JP5169264B2 - Cleaning device - Google Patents

Cleaning device Download PDF

Info

Publication number
JP5169264B2
JP5169264B2 JP2008023994A JP2008023994A JP5169264B2 JP 5169264 B2 JP5169264 B2 JP 5169264B2 JP 2008023994 A JP2008023994 A JP 2008023994A JP 2008023994 A JP2008023994 A JP 2008023994A JP 5169264 B2 JP5169264 B2 JP 5169264B2
Authority
JP
Japan
Prior art keywords
wafer
ultrasonic
cleaning
vibrating body
cleaning liquid
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008023994A
Other languages
Japanese (ja)
Other versions
JP2009188035A (en
Inventor
真 佐々木
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujitsu Ltd
Original Assignee
Fujitsu Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujitsu Ltd filed Critical Fujitsu Ltd
Priority to JP2008023994A priority Critical patent/JP5169264B2/en
Publication of JP2009188035A publication Critical patent/JP2009188035A/en
Application granted granted Critical
Publication of JP5169264B2 publication Critical patent/JP5169264B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、洗浄装置に関し、特に各種電子デバイスの製造工程で行われる半導体ウエハやガラス基板など薄板状基板の洗浄に好適な、洗浄効率の高い超音波洗浄装置に関する。   The present invention relates to a cleaning apparatus, and more particularly, to an ultrasonic cleaning apparatus with high cleaning efficiency suitable for cleaning a thin plate substrate such as a semiconductor wafer or a glass substrate, which is performed in a manufacturing process of various electronic devices.

半導体素子の製造では、ウエハサイズの大口径化が進んでいる。これに伴い、ウエハの洗浄工程においても、従来行われていた、大型の洗浄槽中に複数枚のウエハを浸けて、超音波で洗浄液を振動させて行うディップ方式洗浄から、枚葉式でウエハ自体回転を加えながら、ウエハ表面に、例えば水圧を上げた洗浄液や超音波で振動を与えた洗浄液を供給しながら行うスピン方式洗浄が主流となりつつある。この枚葉式のスピン方式洗浄方法は、ディップ方式洗浄方法に比べ、ウエハ面内で均一な洗浄がより行いやすく、かつウエハ表面から除去した汚染物質がウエハ表面に再付着しにくい点、また洗浄液やリンス用純水の使用量をより抑制できること、そして洗浄装置の立ち上げがより短時間で行えることなど、多くのメリットを有している。中でも、超音波洗浄を適用した枚葉式スピン洗浄装置は、多くの大口径ウエハ洗浄工程などで適用されてきている。   In the manufacture of semiconductor elements, the wafer size is becoming larger. Along with this, in the wafer cleaning process, from the conventional dip method cleaning in which a plurality of wafers are immersed in a large cleaning tank and the cleaning liquid is vibrated ultrasonically, the wafers are single wafer type. Spin-type cleaning, which is performed while supplying itself, for example, a cleaning liquid with increased water pressure or a cleaning liquid that has been vibrated with ultrasonic waves, is becoming the mainstream. This single-wafer spin cleaning method is easier to perform uniform cleaning on the wafer surface than the dip cleaning method, and contaminants removed from the wafer surface are less likely to adhere to the wafer surface. There are many advantages such as the ability to further reduce the amount of pure water used for rinsing and the startup of the cleaning device in a shorter time. Among these, the single wafer spin cleaning apparatus to which ultrasonic cleaning is applied has been applied in many large-diameter wafer cleaning processes and the like.

こういった枚葉式超音波スピン洗浄装置には、回転するウエハの表面に超音波ノズルから洗浄液を噴射する、いわゆる超音波ノズル方式の枚葉式超音波スピン洗浄装置がある。この方式は、超音波ノズル内部の振動子を発振させることで超音波を発生させ噴射洗浄液を媒体として超音波をウエハ表面に伝播させ、その超音波エネルギーによってウエハ表面の汚染を除去して洗浄を行うものである。   Such single-wafer ultrasonic spin cleaning apparatuses include a so-called ultrasonic nozzle type single-wafer ultrasonic spin cleaning apparatus that injects a cleaning liquid from an ultrasonic nozzle onto the surface of a rotating wafer. In this method, ultrasonic waves are generated by oscillating a vibrator inside the ultrasonic nozzle, and ultrasonic waves are propagated to the wafer surface using the jet cleaning liquid as a medium. Is what you do.

図6に、この超音波ノズル方式の枚葉式超音波スピン洗浄装置の模式図を示す。図6により、図示しない超音波振動子を内蔵した超音波ノズル101から洗浄対象物であるウエハ102の表面にむけて洗浄液103を噴射する。超音波ノズル101内の超音波振動子を動作させると、発生超音波が洗浄液103を媒体としてウエハ102表面に伝播する。図示しないウエハ搭載テーブルなどのウエハ搭載手段によってウエハ102を回転させた状況下で、洗浄液103がウエハ102の表面に当たる領域、すなわち超音波照射領域104がウエハ102の中心部と外周部間を往復運動するように、図示しない超音波ノズルホルダーなどの超音波ノズル保持手段を用いて往復運動させれば、超音波照射領域104がウエハ102全面を走査することになって、ウエハ102表面全域が洗浄されることとなる。   FIG. 6 shows a schematic diagram of this ultrasonic nozzle type single wafer ultrasonic spin cleaning apparatus. As shown in FIG. 6, the cleaning liquid 103 is sprayed from the ultrasonic nozzle 101 having a built-in ultrasonic transducer (not shown) toward the surface of the wafer 102 that is the cleaning target. When the ultrasonic transducer in the ultrasonic nozzle 101 is operated, the generated ultrasonic wave propagates to the surface of the wafer 102 using the cleaning liquid 103 as a medium. In a situation where the wafer 102 is rotated by a wafer mounting means such as a wafer mounting table (not shown), the region where the cleaning liquid 103 hits the surface of the wafer 102, that is, the ultrasonic irradiation region 104 reciprocates between the central portion and the outer peripheral portion of the wafer 102. Thus, if the reciprocating motion is performed using an ultrasonic nozzle holder such as an ultrasonic nozzle holder (not shown), the ultrasonic irradiation region 104 scans the entire surface of the wafer 102, and the entire surface of the wafer 102 is cleaned. The Rukoto.

ところで、近年、半導体素子の微細化・高集積化の進展に伴って、素子の層間絶縁膜の薄膜化かつ低寄生容量化への要請から、低誘電率絶縁材料の適用が促進されている。そういった絶縁材料として、例えば微細な空孔(ポア)が内部に一様に分布形成された多孔質シリカ(ポーラスシリカ)材料がある。この多孔質シリカ膜を反応性ドライエッチングによって形成して、例えば100nm以下の微細パターンが表面に形成されているウエハを、上記のような超音波ノズル方式の枚葉式超音波スピン洗浄装置で洗浄を行うと、噴射される超音波洗浄水が与える比較的大きな超音波ダメージにより、この材料のもつ脆弱性から微細パターンが破壊されることがある。   By the way, in recent years, with the progress of miniaturization and high integration of semiconductor elements, the application of low dielectric constant insulating materials has been promoted due to the demand for thinning the interlayer insulating film of the elements and reducing the parasitic capacitance. As such an insulating material, for example, there is a porous silica (porous silica) material in which fine pores (pores) are uniformly distributed inside. This porous silica film is formed by reactive dry etching, and, for example, a wafer having a fine pattern of 100 nm or less formed on the surface is cleaned by the above-described ultrasonic nozzle type single wafer ultrasonic spin cleaning apparatus. Then, due to the relatively large ultrasonic damage caused by the jetted ultrasonic cleaning water, the fine pattern may be destroyed due to the brittleness of this material.

こういった脆弱な微細パターンの破壊を回避するための直接的な方法は、パターンの構造的な脆弱性に応じて、ウエハ表面に照射される単位面積当たりの超音波エネルギーを小さくすることが必要であることから、超音波ノズル101に内蔵された超音波振動子を駆動する超音波発信器の駆動出力を調整して対応する。   A direct method for avoiding the destruction of such fragile fine patterns requires reducing the ultrasonic energy per unit area irradiated to the wafer surface according to the structural vulnerability of the pattern. Therefore, it is possible to adjust the drive output of the ultrasonic transmitter that drives the ultrasonic transducer built in the ultrasonic nozzle 101.

このような駆動出力の調整により小出力化は可能ではあるが、実際問題として、内蔵超音波振動子の形状・構造などによって決まる固有の超音波振動条件から、駆動出力がある下限を下回ると安定した超音波振動を得ることができなくなる。また、高い超音波周波数で駆動すると、超音波振動子の駆動出力が一定の大きさを下回ると、超音波ノズルから噴射された洗浄液中での超音波の減衰が急激に大きくなり、超音波がウエハ表面に達しないといったことも生じる。こうしたことから、特に非常に小さな駆動出力で振動子を動作させてウエハ表面を洗浄するには、この超音波ノズル方式の枚葉式超音波スピン洗浄装置には多くの不都合な点がある。   Although it is possible to reduce the output by adjusting the drive output like this, as a practical matter, it is stable when the drive output falls below a certain lower limit from the inherent ultrasonic vibration conditions determined by the shape and structure of the built-in ultrasonic transducer. The obtained ultrasonic vibration cannot be obtained. In addition, when driven at a high ultrasonic frequency, when the drive output of the ultrasonic transducer falls below a certain level, the attenuation of the ultrasonic wave in the cleaning liquid ejected from the ultrasonic nozzle increases rapidly, and the ultrasonic wave is generated. It may also happen that the wafer surface is not reached. For this reason, this ultrasonic nozzle type single wafer ultrasonic spin cleaning apparatus has many inconvenient points to clean the wafer surface by operating the vibrator with a very small driving output.

そこで、ウエハ表面に与える超音波のダメージを低減させる方法として、超音波振動体(超音波振動伝達板)を利用して超音波をウエハ表面に照射する方法が考えられている(例えば特許文献1、2など)。   Therefore, as a method for reducing the damage of ultrasonic waves given to the wafer surface, a method of irradiating the wafer surface with ultrasonic waves using an ultrasonic vibrating body (ultrasonic vibration transmission plate) is considered (for example, Patent Document 1). 2 etc.).

図7に典型的な例を示す。図7(1)は、超音波振動体方式の枚葉式超音波スピン洗浄装置の模式図で、図7(2)は要部拡大断面図である。図7(1)に図示するように、例えば三角柱の形状をした振動体105(例えば、セラミックス材料)の平坦な面の一つに超音波振動子106を取り付ける。また図示するように振動体105の他の平坦な面の一つをウエハ102の被洗浄面と平行、かつ僅かな間隔を隔てて向かい合うように振動体105を振動体支持手段107で保持する。洗浄液ノズル108から洗浄液103を供給し、振動体―ウエハ表面の間隔が洗浄液103によって完全に満たされるようにする。   FIG. 7 shows a typical example. FIG. 7A is a schematic view of an ultrasonic vibrator type single-wafer ultrasonic spin cleaning apparatus, and FIG. 7B is an enlarged cross-sectional view of a main part. As shown in FIG. 7A, an ultrasonic transducer 106 is attached to one of the flat surfaces of a vibrating body 105 (for example, a ceramic material) having a triangular prism shape, for example. Further, as shown in the figure, the vibrating body 105 is held by the vibrating body support means 107 so that one of the other flat surfaces of the vibrating body 105 is parallel to the surface to be cleaned of the wafer 102 and faces a small distance. The cleaning liquid 103 is supplied from the cleaning liquid nozzle 108 so that the distance between the vibrating body and the wafer surface is completely filled with the cleaning liquid 103.

断面図の図7(2)を参照し、このように振動体―ウエハ表面の間隔が洗浄液103によって完全に満たされ状態で超音波振動子106を駆動すると、発生した超音波は振動体105の内部を伝播し、ウエハ102に向かい合った面の全体から洗浄液103へ伝えられ、更に洗浄液103中を伝播して被洗浄面であるウエハ102の表面へと届き洗浄が行われる。ウエハ102と向かい合う振動体105の面の振動の様相は、超音波振動子106の振動の仕方や振動体105の形状・材質などで決まるため、事前にシミュレーションで予測可能である。従って、それぞれの目的に応じて振動体105の設計に反映される。本図では三角柱形状の振動体の例を示したが、振動体形状はこれに限らず、例えば、円柱、四角柱なども適用可能である。また必ずしも振動体を傾斜させる必要は無く、適用状況に応じて垂直に配置しても構わない。振動体の材料なども様々に検討されている。   With reference to FIG. 7B of the cross-sectional view, when the ultrasonic vibrator 106 is driven in such a state that the distance between the vibrating body and the wafer surface is completely filled with the cleaning liquid 103, the generated ultrasonic wave is generated by the vibrating body 105. The entire surface facing the wafer 102 propagates to the cleaning liquid 103 and further propagates through the cleaning liquid 103 to reach the surface of the wafer 102 that is the surface to be cleaned for cleaning. Since the vibration state of the surface of the vibrating body 105 facing the wafer 102 is determined by the vibration method of the ultrasonic vibrator 106 and the shape and material of the vibrating body 105, it can be predicted in advance by simulation. Therefore, it is reflected in the design of the vibrating body 105 according to each purpose. In this drawing, an example of a triangular prism-shaped vibrating body is shown, but the vibrating body shape is not limited to this, and, for example, a cylinder, a rectangular column, or the like can be applied. Further, it is not always necessary to incline the vibrating body, and it may be arranged vertically according to the application situation. Various materials such as vibratory materials have been studied.

以上のような振動体を介して超音波を伝播する方法は、超音波振動子で発生した超音波振動が振動体の広い面積全面が振動するため、振動のエンネルギーが分散し、被洗浄面での単位面積当たりに照射される超音波エネルギーは、超音波ノズル方式のそれに比べて大幅に小さいものとなり、ウエハ表面に与える超音波のダメージを低減させるといった効果がある。
特開2003−181394号公報 特開2003−31540号公報
In the method of propagating ultrasonic waves through the vibrating body as described above, since the ultrasonic vibration generated by the ultrasonic vibrator vibrates over the entire large area of the vibrating body, the energy of vibration is dispersed and the surface to be cleaned is dispersed. The ultrasonic energy irradiated per unit area is significantly smaller than that of the ultrasonic nozzle method, and there is an effect of reducing ultrasonic damage to the wafer surface.
JP 2003-181394 A JP 2003-31540 A

しかし、上記のような超音波振動体方式の枚葉式超音波スピン洗浄装置では、一般に、ウエハに付着している異物の除去効率が低いという問題がある。表面に同一条件で異物を付着したウエハを洗浄する場合、超音波振動体方式の枚葉式超音波スピン洗浄装置を超音波ノズル方式のそれとで比較すると、同等の異物除去率が得られるまで数倍の時間を要することがある。   However, the ultrasonic vibrating body type single-wafer ultrasonic spin cleaning apparatus as described above generally has a problem that the removal efficiency of foreign matters adhering to the wafer is low. When cleaning wafers with foreign matter attached to the surface under the same conditions, the ultrasonic vibrator type single wafer type ultrasonic spin cleaning device is compared with that of the ultrasonic nozzle type, several times until the equivalent foreign matter removal rate is obtained. It may take time.

そこで、本発明の課題は、ウエハ表面上に脆弱かつ微細なパターンが形成されている場合でも、それらのパターンを破壊することなく、短時間でウエハ表面にある異物を取り除く、効率良い洗浄が可能な、超音波振動体方式の枚葉式超音波スピン洗浄装置を提供することにある。   Therefore, even if fragile and fine patterns are formed on the wafer surface, the object of the present invention is to enable efficient cleaning that removes foreign matters on the wafer surface in a short time without destroying those patterns. Another object of the present invention is to provide an ultrasonic vibrator type single wafer ultrasonic spin cleaning apparatus.

本発明の洗浄装置は、
被洗浄物上に配置される円柱形状の振動体と、
前記振動体の側面を囲う円筒形状を有し、前記被洗浄物上に吐出された前記洗浄液が、前記振動体の中心軸方向に流れる第1の流れと、前記第1の流れと逆向きに流れる第2の流れとに分流するように、前記洗浄液を通過させる流路と、
前記振動体中に前記振動体の中心軸を含む領域に形成され、前記第1の流れを形成する前記洗浄液を回収する通路と、
を備えたことを特徴とする洗浄装置。
The cleaning device of the present invention comprises:
A columnar vibrator arranged on the object to be cleaned;
The cleaning liquid discharged on the object to be cleaned has a cylindrical shape surrounding a side surface of the vibrating body, and a first flow that flows in a direction of a central axis of the vibrating body, and a direction opposite to the first flow A flow path through which the cleaning liquid passes so as to be diverted into a flowing second flow;
A passage formed in a region including the central axis of the vibrating body in the vibrating body and collecting the cleaning liquid forming the first flow ;
A cleaning apparatus comprising:

また、
被洗浄物を支持する支持体と、
前記流路と前記被洗浄物とが第1の間隔をもって対向するように位置決めする移動手段とを更に備えたことを特徴とする。
Also,
A support for supporting the object to be cleaned;
The apparatus further comprises a moving means for positioning the flow path and the object to be cleaned so as to face each other with a first interval.

また、
前記通路と前記被洗浄物とは、前記第1の間隔よりも大きい第2の間隔をもって対向することを特徴とする。
Also,
The passage and the object to be cleaned are opposed to each other with a second interval larger than the first interval.

また、
前記通路は、吸引手段に接続されてなることを特徴とする。
Also,
The passage is connected to suction means.

本発明の洗浄装置を用いることにより、表面に壊れ易い微細なパターンが形成されたウエハなどの場合においても、その表面に付着した微粒子などの異物を効率良く除去でき、従来の装置に比べ大幅に洗浄時間を短縮することが可能となる。   By using the cleaning apparatus of the present invention, foreign matter such as fine particles adhering to the surface can be efficiently removed even in the case of a wafer or the like having a fine pattern that is fragile on the surface. The cleaning time can be shortened.

本発明者の調査の結果、超音波振動体方式で異物除去効率が低いのは、ウエハ表面に照射される超音波の単位面積当たりのエネルギーを小さくしていることに主たる原因があるのでは無く、超音波の作用によって、ウエハ表面から離脱し、洗浄液中に浮き上がった異物がウエハ表面に再付着しやすいことが原因であることが明らかになった。   As a result of the inventor's investigation, the reason for the low foreign substance removal efficiency in the ultrasonic vibrator method is not mainly due to the fact that the energy per unit area of the ultrasonic wave irradiated on the wafer surface is reduced. It has been clarified that the cause is that the foreign matter that is detached from the wafer surface and floats in the cleaning liquid easily adheres to the wafer surface due to the action of ultrasonic waves.

異物の再付着が生じ易いことの理由として、先ず第一に、ウエハ回転数に課せられる制約が挙げられる。振動体を利用する洗浄方法では、図7において、振動体105とウエハ102の間の微小な間隔に安定した洗浄液103の層を形成することが必要であり、そのためにはウエハの回転速度は一定の回転速度以上に上げることができない。そのため、異物を含んだ洗浄液103がウエハ表面に滞在する間に、異物の再付着が生じ易くなるものと考えられる。   First of all, the reason for the reattachment of foreign matters is the restriction imposed on the number of wafer rotations. In the cleaning method using the vibrating body, it is necessary to form a stable layer of the cleaning liquid 103 at a very small interval between the vibrating body 105 and the wafer 102 in FIG. 7, and for this purpose, the rotation speed of the wafer is constant. The rotation speed cannot be increased. For this reason, it is considered that the foreign matter is likely to be reattached while the cleaning liquid 103 containing the foreign matter stays on the wafer surface.

理由の第二としては、振動体105とウエハ102の間の微小な間隔にある洗浄液103の流れの問題が挙げられる。この微小な間隔では、振動体105の表面で発生した微弱な超音波振動をとウエハ102の表面にできるだけ減衰せずに伝播させる必要があるため、非常に微小な間隔に設定するのが普通であり、例えば、数mm〜1mmないしそれ以下の間隔に設定することが多い。このため、振動体105とウエハ102の間隔における洗浄液103が受ける流水抵抗が高く、この間隙内外での洗浄液104の入れ替わりの効率が良く無い。このため、振動体105の直下で洗浄液103中に遊離した異物が洗浄液103と共に間隙から流出する前に振動体105が移動してしまい、異物はウエハ102の表面に再付着してしまうことが考えられる。   The second reason is the problem of the flow of the cleaning liquid 103 at a minute interval between the vibrating body 105 and the wafer 102. In this minute interval, since it is necessary to propagate the weak ultrasonic vibration generated on the surface of the vibrating body 105 to the surface of the wafer 102 without being attenuated as much as possible, it is usually set to a very minute interval. For example, it is often set to an interval of several mm to 1 mm or less. For this reason, the flowing water resistance received by the cleaning liquid 103 in the interval between the vibrating body 105 and the wafer 102 is high, and the efficiency of replacing the cleaning liquid 104 inside and outside the gap is not good. For this reason, it is conceivable that the vibrating body 105 moves before the foreign matter released in the cleaning liquid 103 directly under the vibrating body 105 flows out of the gap together with the cleaning liquid 103, and the foreign matter reattaches to the surface of the wafer 102. It is done.

このような再付着の現象は超音波ノズル方式の洗浄方法でも、当然のことながら生じている。しかし振動体を用いる方式での再付着する確率が著しく高く、結果的にウエハ全体での異物の除去効率が低くなっていると考えることができる。その結果、一枚あたりの処理に長時間を要することとなり、この洗浄効率の低いことは、枚葉式の処理装置においては極めて深刻な問題となっている。   Such a re-adhesion phenomenon naturally occurs even in the ultrasonic nozzle type cleaning method. However, it can be considered that the probability of reattachment in the method using the vibrating body is extremely high, and as a result, the removal efficiency of the foreign matter in the entire wafer is low. As a result, it takes a long time to process each sheet, and this low cleaning efficiency is a very serious problem in a single wafer processing apparatus.

上述したように、振動体を利用する従来のウエハ洗浄装置では,振動体とウエハの間にはさまれた微小な間隙を満たしている洗浄液中には,超音波の作用によってウエハの表面から離脱して浮き上がった異物が高濃度で含まれる。この状態の洗浄液をそのまま長時間この間隙に滞留させておくと、その異物がウエハ表面に再付着する確率が高まり、結果として、ウエハ表面の洗浄時間が長くなる。従って、この異物を高濃度に含む洗浄液部分をその微小間隙からできるだけ速やかに排出する一方,清浄な洗浄液をこの間隙に継続的に置換するように流入させることが必要である。つまり、この超音波振動が作動している微小間隙に満たされる洗浄液を連続的な排出と流入の置換を行うことによって、ウエハ表面から超音波作動で離脱した異物がウエハの他の部分に移動してウエハの表面に再付着することを防止できる。   As described above, in a conventional wafer cleaning apparatus using a vibrating body, the cleaning liquid filling a minute gap sandwiched between the vibrating body and the wafer is detached from the wafer surface by the action of ultrasonic waves. As a result, the floating foreign matter is contained at a high concentration. If the cleaning liquid in this state is allowed to stay in this gap for a long time, the probability that the foreign matter will reattach to the wafer surface increases, and as a result, the cleaning time of the wafer surface becomes longer. Accordingly, it is necessary to discharge the cleaning liquid portion containing the foreign matter in a high concentration from the minute gap as quickly as possible while allowing the clean cleaning liquid to flow into the gap continuously. In other words, by continuously discharging and replacing the cleaning liquid filled in the minute gap where this ultrasonic vibration is activated, the foreign matter detached from the wafer surface by ultrasonic operation moves to other parts of the wafer. Thus, it is possible to prevent reattachment to the surface of the wafer.

その一方で,ウエハの表面全体は,洗浄工程が完了するまでは乾燥することのないように,常に全面を洗浄液などの液体が覆い,湿潤状態が維持されることが必要である。なぜなら、ウエハを回転(スピン)しながら全表面領域を走査して洗浄するスピン洗浄においては,通常、ウエハ上の一つの点は振動体が通過する度に繰り返し何度も超音波の作用によって洗浄される。その際、洗浄と次の洗浄との間でウエハの表面が乾燥すると,いったん除去された洗浄液中の異物はウエハの表面に再付着して固着してしまい,繰り返し行われる洗浄の積算の効果が損なわれ,結果的に洗浄の効率が低下することになる。   On the other hand, it is necessary that the entire surface of the wafer is always covered with a liquid such as a cleaning liquid so that the entire surface of the wafer is not dried until the cleaning process is completed. This is because, in spin cleaning in which the entire surface area is scanned while rotating (spinning) the wafer, one point on the wafer is usually cleaned repeatedly by the action of ultrasonic waves each time the vibrating body passes. Is done. At that time, if the surface of the wafer is dried between the cleaning and the next cleaning, the foreign matters in the cleaning liquid once removed are reattached to the surface of the wafer and fixed, and the effect of the cumulative cleaning performed repeatedly is obtained. This results in a loss of cleaning efficiency.

特に、超音波振動体方式の枚葉式超音波スピン洗浄装置によって、異物除去の効率良い洗浄を実現するためには,これらの二つの要件を同時に満足させる装置を構成することが望ましい。   In particular, in order to realize efficient cleaning for removing foreign substances by the ultrasonic vibrator type single-wafer ultrasonic spin cleaning apparatus, it is desirable to configure an apparatus that satisfies these two requirements simultaneously.

以下に、上記の要件を満たす本発明の実施の形態を、添付図を参照しつつ説明する。   Embodiments of the present invention that satisfy the above requirements will be described below with reference to the accompanying drawings.

(第一の実施例)
図1に、本発明の一実施形態になる、超音波振動をウエハ表面に接する洗浄液を介して伝播するための振動体とその外囲材、および洗浄液の流路の基本的構成を説明するための断面模式図を示す。
(First embodiment)
FIG. 1 illustrates a basic configuration of a vibrating body for transmitting ultrasonic vibration through a cleaning liquid in contact with a wafer surface, its surrounding material, and a cleaning liquid flow path according to an embodiment of the present invention. The cross-sectional schematic diagram of is shown.

図1を参照して、ウエハ1の表面に面して、振動体2とその周囲に設けられた外囲体3がある。振動体2は、例えばウエハ1に一方の円形端面部が面する、直径Lの円柱であり、その垂直方向に中心を貫通する直径P1の通路5が設けられている。外囲体3は例えば振動体2の円柱外周を均一な幅P2のギャップ6で囲む円筒形状をなし、その円筒の外周の直径はW、その筒板厚はTである。振動体2および外囲体2のウエハ1に対向する面は、この場合はいずれもウエハ1の表面と間隙距離Sの微小な間隙4をもって配置されている。   Referring to FIG. 1, there is a vibrating body 2 and an outer casing 3 provided around the surface of the wafer 1. The vibrating body 2 is, for example, a cylinder with a diameter L facing one circular end surface portion to the wafer 1, and a passage 5 having a diameter P1 penetrating the center in the vertical direction. For example, the outer envelope 3 has a cylindrical shape that surrounds the outer circumference of the column of the vibrating body 2 with a gap 6 having a uniform width P2. The outer circumference of the cylinder has a diameter W and the thickness of the cylinder plate is T. In this case, the surfaces of the vibrating body 2 and the outer enclosure 2 facing the wafer 1 are arranged with a minute gap 4 having a gap distance S from the surface of the wafer 1.

振動体2の、例えばウエハ1に面していない側の円形端面部近傍には図示しない超音波振動子が取り付けられ、その超音波振動子で発振した超音波は、この振動体2を経由して、ウエハ1に面した振動体2の円形端面部である超音波放射面から間隙4にある洗浄液7に伝わり、そしてウエハ1の表面に超音波が照射される。ウエハ1の表面に付着している異物は、この超音波照射の作用によって表面から離脱し近傍を流れる洗浄液7中に流出する。異物は通常、その軽量性から洗浄液7中で浮き上がるように流出する。   For example, an ultrasonic transducer (not shown) is attached in the vicinity of the circular end surface of the vibrating body 2 on the side not facing the wafer 1, and the ultrasonic wave oscillated by the ultrasonic transducer passes through the vibrating body 2. Then, the ultrasonic wave is transmitted from the ultrasonic radiation surface, which is the circular end surface portion of the vibrating body 2 facing the wafer 1, to the cleaning liquid 7 in the gap 4, and the surface of the wafer 1 is irradiated with ultrasonic waves. The foreign matter adhering to the surface of the wafer 1 is detached from the surface by the action of this ultrasonic irradiation and flows out into the cleaning liquid 7 flowing in the vicinity. The foreign matter usually flows out so as to float in the cleaning liquid 7 because of its light weight.

このように異物の離脱(除去)は、超音波が有効に照射されているウエハ1の表面領域、すなわち振動体2の超音波放射面とそれにほぼ正対するウエハ1の表面領域間での作用として行われる。   As described above, the separation (removal) of the foreign matter is an action between the surface area of the wafer 1 to which the ultrasonic waves are effectively irradiated, that is, between the ultrasonic radiation surface of the vibrating body 2 and the surface area of the wafer 1 that is almost directly opposed thereto. Done.

同図の間隙4、通路5、ギャップ6内に矢印で示された方向は、洗浄液7の流れる方向を示している。例えば図示しない加圧ポンプなどによって、円柱状の振動体2の外側面と円筒状の外囲体3の内側面とで構成されるギャップ6を通路として、ウエハ1の表面に向かって清浄な洗浄液7が、連続的に供給される。ギャップ6を流れる洗浄液7の全体の流れは、そのギャップ5の形状により円筒状をしており、そのウエハ1の表面にリング状で達する洗浄液7の流速はどの場所でも均一とする。   The direction indicated by the arrows in the gap 4, the passage 5, and the gap 6 in FIG. For example, a cleaning liquid that is cleaned toward the surface of the wafer 1 by using a gap 6 formed by an outer side surface of the columnar vibrator 2 and an inner side surface of the cylindrical envelope 3 by a pressure pump (not shown) or the like. 7 is fed continuously. The entire flow of the cleaning liquid 7 flowing through the gap 6 has a cylindrical shape due to the shape of the gap 5, and the flow rate of the cleaning liquid 7 reaching the surface of the wafer 1 in a ring shape is uniform everywhere.

一方、振動体2の円柱中心を貫通するように設けられた通路5は、図中上方で、図示しない吸引ポンプなどと接続され、その通路5内では、ギャップ6を流れる洗浄液7とは逆の方向に、ウエハ2の表面から遠ざかる方向に、洗浄液7が吸い上げられるようにする。   On the other hand, the passage 5 provided so as to pass through the center of the cylinder of the vibrating body 2 is connected to a suction pump (not shown) or the like in the upper part of the figure, and in the passage 5 is opposite to the cleaning liquid 7 flowing through the gap 6. The cleaning liquid 7 is sucked up in a direction away from the surface of the wafer 2.

ところで、図において、ギャップ6を通路として、ウエハ1の表面に向かった(方向A)清浄な洗浄液7は、ウエハ1の表面に振動体2の周りをリング状で達した後、間隙4内を外囲体3の中心方向(方向B)に向かう流れと外周方向(方向C)へ向かう流れとに分かれる。中心方向(方向B)に向かう洗浄液の流れは、振動体2の超音波放射面とウエハ1の表面の間の間隙4を流れ、通路5から吸い上げられるようにして(方向D)、通路5の末端で洗浄の系から流出する。間隙4での方向Bの流れは、前述のように、ウエハ1の表面から大量に離脱した異物が洗浄液に浮遊する流れであって、これは振動体2中の通路5を連続的に吸引されて(方向D)振動体2の上部より洗浄系外に排出される。   By the way, in the figure, the clean cleaning liquid 7 which has gone to the surface of the wafer 1 (direction A) using the gap 6 as a passage (direction A) reaches the surface of the wafer 1 around the vibrating body 2 in a ring shape, and then passes through the gap 4. The flow is divided into a flow toward the center direction (direction B) of the outer envelope 3 and a flow toward the outer peripheral direction (direction C). The flow of the cleaning liquid toward the central direction (direction B) flows through the gap 4 between the ultrasonic radiation surface of the vibrating body 2 and the surface of the wafer 1 so as to be sucked up from the passage 5 (direction D). Effluent from the washing system at the end. As described above, the flow in the direction B in the gap 4 is a flow in which a large amount of foreign matter detached from the surface of the wafer 1 floats in the cleaning liquid, and this is continuously sucked through the passage 5 in the vibrator 2. (Direction D) is discharged from the upper part of the vibrator 2 to the outside of the cleaning system.

このような洗浄液の流れを構成することによって、異物を高濃度に含んだ、流れ方向BそしてDの洗浄液7は、超音波が照射されていないウエハ1の領域には広がらず、被超音波照射ウエハ領域を含めて異物が再付着することが無い。他方ギャップ6から分かれて、方向Cの円柱外周部に流れ出る洗浄液7は、実質的に超音波洗浄に関与することなく、リング状の洗浄液湧き出し口から清浄な状態のまま間隙4を経てウエハ1の表面全面へと広がるように流れ、ウエハ1の表面全体を湿潤状態に保つことに寄与する。   By constructing such a flow of the cleaning liquid, the cleaning liquid 7 in the flow directions B and D containing a high concentration of foreign matters does not spread over the region of the wafer 1 where the ultrasonic waves are not irradiated, and is irradiated with ultrasonic waves. Foreign matter including the wafer area does not adhere again. On the other hand, the cleaning liquid 7 that is separated from the gap 6 and flows out to the outer periphery of the cylinder in the direction C substantially does not participate in the ultrasonic cleaning, and remains in a clean state from the ring-shaped cleaning liquid outlet and passes through the gap 4. It spreads over the entire surface of the wafer 1 and contributes to keeping the entire surface of the wafer 1 wet.

図2に、上記の振動体部及び外囲体部の基本的な構成を具体化した、実施例の模式図を示す。図2(1)は、振動体2及び外囲体3の中心軸での断面図であり、図2(2)、(3)は、それぞれ上面図、下面図である。   FIG. 2 is a schematic diagram of an embodiment that embodies the basic configuration of the vibrating body portion and the envelope portion. 2A is a cross-sectional view taken along the central axis of the vibrating body 2 and the outer enclosure 3, and FIGS. 2B and 2C are a top view and a bottom view, respectively.

それら図2の各図を参照して、振動体2は円柱形をしており、その材料は、例えば合成石英ガラスを用いる。この振動体の材料は、必ずしもこれに限らず、超音波を減衰することなく良好に伝播させ、かつ使用する洗浄液と接触しても溶出しない安定した材質のものであれば、例えばステンレス(SUS)・サファイア・セラミック・SiC・アルミナなどの材料を任意に選択できる。円柱状の振動体2の中心軸に沿って、振動体2を貫通する穴である通路5が設けられている。   Referring to each drawing of FIG. 2, the vibrating body 2 has a cylindrical shape, and the material thereof is, for example, synthetic quartz glass. The material of the vibrating body is not necessarily limited to this, and may be, for example, stainless steel (SUS) as long as it is a stable material that propagates ultrasonic waves without attenuation and that does not elute even when contacted with the cleaning liquid to be used. -Materials such as sapphire, ceramic, SiC, and alumina can be arbitrarily selected. A passage 5 which is a hole penetrating the vibrating body 2 is provided along the central axis of the columnar vibrating body 2.

振動体2の外側には、振動体2の周囲を囲むように、円筒状の外囲体3が設けられる。この外囲体3の材料は例えばフッ素系樹脂を用いるが、これに限られることは無く、使用する洗浄液と接触しても溶出しない安定した材質のものであれば、例えばステンレス(SUS)などの材料を自由に適用可能である。振動体2の外周側面と外囲体3の内側側面の間には均一な間隔(ギャップ6)が設けられている。   A cylindrical outer body 3 is provided outside the vibrating body 2 so as to surround the periphery of the vibrating body 2. The material of the envelope 3 is, for example, a fluororesin. However, the material is not limited to this. For example, stainless steel (SUS) may be used as long as it is a stable material that does not elute even when it comes into contact with the cleaning liquid to be used. The material can be applied freely. A uniform gap (gap 6) is provided between the outer peripheral side surface of the vibrating body 2 and the inner side surface of the outer enclosure 3.

振動体2と外囲体3は、それぞれウエハと向かい合う端面側において、共通の平面端面H−H‘を形成しており、ウエハ表面と一定の微小な間隔を置いて平行に向かい合うように設置する。外囲体3の上端部分はギャップ6を閉じるように振動体2の外周側面に接続される。   The vibrating body 2 and the envelope 3 each form a common flat end face HH ′ on the end face side facing the wafer, and are placed so as to face each other in parallel with a certain minute distance from the wafer surface. . The upper end portion of the outer enclosure 3 is connected to the outer peripheral side surface of the vibrating body 2 so as to close the gap 6.

円柱状の振動体2の、ウエハに対向しない端部側に超音波振動子8が設置される。超音波振動子8には図示しない電源線を介して例えばRF電源が接続されており、これをコントロールすることで超音波振動の発振及び強度を制御する。超音波振動子7は、例えば平板状の石英・ステンレス(SUS)・サファイア・セラミック・SiC・アルミナなど振動体2と同様な材質で構成される。   An ultrasonic vibrator 8 is installed on the end of the cylindrical vibrator 2 that does not face the wafer. For example, an RF power source is connected to the ultrasonic vibrator 8 via a power line (not shown), and by controlling this, the oscillation and intensity of the ultrasonic vibration are controlled. The ultrasonic vibrator 7 is made of a material similar to that of the vibrator 2 such as flat plate quartz, stainless steel (SUS), sapphire, ceramic, SiC, and alumina.

ギャップ6の上端近傍に外囲体3を貫くように外囲体3の外側から複数の供給管9が接続される。本実施例では、外囲体3の周囲に等間隔に合計8本の供給管9が接続されている。各供給管9には図示しない供給ポンプが接続されており、この供給ポンプを作動させて供給管9のすべてに等しい流量で洗浄液を送り出すことによって、洗浄液はギャップ6の上方から下方(ウエハ表面方向)に向けて、円筒状の均一な流れとなってウエハ表面に向かう。供給管9の数や配置方法に関しては、上記の例に限らず、洗浄液の供給通路となるギャップ6における円筒状の洗浄液の流れが、できるだけ均一かつ安定しているものとなるように構成することが望ましい。   A plurality of supply pipes 9 are connected from the outside of the outer enclosure 3 so as to penetrate the outer enclosure 3 in the vicinity of the upper end of the gap 6. In the present embodiment, a total of eight supply pipes 9 are connected around the outer envelope 3 at equal intervals. A supply pump (not shown) is connected to each supply pipe 9, and the cleaning liquid is sent out at a flow rate equal to all of the supply pipes 9 by operating this supply pump, so that the cleaning liquid flows downward (from the wafer surface direction) to above the gap 6. ) Toward the wafer surface in a uniform cylindrical flow. The number and arrangement of the supply pipes 9 are not limited to the above example, and the flow of the cylindrical cleaning liquid in the gap 6 serving as the cleaning liquid supply passage is configured to be as uniform and stable as possible. Is desirable.

一方、振動体2の通路5には吸引管10が接続される。吸引管10には図示しない吸引ポンプが接続されており、この吸引ポンプを作動させて通路5を経て洗浄液を吸い上げることを可能とする。   On the other hand, a suction pipe 10 is connected to the passage 5 of the vibrating body 2. A suction pump (not shown) is connected to the suction pipe 10, and the suction pump can be operated to suck up the cleaning liquid through the passage 5.

以上のような洗浄液の流路構成より、供給管9からギャップ6に送り込む洗浄液の流量、吸引管10により通路5から吸い上げられる洗浄液の流量、そして、共通平面端面とウエハ表面との間隔の関係を調整することにより、先に図1で説明したように、(図1を参照して、)ウエハ1の表面にリング状に供給された方向Aの洗浄液7が、振動体2とウエハ1との、幅Sの間隙4を中心方向へ向かう方向Bへと流れ、そしてこれが通路5を介して吸引される方向Dへと流れる洗浄液の流れと、振動体2とウエハ1との幅Sの間隙4を外縁方向に広がって向かう、方向Cの流れとに、分かれるようにすることができる。   Due to the flow path configuration of the cleaning liquid as described above, the flow rate of the cleaning liquid fed from the supply pipe 9 into the gap 6, the flow volume of the cleaning liquid sucked up from the passage 5 by the suction pipe 10, and the relationship between the gap between the common plane end face and the wafer surface. By adjusting, as described above with reference to FIG. 1, the cleaning liquid 7 in the direction A supplied to the surface of the wafer 1 in a ring shape (see FIG. 1) is applied between the vibrating body 2 and the wafer 1. The flow of the cleaning liquid flowing in the direction B toward the center direction through the gap 4 having the width S and flowing in the direction D in which the gap is sucked through the passage 5, and the gap 4 having the width S between the vibrating body 2 and the wafer 1. Can be divided into a flow in the direction C and spreading toward the outer edge.

こうした状況下で超音波振動子8を作動させれば、振動体2に端面からウエハ2の表面に照射された超音波の作用により、ウエハ1の表面から分離された異物が分流された洗浄液の方向Bの流れの中に浮き上がり、そして通路5中の方向Dの流れによってほとんどすべての異物が吸引管10から外部に排出され、ウエハ1の表面近傍から除去される。同時に、ウエハ1における超音波が照射されていない表面領域には、方向Cの洗浄液7の流れによって、常に異物が浮遊していない清浄な洗浄液が流れる状態であり、洗浄液の乾燥などで異物がその領域に付着することが排除できる。   When the ultrasonic vibrator 8 is operated under such circumstances, the cleaning liquid in which the foreign matter separated from the surface of the wafer 1 is separated by the action of ultrasonic waves applied to the surface of the wafer 2 from the end face of the vibrator 2 is obtained. Floating in the flow in the direction B, and almost all foreign matter is discharged from the suction tube 10 by the flow in the direction D in the passage 5 and is removed from the vicinity of the surface of the wafer 1. At the same time, the surface region of the wafer 1 that is not irradiated with ultrasonic waves is in a state where a clean cleaning liquid in which foreign matter is not floating always flows due to the flow of the cleaning solution 7 in the direction C. It is possible to eliminate adhesion to the region.

図3は、上記の振動体2と外囲体3との一体構成を、洗浄対象のウエハとの関係において超音波洗浄装置内に取り付けたときの状態を説明する模式図である。図3において、洗浄装置内には、鉛直方向に立ったアーム支持軸11の先端から水平方向に洗浄アーム12が伸びている。洗浄アーム12の先端にはクランプ13があって、その先端で、振動体2と外囲体3との一体構成を、その外囲体3外周側面を締め付けることによって固定する。この締め付け方法により振動体2の振動にクランプ13の影響は及ばない。このように外囲体3を保持した状態で、振動体2と外囲体3との共通平面端面がウエハ1と平行になるようにし、クランプ13、あるいは洗浄アーム12とクランプ13との接続部分は、これを実現するような微調整機構を備えることが望ましい。   FIG. 3 is a schematic diagram for explaining a state in which the integral configuration of the vibrating body 2 and the outer enclosure 3 is attached to the ultrasonic cleaning apparatus in relation to the wafer to be cleaned. In FIG. 3, a cleaning arm 12 extends in the horizontal direction from the tip of the arm support shaft 11 standing in the vertical direction in the cleaning device. A clamp 13 is provided at the distal end of the cleaning arm 12, and the integral configuration of the vibrating body 2 and the outer enclosure 3 is fixed by tightening the outer peripheral side surface of the outer enclosure 3 at the distal end. By this tightening method, the influence of the clamp 13 does not affect the vibration of the vibrating body 2. With the outer envelope 3 held in this manner, the common plane end surface of the vibrating body 2 and the outer envelope 3 is made parallel to the wafer 1, and the clamp 13 or the connecting portion between the cleaning arm 12 and the clamp 13 is arranged. It is desirable to provide a fine adjustment mechanism for realizing this.

アーム支持軸11は、その場での鉛直方向への上下運動と回転運動を行うことが可能とする。ウエハ1は、回転可能なウエハ回転支持軸14上のウエハ支持テーブル15の上に設置される。   The arm support shaft 11 can perform vertical movement and rotational movement in the vertical direction on the spot. The wafer 1 is placed on a wafer support table 15 on a rotatable wafer rotation support shaft 14.

ウエハ洗浄作業は、概ね次のような手順で進めることができる。始めに、クランプ12に固定された、超音波振動子・振動体・外囲体及び洗浄液供給排出系などからなる超音波振動発生関係構成体は、ウエハ支持テーブル15から離れた位置に退避させておく。ウエハ支持テーブル15上に、被洗浄物であるウエハ1を設置してから、アーム支持軸11の上下運動および回転運動機能を利用して、超音波振動発生関係構成体をウエハ1上に移動させ、振動体2と外囲体3との共通平面端面とウエハ1表面との平行な間隙を所定の距離に設定する。ここで、洗浄液の供給・排出とともに超音波を発生させてウエハの超音波洗浄を実施する。このとき、洗浄をウエハ表面全体を行う必要から、アーム支持軸11は、この支持軸を中心として所定の速度で往復回転運動を実施することで、超音波振動発生関係構成体はウエハ1表面上を円弧状往復掃引し、一方ウエハ回転支持軸14を、ウエハ1の中心を回転中心とする回転運動を行わせる。この両者の動きによって、ウエハ1表面全面を超音波振動で掃引する。超音波洗浄の掃引が終了すると、再びアーム支持軸11を動作させて超音波振動発生関係構成体を別の位置に退避させ、ウエハ1をウエハ支持テーブル15から取り外す。このような手順のウエハ洗浄作業は、所定のレシピに従って、洗浄装置内に設けた図示しない制御装置によって自動制御により行う。   The wafer cleaning operation can be generally performed by the following procedure. First, the ultrasonic vibration generation related component composed of the ultrasonic vibrator, the vibration body, the outer body, the cleaning liquid supply / discharge system, etc. fixed to the clamp 12 is retracted to a position away from the wafer support table 15. deep. After the wafer 1 that is the object to be cleaned is placed on the wafer support table 15, the ultrasonic vibration generation related components are moved onto the wafer 1 using the vertical and rotational motion functions of the arm support shaft 11. The parallel gap between the common plane end surface of the vibrating body 2 and the outer envelope 3 and the surface of the wafer 1 is set to a predetermined distance. Here, ultrasonic cleaning is performed by generating ultrasonic waves along with supply / discharge of the cleaning liquid. At this time, since it is necessary to perform cleaning on the entire wafer surface, the arm support shaft 11 performs a reciprocating rotational motion at a predetermined speed around the support shaft, so that the ultrasonic vibration generation related components are on the surface of the wafer 1. Are swung in a circular arc shape, and the wafer rotation support shaft 14 is rotated about the center of the wafer 1 as a rotation center. By the movement of both, the entire surface of the wafer 1 is swept by ultrasonic vibration. When the sweep of the ultrasonic cleaning is completed, the arm support shaft 11 is operated again to retract the ultrasonic vibration generation related component to another position, and the wafer 1 is removed from the wafer support table 15. The wafer cleaning operation in such a procedure is performed by automatic control by a control device (not shown) provided in the cleaning device according to a predetermined recipe.

本実施例の超音波洗浄装置においては、超音波地振動子8の振動周波数を3MHzとしたが、これに限らず適宜選択できる。しかし超音波がウエハ表面に与えるダメージの影響を考慮すると、振動周波数は1MHz以上とすることが望ましく、さらには、3MHz以上とすることがより好ましい。   In the ultrasonic cleaning apparatus of the present embodiment, the vibration frequency of the ultrasonic ground vibrator 8 is 3 MHz, but is not limited thereto and can be selected as appropriate. However, considering the influence of damage on the wafer surface by the ultrasonic wave, the vibration frequency is preferably 1 MHz or more, and more preferably 3 MHz or more.

また、振動体2のウエハ側端面(=外囲体3のウエハ側端面)とウエハ1表面との間隙4の距離S(図1参照)は1mmとしたが、振動振幅の比較的小さな超音波をできるだけ減衰させることなくウエハ1の表面に照射させるという観点から、間隙距離Sは凡そ3mm以下が望ましく、さらには、1mm以下とすることがより好ましい。   Further, although the distance S (see FIG. 1) of the gap 4 between the wafer-side end surface of the vibrating body 2 (= the wafer-side end surface of the envelope 3) and the surface of the wafer 1 is 1 mm, an ultrasonic wave having a relatively small vibration amplitude. From the viewpoint of irradiating the surface of the wafer 1 with as much attenuation as possible, the gap distance S is preferably about 3 mm or less, and more preferably 1 mm or less.

円柱状の振動体2の円直径は、20mmとしたが、この直径は振動体2とウエハ1との間隙における流水抵抗を小さくして、吸引通路である通路5からの異物を高濃度に含んだ洗浄液(方向Dも流れ;図1参照)の吸い上げを円滑に行うという観点から、凡そ30mm以下とすることが望ましい。   The circular diameter of the columnar vibrator 2 is 20 mm, but this diameter reduces the flowing water resistance in the gap between the vibrator 2 and the wafer 1 and contains a high concentration of foreign matter from the passage 5 as a suction passage. From the viewpoint of smoothly sucking up the cleaning liquid (also flowing in the direction D; see FIG. 1), it is desirable that the cleaning liquid is about 30 mm or less.

また、洗浄液の流量については、2L/minで実施し、ウエハ回転支持軸14の回転は100rpmで行った。   Further, the flow rate of the cleaning liquid was 2 L / min, and the rotation of the wafer rotation support shaft 14 was performed at 100 rpm.

以上のような各種ディメンションをもつ本発明になる超音波洗浄装置と、中心に吸引用経路が形成されていない、単なる円柱状振動体を用い、単に洗浄液をウエハとの間隙に流入させるような構成の、いわば従来の超音波洗浄装置とで性能比較実験を行った。両装置は、振動体の円面(超音波の照射面積相当)の直径はともに上記の20mmとし、振動周波数、入力パワー、振動体とウエハとの間隙の距離、洗浄液流量・振動体掃引方法等その他条件は同一とした。また、洗浄液は、共に、純水中に水素ガスを1.5mg/Lの濃度で溶解させた水素溶解水を使用した。   The ultrasonic cleaning apparatus according to the present invention having various dimensions as described above, and a simple cylindrical vibrator that does not have a suction path formed at the center, and a structure that simply allows the cleaning liquid to flow into the gap with the wafer In other words, a performance comparison experiment was performed with a conventional ultrasonic cleaning apparatus. In both apparatuses, the diameter of the circular surface of the vibrating body (equivalent to the ultrasonic irradiation area) is 20 mm, the vibration frequency, the input power, the distance between the vibrating body and the wafer, the flow rate of the cleaning liquid, the vibrating body sweeping method, etc. Other conditions were the same. As the cleaning liquid, hydrogen-dissolved water in which hydrogen gas was dissolved in pure water at a concentration of 1.5 mg / L was used.

被洗浄試料として、直径8インチのSiウエハ上に、厚さ100μmの熱酸化膜を形成し、その表面に、平均粒径0.15μmのシリカ(SiO)粒子をほぼ均一に付着させたものを用いた。付着シリカ粒子の総数は、ウエハ一枚当たりほぼ3万個となるように調整した。この評価試料を、本発明装置と比較装置とで洗浄し、ウエハ表面検査装置を使用して洗浄前後でのウエハ表面付着のシリカ粒子の数を計測した。 As a sample to be cleaned, a thermal oxide film having a thickness of 100 μm is formed on an Si wafer having a diameter of 8 inches, and silica (SiO 2 ) particles having an average particle size of 0.15 μm are adhered to the surface almost uniformly. Was used. The total number of adhered silica particles was adjusted to be approximately 30,000 per wafer. This evaluation sample was cleaned with the apparatus of the present invention and the comparison apparatus, and the number of silica particles adhering to the wafer surface before and after cleaning was measured using a wafer surface inspection apparatus.

評価試料のウエハ表面に付着した微粒子のシリカを95%除去するのに要した時間を測定したところ、この場合、従来の振動体形状を用いた超音波洗浄装置では平均180秒以上を要したのに対し、本発明の実施例である超音波洗浄装置では、平均60秒程度で行うことができた。この結果は、被洗浄試料から離脱した異物(微粒子シリカ)が、洗浄中でのウエハ表面への再付着を免れる構成を講じた本発明の装置の有効性を如実に示しているものと考えられる。   When the time required to remove 95% of the fine particle silica adhering to the wafer surface of the evaluation sample was measured, an average of 180 seconds or more was required for the conventional ultrasonic cleaning device using the vibrator shape in this case. On the other hand, the ultrasonic cleaning apparatus according to the example of the present invention was able to be performed in an average of about 60 seconds. This result is considered to clearly show the effectiveness of the apparatus of the present invention in which the foreign matter (particulate silica) detached from the sample to be cleaned avoids reattachment to the wafer surface during cleaning. .

(第二の実施例)
図4に、本発明の第二の実施例になる、超音波振動をウエハ1の表面に接する洗浄液を介して伝播するための振動体2とその外囲材3、および洗浄液の流路の基本的構成を説明するための断面模式図を示す。本実施例と第一の実施例(図1参照)との相違は、通路5を有する円柱状の振動体2の下側円面とウエハ2との間隙、すなわち振動体間隙4−1の間隙距離S1と、外囲体3の下側面とウエハ2との間隙、すなわち外囲体間隙4−2の間隙距離S2とが異なり、S2をS1より小さくしている点にある。言い換えると、こうすることによって、洗浄液の供給経路であるギャップ6からの方向Aの流れのうち、外囲体の下側面からの方向Cへ流れ出す洗浄液の流量をより少なくし、より多くの部分が方向Bの流れとなり、そして吸収経路である通路5を通る方向Dの流れとなるようにする。その結果、振動体2の直下で生じた浮遊異物を含む洗浄液が方向Cの流れに混じって外に流出するのをより困難にし、かつ通路5からの吸い上げ流量を多くして、吸い上げを容易にするといった効果を期待できる。
(Second embodiment)
FIG. 4 shows the basics of the vibrator 2 and its surrounding material 3 for propagating ultrasonic vibrations through the cleaning liquid in contact with the surface of the wafer 1 and the flow path of the cleaning liquid according to the second embodiment of the present invention. The cross-sectional schematic diagram for demonstrating a typical structure is shown. The difference between the present embodiment and the first embodiment (see FIG. 1) is that the gap between the lower circular surface of the columnar vibrator 2 having the passage 5 and the wafer 2, that is, the gap of the vibrator gap 4-1. The distance S1 is different from the gap between the lower surface of the outer enclosure 3 and the wafer 2, that is, the gap distance S2 of the outer enclosure gap 4-2, and S2 is smaller than S1. In other words, by doing this, among the flows in the direction A from the gap 6 which is the supply path of the cleaning liquid, the flow rate of the cleaning liquid flowing out in the direction C from the lower surface of the outer enclosure is reduced, and a larger part is obtained. The flow is in the direction B, and the flow is in the direction D through the passage 5 that is the absorption path. As a result, it becomes more difficult for the cleaning liquid containing floating foreign substances generated immediately below the vibrating body 2 to flow out in the direction C, and the suction flow rate from the passage 5 is increased to facilitate the suction. You can expect the effect.

(第三の実施例)
図5は、本発明の第三の実施例になる、振動体2及び外囲体3の構成体の下面模式図である。第一の実施例(図2参照)と異なる点は、振動体2の下側円面のウエハに面する箇所に、吸収経路である円柱中心を通る通路5の開口部から放射状に伸びる複数(この例では8本)の溝、すなわち振動体溝16を設けたことである。こうすることで、第二の実施例と同様に、多くの異物を含む、振動体2の直下における洗浄液の方向Bの流れを、通路5を通って方向Dの流れとして吸引する流量をより多くし、外部に流出させるのを容易にすることが可能となる。異物が浮遊する洗浄液(図1における方向Bの流れの洗浄液)は、滞留してウエハ表面に再付着すること無くなり、洗浄時間の短縮に有効に作用することが期待できる。勿論、第二の実施例と第三の実施例とを併用する構成にしても構わない。
(Third embodiment)
FIG. 5 is a schematic bottom view of the structural body of the vibrating body 2 and the outer enclosure 3 according to the third embodiment of the present invention. The difference from the first embodiment (refer to FIG. 2) is that a plurality of radially extending from the opening of the passage 5 that passes through the center of the cylinder as an absorption path, at a position facing the wafer on the lower circular surface of the vibrator 2 ( In this example, eight grooves), that is, the vibrator groove 16 is provided. By doing so, as in the second embodiment, the flow rate of the cleaning liquid in the direction B immediately below the vibrating body 2 containing a large amount of foreign matter is increased as the flow in the direction D through the passage 5. Therefore, it is possible to facilitate the flow out to the outside. The cleaning liquid in which foreign matter floats (the cleaning liquid in the direction B in FIG. 1) stays and does not reattach to the wafer surface, and can be expected to effectively work for shortening the cleaning time. Of course, the second embodiment and the third embodiment may be used in combination.

以上のように、本発明による洗浄装置を適用することによって、表面に壊れ易い微細なパターンが形成されたウエハなどの場合においても、その表面に付着した微粒子などの異物を効率良く除去でき、従来の装置に比べ大幅に洗浄時間を短縮することが可能となった。   As described above, by applying the cleaning apparatus according to the present invention, foreign matter such as fine particles adhering to the surface can be efficiently removed even in the case of a wafer having a fine pattern that is fragile on the surface. The cleaning time can be greatly shortened compared to the previous equipment.

本発明の第一の実施例に係る振動体と外囲体及び洗浄液の流路の基本的構成を説明する図The figure explaining the fundamental composition of the vibrating body concerning the 1st example of the present invention, an enclosure, and the channel of cleaning fluid. 本発明の第一の実施例に係る振動体と外囲体及び洗浄液の流路の具体的構成を説明する図The figure explaining the specific structure of the vibrating body, the outer enclosure, and the flow path of the cleaning liquid according to the first embodiment of the present invention. 本発明の洗浄装置のアーム部分の構成を説明する図The figure explaining the structure of the arm part of the washing | cleaning apparatus of this invention 本発明の第二の実施例に係る振動体と外囲体及び洗浄液の流路の基本的構成を説明する図The figure explaining the basic composition of the vibrating body concerning the 2nd example of the present invention, an enclosure, and the channel of cleaning fluid. 本発明の第三の実施例に係る振動体と外囲体及び洗浄液の流路の具体的構成を説明する図The figure explaining the specific structure of the vibrating body, enclosure, and flow path of the cleaning liquid according to the third embodiment of the present invention. 従来のノズル式超音波洗浄装置を説明する図The figure explaining the conventional nozzle type ultrasonic cleaning device 従来の振動体方式超音波洗浄装置を説明する図The figure explaining the conventional vibratory body type ultrasonic cleaning device

符号の説明Explanation of symbols

1 ウエハ
2 振動体
3 外囲体
4 間隙
5 通路
6 ギャップ
7 洗浄液
8 超音波振動子
9 供給管
10 吸引管
11 アーム支持軸
12 洗浄アーム
13 クランプ
14 ウエハ回転支持軸
15 ウエハ支持テーブル
16 振動体溝
101 超音波ノズル
102 ウエハ
103 洗浄液
104 超音波照射領域
105 振動体
106 超音波振動子
107 振動体支持手段
108 洗浄液ノズル
DESCRIPTION OF SYMBOLS 1 Wafer 2 Vibrating body 3 Outer body 4 Gap 5 Passage 6 Gap 7 Cleaning liquid 8 Ultrasonic vibrator 9 Supply pipe 10 Suction pipe 11 Arm support shaft 12 Cleaning arm 13 Clamp 14 Wafer rotation support shaft 15 Wafer support table 16 Vibration body groove DESCRIPTION OF SYMBOLS 101 Ultrasonic nozzle 102 Wafer 103 Cleaning liquid 104 Ultrasonic irradiation area 105 Vibrating body 106 Ultrasonic vibrator 107 Vibrating body support means 108 Cleaning liquid nozzle

Claims (4)

被洗浄物上に配置される円柱形状の振動体と、
前記振動体の側面を囲う円筒形状を有し、前記被洗浄物上に吐出された前記洗浄液が、前記振動体の中心軸方向に流れる第1の流れと、前記第1の流れと逆向きに流れる第2の流れとに分流するように、前記洗浄液を通過させる流路と、
前記振動体中に前記振動体の中心軸を含む領域に形成され、前記第1の流れを形成する前記洗浄液を回収する通路と、
を備えたことを特徴とする洗浄装置。
A columnar vibrator arranged on the object to be cleaned;
The cleaning liquid discharged on the object to be cleaned has a cylindrical shape surrounding a side surface of the vibrating body, and a first flow that flows in a direction of a central axis of the vibrating body, and a direction opposite to the first flow A flow path through which the cleaning liquid passes so as to be diverted into a flowing second flow;
A passage formed in a region including the central axis of the vibrating body in the vibrating body and collecting the cleaning liquid forming the first flow ;
A cleaning apparatus comprising:
被洗浄物を支持する支持体と、
前記流路と前記被洗浄物とが第1の間隔をもって対向するように位置決めする移動手段とを更に備えたことを特徴とする請求項1記載の洗浄装置。
A support for supporting the object to be cleaned;
The cleaning apparatus according to claim 1, further comprising a moving unit that positions the flow path and the object to be cleaned so as to face each other with a first interval.
前記通路と前記被洗浄物とは、前記第1の間隔よりも大きい第2の間隔をもって対向することを特徴とする請求項1ないし2のいずれかに記載の洗浄装置。   The cleaning apparatus according to claim 1, wherein the passage and the object to be cleaned are opposed to each other with a second interval larger than the first interval. 前記通路は、吸引手段に接続されてなることを特徴とする請求項1ないし3のいずれかに記載の洗浄装置。   4. The cleaning apparatus according to claim 1, wherein the passage is connected to suction means.
JP2008023994A 2008-02-04 2008-02-04 Cleaning device Expired - Fee Related JP5169264B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008023994A JP5169264B2 (en) 2008-02-04 2008-02-04 Cleaning device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008023994A JP5169264B2 (en) 2008-02-04 2008-02-04 Cleaning device

Publications (2)

Publication Number Publication Date
JP2009188035A JP2009188035A (en) 2009-08-20
JP5169264B2 true JP5169264B2 (en) 2013-03-27

Family

ID=41071017

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008023994A Expired - Fee Related JP5169264B2 (en) 2008-02-04 2008-02-04 Cleaning device

Country Status (1)

Country Link
JP (1) JP5169264B2 (en)

Families Citing this family (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5517227B2 (en) * 2010-05-31 2014-06-11 コリア・インスティテュート・オブ・マシナリー・アンド・マテリアルズ Ultrasonic precision cleaning equipment

Family Cites Families (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001079505A (en) * 2000-07-03 2001-03-27 Yokogawa Electric Corp Suction nozzle device
JP4180306B2 (en) * 2001-06-26 2008-11-12 アルプス電気株式会社 Wet processing nozzle and wet processing apparatus

Also Published As

Publication number Publication date
JP2009188035A (en) 2009-08-20

Similar Documents

Publication Publication Date Title
JP4442383B2 (en) Ultrasonic cleaning equipment
US20140053884A1 (en) Megasonic Precision Cleaning Of Semiconductor Process Equipment Components And Parts
US9662686B2 (en) Ultrasonic cleaning method and apparatus
JP2006007066A (en) Ultrasonic cleaner
WO2023134313A1 (en) Megasonic cleaning system for large-sized wafer
JP4874395B2 (en) Cleaning device using ultrasonic waves
JP3746248B2 (en) Ultrasonic cleaning nozzle, ultrasonic cleaning device and semiconductor device
EP1817791B1 (en) Apparatus and method for wet treatment of wafers
TW201313342A (en) Improved ultrasonic cleaning method and apparatus
JP5169264B2 (en) Cleaning device
KR100598112B1 (en) Megasonic cleaner having double cleaning probe and cleaning method
KR100683275B1 (en) Vibrating unit and megasonic cleaning apparatus comprising the same
JP3071398B2 (en) Cleaning equipment
JP4255818B2 (en) Ultrasonic cleaning nozzle and ultrasonic cleaning device
JP4957277B2 (en) Cleaning device and cleaning method
JP2005158913A (en) Ultrasonic nozzle and substrate treatment apparatus
JP2010238744A (en) Ultrasonic cleaning unit, and ultrasonic cleaning device
JP3927936B2 (en) Single wafer cleaning method and cleaning apparatus
JP2004146439A (en) Substrate cleaning method and device thereof
JP5245701B2 (en) Ultrasonic irradiation device, cleaning device and cleaning method
KR100951922B1 (en) Ultrasonic cleaning apparatus using the multi frequency
JP5605207B2 (en) Cleaning device and cleaning method
KR19980065775A (en) Multi Oscillation Ultrasonic Cleaner
KR20070073311A (en) Apparatus and method for cleaning wafers using megasonic energy
KR101918236B1 (en) Fine pattern cleaning apparatus

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100917

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120126

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120131

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120402

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120831

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

LAPS Cancellation because of no payment of annual fees