JP5167577B2 - Non-aqueous electrolyte secondary battery - Google Patents

Non-aqueous electrolyte secondary battery Download PDF

Info

Publication number
JP5167577B2
JP5167577B2 JP2005142955A JP2005142955A JP5167577B2 JP 5167577 B2 JP5167577 B2 JP 5167577B2 JP 2005142955 A JP2005142955 A JP 2005142955A JP 2005142955 A JP2005142955 A JP 2005142955A JP 5167577 B2 JP5167577 B2 JP 5167577B2
Authority
JP
Japan
Prior art keywords
current collector
positive electrode
electrode
cross
negative electrode
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2005142955A
Other languages
Japanese (ja)
Other versions
JP2006318867A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2005142955A priority Critical patent/JP5167577B2/en
Publication of JP2006318867A publication Critical patent/JP2006318867A/en
Application granted granted Critical
Publication of JP5167577B2 publication Critical patent/JP5167577B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、非水電解液二次電池に関し、特に、体積当りあるいは重量当りの出力密度を高くした非水電解液二次電池に関する。   The present invention relates to a non-aqueous electrolyte secondary battery, and more particularly to a non-aqueous electrolyte secondary battery having a high power density per volume or weight.

正極集電体に正極活物質合剤層を形成した正極板と、負極集電体に負極活物質合剤層を形成した負極板とを、セパレータを介して交互に積層して電解液とともに容器に封入した積層型の二次電池が知られている(例えば、特許文献1参照)。このような二次電池の一種としてのリチウムイオン二次電池等の非水電解液二次電池は、高出力、高エネルギーが得られる電池として電気自動車あるいはハイブリッド自動車等に使用されている。
電気自動車においては、高電圧を得るために、通常、多数の電池を直列に接続して使用しており、これにより個々の電池に大電流が流れる。そのため、個々の電池の内部抵抗を少なくすることが、出力特性を向上させるために重要である。
A positive electrode plate in which a positive electrode active material mixture layer is formed on a positive electrode current collector and a negative electrode plate in which a negative electrode current collector is formed with a negative electrode active material mixture layer are alternately stacked via a separator and a container together with an electrolytic solution. A stacked type secondary battery enclosed in a battery is known (for example, see Patent Document 1). Non-aqueous electrolyte secondary batteries such as lithium ion secondary batteries as one type of such secondary batteries are used in electric vehicles, hybrid vehicles, and the like as batteries capable of obtaining high output and high energy.
In an electric vehicle, in order to obtain a high voltage, a large number of batteries are usually connected in series, and a large current flows through each battery. Therefore, reducing the internal resistance of each battery is important for improving the output characteristics.

個々の電池の出力特性の向上のためには種々の方法が開示されており、例えば、正極集電体から直接導出された集電用リード片の断面積の総和を正極活物質合剤層の塗工面の面積に対して0.006%〜0.048%とし、また、負極集電体から直接導出された集電用リード片の断面積の総和を負極活物質合剤層の塗工面の面積に対して0.004%〜0.03%とすることにより、組み立て加工性が良好で出力特性に優れた非水電解液二次電池等が実現できる旨が開示されている(例えば、特許文献2参照)。
特開平9−259859号公報 特開2002−270153号公報
Various methods have been disclosed for improving the output characteristics of individual batteries. For example, the sum of the cross-sectional areas of the current collecting lead pieces directly derived from the positive electrode current collector is calculated as the positive electrode active material mixture layer. 0.006% to 0.048% with respect to the area of the coated surface, and the sum of the cross-sectional areas of the current collecting lead pieces directly derived from the negative electrode current collector is the amount of the coated surface of the negative electrode active material mixture layer It is disclosed that a non-aqueous electrolyte secondary battery having excellent assembly processability and excellent output characteristics can be realized by setting the content to 0.004% to 0.03% with respect to the area (for example, patents). Reference 2).
Japanese Patent Laid-Open No. 9-259859 JP 2002-270153 A

しかしながら、例えば特許文献2に示されているような従来の二次電池は、内部抵抗を低減して出力特性を向上させることを目的としているため、出力特性は向上するものの、体積あるいは重量に対する出力、すなわち出力密度が最大になるようには構成されていない。電気自動車等においては、十分な出力を確保するために多数の電池を搭載したいという要望がある一方で、制限のある車両空間を有効に利用するとともに車両駆動時の消費電力を低減するために、その容積(体積)や重量を少しでも小さくしたいという要望がある。そのために、電気自動車等に搭載する電池は、単に出力が大きさいのみではなく、電池の体積(容積)や重量との関係において出力を最大にする、すなわち、電池の体積や重量と出力との関係を最適化する、さらに換言すれば出力密度を向上させることが非常に重要である。   However, for example, the conventional secondary battery as shown in Patent Document 2 is intended to reduce the internal resistance and improve the output characteristics, so that although the output characteristics are improved, the output with respect to the volume or weight is improved. That is, it is not configured to maximize the power density. In an electric vehicle or the like, there is a demand to install a large number of batteries to ensure sufficient output, but in order to effectively use a limited vehicle space and reduce power consumption when driving the vehicle, There is a desire to reduce the volume (volume) and weight as much as possible. Therefore, a battery mounted on an electric vehicle or the like not only has a large output, but also maximizes the output in relation to the volume (volume) and weight of the battery, that is, the battery volume, weight and output. It is very important to optimize the relationship, in other words to improve the power density.

本発明は、このような課題に鑑みてなされたものであって、その目的は、体積当りあるいは重量当りの出力密度を最大化(最適化)した非水電解液二次電池を提供することにある。   The present invention has been made in view of such problems, and an object of the present invention is to provide a nonaqueous electrolyte secondary battery that maximizes (optimizes) the power density per volume or weight. is there.

前記課題を解決するために、本発明に係る非水電解液二次電池は、正極集電体に正極活物質合剤による正極層を形成した正極板と、負極集電体に負極活物質合剤による負極層を形成した負極板とを有する非水電解液二次電池であって、前記正極集電体の断面積が、前記正極層の形成面積の0.003%以上0.006%未満であることを特徴とする。
このような構成の非水電解液二次電池においては、電池の出力に対して電極集電体とセル体積の関係が最適化され、セルの体積出力密度が向上する。
In order to solve the above problems, a non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate in which a positive electrode layer made of a positive electrode active material mixture is formed on a positive electrode current collector, and a negative electrode current collector. A non-aqueous electrolyte secondary battery having a negative electrode plate with a negative electrode layer formed of an agent, wherein the cross-sectional area of the positive electrode current collector is 0.003% or more and less than 0.006% of the formation area of the positive electrode layer It is characterized by being.
In the non-aqueous electrolyte secondary battery having such a configuration, the relationship between the electrode current collector and the cell volume is optimized with respect to the battery output, and the volume output density of the cell is improved.

あるいはまた、前記正極集電体の断面積が、前記正極層の形成面積の0.004%以上0.006%未満であることを特徴とする。
このような構成の非水電解液二次電池においては、電池の出力に対して電極集電体とセル重量の関係が最適化され、セルの重量出力密度が向上する。
Alternatively, the cross-sectional area of the positive electrode current collector is 0.004% or more and less than 0.006% of the formation area of the positive electrode layer.
In the non-aqueous electrolyte secondary battery having such a configuration, the relationship between the electrode current collector and the cell weight is optimized with respect to the battery output, and the weight output density of the cell is improved.

また、本発明に係る他の非水電解液二次電池は、正極集電体に正極活物質合剤による正極層を形成した正極板と、負極集電体に負極活物質合剤による負極層を形成した負極板と、前記正極集電体から導出された正極端子(正極タブ)と、前記負極集電体から導出された負極端子(負極タブ)とを有する非水電解液二次電池であって、正極端子の断面積が、正極層の形成面積の0.003%以上0.006%未満であることを特徴とする。
あるいはまた、前記正極端子の断面積が、前記正極層の形成面積の0.004%以上0.006%未満であることを特徴とする。
Further, another non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate in which a positive electrode layer made of a positive electrode active material mixture is formed on a positive electrode current collector, and a negative electrode layer made of a negative electrode current collector made of a negative electrode active material mixture. A non-aqueous electrolyte secondary battery having a negative electrode plate formed with a positive electrode terminal (positive electrode tab) derived from the positive electrode current collector and a negative electrode terminal (negative electrode tab) derived from the negative electrode current collector The cross-sectional area of the positive electrode terminal is 0.003% or more and less than 0.006% of the formation area of the positive electrode layer.
Alternatively, the cross-sectional area of the positive electrode terminal is 0.004% or more and less than 0.006% of the formation area of the positive electrode layer.

また、本発明に係る他の非水電解液二次電池は、正極集電体に正極活物質合剤による正極層を形成した正極板と、負極集電体に負極活物質合剤による負極層を形成した負極板とを有する非水電解液二次電池であって、前記負極集電体の断面積が、前記負極層の形成面積の0.002%以上0.004%以下であることを特徴とする。   Further, another non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate in which a positive electrode layer made of a positive electrode active material mixture is formed on a positive electrode current collector, and a negative electrode layer made of a negative electrode current collector made of a negative electrode active material mixture. A non-aqueous electrolyte secondary battery having a negative electrode plate, wherein a cross-sectional area of the negative electrode current collector is 0.002% or more and 0.004% or less of a formation area of the negative electrode layer. Features.

また、本発明に係る他の非水電解液二次電池は、正極集電体に正極活物質合剤による正極層を形成した正極板と、負極集電体に負極活物質合剤による負極層を形成した負極板とを有する非水電解液二次電池であって、前記負極端子の断面積が、前記負極層の形成面積の0.002%以上0.004%以下であることを特徴とする。   Further, another non-aqueous electrolyte secondary battery according to the present invention includes a positive electrode plate in which a positive electrode layer made of a positive electrode active material mixture is formed on a positive electrode current collector, and a negative electrode layer made of a negative electrode current collector made of a negative electrode active material mixture. A non-aqueous electrolyte secondary battery having a negative electrode plate, wherein a cross-sectional area of the negative electrode terminal is 0.002% or more and 0.004% or less of a formation area of the negative electrode layer. To do.

本発明によれば、体積当りあるいは重量当りの出力密度を最大化(最適化)した非水電解液二次電池を提供することができる。   The present invention can provide a non-aqueous electrolyte secondary battery that maximizes (optimizes) the power density per volume or weight.

本発明の一実施形態の薄型電池について、図1〜図7を参照して説明する。
まず、その薄型電池の全体の構成について、図1及び図2を参照して説明する。
図1は、その薄型電池10の全体斜視図であり、図2は、その薄型電池10の図1におけるI−I線に沿った断面図である。
本実施形態の薄型電池10は、リチウム系の平板状積層タイプの薄型二次電池である。この薄型電池10を単位電池とし、これを所望の数だけ複数積層することにより、所望の出力電圧で所望の容量の組電池が構成される。
A thin battery according to an embodiment of the present invention will be described with reference to FIGS.
First, the overall configuration of the thin battery will be described with reference to FIGS. 1 and 2.
FIG. 1 is an overall perspective view of the thin battery 10, and FIG. 2 is a cross-sectional view of the thin battery 10 taken along line II in FIG. 1.
The thin battery 10 of the present embodiment is a lithium-based flat laminated type thin secondary battery. By using the thin battery 10 as a unit battery and stacking a desired number of the unit batteries, an assembled battery having a desired capacity is formed at a desired output voltage.

薄型電池10は、図2に示すように、3枚の正極板101、5枚のセパレータ102、3枚の負極板103、正極タブ104、負極タブ105、上部外装部材106、下部外装部材107及び図示しない電解質を有する。なお、以下の説明において、このうち正極板101、セパレータ102及び負極板103を積層したものを電極群と称し、さらに、電極群と電解質とを含めて発電要素108と称する。   As shown in FIG. 2, the thin battery 10 includes three positive plates 101, five separators 102, three negative plates 103, a positive electrode tab 104, a negative electrode tab 105, an upper exterior member 106, a lower exterior member 107, and It has an electrolyte (not shown). In the following description, a laminate of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 is referred to as an electrode group, and the electrode group and the electrolyte are referred to as a power generation element 108.

正極板101は、正極タブ104まで伸びている正極側集電体101aと、正極側集電体101aの一部の両主面にそれぞれ形成された正極層(正極活物質合剤)101b、101cとを有する。
本実施形態の薄型電池10においては、電極出力密度を最大にするために、正極板101の正極側集電体101aの断面積が、正極層101b及び101cの形成面積の0.004%以上0.006%未満の範囲(重量出力密度を最適化する場合)、又は、0.003%以上0.006%未満の範囲(体積出力密度を最適化する場合)のいずれかとなるように、正極側集電体101a及び正極層101b、101cの形状が規定される。なお、このような面積比により電極出力密度を大きくして最適化できることについては、後に説明する。
The positive electrode plate 101 includes a positive electrode current collector 101a extending to the positive electrode tab 104, and positive electrode layers (positive electrode active material mixture) 101b and 101c formed on both main surfaces of a part of the positive electrode current collector 101a. And have.
In the thin battery 10 of the present embodiment, the cross-sectional area of the positive electrode current collector 101a of the positive electrode plate 101 is 0.004% or more of the formation area of the positive electrode layers 101b and 101c in order to maximize the electrode output density. The positive electrode side so that it is either in the range of less than 0.006% (when the weight output density is optimized) or in the range of 0.003% to less than 0.006% (when the volume output density is optimized). The shapes of the current collector 101a and the positive electrode layers 101b and 101c are defined. The fact that the electrode output density can be optimized by such an area ratio will be described later.

正極板101の正極側集電体101aは、例えばアルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等の電気化学的に安定した金属箔で形成される。また、正極板101の正極層101b、101cは、例えばニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)又はコバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等の正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤とを混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。 The positive electrode side current collector 101a of the positive electrode plate 101 is formed of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil. Further, the positive electrode layers 101b and 101c of the positive electrode plate 101 are made of, for example, lithium composite oxide such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), or lithium cobaltate (LiCoO 2 ), chalcogen (S, Se). , Te) A mixture of a positive electrode active material such as a compound, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene. It is formed by applying to the main surface, drying and rolling.

負極板103は、負極タブ105まで伸びている負極側集電体103aと、当該負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b、103cとを有する。
本実施形態の薄型電池10においては、電極出力密度を最大にするために、負極板103の負極側集電体103aの断面積が、負極層103b及び103cの形成面積の0.002%以上0.004%未満の範囲となるように、負極側集電体103a及び負極板103b、103cの形状が規定される。なお、このような面積比により電極出力密度を大きくして最適化できることについては後に説明する。
The negative electrode plate 103 includes a negative electrode side current collector 103a extending to the negative electrode tab 105, and negative electrode layers 103b and 103c formed on both main surfaces of a part of the negative electrode side current collector 103a, respectively.
In the thin type battery 10 of this embodiment, in order to make the electrode power density maximum, the cross-sectional area of the negative electrode side current collector 103a of the negative electrode plate 103, 0.002% or more of the area for forming the negative electrode layer 103b and 103c 0 The shapes of the negative electrode side current collector 103a and the negative electrode plates 103b and 103c are defined so as to be in a range of less than 0.004%. The fact that the electrode output density can be optimized by such an area ratio will be described later.

負極板103の負極側集電体103aは、例えばニッケル箔、銅箔、ステンレス箔又は鉄箔等の電気化学的に安定した金属箔で形成される。また、負極板103の負極層103b、103cは、例えば非晶質炭素、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等のような正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体材料としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し、乾燥し、粉砕し、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とする。負極板103b、103cは、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体103aの一部の両主面に塗布し、乾燥及び圧延させることにより形成される。
負極活物質として非晶質炭素や難黒鉛化炭素を用いると、急激な出力低下が無いので、電気自動車の電源として用いると有利である。
The negative electrode side current collector 103a of the negative electrode plate 103 is formed of an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil. Further, the negative electrode layers 103b and 103c of the negative electrode plate 103 are made of, for example, a negative electrode active material that absorbs and releases lithium ions of a positive electrode active material such as amorphous carbon, non-graphitizable carbon, graphitizable carbon, or graphite. An aqueous dispersion of a styrene butadiene rubber resin powder as a precursor material of an organic fired body is mixed, dried, pulverized, and carbonized surfaces carrying carbonized styrene butadiene rubber as a main material. The negative electrode plates 103b and 103c are formed by further mixing a binder such as an acrylic resin emulsion and applying the mixture to both main surfaces of a part of the negative electrode side current collector 103a, followed by drying and rolling. The
When amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, there is no sudden decrease in output, so it is advantageous when used as a power source for electric vehicles.

発電要素108のセパレータ102は、正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えていてもよい。このセパレータ102は、例えばポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィン等から構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能も有する。
なお、セパレータ102は、ポリオレフィン等の単層膜に限られず、ポリプロピレン膜をポリエチレン膜で挟持して形成した3層構造の膜や、ポリオレフィン微多孔膜と有機不織布等を積層した膜等を用いることもできる。このようにセパレータ102を複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。
The separator 102 of the power generation element 108 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 and may have a function of holding an electrolyte. The separator 102 is a microporous film made of polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation, thereby blocking the current. It also has a function.
The separator 102 is not limited to a single-layer film such as polyolefin, but a film having a three-layer structure formed by sandwiching a polypropylene film with a polyethylene film or a film in which a polyolefin microporous film and an organic nonwoven fabric are laminated is used. You can also. Thus, by making the separator 102 into multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.

以上の発電要素108は、図2に示すように、セパレータ102を介して正極板101と負極板103とが交互に積層されている。そして、3枚の正極板101は、正極層101b及び101cが形成されていない正極側集電体101aの余白部を介して、金属箔製の正極タブ104にそれぞれ接続される。また、3枚の負極板103は、負極板103b及び103cが形成されていない負極側集電体103aの余白部を介して、同様に金属箔製の負極タブ105にそれぞれ接続される。   As shown in FIG. 2, the above power generation element 108 has positive plates 101 and negative plates 103 alternately stacked with separators 102 interposed therebetween. The three positive electrode plates 101 are connected to the positive electrode tabs 104 made of metal foil through the margins of the positive electrode current collector 101a where the positive electrode layers 101b and 101c are not formed. Similarly, the three negative plates 103 are respectively connected to the negative tabs 105 made of metal foil through the margins of the negative current collector 103a where the negative plates 103b and 103c are not formed.

これら正極タブ104及び負極タブ105は、薄型電池10の出力密度を確保するために、各々、その断面積が、接続される正極板101又は負極板103の正極側集電体101a及び負極側集電体103aの断面積の総和に等しくなるような形状に規定される。すなわち、正極タブ104は、3枚の正極板101の正極側集電体101aの断面積の総和に等しくなるような断面積に、また、負極タブ105は、3枚の負極板103の負極側集電体103aの断面積の総和に等しくなるような断面積に、各々形成される。   The positive electrode tab 104 and the negative electrode tab 105 each have a cross-sectional area of the positive electrode plate 101 or the negative electrode plate 103 connected to the positive electrode side current collector 101a and the negative electrode side current collector, in order to ensure the output density of the thin battery 10. The shape is defined to be equal to the sum of the cross-sectional areas of the electric body 103a. That is, the positive electrode tab 104 has a cross-sectional area equal to the sum of the cross-sectional areas of the positive electrode-side current collectors 101 a of the three positive electrode plates 101, and the negative electrode tab 105 has the negative electrode side of the three negative electrode plates 103. Each is formed in a cross-sectional area equal to the sum of the cross-sectional areas of the current collector 103a.

前述したように、個々の正極側集電体101aの断面積は、その正極層101b及び101cの総面積の0.003%以上0.006%未満、あるいは0.004%以上0.006%未満に規定されているので、正極タブ104の断面積は、3枚の正極板101の各正極層101b及び101cの総面積の0.003%以上0.006%未満、あるいは0.004%以上0.006%未満の面積となる。同様に、個々の負極側集電体103aの断面積は、その負極層103b及び103cの総面積の0.002%以上0.004%未満に規定されているので、負極タブ105の断面積は、3枚の負極板103の各負極層103b及び103cの総面積の0.002%以上0.004%未満の面積となる。   As described above, the cross-sectional area of each positive electrode side current collector 101a is 0.003% or more and less than 0.006%, or 0.004% or more and less than 0.006% of the total area of the positive electrode layers 101b and 101c. Therefore, the cross-sectional area of the positive electrode tab 104 is 0.003% to less than 0.006% of the total area of the positive electrode layers 101b and 101c of the three positive electrode plates 101, or 0.004% to 0. The area is less than 0.006%. Similarly, since the cross-sectional area of each negative electrode side current collector 103a is defined to be 0.002% or more and less than 0.004% of the total area of the negative electrode layers 103b and 103c, the cross-sectional area of the negative electrode tab 105 is The area is 0.002% or more and less than 0.004% of the total area of the negative electrode layers 103b and 103c of the three negative electrode plates 103.

正極タブ104及び負極タブ105の断面積を、正極側集電体101aあるいは負極側集電体103aの断面積の総和よりも小さくすると、タブの内部抵抗が集電体の抵抗より大きくなり、総内部抵抗が大きくなり出力密度が低下する。また、正極タブ104及び負極タブ105の断面積を、正極側集電体101aあるいは負極側集電体103aの断面積の総和よりも大きくすると、タブの重量が必要以上に大きくなる。そこで、正極タブ104及び負極タブ105の断面積は、前述したように、各々正極側集電体101a及び負極側集電体103aの断面積の総和に等しくするのが好ましい。   If the cross-sectional areas of the positive electrode tab 104 and the negative electrode tab 105 are made smaller than the sum of the cross-sectional areas of the positive electrode side current collector 101a or the negative electrode side current collector 103a, the internal resistance of the tab becomes larger than the resistance of the current collector. The internal resistance increases and the output density decreases. Further, when the cross-sectional areas of the positive electrode tab 104 and the negative electrode tab 105 are made larger than the sum of the cross-sectional areas of the positive electrode side current collector 101a or the negative electrode side current collector 103a, the weight of the tab becomes larger than necessary. Therefore, as described above, the cross-sectional areas of the positive electrode tab 104 and the negative electrode tab 105 are preferably equal to the sum of the cross-sectional areas of the positive electrode side current collector 101a and the negative electrode side current collector 103a, respectively.

正極タブ104も負極タブ105も電気化学的に安定した金属材料であれば特に限定されないが、正極タブ104としては、上述の正極側集電体101aと同様に、例えばアルミニウム箔、アルミニウム合金箔、銅箔又はニッケル箔等を挙げることができる。また、負極タブ105としては、上述の負極側集電体103aと同様に、例えばニッケル箔、銅箔、ステンレス箔又は鉄箔等を挙げることができる。   The positive electrode tab 104 and the negative electrode tab 105 are not particularly limited as long as they are electrochemically stable metal materials, but as the positive electrode tab 104, for example, an aluminum foil, an aluminum alloy foil, A copper foil, nickel foil, etc. can be mentioned. Moreover, as the negative electrode tab 105, nickel foil, copper foil, stainless steel foil, iron foil, etc. can be mentioned similarly to the above-mentioned negative electrode side collector 103a, for example.

なお、発電要素108の正極板101、セパレータ102及び負極板103の枚数は、上記の枚数に限定されない。例えば、1枚の正極板101、3枚のセパレータ102及び1枚の負極板103でも発電要素108を構成することができ、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することができる。   The number of the positive electrode plate 101, the separator 102, and the negative electrode plate 103 of the power generation element 108 is not limited to the above number. For example, the power generation element 108 can also be configured with one positive plate 101, three separators 102, and one negative plate 103, and the number of positive plates, separators, and negative plates can be selected as necessary. can do.

また、本実施形態では、電極板101、103の集電体101a、103aを構成する金属箔自体を電極タブ104、105まで延長することにより、電極板101、103を電極タブ104、105に直接接続しているが、電極板101、103の集電体101a,103aと、電極タブ104、105とを、集電体101a、103aを構成する金属箔とは別の材料や部品により接続してもよい。   In the present embodiment, the metal foil itself constituting the current collectors 101 a and 103 a of the electrode plates 101 and 103 is extended to the electrode tabs 104 and 105, so that the electrode plates 101 and 103 are directly attached to the electrode tabs 104 and 105. Although connected, the current collectors 101a and 103a of the electrode plates 101 and 103 and the electrode tabs 104 and 105 are connected by materials and parts different from the metal foils constituting the current collectors 101a and 103a. Also good.

これら薄型電池10の発電要素108は、上部外装部材106及び下部外装部材107(外装部材)に被覆された状態で封止されている。換言すれば、発電要素108は、上部外装部材106及び下部外装部材107により形成される薄型電池10の内部空間111に封入される。
本実施形態における上部外装部材106及び下部外装部材107は、金属箔と、耐電解液性に優れた樹脂により形成された内側樹脂シートと、電気絶縁性に優れた樹脂により形成された表面樹脂シートとの3層構造のラミネートフィルムである。具体的には、内部金属箔としては例えばアルミニウム箔が好適であり、また、外側層としての表面樹脂シートとしては、ナイロン等のポリアミド系樹脂又はポリエステル系樹脂等が好適である。また、内側樹脂シートとしては、例えばポリエチレン、変性ポリエチレン、ポリプロピレン、変性ポリプロピレン又はアイオノマー等が好適である。これらの樹脂は、熱溶着性にも優れているため、上部外装部材106と下部外装部材107とを熱溶着する構成の場合には一層好適である。
薄型電池10は、このような構成を有する。
The power generation elements 108 of these thin batteries 10 are sealed in a state where they are covered with an upper exterior member 106 and a lower exterior member 107 (exterior member). In other words, the power generation element 108 is enclosed in the internal space 111 of the thin battery 10 formed by the upper exterior member 106 and the lower exterior member 107.
The upper exterior member 106 and the lower exterior member 107 in this embodiment are a metal foil, an inner resin sheet formed of a resin excellent in electrolytic solution resistance, and a surface resin sheet formed of a resin excellent in electrical insulation. And a laminate film having a three-layer structure. Specifically, for example, an aluminum foil is preferable as the internal metal foil, and a polyamide-based resin such as nylon or a polyester-based resin is preferable as the surface resin sheet as the outer layer. Further, as the inner resin sheet, for example, polyethylene, modified polyethylene, polypropylene, modified polypropylene, or ionomer is suitable. Since these resins are excellent in heat weldability, they are more suitable in the case of a structure in which the upper exterior member 106 and the lower exterior member 107 are thermally welded.
The thin battery 10 has such a configuration.

このような構成の薄型電池10においては、電極出力密度(電極重量出力密度、電極体積出力密度)を最適化するために、前述したように、正極側集電体101aを、その断面積が正極層101b及び101cの形成面積の0.003%以上0.006%未満の範囲、又は、0.004%以上0.006%未満の範囲になるように形成する。また、負極側集電体103aを、その断面積が負極層103b及び103cの形成面積の0.002%以上0.004%未満の範囲になるように形成する。
このような構成とすることにより、電極出力密度が最適化されることについて、図3〜図7を参照して説明する。
In the thin battery 10 having such a configuration, in order to optimize the electrode output density (electrode weight output density, electrode volume output density), as described above, the positive electrode side current collector 101a has the cross-sectional area of the positive electrode. The layers 101b and 101c are formed so as to be in a range of 0.003% to less than 0.006%, or in a range of 0.004% to less than 0.006%. Further, the negative electrode side current collector 103a is formed so that its cross-sectional area is in the range of 0.002% or more and less than 0.004% of the formation area of the negative electrode layers 103b and 103c.
The optimization of the electrode output density with such a configuration will be described with reference to FIGS.

薄型電池10に用いられる正極板101及び負極板103の構成を一般的に示すと、図3に示す電極板201のような構成と考えることができる。図3(A)は、電極板201の平面図であり、図3(B)は電極板201の側面図である。
図3に示す電極板201は、金属箔で形成された集電体203aと、その両主面に電極材料が塗工されて形成される電極層203b及び203cとを有する。集電体203aの一辺には、電極層203b及び203cが形成されず集電体203aが露出した集電体余白部211が形成されており、この集電体余白部211に電極タブ204が接続される。
Generally, the configuration of the positive electrode plate 101 and the negative electrode plate 103 used in the thin battery 10 can be considered as a configuration like the electrode plate 201 shown in FIG. FIG. 3A is a plan view of the electrode plate 201, and FIG. 3B is a side view of the electrode plate 201.
An electrode plate 201 shown in FIG. 3 includes a current collector 203a formed of a metal foil, and electrode layers 203b and 203c formed by applying an electrode material on both main surfaces thereof. On one side of the current collector 203a, there is formed a current collector blank portion 211 where the electrode layers 203b and 203c are not formed and the current collector 203a is exposed, and an electrode tab 204 is connected to the current collector blank portion 211. Is done.

このような構成の電極板201において、電極重量出力密度あるいは電極体積出力密度(重量当りあるいは体積当りの出力密度)は、式(1)及び式(2)に示すように、電極板201の総抵抗Rの逆数を、電極板総重量Tw又は電極板総体積Tvで割ったものとして考えることができる。また、電極板201の総抵抗Rは、式(3)に示すように、集電体203aの内部抵抗Rcに電極層203b及び203cの内部抵抗Raを加えたものとなる。   In the electrode plate 201 having such a configuration, the electrode weight output density or the electrode volume output density (output density per weight or per volume) is the total of the electrode plate 201 as shown in the equations (1) and (2). It can be considered that the reciprocal of the resistance R is divided by the total electrode plate weight Tw or the total electrode plate volume Tv. The total resistance R of the electrode plate 201 is obtained by adding the internal resistance Ra of the electrode layers 203b and 203c to the internal resistance Rc of the current collector 203a, as shown in Expression (3).

(数1)
電極重量出力密度=(1/R)/Tw …(1)
(数2)
電極体積出力密度=(1/R)/Tv …(2)
(数3)
R=Rc+Ra …(3)
(Equation 1)
Electrode weight output density = (1 / R) / Tw (1)
(Equation 2)
Electrode volume output density = (1 / R) / Tv (2)
(Equation 3)
R = Rc + Ra (3)

例えば、図3に示す電極板201において、電極幅(電極板201の幅)Wが120mm、電極層形成部(電極塗布部)の長さ(電極層203b及び203cの長さ)Laが200mm、集電体余白部211及び電極タブ204を含む電極非形成部(総余白部)の長さLbが20mm、電極の厚み(電極板201の厚み)Hが60μm、集電体203aの厚みHcが20μmとする。
そして、電極板201が正極板である場合を考えて、電極層(正極層)203b及び203cの重量が3g、電極層(正極層)203b及び203cの抵抗(Ra)が20mΩであり、また、集電体203aとしてアルミニウム箔(Al箔)を用い、このAl箔の比抵抗が0.025mΩ・mm、密度が0.0027g/mmとする。
For example, in the electrode plate 201 shown in FIG. 3, the electrode width (width of the electrode plate 201) W is 120 mm, the length of the electrode layer forming part (electrode application part) (length of the electrode layers 203b and 203c) La is 200 mm, The length Lb of the electrode non-formation portion (total blank portion) including the current collector blank portion 211 and the electrode tab 204 is 20 mm, the electrode thickness (thickness of the electrode plate 201) H is 60 μm, and the thickness Hc of the current collector 203a is 20 μm.
And considering the case where the electrode plate 201 is a positive electrode plate, the weight of the electrode layers (positive electrode layers) 203b and 203c is 3 g, the resistance (Ra) of the electrode layers (positive electrode layers) 203b and 203c is 20 mΩ, An aluminum foil (Al foil) is used as the current collector 203a. The Al foil has a specific resistance of 0.025 mΩ · mm and a density of 0.0027 g / mm 3 .

この場合、集電体203aの内部抵抗Rcは、次式(4)により求められ、電極板201の総重量Tw及び総体積Tvは、各々次式(5)及び式(6)により求められる。   In this case, the internal resistance Rc of the current collector 203a is obtained by the following equation (4), and the total weight Tw and the total volume Tv of the electrode plate 201 are obtained by the following equations (5) and (6), respectively.

(数4)
Rc=比抵抗/断面積×長さ/2 …(4)
=0.025/120/(20/1000)×(200+20)/2
=1.146
(数5)
Tw=集電体密度×集電体体積+電極層重量 …(5)
=0.0027×120×(20/1000)×(200+20)+3
=4.426
(数6)
Tv=電極幅×電極総厚み×電極総長さ …(6)
=120×(60/1000)×(200+20)
=1584
(Equation 4)
Rc = specific resistance / cross-sectional area × length / 2 (4)
= 0.025 / 120 / (20/1000) x (200 + 20) / 2
= 1.146
(Equation 5)
Tw = current collector density × current collector volume + electrode layer weight (5)
= 0.0027 × 120 × (20/1000) × (200 + 20) +3
= 4.426
(Equation 6)
Tv = electrode width × total electrode thickness × total electrode length (6)
= 120 × (60/1000) × (200 + 20)
= 1584

従って、式(3)〜式(6)を式(1)及び式(2)に代入すると、各々式(7)及び式(8)のように、この場合の電極板(正極板)201の電極重量出力密度及び電極体積密度が求められる。
(数7)
電極重量出力密度=(1/(1.146+20))/4.426
=0.0106
(数8)
電極体積出力密度=(1/(1.146+20))/1584
=0.00003
Accordingly, when Expression (3) to Expression (6) are substituted into Expression (1) and Expression (2), the electrode plate (positive electrode plate) 201 in this case is expressed as Expression (7) and Expression (8), respectively. Electrode weight output density and electrode volume density are determined.
(Equation 7)
Electrode weight output density = (1 / (1.146 + 20)) / 4.426
= 0.0106
(Equation 8)
Electrode volume output density = (1 / (1.146 + 20)) / 1588
= 0.00003

このような電極重量出力密度あるいは電極体積出力密度を、電極板201の構成に係る種々のパラメータを変化させた各条件、各構成について検出するとともに、その各条件、各構成における集電体203aの断面積の電極層203b及び203cの形成面積(塗工面積)に対する割合を検出する。そして、電極出力密度が十分に高くなる集電体203aの断面積と電極層203b及び203cの塗工面積との比率を検出することにより、最適な集電体203aの断面積と電極層203b及び203cの塗工面積との関係を検出する。   The electrode weight output density or the electrode volume output density is detected for each condition and each component in which various parameters related to the configuration of the electrode plate 201 are changed, and each condition and the current collector 203a in each configuration are detected. The ratio of the cross-sectional area to the formation area (coating area) of the electrode layers 203b and 203c is detected. Then, by detecting the ratio between the cross-sectional area of the current collector 203a at which the electrode output density is sufficiently high and the coating area of the electrode layers 203b and 203c, the optimal cross-sectional area of the current collector 203a and the electrode layer 203b and The relationship with the coating area 203c is detected.

正極板については、集電体203aとしてのAl箔の厚みHcを10μm〜30μmの範囲で、集電体余白部211及び電極タブ204を含む電極非形成部(総余白部)の長さLbを10mm〜50mmの範囲で、電極層203b及び203cの塗工量を10mg/cm〜40mg/cmの範囲で、集電体203aの厚みを含む電極板201全体の厚みHを50μm〜150μmの範囲で、また、電極層203b及び203cの比抵抗を10Ω〜50Ωで変化させて電極板(正極板)201を構成する。なお、Al箔の比抵抗は0.025mΩ・mmであり、Al箔の密度は、0.0027g/mmである。 For the positive electrode plate, the thickness Hc of the Al foil as the current collector 203a is in the range of 10 μm to 30 μm, and the length Lb of the electrode non-formation part (total blank part) including the current collector blank part 211 and the electrode tab 204 is in the range of 10 mm to 50 mm, the electrode layer 203b and 203c coating amount in the range of 10mg / cm 2 ~40mg / cm 2 , the entire electrode plate 201 including the thickness of the current collector 203a and the thickness H of 50μm~150μm The electrode plate (positive electrode plate) 201 is configured by changing the specific resistance of the electrode layers 203b and 203c within a range of 10Ω to 50Ω. The specific resistance of the Al foil is 0.025 mΩ · mm, and the density of the Al foil is 0.0027 g / mm 3 .

そして、各条件において、前述した式により電極出力密度を求めるとともに、その構成における集電体203aの断面積と電極層203b及び203cの塗工面積との比率を検出する。この時、ある条件に対して、集電体203aの断面積と電極層203b及び203cの塗工面積のみが変化しそれ以外の条件がなるべく変化しないように順次パラメータの選択を行うことにより、集電体の断面積と電極層の塗工面積の比率に対する電極出力密度の影響を直接的に検出することができる。   Under each condition, the electrode output density is obtained by the above-described equation, and the ratio between the cross-sectional area of the current collector 203a and the coating area of the electrode layers 203b and 203c in the configuration is detected. At this time, by selecting parameters sequentially so that only the cross-sectional area of the current collector 203a and the coating area of the electrode layers 203b and 203c change with respect to a certain condition and other conditions do not change as much as possible. It is possible to directly detect the influence of the electrode output density on the ratio of the cross-sectional area of the electric body and the coating area of the electrode layer.

このようにして得られた集電体の断面積と電極層の塗工面積との比率に対する電極重量出力密度の関係を図4に示す。
図4において、連続的に配置されている2種類の一連のドットの列A,Bは、各々、特定の条件の下で集電体203aの断面積と電極層203b及び203cの塗工面積との比率を変化させた場合に検出される電極重量出力密度の値を示す。2種類の一連のドットA,Bは、その一連の電極重量出力密度の値の中で、電極重量出力密度のピーク値における集電体の断面積と電極層の塗工面積との比率が最も大きい場合と、最も小さい場合とを示す列である。また、これら一連のドットA,Bの列以外のドットは、種々の条件において集電体の断面積と電極層の塗工面積との比率を変化させた場合の一連の電極重量出力密度の値の中のピーク値を示すものである。
FIG. 4 shows the relationship between the electrode weight output density and the ratio between the cross-sectional area of the current collector thus obtained and the coating area of the electrode layer.
In FIG. 4, a series of two types of consecutively arranged dots A 1 and B 1 are respectively applied to the cross-sectional area of the current collector 203a and the coating of the electrode layers 203b and 203c under specific conditions. The value of the electrode weight output density detected when the ratio with the area is changed is shown. Two series of dots A 1 and B 1 are the ratio of the cross-sectional area of the current collector to the coating area of the electrode layer in the peak value of the electrode weight output density in the series of electrode weight output density values. It is a column which shows the case where is the largest and the smallest. The dots other than the series of dots A 1 and B 1 are a series of electrode weight output densities when the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer is changed under various conditions. It shows the peak value among the values.

図4から明らかなように、電極重量出力密度が最高となる集電体の断面積と電極層の塗工面積との比率は、0.004%から0.006%の間に集中している。このことから、その他のパラメータがある程度変化しようとも、集電体の断面積と電極層の塗工面積との比率が0.004%〜0.006%までの間となるような構成とすることにより、正極板について、電極重量出力密度が最高か、あるいはほぼ最高に近いような電極板(正極板)を構成できる。   As is apparent from FIG. 4, the ratio of the cross-sectional area of the current collector that gives the highest electrode weight output density to the coating area of the electrode layer is concentrated between 0.004% and 0.006%. . Therefore, even if other parameters change to some extent, the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer is between 0.004% and 0.006%. Thus, with respect to the positive electrode plate, an electrode plate (positive electrode plate) having the highest electrode weight output density or nearly the highest electrode density can be configured.

また、正極板について、同様にパラメータを変化させて得られた集電体の断面積と電極層の塗工面積との比率に対する電極体積出力密度の関係を図5に示す。
図5においても、連続的に配置されている2種類のドットの列A,Bは、各々、特定の条件の下で集電体203aの断面積と電極層203b及び203cの塗工面積との比率を変化させた場合の電極体積出力密度の値の例であって、電極体積出力密度のピーク値における集電体の断面積と電極層の塗工面積との比率が最も大きい場合と、最も小さい場合とを示す列である。また、これらの連続的なドット列A,B以外のドットは、種々の条件における集電体の断面積と電極層の塗工面積との比率に対する電極体積出力密度の値の中のピーク値を示すものである。
FIG. 5 shows the relationship of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer obtained by similarly changing the parameters for the positive electrode plate.
Also in FIG. 5, two types of dot arrays A 2 and B 2 arranged continuously are respectively the cross-sectional area of the current collector 203a and the coating area of the electrode layers 203b and 203c under specific conditions. And the ratio of the cross-sectional area of the current collector and the coating area of the electrode layer at the peak value of the electrode volume output density is the largest. This is a column indicating the smallest case. Further, dots other than these continuous dot rows A 2 and B 2 are peaks in the value of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer under various conditions. Value.

図5から明らかなように、種々の条件において、電極体積出力密度が最高となる集電体の断面積と電極層の塗工面積との比率は、0.003%から0.006%の間に集中している。このことから、その他のパラメータがある程度変化しようとも、集電体の断面積と電極層の塗工面積との比率が0.003%〜0.006%の範囲となるような構成とすることにより、正極板について、電極体積出力密度が最高か、あるいはほぼ最高に近いような電極板(正極板)を構成できる。   As is apparent from FIG. 5, the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer, at which the electrode volumetric power density is highest under various conditions, is between 0.003% and 0.006%. Concentrate on. From this, even if other parameters change to some extent, the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer is in the range of 0.003% to 0.006%. As for the positive electrode plate, an electrode plate (positive electrode plate) having the highest or almost the highest electrode volume output density can be configured.

負極板については、集電体203aとしてのCu箔を用い、また電極層203b及び203cとして所望の負極材料を用いることにより、前述した正極板の場合と同様に、電極重力出力密度及び電極体積出力密度を検出できる。
負極板については、Cu箔の厚みHcを10μm〜15μmの範囲で、集電体余白部211及び電極タブ204を含む電極非形成部(総余白部)の長さLbを10mm〜50mmの範囲で、電極層203b及び203cの塗工量を5mg/cm〜30mg/cmの範囲で、集電体203aの厚みを含む電極板201全体の厚みHを60μm〜180μmの範囲で、また、電極層203b及び203cの比抵抗を2Ω〜20Ωで変化させて電極板(負極板)201を構成する。
そして、各条件において、前述した式により電極出力密度を求めるとともに、その構成における集電体203aの断面積と電極層203b及び203cの塗工面積との比率を検出する。
For the negative electrode plate, by using a Cu foil as the current collector 203a and using a desired negative electrode material as the electrode layers 203b and 203c, the electrode gravity output density and the electrode volume output are the same as in the case of the positive electrode plate described above. Can detect density.
For the negative electrode plate, the Cu foil thickness Hc is in the range of 10 μm to 15 μm, and the length Lb of the electrode non-formation portion (total blank portion) including the current collector blank portion 211 and the electrode tab 204 is in the range of 10 mm to 50 mm. , the range of coverage of the electrode layer 203b and 203c of 5mg / cm 2 ~30mg / cm 2 , the thickness H of the entire electrode plate 201 including the thickness of the current collector 203a in the range of 60Myuemu~180myuemu, also, the electrode The electrode plate (negative electrode plate) 201 is configured by changing the specific resistance of the layers 203b and 203c between 2Ω and 20Ω.
Under each condition, the electrode output density is obtained by the above-described equation, and the ratio between the cross-sectional area of the current collector 203a and the coating area of the electrode layers 203b and 203c in the configuration is detected.

このようにして得られた集電体の断面積と電極層の塗工面積との比率に対する電極重量出力密度の関係を図6に示す。
図6において、連続的に配置されている2種類の一連のドットの列A,Bは、各々、特定の条件の下で集電体203aの断面積と電極層203b及び203cの塗工面積との比率を変化させた場合に検出される電極重量出力密度の値を示す。2種類の一連のドットA,Bは、その一連の電極重量出力密度の値の中で、電極重量出力密度のピーク値における集電体の断面積と電極層の塗工面積との比率が最も大きい場合と、最も小さい場合とを示す列である。また、これら一連のドットの列A,B以外のドットは、種々の条件において集電体の断面積と電極層の塗工面積との比率を変化させた場合の一連の電極重量出力密度の値の中のピーク値を示すものである。
FIG. 6 shows the relationship between the electrode weight output density and the ratio between the cross-sectional area of the current collector thus obtained and the coating area of the electrode layer.
In FIG. 6, a series of two types of dot arrays A 3 and B 3 arranged in succession are respectively applied to the cross-sectional area of the current collector 203a and the coating of the electrode layers 203b and 203c under specific conditions. The value of the electrode weight output density detected when the ratio with the area is changed is shown. Two series of dots A 3 and B 3 are the ratio of the cross-sectional area of the current collector to the coating area of the electrode layer in the peak value of electrode weight output density in the series of electrode weight output density values. It is a column which shows the case where is the largest and the smallest. Further, these dots other than the series of dots A 3 and B 3 are a series of electrode weight output densities when the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer is changed under various conditions. It shows the peak value among the values.

図6から明らかなように、種々の条件において、電極重量出力密度が最高となる集電体の断面積と電極層の塗工面積との比率は、0.002%から0.004%の間に集中している。このことから、その他のパラメータがある程度変化しようとも、集電体の断面積と電極層の塗工面積との比率が0.002%〜0.004%までの間となるような構成とすることにより、負極板について、電極重量出力密度が最高か、あるいはほぼ最高に近いような電極板(負極板)を構成できる。   As is apparent from FIG. 6, the ratio of the cross-sectional area of the current collector and the coated area of the electrode layer where the electrode weight output density is maximum under various conditions is between 0.002% and 0.004%. Concentrate on. Therefore, even if other parameters change to some extent, the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer is between 0.002% and 0.004%. Thus, with respect to the negative electrode plate, an electrode plate (negative electrode plate) having the highest electrode weight output density or almost the highest value can be configured.

また、負極板について、同様にパラメータを変化させて得られた集電体の断面積と電極層の塗工面積との比率に対する電極体積出力密度の関係を図7に示す。
図7において、連続的に配置されている2種類の一連のドットの列A,Bは、各々、特定の条件の下で集電体203aの断面積と電極層203b及び203cの塗工面積との比率を変化させた場合の電極体積出力密度の値を示す。2種類の一連のドットA,Bは、その一連の電極体積出力密度の値の中で、電極体積出力密度のピーク値における集電体の断面積と電極層の塗工面積との比率が最も大きい場合と、最も小さい場合とを示す列である。また、これらの連続的なドット列A,B以外のドットは、種々の条件における集電体の断面積と電極層の塗工面積との比率に対する電極体積出力密度の値の中のピーク値を示すものである。
FIG. 7 shows the relationship of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector obtained by similarly changing the parameters and the coating area of the electrode layer for the negative electrode plate.
In FIG. 7, a series of two series of dots A 4 and B 4 arranged in succession are respectively applied to the cross-sectional area of the current collector 203a and the coating of the electrode layers 203b and 203c under specific conditions. The value of the electrode volume output density when the ratio with the area is changed is shown. Two series of dots A 4 and B 4 are the ratio of the cross-sectional area of the current collector to the coating area of the electrode layer in the peak value of the electrode volume output density in the series of electrode volume output density values. It is a column which shows the case where is the largest and the smallest. Further, dots other than these continuous dot rows A 4 and B 4 are peaks in the value of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer under various conditions. Value.

図7から明らかなように、種々の条件において、電極体積出力密度が最高となる集電体の断面積と電極層の塗工面積との比率は、0.002%から0.004%の間に集中している。このことから、その他のパラメータがある程度変化しようとも、集電体の断面積と電極層の塗工面積との比率が0.002%〜0.004%の範囲となるような構成とすることにより、負極板について、電極体積出力密度も最高か、あるいはほぼ最高に近いような電極板(負極板)を構成できる。   As is apparent from FIG. 7, the ratio of the cross-sectional area of the current collector and the coated area of the electrode layer, at which the electrode volumetric power density is the highest, under various conditions is between 0.002% and 0.004%. Concentrate on. From this, by setting the ratio of the cross-sectional area of the current collector to the coating area of the electrode layer in the range of 0.002% to 0.004%, even if other parameters change to some extent As for the negative electrode plate, an electrode plate (negative electrode plate) having the highest or almost the highest electrode volume output density can be formed.

なお、本実施形態は、本発明の理解を容易にするために記載されたものであって本発明を何ら限定するものではない。本実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含み、また任意好適な種々の改変が可能である。   In addition, this embodiment is described in order to make an understanding of this invention easy, and does not limit this invention at all. Each element disclosed in the present embodiment includes all design changes and equivalents belonging to the technical scope of the present invention, and various suitable modifications can be made.

図1は、本発明の一実施形態の薄型電池の全体斜視図である。FIG. 1 is an overall perspective view of a thin battery according to an embodiment of the present invention. 図2は、図1に示した薄型電池の断面図であって、図1のI−I線における断面図である。2 is a cross-sectional view of the thin battery shown in FIG. 1, and is a cross-sectional view taken along the line II of FIG. 図3は、図1に示した薄型電池に用いられる正極板及び負極板等の電極板の一般的な構成を示す図である。FIG. 3 is a diagram showing a general configuration of electrode plates such as a positive electrode plate and a negative electrode plate used in the thin battery shown in FIG. 図4は、正極板について集電体の断面積と電極層の塗工面積との割合に対する電極重量出力密度の関係を示す図である。FIG. 4 is a diagram showing the relationship of the electrode weight output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer for the positive electrode plate. 図5は、正極板について集電体の断面積と電極層の塗工面積との割合に対する電極体積出力密度の関係を示す図である。FIG. 5 is a diagram showing the relationship of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer for the positive electrode plate. 図6は、負極板について集電体の断面積と電極層の塗工面積との割合に対する電極重量出力密度の関係を示す図である。FIG. 6 is a diagram showing the relationship of the electrode weight output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer for the negative electrode plate. 図7は、負極板について集電体の断面積と電極層の塗工面積との割合に対する電極体積出力密度の関係を示す図である。FIG. 7 is a diagram showing the relationship of the electrode volume output density with respect to the ratio between the cross-sectional area of the current collector and the coating area of the electrode layer for the negative electrode plate.

符号の説明Explanation of symbols

10…薄型電池
101…正極板
101a…正極側集電体
101b、101c…正極層
102…セパレータ
103…負極板
103a…負極側集電体
103b、103c…負極層
104…正極タブ(正極端子)
105…負極タブ(負極端子)
106…上部外装部材
107…下部外装部材
108…発電要素
111…内部空間
201…電極板
203a…集電体
203b,203c…電極層
204…電極タブ
211…集電体余白部
DESCRIPTION OF SYMBOLS 10 ... Thin battery 101 ... Positive electrode plate 101a ... Positive electrode side collector 101b, 101c ... Positive electrode layer 102 ... Separator 103 ... Negative electrode plate 103a ... Negative electrode side collector 103b, 103c ... Negative electrode layer 104 ... Positive electrode tab (positive electrode terminal)
105 ... Negative electrode tab (negative electrode terminal)
DESCRIPTION OF SYMBOLS 106 ... Upper exterior member 107 ... Lower exterior member 108 ... Electric power generation element 111 ... Internal space 201 ... Electrode plate 203a ... Current collector 203b, 203c ... Electrode layer 204 ... Electrode tab 211 ... Current collector blank part

Claims (8)

矩形の正極集電体に正極活物質合剤による正極層を形成した正極板と、
矩形の負極集電体に負極活物質合剤による負極層を形成した負極板と、
前記正極集電体の集電体余白部に接続された正極端子と、
前記負極集電体の集電体余白部に接続された負極端子とを有する二次電池であって、
前記正極端子の断面積が、1セル当たりの前記正極層の総形成面積の0.003%以上0.006%未満であり、
前記正極集電体の断面積が、1集電体当たりの前記正極層の総形成面積の0.003%以上0.006%未満であることを特徴とする非水電解液二次電池。
A positive electrode plate in which a positive electrode layer made of a positive electrode active material mixture is formed on a rectangular positive electrode current collector;
A negative electrode plate in which a negative electrode layer made of a negative electrode active material mixture is formed on a rectangular negative electrode current collector;
A positive electrode terminal connected to a current collector blank portion of the positive electrode current collector;
A secondary battery having a negative terminal connected to the collector margin of the negative electrode current collector,
The cross-sectional area of the positive electrode terminal, Ri 0.006% or less der 0.003% or more of the total formation area of the positive electrode layer per cell,
The cross-sectional area of the positive electrode current collector, a non-aqueous electrolyte secondary battery, wherein said less than 0.006% or der Rukoto 0.003% or more of the total formation area of the positive electrode layer per current collector.
前記正極端子の断面積が、1セル当たりの前記正極層の総形成面積の0.004%以上0.006%未満であることを特徴とする請求項1に記載の非水電解液二次電池。 2. The nonaqueous electrolyte secondary battery according to claim 1, wherein a cross-sectional area of the positive electrode terminal is 0.004% or more and less than 0.006% of a total formation area of the positive electrode layer per cell. . 前記負極端子の断面積が、1セル当たりの前記負極層の総形成面積の0.002%以上0.004%以下であることを特徴とする請求項1又は2に記載の非水電解液二次電池。 3. The non-aqueous electrolyte 2 according to claim 1 , wherein a cross-sectional area of the negative electrode terminal is 0.002% or more and 0.004% or less of a total formation area of the negative electrode layer per cell. Next battery. 前記正極集電体の断面積が、1集電体当たりの前記正極層の総形成面積の0.004%以上0.006%未満であることを特徴とする請求項1〜3のいずれか一項に記載の非水電解液二次電池。 The cross-sectional area of the positive electrode current collector, any one of the preceding claims, characterized in that less than 0.004% or more 0.006% or the total formation area of the positive electrode layer per current collector one The non-aqueous electrolyte secondary battery according to item . 前記負極集電体の断面積が、1集電体当たりの前記負極層の総形成面積の0.002%以上0.004%以下であることを特徴とする請求項3又は4に記載の非水電解液二次電池。 Sectional area of the negative electrode collector is, non of claim 3 or 4 wherein the per current collector is not more than 0.004% or 0.002% or more of the total formation area of the negative electrode layer Water electrolyte secondary battery. 前記正極端子の断面積が、前記正極集電体の断面積の総和に等しいことを特徴とする請求項1〜のいずれか一項に記載の非水電解液二次電池。 The cross-sectional area of the positive electrode terminal, a non-aqueous electrolyte secondary battery according to any one of claims 1 to 5, characterized in that equal to the sum of the cross-sectional area of the positive electrode current collector. 前記負極端子の断面積が、前記負極集電体の断面積の総和に等しいことを特徴とする請求項1〜のいずれか一項に記載の非水電解液二次電池。 The cross-sectional area of the negative electrode terminal, a non-aqueous electrolyte secondary battery according to any one of claims 1 to 6, characterized in that equal to the sum of the cross-sectional area of the negative electrode current collector. 請求項1〜7のいずれか一項に記載の非水電解液二次電池が複数接続された電気自動車用組電池。The assembled battery for electric vehicles in which the nonaqueous electrolyte secondary battery as described in any one of Claims 1-7 was connected two or more.
JP2005142955A 2005-05-16 2005-05-16 Non-aqueous electrolyte secondary battery Active JP5167577B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005142955A JP5167577B2 (en) 2005-05-16 2005-05-16 Non-aqueous electrolyte secondary battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005142955A JP5167577B2 (en) 2005-05-16 2005-05-16 Non-aqueous electrolyte secondary battery

Publications (2)

Publication Number Publication Date
JP2006318867A JP2006318867A (en) 2006-11-24
JP5167577B2 true JP5167577B2 (en) 2013-03-21

Family

ID=37539332

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005142955A Active JP5167577B2 (en) 2005-05-16 2005-05-16 Non-aqueous electrolyte secondary battery

Country Status (1)

Country Link
JP (1) JP5167577B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5493265B2 (en) * 2007-12-03 2014-05-14 日産自動車株式会社 Batteries, battery packs and vehicles equipped with the same
EP3121873B1 (en) * 2014-03-18 2021-05-12 Vehicle Energy Japan Inc. Secondary battery
KR102392380B1 (en) * 2015-08-19 2022-04-29 삼성에스디아이 주식회사 Secondary battery

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2001006743A (en) * 1999-06-23 2001-01-12 Japan Storage Battery Co Ltd Battery
JP2001057179A (en) * 1999-08-18 2001-02-27 Sony Corp Secondary battery and case thereof
JP2002042886A (en) * 2000-07-21 2002-02-08 Mitsubishi Electric Corp Battery
JP2002190321A (en) * 2000-12-21 2002-07-05 Gs-Melcotec Co Ltd Nonaqueous electrolyte secondary cell
JP2002298827A (en) * 2001-03-28 2002-10-11 Osaka Gas Co Ltd Nonaqueous secondary battery
JP3729164B2 (en) * 2002-08-05 2005-12-21 日産自動車株式会社 Automotive battery
JP2004071438A (en) * 2002-08-08 2004-03-04 Maxell Hokuriku Seiki Kk Nonaqueous secondary battery
EP1655797B9 (en) * 2003-07-31 2024-03-20 NEC Corporation Lithium ion secondary cell

Also Published As

Publication number Publication date
JP2006318867A (en) 2006-11-24

Similar Documents

Publication Publication Date Title
JP5167703B2 (en) Battery electrode
JP4543710B2 (en) Assembled battery
US20190334205A1 (en) All-solid-state battery
US9312527B2 (en) Separator having heat resistant insulation layers
JP3799463B2 (en) Battery module
CN113097662B (en) Battery pole piece, preparation method thereof and lithium ion battery
US20150017542A1 (en) Laminated-structure battery
JP2008269972A (en) Nonaqueous secondary battery
JP5309909B2 (en) Secondary battery electrode
JP2006324143A (en) Secondary battery
JP2013004294A (en) Battery pack
JP2016207614A (en) Solid-state battery
JP2006185854A (en) Bipolar battery
JP2013016515A (en) Electrode for battery
JP2006079987A (en) Hybrid battery system
JP5167577B2 (en) Non-aqueous electrolyte secondary battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2006244833A (en) Lithium secondary battery and manufacturing method of the same
JP4887568B2 (en) Secondary battery
JP2005129393A (en) Secondary battery
JP2007048668A (en) Battery and battery pack
JP2010232011A (en) Secondary battery
JP5098278B2 (en) Assembled battery
JP2005166353A (en) Secondary battery, battery pack, composite battery pack, vehicle, and manufacturing method of secondary battery
KR20190100387A (en) Secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20080326

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20101208

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20111220

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120220

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121210

R150 Certificate of patent or registration of utility model

Ref document number: 5167577

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250