the oil passages 85 and 86, a part of the advance hydraulic pressure or the retard hydraulic pressure is supplied toward the roller 53 by an appropriate amount, and the roller 53 is appropriately lubricated. Further, when excess oil is supplied to the roller 53 portion, it is quickly discharged through the drain oil passage 24 (preventing a situation in which the rolling resistance of the roller 53 increases due to a large amount of oil).

ここで、保持器52の各端部にある環状端部71,72のうち、位相可変機構30から遠い側に位置する環状端部71が、進角用油圧の供給用とされている。すなわち、位相可変機構30におけるコイルスプリング34の付勢力は、前述のように、進角を助勢する方向に設定されている。このため、位相可変機構30を遅角方向へすみやかに位相変更するため、遅角用作動室39への油圧供給が極力すみやかに行われるように、遅角用作動室39用の油圧供給経路の長さを、進角用作動室38用の油圧供給経路よりも短くなるようにしてある。すなわち、位相可変機構30に近い側の環状端部72を経由する短い油圧供給経路が、遅角用作動室39用として選択されている。これにより、油圧供給の応答性が、進角時と遅角時とでほぼ同じとされる。   Here, of the annular end portions 71 and 72 at each end portion of the cage 52, the annular end portion 71 positioned on the side far from the phase variable mechanism 30 is used for supplying the advance hydraulic pressure. That is, the urging force of the coil spring 34 in the phase variable mechanism 30 is set in the direction of assisting the advance angle as described above. For this reason, in order to promptly change the phase of the phase variable mechanism 30 in the retarding direction, the hydraulic pressure supply path for the retarding working chamber 39 is set so that the hydraulic pressure is supplied to the retarding working chamber 39 as quickly as possible. The length is shorter than the hydraulic pressure supply path for the advance working chamber 38. That is, a short hydraulic pressure supply path that passes through the annular end 72 on the side close to the phase variable mechanism 30 is selected for the retarding working chamber 39. Thereby, the response of the hydraulic pressure supply is made substantially the same at the advance angle and the retard angle.

図7は本発明の第2の実施形態を示すものであり、前記実施形態と同一構成要素には同一符合を付してその重複した説明は省略する(このことは、以下の第3の実施形態以下についても同じ)。本実施形態では、図1の実施形態において、各環状端部71,72のうち、連通孔75あるいは78を境にして内側部分71b、72bの外形を、外側部分71a、72aの外形よりも小さくしてある。つまり、内側部分71b、72bの外周面全体を、前記実施形態におけるコロ53への潤滑油供給用の油路85、86として構成するようにしてある。本実施形態の場合、保持器52の全周囲からコロ53へ向けて潤滑油を適度に供給することが可能となる(均一な潤滑油供給)。   FIG. 7 shows a second embodiment of the present invention. The same components as those of the above-mentioned embodiment are denoted by the same reference numerals, and redundant description thereof is omitted (this is the case of the following third embodiment). The same applies to the following forms). In the present embodiment, in the embodiment of FIG. 1, the outer shape of the inner portions 71b and 72b is smaller than the outer shape of the outer portions 71a and 72a with the communication hole 75 or 78 as a boundary. It is. That is, the entire outer peripheral surfaces of the inner portions 71b and 72b are configured as the oil passages 85 and 86 for supplying the lubricating oil to the rollers 53 in the embodiment. In the case of this embodiment, it becomes possible to supply lubricating oil from the entire circumference of the cage 52 toward the roller 53 (uniform lubricating oil supply).

図8は、本発明の第3の実施形態を示すものである。本実施形態では、保持器52を全体的に合成樹脂によって形成してある。また、環状端部71,72に対応させて、外輪51(軸受部材20とみることができる)の内周面にカム軸1を中心とする円環状の環状溝部91を形成する一方、カム軸1の外周面にも、カム軸1を中心とする円環状の環状溝部92を形成してある。そして、環状端部71,72の外周面側および内周面側には、内外の環状溝部73あるいは74の周縁部から突出するカム軸1を中心とする円環状のリップ部93、94を形成してある。各リップ部93,94は、軸方向に小間隔をあけて一対設けられている。   FIG. 8 shows a third embodiment of the present invention. In the present embodiment, the cage 52 is entirely made of synthetic resin. In addition, an annular annular groove 91 centered on the cam shaft 1 is formed on the inner peripheral surface of the outer ring 51 (which can be regarded as the bearing member 20) so as to correspond to the annular ends 71 and 72, while the cam shaft An annular groove portion 92 centering on the camshaft 1 is also formed on the outer peripheral surface of 1. Then, annular lip portions 93 and 94 centering on the camshaft 1 projecting from the peripheral edge portion of the inner and outer annular groove portions 73 or 74 are formed on the outer peripheral surface side and the inner peripheral surface side of the annular end portions 71 and 72. It is. A pair of the lip portions 93 and 94 is provided at a small interval in the axial direction.

上記リップ部93は、環状溝部91内に延出されて、ヘッド側油路61からの油圧を受けたときに軸方向に広がるように弾性変形(拡大変形されて)、シール性を高めることになる。同様に、上記リップ部94は、環状溝部92内に延出されて、ヘッド側油路61からの油圧を受けたときに軸方向に広がるように弾性変形(拡大変形されて)、シール性を高めることになる。また、油圧供給していないときは、リップ部93,94が環状溝部91,92の内側面から離間するかあるいは軽く接触する程度とされて、その摺動抵抗が軽減されることになる。なお、図8では、進角用の油路を例にして説明したが、遅角用の油路についても、前記環状溝部91,92やリップ部93,94に相当する構成要件が同様に形成されているものである。   The lip 93 extends into the annular groove 91 and is elastically deformed (enlarged and deformed) so as to expand in the axial direction when receiving hydraulic pressure from the head-side oil passage 61 to improve the sealing performance. Become. Similarly, the lip portion 94 extends into the annular groove portion 92 and is elastically deformed (expanded and deformed) so as to expand in the axial direction when receiving hydraulic pressure from the head-side oil passage 61, thereby providing a sealing property. Will increase. Further, when the hydraulic pressure is not supplied, the lip portions 93 and 94 are separated from the inner side surfaces of the annular groove portions 91 and 92 or lightly contacted, and the sliding resistance is reduced. In FIG. 8, the advance oil passage has been described as an example, but the configuration requirements corresponding to the annular groove portions 91 and 92 and the lip portions 93 and 94 are similarly formed in the retard oil passage. It is what has been.

図9は、本発明の第4の実施形態を示すものである。本実施形態では、コロ53に相当する位置において、カム軸1に大径部1aを形成してある。そして、保持器52の環状端部71、72の内径を、大径部1aの外形よりも小径として、この一対の環状端部71,72でもって大径部1aを軸方向から挟持するようにしてある。本実施形態によれば、外輪51によって保持器52の軸方向の位置決めを行う必要がなくなって、外輪52の簡素化の上で好ましいものとなる。また、連通孔75,78のカム軸1側の開口位置が、コロ53に対して径方向内方側にずれた位置とされるので、コロ53へ不必要に多量の油が流入しないようにする上でも好ましいものとなる。   FIG. 9 shows a fourth embodiment of the present invention. In the present embodiment, the large-diameter portion 1 a is formed on the camshaft 1 at a position corresponding to the roller 53. The inner diameters of the annular end portions 71 and 72 of the cage 52 are set to be smaller than the outer diameter of the large diameter portion 1a, and the large diameter portion 1a is sandwiched from the axial direction by the pair of annular end portions 71 and 72. It is. According to the present embodiment, it is not necessary to position the retainer 52 in the axial direction by the outer ring 51, which is preferable for simplifying the outer ring 52. Further, since the opening positions of the communication holes 75 and 78 on the camshaft 1 side are shifted to the inner side in the radial direction with respect to the roller 53, a large amount of oil does not flow into the roller 53 unnecessarily. This is also preferable.

図10は、本発明の第5の実施形態を示すもので、図9の実施形態において、カム軸1の大径部1aの軸方向端部を、軸方向外方側に向かうにつれて徐々に低くなるテーパ面とし、これに応じて、保持器52の環状端部71,72の内周面もテーパ面としてある。   FIG. 10 shows a fifth embodiment of the present invention. In the embodiment of FIG. 9, the axial end of the large-diameter portion 1a of the cam shaft 1 is gradually lowered toward the outer side in the axial direction. Accordingly, the inner peripheral surfaces of the annular end portions 71 and 72 of the cage 52 are also tapered surfaces.

図11は、本発明の第6の実施形態を示すものである。本実施形態では、保持器52の環状端部71、72のうち、連通孔75あるいは78を境にして軸方向外方側部分71a、72aの外形を、外輪51の外形よりも大きくして、この外方側部分71a、72aでもって、軸受部材20を軸方向から挟持したものである。また、外輪51の軸方向外方側端を、外側環状溝部部73あるいは76よりも軸方向内方側に位置するように設定して、外輪51に、図5等に示す実施形態で設けられた油路としての開口部81,82を形成しないものとなっている。すなわち、ヘッド側油路61,62の開口部を、外側部分71aの軸方向内面側にまで達するように延長して(延長部を符合61a、62aで示す)、この延長部61a、62aから直接的に外側環状溝部73あるいは76へ油圧を供給するようにしてある。また、外輪51と保持器53との摺動面積を小さくする上でも好ましいものとなる。   FIG. 11 shows a sixth embodiment of the present invention. In the present embodiment, of the annular ends 71 and 72 of the cage 52, the outer shape of the axially outer side portions 71a and 72a is made larger than the outer shape of the outer ring 51 with the communication hole 75 or 78 as a boundary. The outer side portions 71a and 72a sandwich the bearing member 20 from the axial direction. Further, the outer ring 51 is provided on the outer ring 51 in the embodiment shown in FIG. 5 or the like by setting the axially outer side end of the outer ring 51 to be located on the inner side in the axial direction with respect to the outer annular groove 73 or 76. The openings 81 and 82 as oil passages are not formed. That is, the openings of the head side oil passages 61 and 62 are extended so as to reach the inner surface side in the axial direction of the outer portion 71a (the extensions are indicated by reference numerals 61a and 62a), and directly from the extensions 61a and 62a. In particular, hydraulic pressure is supplied to the outer annular groove 73 or 76. Further, it is also preferable for reducing the sliding area between the outer ring 51 and the cage 53.

以上実施形態について説明したが、本発明は、実施形態に限定されるものではなく、特許請求の範囲の記載された範囲において適宜の変更が可能であり、例えば次のような場合をも含むものである。位相可変機構30は吸気弁用であってもよい(吸気弁用カム軸に組付けられる)。コイルスプリング24による付勢方向は、実施形態とは逆の方向であってもよい。ヘッド側油路61,62あるいはカム軸側油路65,66は、1本に限らず、カム軸1の周方向に間隔をあけて複数設けるようにしてもよい。勿論、本発明の目的は、明記されたものに限らず、実質的に好ましいあるいは利点として表現されたものを提供することをも暗黙的に含むものである。   Although the embodiment has been described above, the present invention is not limited to the embodiment, and can be appropriately changed within the scope described in the scope of claims. For example, the invention includes the following cases. . The phase variable mechanism 30 may be used for the intake valve (assembled to the intake valve camshaft). The urging direction by the coil spring 24 may be opposite to the embodiment. The head side oil passages 61 and 62 or the cam shaft side oil passages 65 and 66 are not limited to one, and a plurality of head side oil passages 61 and 62 may be provided at intervals in the circumferential direction of the cam shaft 1. Of course, the object of the present invention is not limited to what is explicitly stated, but also implicitly includes providing what is substantially preferred or expressed as an advantage.

本発明の第1の実施形態を示す側面断面図。1 is a side cross-sectional view showing a first embodiment of the present invention. 図1のX2−X2線相当断面図。FIG. 2 is a cross-sectional view corresponding to line X2-X2 in FIG. 1. 図1のX3−X3線相当断面図。FIG. 3 is a cross-sectional view corresponding to line X3-X3 in FIG. 1. 図1のX4−X4線相当断面図。X4-X4 line equivalent sectional drawing of FIG. 図1に示すころがり軸受部分の拡大断面図。The expanded sectional view of the rolling bearing part shown in FIG. 図5に示すころがり軸受をその径方向外方側から見た要部平面図。The principal part top view which looked at the rolling bearing shown in FIG. 5 from the radial direction outer side. 本発明の第2の実施形態を示すもので、図5に対応した断面図。Sectional drawing which shows the 2nd Embodiment of this invention and respond | corresponds to FIG. 本発明の第3の実施形態を示すもので、図5に対応した断面図。Sectional drawing which shows the 3rd Embodiment of this invention and respond | corresponds to FIG. 本発明の第4の実施形態を示すもので、図5に対応した断面図。Sectional drawing which shows the 4th Embodiment of this invention and respond | corresponds to FIG. 本発明の第5の実施形態を示すもので、図5に対応した断面図。Sectional drawing which shows the 5th Embodiment of this invention and respond | corresponds to FIG. 本発明の第6の実施形態を示すもので、図5に対応した断面図。Sectional drawing which shows the 6th Embodiment of this invention and respond | corresponds to FIG.

符号の説明Explanation of symbols

1:カム軸
1a:大径部
10:シリンダヘッド
20:軸受部材
21:下保持部
23:キャップ部材
24:ドレン油路
30:位相可変機構
31:外側部材
32:内側部材
36:凹部
37:凸部
38:進角用作動室
39:遅角用作動室
41:進角用内部油路
42:遅角用内部油路
50:ころがり軸受
51:外輪
52:保持器
53:コロ
61:ヘッド側油路(進角用)
62:ヘッド側油路(遅角用)
65:カム軸側油路(進角用)
66:カム軸側油路(遅角用)
71,72:環状端部
73.76:外側環状溝部
74,77:内側環状溝部
75,77:連通孔
81、82:開口部
91,92:環状溝部
93.94:リップ部

1: Cam shaft 1a: Large diameter portion 10: Cylinder head 20: Bearing member 21: Lower holding portion 23: Cap member 24: Drain oil passage 30: Phase variable mechanism 31: Outer member 32: Inner member 36: Concave portion 37: Convex portion Portion 38: Advance angle working chamber 39: Delay angle work chamber 41: Advance angle internal oil passage 42: Delay angle internal oil passage 50: Rolling bearing 51: Outer ring 52: Cage 53: Roller 61: Head side oil Road (for advance)
62: Head side oil passage (for retarded angle)
65: Cam shaft side oil passage (for advance angle)
66: Cam shaft side oil passage (for retarded angle)
71, 72: annular end 73.76: outer annular groove 74, 77: inner annular groove 75, 77: communication hole 81, 82: opening 91, 92: annular groove 93.94: lip

Claims (7)

一端部に油圧式の位相可変機構が設けられたカム軸をシリンダヘッドの軸受部材で回転可能に支持し、該軸受部材に形成されたヘッド側油路から該カム軸に形成されたカム軸側油路を経由して該位相可変機構に給油するカム軸給油装置において、
前記軸受部材のうち前記位相可変機構の隣りに位置する隣接軸受部材が、ころがり軸受を介して前記カム軸を支持しており、
前記ころがり軸受が、多数のコロと、該多数のコロを周方向に所定間隔をあけて保持する保持器と、を有し、
前記保持器の軸方向各端部に、軸方向のシールを行う環状端部が形成され、
前記各環状端部の外周面にそれぞれ円環状の外側環状溝部が形成されると共に、該各環状端部の内周面にそれぞれ円環状の内側環状溝部が形成され、
前記各環状端部に、前記外側環状溝部と内側環状溝部とを連通する連通孔が形成され、
前記各環状端部のうち一方の環状端部の前記外側環状溝部に進角用ヘッド側油路が連通されると共に、該一方の環状端部の前記内側環状溝部に進角用カム軸側油路が連通され、
前記各環状端部のうち他方の環状端部の前記外側環状溝部に遅角用ヘッド側油路が連通されると共に、該他方の環状端部の前記内側環状溝部に遅角用カム軸側油路が連通されている、
ことを特徴とするカム軸給油装置。
A cam shaft provided with a hydraulic phase variable mechanism at one end is rotatably supported by a bearing member of a cylinder head, and a cam shaft side formed on the cam shaft from a head side oil passage formed on the bearing member In a camshaft lubrication device that lubricates the phase variable mechanism via an oil passage,
An adjacent bearing member located next to the phase variable mechanism among the bearing members supports the camshaft via a rolling bearing,
The rolling bearing has a large number of rollers and a cage that holds the large number of rollers at predetermined intervals in the circumferential direction,
An annular end portion that performs an axial seal is formed at each axial end portion of the cage,
An annular outer annular groove is formed on the outer peripheral surface of each annular end, and an annular inner annular groove is formed on the inner peripheral surface of each annular end.
In each of the annular ends, a communication hole that connects the outer annular groove and the inner annular groove is formed,
An advance angle head side oil passage is communicated with the outer annular groove portion of one of the annular end portions, and an advance angle cam shaft side oil is communicated with the inner annular groove portion of the one annular end portion. The road is connected,
A retard angle head side oil passage is communicated with the outer annular groove portion of the other annular end portion among the annular end portions, and the retard angle cam shaft side oil is communicated with the inner annular groove portion of the other annular end portion. The road is in communication,
A camshaft oiling device characterized by that.
請求項1において、
前記各環状端部は、前記連通孔を挟んで軸方向外側部分と内側部分とが同一径とされ、
前記内側部分に、前記連通孔に連通されて前記コロに向けての油を供給するための油路が形成されている、
ことを特徴とするカム軸給油装置。
In claim 1,
Each annular end portion has the same diameter in the axially outer portion and the inner portion across the communication hole,
In the inner portion, an oil passage is formed for supplying oil toward the roller in communication with the communication hole.
A camshaft oiling device characterized by that.
請求項1において、
前記各環状端部は、前記連通孔を挟んで軸方向外側部分に対して内側部分の外形が小さく設定されている、ことを特徴とするカム軸給油装置。
In claim 1,
Each of the annular end portions has a camshaft oiling device in which the outer shape of the inner portion is set smaller than the outer portion in the axial direction across the communication hole.
請求項1ないし請求項3のいずれか1項において、
前記隣接軸受部材に、前記ころがり軸受の下部に臨むドレン用油路が形成されている、ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 3,
A camshaft oiling device, wherein a drain oil passage that faces a lower portion of the rolling bearing is formed in the adjacent bearing member.
請求項1ないし請求項4のいずれか1項において、
前記カム軸のうち前記コロに対応した位置に大径部が形成され、
前記各環状端部が、前記大径部を軸方向から挟持している、
ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 4,
A large diameter portion is formed at a position corresponding to the roller of the cam shaft,
Each of the annular ends sandwiches the large diameter portion from the axial direction.
A camshaft oiling device characterized by that.
請求項1ないし請求項4のいずれか1項において、
前記各環状端部が、前記連通孔を挟んで外側部分が内側部分よりも大径とされ、
前記大径とされた前記各外側部分が、前記隣接軸受部材を軸方向から挟持している、
ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 4,
Each of the annular end portions has an outer portion having a larger diameter than the inner portion with the communication hole interposed therebetween,
The outer portions having the large diameter sandwich the adjacent bearing member from the axial direction.
A camshaft oiling device characterized by that.
請求項1ないし請求項6のいずれか1項において、
前記保持器が合成樹脂によって形成され、
前記隣接軸受部材の内周面に、前記進角用ヘッド側油路に連なる円環状の進角用ヘッド側環状溝部が形成されると共に、前記遅角用ヘッド側油路に連なる円環状の遅角用ヘッド側環状溝部が形成され、
前記カム軸の外周面に、前記進角用カム軸側油路に連なる円環状の進角用カム軸側環状溝部が形成されると共に、前記遅角用カム軸側油路に連なる円環状の遅角用カム軸側環状溝部が形成され、
前記各外側環状溝部の周縁部にそれぞれ、前記各ヘッド側環状溝部内に個別に延出された円環状の外側リップ部が形成され、
前記各内側環状溝部の周縁部にそれぞれ、前記各カム軸側環状溝部内に延出された円環状の内側リップ部が形成されている、
ことを特徴とするカム軸給油装置。
In any one of Claims 1 thru | or 6,
The cage is made of synthetic resin;
An annular advance head-side annular groove continuous with the advance angle head-side oil passage is formed on the inner peripheral surface of the adjacent bearing member, and an annular delay connected with the retard angle head-side oil passage is formed. A corner head side annular groove is formed,
An annular advance cam shaft side annular groove continuous with the advance cam shaft side oil passage is formed on an outer peripheral surface of the cam shaft, and an annular advance connecting with the retard cam shaft side oil passage is formed. A retard camshaft-side annular groove is formed,
An annular outer lip portion individually extending into each head-side annular groove portion is formed on each peripheral edge portion of each outer annular groove portion,
An annular inner lip portion extending into each camshaft side annular groove portion is formed on each peripheral edge portion of each inner annular groove portion.
A camshaft oiling device characterized by that.
JP2008251485A 2008-09-29 2008-09-29 Oil feeder for camshaft Pending JP2010084531A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008251485A JP2010084531A (en) 2008-09-29 2008-09-29 Oil feeder for camshaft

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008251485A JP2010084531A (en) 2008-09-29 2008-09-29 Oil feeder for camshaft

Publications (1)

Publication Number Publication Date
JP2010084531A true JP2010084531A (en) 2010-04-15

Family

ID=42248750

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008251485A Pending JP2010084531A (en) 2008-09-29 2008-09-29 Oil feeder for camshaft

Country Status (1)

Country Link
JP (1) JP2010084531A (en)

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027083A (en) * 2009-07-29 2011-02-10 Jtekt Corp Cam shaft device
WO2012014069A1 (en) * 2010-07-26 2012-02-02 Toyota Jidosha Kabushiki Kaisha Roller bearing with seal integral with cage and camshaft apparatus having such a roller bearing
WO2012146401A1 (en) * 2011-04-26 2012-11-01 Schaeffler Technologies AG & Co. KG Anti-friction bearing, in particular needle bearing, with a sealing arrangement arranged on the cage
JP2012229682A (en) * 2011-04-27 2012-11-22 Suzuki Motor Corp Support structure of camshaft
DE102011077563A1 (en) * 2011-06-15 2012-12-20 Mahle International Gmbh Internal combustion engine
JP2013019403A (en) * 2011-07-14 2013-01-31 Mitsubishi Motors Corp Camshaft lubricating structure
WO2014029393A2 (en) * 2012-08-23 2014-02-27 Schaeffler Technologies AG & Co. KG Rolling bearing with radial pressure medium transfer
JP2014209004A (en) * 2014-08-12 2014-11-06 スズキ株式会社 Support structure of cam shaft
JP2014209003A (en) * 2014-08-12 2014-11-06 スズキ株式会社 Support structure of cam shaft
JP2014240656A (en) * 2014-08-12 2014-12-25 スズキ株式会社 Supporting structure for camshaft
CN105423103A (en) * 2015-12-31 2016-03-23 上海国际港务(集团)股份有限公司振东集装箱码头分公司 Automatic lubrication system for hinge-point bearing of bridge crane
DE102019101257A1 (en) * 2019-01-18 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Valve train for an internal combustion engine with a variable camshaft control

Cited By (17)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2011027083A (en) * 2009-07-29 2011-02-10 Jtekt Corp Cam shaft device
WO2012014069A1 (en) * 2010-07-26 2012-02-02 Toyota Jidosha Kabushiki Kaisha Roller bearing with seal integral with cage and camshaft apparatus having such a roller bearing
WO2012146401A1 (en) * 2011-04-26 2012-11-01 Schaeffler Technologies AG & Co. KG Anti-friction bearing, in particular needle bearing, with a sealing arrangement arranged on the cage
JP2012229682A (en) * 2011-04-27 2012-11-22 Suzuki Motor Corp Support structure of camshaft
US9004026B2 (en) 2011-06-15 2015-04-14 Mahle International Gmbh Internal combustion engine
JP2013002449A (en) * 2011-06-15 2013-01-07 Mahle Internatl Gmbh Internal combustion engine
DE102011077563A1 (en) * 2011-06-15 2012-12-20 Mahle International Gmbh Internal combustion engine
DE102011077563B4 (en) 2011-06-15 2022-08-11 Mahle International Gmbh internal combustion engine
JP2013019403A (en) * 2011-07-14 2013-01-31 Mitsubishi Motors Corp Camshaft lubricating structure
WO2014029393A2 (en) * 2012-08-23 2014-02-27 Schaeffler Technologies AG & Co. KG Rolling bearing with radial pressure medium transfer
WO2014029393A3 (en) * 2012-08-23 2014-05-30 Schaeffler Technologies AG & Co. KG Rolling bearing with radial hydraulic pressure medium transfer
CN104685245A (en) * 2012-08-23 2015-06-03 舍弗勒技术股份两合公司 Rolling bearing with radial hydraulic pressure medium transfer
JP2014209004A (en) * 2014-08-12 2014-11-06 スズキ株式会社 Support structure of cam shaft
JP2014209003A (en) * 2014-08-12 2014-11-06 スズキ株式会社 Support structure of cam shaft
JP2014240656A (en) * 2014-08-12 2014-12-25 スズキ株式会社 Supporting structure for camshaft
CN105423103A (en) * 2015-12-31 2016-03-23 上海国际港务(集团)股份有限公司振东集装箱码头分公司 Automatic lubrication system for hinge-point bearing of bridge crane
DE102019101257A1 (en) * 2019-01-18 2020-07-23 Bayerische Motoren Werke Aktiengesellschaft Valve train for an internal combustion engine with a variable camshaft control

Similar Documents

Publication Publication Date Title
JP2010084531A (en) Oil feeder for camshaft
US10858965B2 (en) Valve timing adjustment device
US11008903B2 (en) Valve timing adjustment device
JP5394157B2 (en) Camshaft device
US7802549B2 (en) Camshaft
US10858967B2 (en) Valve timing adjustment device and check valve
JP5488296B2 (en) Rolling bearing and camshaft device
US11428126B2 (en) Valve timing adjustment device
JP2009185719A (en) Valve timing regulating device
JP5169686B2 (en) Camshaft lubricator
KR100599353B1 (en) Rocker shaft
JP6110160B2 (en) Variable camshaft
JP5417263B2 (en) Rolling bearing device for rotating shaft with oil passage
US11401841B2 (en) Valve device
JP6131981B2 (en) Cam cap
JP4130921B2 (en) Valve lifter for internal combustion engine
JP2019509423A (en) Engine valve lifter with anti-rotation plug
JP2009209821A (en) Valve-timing regulator
JP2020118098A (en) Internal combustion engine
JP2015214941A (en) Camshaft bearing lubrication structure
JP4729396B2 (en) Seal member mounting structure
JP7186042B2 (en) chain tensioner
JP2007255510A (en) Solenoid valve
JP2013160363A (en) Seal structure of oil path of engine
JP5413596B2 (en) Engine piping structure