JP2002042886A - Battery - Google Patents

Battery

Info

Publication number
JP2002042886A
JP2002042886A JP2000220320A JP2000220320A JP2002042886A JP 2002042886 A JP2002042886 A JP 2002042886A JP 2000220320 A JP2000220320 A JP 2000220320A JP 2000220320 A JP2000220320 A JP 2000220320A JP 2002042886 A JP2002042886 A JP 2002042886A
Authority
JP
Japan
Prior art keywords
battery
conductive
positive electrode
active material
conductive material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2000220320A
Other languages
Japanese (ja)
Inventor
Makiko Kichise
万希子 吉瀬
Seiji Yoshioka
省二 吉岡
Hironori Kuriki
宏徳 栗木
Hiroaki Urushibata
広明 漆畑
Hisashi Shioda
久 塩田
Atsushi Arakane
淳 荒金
Takashi Nishimura
隆 西村
Shigeru Aihara
茂 相原
Daigo Takemura
大吾 竹村
Akira Shiragami
昭 白神
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP2000220320A priority Critical patent/JP2002042886A/en
Publication of JP2002042886A publication Critical patent/JP2002042886A/en
Pending legal-status Critical Current

Links

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Abstract

PROBLEM TO BE SOLVED: To provide a battery free from the problem of generating a large short circuit current due to the temperature rise of the battery caused by internal short circuit or the like, which leads to further rise of battery temperature by the heating to increase the short circuit current. SOLUTION: This battery is provided with an electrode containing an electron conductive material wherein resistance rises following the rise of temperature, and a conductive assistant. The electron conductive material of the electrode is composed of a conductive filler and crystalline resin, and the fusing point of the crystalline resin is set within a range of 90-160 deg.C. The conductive assistant contains a plurality of assistants of different grain diameters. The ratio of the conductive filler included in the electron conductive material is set to 40-70 pts.wt.

Description

【発明の詳細な説明】DETAILED DESCRIPTION OF THE INVENTION

【0001】[0001]

【発明の属する技術分野】この発明は、電池に関するも
のであり、詳しくは温度の上昇に伴い、その抵抗が大き
くなる電極を用いた電池に関するものである。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to a battery, and more particularly, to a battery using an electrode whose resistance increases with an increase in temperature.

【0002】[0002]

【従来の技術】近年、電子機器の発達にともない電源と
して使用されている電池の高容量化および高出力密度化
が進みつつある。これらの要求を満たす電池として、リ
チウムイオン二次電池が注目されている。このリチウム
イオン二次電池はエネルギー密度が高いという利点の反
面、非水電解液を使用することなどから安全性に対する
十分な対応策が必要とされる。
2. Description of the Related Art In recent years, with the development of electronic equipment, batteries used as power supplies have been increasing in capacity and output density. As a battery satisfying these requirements, a lithium ion secondary battery has attracted attention. This lithium ion secondary battery has the advantage of high energy density, but requires sufficient measures for safety due to the use of a non-aqueous electrolyte.

【0003】そこで上記安全に対する対応策として、例
えば特開平4−328278号公報に、円筒型電池の正
極キャップ部分に安全弁を設け、この安全弁により内部
圧力の上昇を逃がす方法が開示されている。また特開平
7−220755号公報に、外部短絡が生じた場合に短
絡による発熱に応じて抵抗が上昇して電流を遮断するP
TC(Positive Temperature C
oefficient)素子を電池に組み込む方法が開
示されている。このPTC素子は例えば、外部短絡によ
って電池が90℃以上の温度になると動作するように設
計することによって、電池異常時に最初に動作する安全
部品とすることができる。
[0003] As a countermeasure against the above-mentioned safety, for example, Japanese Patent Application Laid-Open No. 4-328278 discloses a method in which a safety valve is provided at a positive electrode cap portion of a cylindrical battery, and a rise in internal pressure is released by the safety valve. In Japanese Patent Application Laid-Open No. 7-220755, when an external short circuit occurs, the resistance rises in response to the heat generated by the short circuit and the current is cut off.
TC (Positive Temperature C)
A method of incorporating an effective device into a battery is disclosed. For example, by designing the PTC element to operate when the temperature of the battery reaches 90 ° C. or more due to an external short circuit, the PTC element can be used as a safety component that operates first when the battery is abnormal.

【0004】また、リチウム二次電池内部における短絡
が発生し温度が上昇した時に、正極と負極の間に配置し
た、ポリエチレンやポリプロピレン製のセパレータが軟
化または溶融することにより、セパレータの孔部が閉塞
され、これによってセパレータに含有された非水電解液
を押し出したり、封じ込めたりしてセパレータ部分のイ
オン電導性を低下させ、短絡電流を減衰させる方法もあ
る。
Also, when a short circuit occurs inside the lithium secondary battery and the temperature rises, the polyethylene or polypropylene separator disposed between the positive electrode and the negative electrode softens or melts, thereby blocking the pores of the separator. As a result, there is a method in which the non-aqueous electrolyte contained in the separator is extruded or sealed to lower the ionic conductivity of the separator portion and attenuate the short-circuit current.

【0005】また、上記リチウムイオン二次電池を製造
する工程は、例えば集電体となる銅箔などの基材上に、
黒鉛などの負極活物質と、PVDF(ポリフッ化ビニリ
デン)などのバインダと溶剤とを含むスラリーとを塗布
し、乾燥して薄膜を形成して負極を作製する工程、同様
に集電体となるアルミ箔などの基材上に薄膜を形成して
正極を作製する工程、およびこれらを組み立てる工程か
らなる。ここで正極は、例えばLiCoO2などの正極
活物質とバインダと導電助剤とを含むものからなる。前
記導電助剤とは正極活物質の電子伝導性が悪いとき、正
極の電子電導性をより高くするためのものであり、例え
ばカーボンブラック(例えばアセチレンブラック)、黒
鉛(例えば人造黒鉛KS−6:ロンザ社製)などが用い
られる。
[0005] Further, the step of manufacturing the above-mentioned lithium ion secondary battery includes, for example, forming a substrate such as a copper foil serving as a current collector on a base material.
A step of applying a negative electrode active material such as graphite, a slurry containing a binder such as PVDF (polyvinylidene fluoride) and a solvent, and drying to form a thin film to produce a negative electrode. Similarly, aluminum as a current collector It comprises a step of forming a thin film on a base material such as a foil to produce a positive electrode, and a step of assembling them. Here, the positive electrode includes, for example, a positive electrode active material such as LiCoO 2, a binder, and a conductive auxiliary. The conductive additive is used to increase the electron conductivity of the positive electrode when the electron conductivity of the positive electrode active material is poor. For example, carbon black (eg, acetylene black) and graphite (eg, artificial graphite KS-6: Lonza).

【0006】[0006]

【発明が解決しようとする課題】しかしながら、これら
の従来のリチウム二次電池は、次に示すような問題を有
している。 (1)安全弁が動作すると、大気中の水分が電池内部に
侵入し、リチウムが負極に存在すると発熱反応が起こる
恐れがある。 (2)PTC素子は外部短絡回路遮断動作による弊害は
ないが、短絡が発生し温度が上昇したとき、短絡電流の
増加を抑制できない。 (3)セパレータが発熱部分から離れている場合、前記
セパレータは必ずしも溶融するとは限らない。またセパ
レータが溶融する温度以上になった場合には、前記セパ
レータが流動し、正負極を電気的に絶縁する機能が失わ
れて短絡する。 (4)従来の正極、および負極の構成では、内部短絡な
どで温度が上昇したとき、大きな短絡電流を発生するた
め、この発熱により電池の温度が更に上昇し、さらに短
絡電流が増大する。
However, these conventional lithium secondary batteries have the following problems. (1) When the safety valve operates, moisture in the atmosphere enters the inside of the battery, and if lithium exists in the negative electrode, an exothermic reaction may occur. (2) Although the PTC element has no adverse effect due to the operation of shutting off the external short circuit, when the short circuit occurs and the temperature rises, the increase in the short circuit current cannot be suppressed. (3) When the separator is separated from the heat generating portion, the separator does not always melt. In addition, when the temperature becomes higher than the melting temperature of the separator, the separator flows and the function of electrically insulating the positive and negative electrodes is lost, resulting in a short circuit. (4) In the conventional configuration of the positive electrode and the negative electrode, when the temperature rises due to an internal short circuit or the like, a large short-circuit current is generated. Therefore, the heat generated further increases the battery temperature and further increases the short-circuit current.

【0007】この発明は上述の問題を解決するためにな
されたものであり、温度の上昇に伴い抵抗が上昇する電
極を用いる場合において、内部短絡などで温度が上昇し
て大きな短絡電流が発生し、この発熱により電池の温度
が更に上昇しても、短絡電流が増大することを抑制する
ことができる安全性の高い、しかも高性能な電池を得る
ことを目的とするものである。
SUMMARY OF THE INVENTION The present invention has been made to solve the above-mentioned problem. In the case of using an electrode whose resistance rises with a rise in temperature, the temperature rises due to an internal short-circuit and a large short-circuit current is generated. It is another object of the present invention to provide a highly safe and high-performance battery capable of suppressing an increase in short-circuit current even if the temperature of the battery further rises due to this heat generation.

【0008】[0008]

【課題を解決するための手段】この発明に係る第1の電
池は、活物質と、この活物質に接触する電子導電性材料
及び導電助剤とを含有する活物質層からなる電極を備
え、上記電子導電性材料は、導電性充填材と結晶性樹脂
とを有し、上記結晶性樹脂の融点を90℃〜160℃の
範囲内にしたものである。
A first battery according to the present invention comprises an electrode comprising an active material layer containing an active material, an electron conductive material and a conductive auxiliary in contact with the active material, The electronic conductive material has a conductive filler and a crystalline resin, and the melting point of the crystalline resin is in a range of 90 ° C to 160 ° C.

【0009】この発明に係る第2の電池は、上記第1の
発明の電池の電極に、粒径の異なる複数の導電助剤を含
有させたものである。
In a second battery according to the present invention, the electrode of the battery according to the first invention contains a plurality of conductive additives having different particle diameters.

【0010】この発明に係る第3の電池は、上記第1の
発明の電池の電極を正極と負極とから構成し、少なくと
も何れかの電極において、導電助剤を活物質層の固形成
分の略総重量の0.1〜10%の割合で含有させたもの
である。
In a third battery according to the present invention, the electrode of the battery according to the first invention is composed of a positive electrode and a negative electrode, and at least one of the electrodes is provided with a conductive auxiliary agent substantially equivalent to the solid component of the active material layer. It is contained at a ratio of 0.1 to 10% of the total weight.

【0011】この発明に係る第4の電池は、上記第1の
発明の電池の電極の電子導電性材料に含まれる導電性充
填材の割合を40重量部〜70重量部としたものであ
る。
A fourth battery according to the present invention is the battery according to the first invention, wherein the proportion of the conductive filler contained in the electronic conductive material of the electrode of the battery of the first invention is 40 parts by weight to 70 parts by weight.

【0012】この発明に係る第5の電池は、上記第1の
発明の電池の電極の導電性充填材をカーボン材料または
導電性非酸化物としたものである。
In a fifth battery according to the present invention, the conductive filler of the electrode of the battery of the first invention is made of a carbon material or a conductive non-oxide.

【0013】この発明に係る第6の電池は、上記第1の
発明の電池の電極の導電助剤の平均粒径を、電子導電性
材料の平均粒径の1/1000〜1/10にしたもので
ある。
In a sixth battery according to the present invention, the average particle size of the conductive auxiliary of the electrode of the battery of the first invention is set to 1/1000 to 1/10 of the average particle size of the electronic conductive material. Things.

【0014】[0014]

【発明の実施の形態】実施の形態1.図1はこの発明を
実施するための実施の形態1による電池の主要部の断面
模式図であり、図において、1は正極、2は負極、3は
正極1と負極2との間に設けられたセパレータ、4は正
極集電体、5は負極集電体、6は正極活物質層、7は負
極活物質層、8は正極活物質、9は電子導電性材料、1
0は導電助剤、11はバインダである。
DESCRIPTION OF THE PREFERRED EMBODIMENTS Embodiment 1 FIG. 1 is a schematic cross-sectional view of a main part of a battery according to a first embodiment for carrying out the present invention. In the drawing, 1 is a positive electrode, 2 is a negative electrode, and 3 is provided between the positive electrode 1 and the negative electrode 2. Separator, 4 is a positive electrode current collector, 5 is a negative electrode current collector, 6 is a positive electrode active material layer, 7 is a negative electrode active material layer, 8 is a positive electrode active material, 9 is an electron conductive material,
0 is a conductive additive, and 11 is a binder.

【0015】この電池において、電極は正極1および負
極2からなり、正極1は例えばアルミニウムなどの金属
膜からなる正極集電体4表面上に正極活物質層6を形成
したものであり、負極2は例えば銅などの金属膜からな
る負極集電体5表面上に、カーボン粒子などの負極活物
質をバインダで成形した負極活物質層7を形成したもの
である。セパレータ3は例えばリチウムイオンを含有す
る電解液を保持したものであり、固体電解質型リチウム
電池では、イオン伝導性のある固体高分子を、ゲル電解
質リチウム電池では、イオン伝導性のあるゲル状固体高
分子を使用する。さらに、この電池の正極活物質層6
は、正極活物質8と電子導電性材料9と導電助剤10と
をバインダ11により結合したものを成形してあり、電
子導電性材料9と導電助剤10とを合わせた量は、正極
活物質8の100重量部に対して1〜20重量部の範囲
にある。
In this battery, the electrode comprises a positive electrode 1 and a negative electrode 2. The positive electrode 1 has a positive electrode active material layer 6 formed on the surface of a positive electrode current collector 4 made of a metal film such as aluminum. Is formed by forming a negative electrode active material layer 7 formed by molding a negative electrode active material such as carbon particles with a binder on the surface of a negative electrode current collector 5 made of a metal film such as copper. The separator 3 holds, for example, an electrolytic solution containing lithium ions. For the solid electrolyte type lithium battery, an ion conductive solid polymer is used. For the gel electrolyte lithium battery, an ion conductive gel solid solid is used. Use molecules. Further, the positive electrode active material layer 6 of this battery
Is formed by bonding a positive electrode active material 8, an electron conductive material 9, and a conductive auxiliary agent 10 with a binder 11, and the total amount of the electron conductive material 9 and the conductive auxiliary agent 10 is It is in the range of 1 to 20 parts by weight per 100 parts by weight of substance 8.

【0016】正極活物質8は導電性が低いものであり、
電子導電性材料9と導電助剤10によって正極活物質8
と集電体4との電子的導通を確保している。粒径の大き
な電子導電性材料9は、電子伝導の根幹の経路を形成
し、粒径の小さな導電助剤10は正極活物質8の周辺全
体に分散し、正極活物質8のすみずみから集電してい
る。
The positive electrode active material 8 has low conductivity,
The positive electrode active material 8 is formed by the electron conductive material 9 and the conductive auxiliary agent 10.
And the current collector 4 is electrically connected. The electron conductive material 9 having a large particle size forms a fundamental path of electron conduction, and the conductive auxiliary agent 10 having a small particle size is dispersed throughout the periphery of the positive electrode active material 8 and collected from every corner of the positive electrode active material 8. It is charging.

【0017】さらに電子導電性材料9は導電性充填材と
結晶性樹脂とを含有するものであり、温度が90℃〜1
60℃範囲付近で、その抵抗値の正の変化率が大きくな
る、いわゆるPTC特性を有するものである。
Further, the electronic conductive material 9 contains a conductive filler and a crystalline resin, and has a temperature of 90.degree.
It has a so-called PTC characteristic in which the positive rate of change of the resistance value becomes large near the 60 ° C. range.

【0018】導電性充填材には、例えばカーボン材料、
導電性非酸化物といったものを使用することができる。
カーボン材料には、例えばカーボンブラック、グラファ
イト、カーボンファイバー、金属炭化物等が使用可能で
あり、カーボンブラックには、例えばアセチレンブラッ
ク、ファーネスブラック、ランプブラック等がある。ま
た、導電性非酸化物には、例えば金属炭化物、金属窒化
物、金属ケイ素化物、金属ホウ化物といったものを使用
することができ、金属炭化物には、例えば、TiC、Z
rC、VC、NbC、TaC、Mo2C、WC、B4C、
Cr32等がある。金属窒化物には、例えばTiN、Z
rN、VN、NbN、TaN、Cr2N等があり、金属
ホウ化物には、例えばTiB2、ZrB2、NbB2、T
aB2、CrB、MoB、WB等がある。
Examples of the conductive filler include a carbon material,
Materials such as conductive non-oxides can be used.
As the carbon material, for example, carbon black, graphite, carbon fiber, metal carbide, and the like can be used. Examples of the carbon black include acetylene black, furnace black, lamp black, and the like. Further, as the conductive non-oxide, for example, a metal carbide, a metal nitride, a metal silicide, a metal boride, and the like can be used. As the metal carbide, for example, TiC, Z
rC, VC, NbC, TaC, Mo 2 C, WC, B 4 C,
Cr 3 C 2 and the like. Metal nitrides include, for example, TiN, Z
There are rN, VN, NbN, TaN, Cr 2 N and the like, and metal borides include, for example, TiB 2 , ZrB 2 , NbB 2 , Tb
aB 2 , CrB, MoB, WB and the like.

【0019】また、結晶性樹脂とは、例えば高密度ポリ
エチレン(融点:130℃〜140℃)、低密度ポリエ
チレン(融点:110℃〜112℃)、ポリウレタンエ
ラストマー(融点:140℃〜160℃)、ポリ塩化ビ
ニル(融点:約145℃)等の重合体であり、これらは
その融点が90℃〜160℃の範囲にある。
The crystalline resin includes, for example, high density polyethylene (melting point: 130 ° C. to 140 ° C.), low density polyethylene (melting point: 110 ° C. to 112 ° C.), polyurethane elastomer (melting point: 140 ° C. to 160 ° C.), Polymers such as polyvinyl chloride (melting point: about 145 ° C.), which have melting points in the range of 90 ° C. to 160 ° C.

【0020】電子導電性材料9において、PTCの機能
が発現する温度は電子導電性材料9に含まれる結晶性樹
脂の融点に依存するため、結晶性樹脂の材質を変えるこ
とにより、PTCの機能が発現する温度を90℃〜16
0℃の間の温度に調節することが可能である。
In the electron conductive material 9, the temperature at which the function of the PTC is exhibited depends on the melting point of the crystalline resin contained in the electron conductive material 9. Therefore, by changing the material of the crystalline resin, the function of the PTC is improved. The developing temperature is 90 ° C. to 16
It is possible to adjust the temperature to between 0 ° C.

【0021】このPTC特性は、一度PTCの機能が発
現した後温度を下げたときに、もとの抵抗値にもどるよ
うな可逆性がある物でも良いし、可逆性が無いものでも
良い。
The PTC characteristic may be a reversible material that returns to the original resistance value when the temperature is lowered after the function of the PTC has been developed once, or may have no reversibility.

【0022】このPTCの機能が発現する温度が90℃
以下であることは安全性の確保という観点からは好まし
いが、電池が通常保管または使用される可能性のある温
度範囲において電極の抵抗値が上昇することになるの
で、負荷率特性などにおいて電池の性能低下が起こる。
このPTCの機能が発現する温度が160℃を越す場合
には、電池の内部温度がこの温度まで上昇することにな
り、安全面の観点から好ましくない。従って、電子導電
性材料9において、PTCの機能が発現する温度は90
℃から160℃の範囲にあるように設計する。PTCの
機能が発現する温度は結晶性樹脂の融点に依存するた
め、結晶性樹脂はその融点が90℃から160℃の範囲
にあるものを選択する。
The temperature at which the function of the PTC is developed is 90 ° C.
Although the following is preferable from the viewpoint of ensuring safety, the resistance value of the electrode increases in a temperature range where the battery can be normally stored or used. Performance degradation occurs.
If the temperature at which this PTC function is developed exceeds 160 ° C., the internal temperature of the battery will rise to this temperature, which is not preferable from the viewpoint of safety. Therefore, in the electronic conductive material 9, the temperature at which the function of PTC is developed is 90.
Design to be in the range of ° C to 160 ° C. Since the temperature at which the function of the PTC is developed depends on the melting point of the crystalline resin, a crystalline resin having a melting point in the range of 90 ° C to 160 ° C is selected.

【0023】また、電子導電性材料9において、正常
時、すなわち、PTCの機能が発現する前における電極
の抵抗の大きさは、正極活物質層6全体に対する電子導
電性材料9と導電助剤10の割合を変えることにより調
節することができる。この電子導電性材料9は、その中
に含まれる結晶性樹脂が軟化、溶融し、体積膨張するこ
とによりそれ自身の抵抗値が上昇するため、PTCの機
能が発現する。
In the electron conductive material 9, the magnitude of the resistance of the electrode in a normal state, that is, before the PTC function is developed, depends on the electron conductive material 9 and the conductive auxiliary agent 10 with respect to the entire positive electrode active material layer 6. Can be adjusted by changing the ratio. In the electronic conductive material 9, the crystalline resin contained therein softens, melts, and expands in volume, thereby increasing its own resistance value, thereby exhibiting the function of PTC.

【0024】図1に示した正極1は、正極活物質層6に
含まれる電子導電性材料9自身がPTC特性を有するの
で、正極1の温度が電子導電性材料9において、PTC
の機能が発現する温度よりも大きくなると、正極活物質
層6の抵抗値が増大する。また、電子導電性材料のみで
は困難な細部の集電を、添加した導電助剤10で行って
いる。これにより、電極の電子抵抗が減少し、充放電特
性等の電池特性が向上する。
In the positive electrode 1 shown in FIG. 1, since the electron conductive material 9 itself contained in the positive electrode active material layer 6 has PTC characteristics, the temperature of the positive electrode 1 is lower than the PTC temperature in the electron conductive material 9.
When the temperature is higher than the temperature at which the function of (1) is developed, the resistance value of the positive electrode active material layer 6 increases. In addition, current collection in small details, which is difficult only with the electronic conductive material, is performed by the added conductive assistant 10. Thereby, the electronic resistance of the electrode is reduced, and the battery characteristics such as charge and discharge characteristics are improved.

【0025】尚、本実施の形態において、正極活物質層
6は、正極活物質8と電子導電性材料9と導電助剤10
とバインダ11とを有するものを例に説明したがこれに
限定されるものではない。
In the present embodiment, the positive electrode active material layer 6 is composed of the positive electrode active material 8, the electron conductive material 9, and the conductive auxiliary agent 10.
The example having the binder and the binder 11 has been described as an example, but the invention is not limited to this.

【0026】また、電子導電性材料9は粒子としたが、
その形状はファイバー状、鱗片状の小片であっても良
い。要は、隣り合う正極活物質8の間に電子導電性材料
9が位置することができ、かつ、電子導電性材料9及び
正極活物質8の周辺に導電助剤が存在することができる
ような大きさを有するものであればその形状はどのよう
なものであっても良い。
Although the electron conductive material 9 is a particle,
The shape may be a fiber-like or scale-like small piece. The point is that the electron conductive material 9 can be located between the adjacent positive electrode active materials 8 and the conductive auxiliary can be present around the electron conductive material 9 and the positive electrode active material 8. Any shape may be used as long as it has a size.

【0027】また、本実施の形態において、特に正極1
における正極活物質層6に導電性充填剤と結晶性樹脂と
を含む電子導電性材料及び導電助剤の構成を示したが、
これは正極に限定されるものではなく、負極2に本実施
の形態の構成を適用し、これを用いて電池を構成しても
同様の効果を奏する。
In the present embodiment, in particular, the positive electrode 1
The structure of the electron conductive material and the conductive auxiliary agent including the conductive filler and the crystalline resin in the positive electrode active material layer 6 is shown,
This is not limited to the positive electrode, and the same effect can be obtained by applying the configuration of the present embodiment to the negative electrode 2 and configuring a battery using the same.

【0028】次に、正極1の製造方法、負極2の製造方
法の一例、正極1と負極2を用いた電池の製造方法の一
例を説明する。 (正極の製造方法)室温における体積固有抵抗が十分低
く、90℃〜160℃の間の所定の温度よりも高い温度
において体積固有抵抗が大きな電子導電性材料(例えば
導電性充填材と結晶性樹脂とを所定の割合で混練したも
の)を細かく粉砕し電子導電性材料の微粒子を得る。
Next, an example of a method of manufacturing the positive electrode 1, an example of a method of manufacturing the negative electrode 2, and an example of a method of manufacturing a battery using the positive electrode 1 and the negative electrode 2 will be described. (Method of Manufacturing Positive Electrode) An electronic conductive material having a sufficiently low volume resistivity at room temperature and a large volume resistivity at a temperature higher than a predetermined temperature between 90 ° C and 160 ° C (for example, a conductive filler and a crystalline resin). Are kneaded at a predetermined ratio) to obtain fine particles of an electronic conductive material.

【0029】電子導電性材料を粉砕する方法として、圧
縮した空気または圧縮した窒素またはアルゴン等の不活
性ガスを使用して粉砕することが望ましい。特に粒径を
小さくする場合には上述したものに超音速の気流を発生
させ、この気流中において、電子導電性材料の粉体を互
いに衝突させるか、もしくはこの粉体を壁面(図示せ
ず)に衝突させることにより、粒径の小さい電子導電性
材料の微粒子を得ることができる(これにより微粒子を
得る方式をジェットミル方式と称す)。
As a method for pulverizing the electronic conductive material, it is preferable to use compressed air or compressed inert gas such as nitrogen or argon. In particular, when the particle size is reduced, a supersonic airflow is generated in the above-described one, and in this airflow, powders of the electronic conductive material collide with each other or the powders are applied to a wall surface (not shown). Thus, fine particles of an electron conductive material having a small particle diameter can be obtained (the method of obtaining fine particles by this method is called a jet mill method).

【0030】また、電子導電性材料の微粒子の粒径を必
要以上に小さくする必要が無い場合であれば、圧縮空気
を用いるかわりに、電子導電性材料をボールミルに入れ
て回転して粉砕するのでも良い(これにより微粒子を得
る方式をボールミル方式と称す)。
If it is not necessary to reduce the particle size of the fine particles of the electronically conductive material more than necessary, instead of using compressed air, the electronically conductive material is put into a ball mill and rotated to grind. (A method of obtaining fine particles by this method is called a ball mill method).

【0031】次に、この電子導電性材料の微粒子、正極
活物質(例えばLiCoO2)、バインダ(例えば、P
VDF)、導電助剤(例えばアセチレンブラック)を分
散媒(例えばN−メチルピロリドン(以下、NMPと略
す))に分散させることにより調整し、正極活物質ペー
ストを得た。
Next, the fine particles of the electron conductive material, the positive electrode active material (eg, LiCoO 2), and the binder (eg, P
VDF) and a conductive additive (for example, acetylene black) were dispersed in a dispersion medium (for example, N-methylpyrrolidone (hereinafter abbreviated as NMP)) to prepare a positive electrode active material paste.

【0032】次に、上述の正極活物質ペーストを、正極
集電体4となる集電体基材(例えば所定の厚さを有する
金属膜)上に塗布した。
Next, the above-mentioned positive electrode active material paste was applied on a current collector base material (for example, a metal film having a predetermined thickness) to be the positive electrode current collector 4.

【0033】さらに、これを乾燥させた後、所定の温度
でかつ所定の面圧でプレスし、所望する厚さを有する正
極活物質層6を形成し、正極1を得た。
Further, after drying this, it was pressed at a predetermined temperature and a predetermined surface pressure to form a positive electrode active material layer 6 having a desired thickness, and a positive electrode 1 was obtained.

【0034】ここで示した電極(詳しくは正極1)の製
造方法では、所定の温度、所定の面圧でプレスしている
ため、電子導電性材料9と活物質(ここでは正極活物
質)との密着性が良くなり、正常時における電極の抵抗
を低くすることができる。つまり、電極をプレスすると
きの温度、圧力(ここでは面圧)を調節することによ
り、製造される電極の抵抗を調節することができる。
In the manufacturing method of the electrode (specifically, the positive electrode 1) shown here, since the pressing is performed at a predetermined temperature and a predetermined surface pressure, the electronic conductive material 9 and the active material (here, the positive electrode active material) are pressed. Of the electrode can be improved, and the resistance of the electrode in a normal state can be reduced. That is, the resistance of the manufactured electrode can be adjusted by adjusting the temperature and the pressure (here, the surface pressure) when the electrode is pressed.

【0035】ここでは、所定の温度でかつ所定の面圧で
正極活物質ペーストをプレスする例を説明したが、所定
の面圧で正極活物質ペーストをプレスした後、所定の温
度(望ましくは融点または融点付近の温度)で正極活物
質ペーストを加熱することにより、正極1を得るにして
もよい。
Here, an example in which the positive electrode active material paste is pressed at a predetermined temperature and a predetermined surface pressure has been described. However, after the positive electrode active material paste is pressed at a predetermined surface pressure, a predetermined temperature (preferably a melting point) is used. Alternatively, the positive electrode 1 may be obtained by heating the positive electrode active material paste at a temperature close to the melting point.

【0036】次に、負極2の製造方法について説明す
る。 (負極の製造方法)メソフェーズカーボンマイクロビー
ズ(以下、MCMBと略す)、PVDFをNMPに分散
して作製した負極活物質ペーストを、負極集電体となる
集電体基材(例えば所定の厚さを有する金属膜)上に塗
布し、負極活物質層7を形成した負極2を得ることがで
きる。
Next, a method for manufacturing the negative electrode 2 will be described. (Method of Manufacturing Negative Electrode) Mesophase carbon microbeads (hereinafter abbreviated as MCMB) and a negative electrode active material paste prepared by dispersing PVDF in NMP are used as a negative electrode current collector base material (for example, a predetermined thickness). The negative electrode 2 can be obtained by applying the negative electrode active material layer 7 on a metal film having a negative electrode active material layer 7).

【0037】次に、電池の製造方法について説明する。 (電池の製造方法)例えば多孔性のポリプロピレンシー
トを、上述の方法により得られた2つの電極、すなわち
正極と負極との間に挟み、両極を貼りあわせることによ
り、正極、負極を有する一対の電池を得ることができ
る。このような方法により得られる電池は、正極が温度
の上昇に伴い抵抗が上昇する特性を有するものであるた
め、電池の外部または内部で短絡事故が発生し、電池の
温度が上昇しても、短絡電流の上昇を抑制するため電池
自身の安全性が確保されている。
Next, a method for manufacturing a battery will be described. (Battery manufacturing method) For example, a porous polypropylene sheet is sandwiched between two electrodes obtained by the above-described method, that is, a positive electrode and a negative electrode, and both electrodes are attached to each other to form a pair of batteries having a positive electrode and a negative electrode. Can be obtained. Since the battery obtained by such a method has a characteristic in which the resistance of the positive electrode increases as the temperature increases, a short-circuit accident occurs outside or inside the battery, and even if the temperature of the battery increases, In order to suppress an increase in short-circuit current, the safety of the battery itself is ensured.

【0038】実施の形態2.上記実施の形態1における
電極に含有させる導電助剤10を、複数種類混合して電
池を作製した。本実施の形態における電池は、粒径の異
なる導電助剤を電極に含有させたので、大きな粒径の導
電助剤により電極を容易に成形でき、小さな粒径の導電
助剤により集電効果を向上させることができる。
Embodiment 2 A battery was prepared by mixing a plurality of types of the conductive assistants 10 contained in the electrode in the first embodiment. In the battery according to the present embodiment, since the conductive additives having different particle diameters are contained in the electrodes, the electrodes can be easily formed with the conductive aids having a large particle diameter, and the current collecting effect can be obtained with the conductive aids having a small particle diameter. Can be improved.

【0039】実施の形態3.上記実施の形態1におい
て、電極に含有させる導電助剤10を、活物質層におけ
る揮発成分を除いた全ての固形成分の略総重量の0.1
〜10%の割合で含有させて電池を作製した。本実施の
形態における電池は、導電助剤を0.1%以上含有する
ことにより、電極の集電効率を増加させるのでサイクル
特性が良好な電池が得られる。また、導電助剤の割合が
10%以下なのでPTC機能が効率良く働き短絡電流を
低く抑えることができる。従って電池特性と安全性の両
方が確保される。
Embodiment 3 In the first embodiment, the conductive auxiliary agent 10 contained in the electrode is 0.1% of substantially the total weight of all solid components excluding volatile components in the active material layer.
A battery was prepared by containing the battery in a ratio of 10% to 10%. The battery in the present embodiment contains 0.1% or more of the conductive additive, so that the current collection efficiency of the electrode is increased, so that a battery having good cycle characteristics can be obtained. In addition, since the ratio of the conductive assistant is 10% or less, the PTC function works efficiently, and the short-circuit current can be reduced. Therefore, both battery characteristics and safety are ensured.

【0040】実施の形態4.上記実施の形態1におい
て、電子導電性材料に含まれる導電性充填材の割合を4
0重量部〜70重量部として電池を作製した。本実施の
形態における電池は、電子導電性材料に含まれる導電性
充填剤の割合が40重量部以上なので、電子導電性材料
自体の電子抵抗を低く抑えることができる。したがって
電極の電子抵抗が低く、電池の放電容量値を高くするこ
とができる。また、70重量部以下なのでPTC機能が
十分働き、短絡試験時の短絡電流値を低くすることがで
きる。
Embodiment 4 FIG. In the first embodiment, the ratio of the conductive filler contained in the electronic conductive material is set to 4
A battery was prepared with 0 to 70 parts by weight. In the battery according to the present embodiment, since the proportion of the conductive filler contained in the electronic conductive material is 40 parts by weight or more, the electronic resistance of the electronic conductive material itself can be reduced. Therefore, the electronic resistance of the electrode is low, and the discharge capacity value of the battery can be increased. In addition, since it is 70 parts by weight or less, the PTC function works satisfactorily, and the short-circuit current value during the short-circuit test can be reduced.

【0041】実施の形態5.上記実施の形態1におい
て、電極に含有させる導電助剤10の平均粒径が、電子
導電性材料の平均粒径の1/1000〜1/10となる
ようにして電池を作製した。本実施の形態における電池
は、導電助剤の平均粒径が電子導電性材料の平均粒径の
1/1000〜1/10なので、適度な粒数の導電助剤
が活物質と電子導電性材料との隙間及び活物質同士の隙
間にはいり細部の集電を効率良く行えるので、短絡電流
値が低くかつ電池特性の良い安全な電池が得られた。
Embodiment 5 FIG. In the first embodiment, the battery was manufactured such that the average particle size of the conductive auxiliary agent 10 contained in the electrode was 1/1000 to 1/10 of the average particle size of the electronic conductive material. In the battery of the present embodiment, the average particle size of the conductive additive is 1/1000 to 1/10 of the average particle size of the electronic conductive material. In this case, the current can be efficiently collected in the gap between the active material and the gap between the active materials, so that a safe battery having a low short-circuit current value and good battery characteristics can be obtained.

【0042】[0042]

【実施例】実施例1.以下、さらに具体的な本発明の実
施例を示す。尚、本発明がこれら実施例に限定されるも
のではない。 (正極の製造方法)室温における体積固有抵抗が0.2
(Ω・cm)、135℃における体積固有抵抗が20
(Ω・cm)の特性を有する電子導電性材料(例えばカー
ボンブラックを60重量部、ポリエチレンを40重量部
の割合で混練したもの)をジェットミル方式により細か
く粉砕する。
[Embodiment 1] Hereinafter, more specific examples of the present invention will be described. Note that the present invention is not limited to these examples. (Method of manufacturing positive electrode) Volume resistivity at room temperature is 0.2
(Ω · cm) Volume resistivity at 135 ° C. is 20
An electronic conductive material having characteristics of (Ω · cm) (for example, a mixture of 60 parts by weight of carbon black and 40 parts by weight of polyethylene) is finely pulverized by a jet mill method.

【0043】次に、この微粒子を12重量部、正極活物
質(例えばLiCoO2)を83.5重量部、導電助剤
として、カーボン(例えばアセチレンブラック)を0.
5重量部、バインダー(例えばPVDF)4重量部を分
散媒であるNMPに分散させることにより調整し、正極
活物質ペーストを得る。
Next, 12 parts by weight of these fine particles, 83.5 parts by weight of a positive electrode active material (eg, LiCoO 2), and 0.1% of carbon (eg, acetylene black) as a conductive aid.
5 parts by weight and 4 parts by weight of a binder (for example, PVDF) are adjusted by dispersing them in NMP as a dispersion medium to obtain a positive electrode active material paste.

【0044】次に、上述の正極活物質ペーストを、正極
集電体4となる厚さ20μmの金属膜(ここではアルミ
ニウム箔)上にドクターブレード法にて塗布した。さら
に、80℃で乾燥した後、所定の温度(例えば室温)で
かつ所定の面圧(例えば2ton/cm2)でプレス
し、厚さ約70μmの正極活物質層6を形成し、正極1
を得た。
Next, the above-mentioned positive electrode active material paste was applied by a doctor blade method on a 20 μm-thick metal film (here, aluminum foil) serving as the positive electrode current collector 4. Further, after drying at 80 ° C., pressing is performed at a predetermined temperature (for example, room temperature) and a predetermined surface pressure (for example, 2 ton / cm 2) to form a positive electrode active material layer 6 having a thickness of about 70 μm.
I got

【0045】(負極の製造方法)MCMB90重量部、
PVDF10重量部をNMPに分散して作製した負極活
物質ペーストを、厚さ16μmの銅箔からなる負極集電
体上に、ドクターブレード法にて塗布し、負極活物質層
7を形成した負極2を作製した。 (電池の製造方法)多孔性のポリプロピレンシート(ヘ
キスト社製、商品名;セルガード#2400)を、上述
の方法により得られた正極と負極の間に挟み両極を貼り
合わせることにより、正極、負極を有する一対の電池を
得た。
(Method of manufacturing negative electrode) 90 parts by weight of MCMB
A negative electrode active material paste prepared by dispersing 10 parts by weight of PVDF in NMP was coated on a negative electrode current collector made of a copper foil having a thickness of 16 μm by a doctor blade method to form a negative electrode active material layer 7. Was prepared. (Battery manufacturing method) A porous polypropylene sheet (trade name; Celgard # 2400, manufactured by Hoechst) is sandwiched between the positive electrode and the negative electrode obtained by the above-described method, and the positive electrode and the negative electrode are bonded. Having a pair of batteries.

【0046】(電池の評価)本発明の電池の評価を行う
ため以下に示すような方法を用いて評価を行った。 (容量試験)作製した電極の正極は65mm×38m
m、負極は71mm×44mmの大きさに切断し、セパ
レータ3として用いる多孔性のポリプロピレンシート
(ヘキスト社製、商品名:セルガード#2400)を、
正極と負極の間に挟み両極を貼りあわせたものを素電池
とした。この素電池の正極、負極の集電端子をそれぞれ
スポット溶接にて取り付け、これをアルミラミネートシ
ートを用いて作製した袋に入れ、エチレンカーボネート
とジエチルカーボネートの混合溶媒(モル比1:1)に
6フッ化リン酸リチウムを1.0(mol/dm3)の
濃度で溶解した電解液を注入した後、熱融着で封口して
電池とした。この電池の室温での充放電試験を実施し
た。 (短絡試験)また、上記容量試験と同様に作製した電池
を80mAで4.2Vになるまで室温で充電した。充電
終了後、電池の温度を室温から徐々に上昇させ、所定の
温度で正極と負極を短絡させ、その時の電流値の測定を
行った。
(Evaluation of Battery) In order to evaluate the battery of the present invention, evaluation was performed using the following method. (Capacity test) The positive electrode of the prepared electrode is 65 mm x 38 m
m, the negative electrode was cut into a size of 71 mm × 44 mm, and a porous polypropylene sheet (manufactured by Hoechst, trade name: Celgard # 2400) used as the separator 3 was
A unit cell was obtained by sandwiching both electrodes between the positive electrode and the negative electrode. The current collecting terminals of the positive electrode and the negative electrode of this unit cell were respectively attached by spot welding, and these were put into a bag made of an aluminum laminate sheet, and mixed with a mixed solvent of ethylene carbonate and diethyl carbonate (molar ratio: 1: 1). After injecting an electrolytic solution in which lithium fluorophosphate was dissolved at a concentration of 1.0 (mol / dm 3 ), the battery was sealed by heat sealing to obtain a battery. A charge / discharge test at room temperature of this battery was performed. (Short Circuit Test) Also, a battery prepared in the same manner as in the above capacity test was charged at room temperature until the voltage became 4.2 V at 80 mA. After completion of charging, the temperature of the battery was gradually raised from room temperature, the positive electrode and the negative electrode were short-circuited at a predetermined temperature, and the current value at that time was measured.

【0047】比較例1.比較のために、導電助剤は添加
せず、電子導電性材料のみを添加して製造した。本比較
例において、導電助剤を添加しないことを除けば、正極
の製造方法、負極の製造方法、電池の製造方法及び電池
の評価方法は実施例1に示したものと同じである。
Comparative Example 1 For comparison, a conductive auxiliary was not added, and only an electronic conductive material was added. In this comparative example, the method for manufacturing the positive electrode, the method for manufacturing the negative electrode, the method for manufacturing the battery, and the method for evaluating the battery were the same as those shown in Example 1 except that no conductive auxiliary was added.

【0048】比較例2.さらに比較のために、実施例1
の正極の製造方法において、電子導電性材料を添加せ
ず、導電助剤のみを添加して製造した。本比較例におい
て、電極が電子導電材料を含有しないことを除けば、正
極の製造方法、負極の製造方法、電池の製造方法及び電
池の評価方法は実施例1に示したものと同じである。
Comparative Example 2 For further comparison, Example 1
In the method for producing a positive electrode of the above, the production was carried out by adding only a conductive auxiliary without adding an electron conductive material. In this comparative example, the method for manufacturing a positive electrode, the method for manufacturing a negative electrode, the method for manufacturing a battery, and the method for evaluating a battery are the same as those shown in Example 1, except that the electrode does not contain an electronic conductive material.

【0049】図2は、上記実施例1、比較例1、比較例
2に示した電池の各温度における短絡試験時の最大短絡
電流を示した図である。図3は、上記実施例1、比較例
1、比較例2に示した電池の放電電流値に対する放電容
量値を示した図である。ここでそれぞれの放電容量値は
(1/4)C(1Cは電池の容量を単位時間で放電する
のに必要な電流値)における放電容量を100%とした
時のそれぞれの放電電流値における放電容量値を示して
いる。
FIG. 2 is a diagram showing the maximum short-circuit current at the time of the short-circuit test at each temperature of the batteries shown in Example 1, Comparative Example 1, and Comparative Example 2. FIG. 3 is a diagram showing a discharge capacity value with respect to a discharge current value of the batteries shown in Example 1, Comparative Example 1, and Comparative Example 2. Here, each discharge capacity value is a discharge at each discharge current value when the discharge capacity at (1/4) C (1C is a current value required to discharge the battery capacity in unit time) is 100%. Shows the capacitance value.

【0050】図3に示すように、比較例1は電子導電性
材料以外の導電助剤を含まないため電池の電子抵抗が高
く、2Cなどといった高放電電流時における放電容量値
が低い。また、図2において、実施例1と比較例2とを
比較すると、比較例2では、電極は温度上昇にともなっ
て抵抗が増大する特性をもった電子導電性材料を含まな
いため、温度が上昇しても電極の抵抗が上昇しないので
電池の短絡電流もほとんど減少しない。これに比し、実
施例1の電極内には活物質、電子導電性材料、導電助
剤、バインダが所定の割合で混合されているので、この
電極を用いて電池を構成すると、電池の温度が160℃
をこえる前に短絡電流の増加を抑制するため、電池の安
全性、信頼性がさらに向上する。また、電子導電性材料
に加えて、導電助剤の働きにより細部の集電が可能にな
り電極の抵抗が下がり、電池特性も向上する。
As shown in FIG. 3, in Comparative Example 1, the electronic resistance of the battery was high because it did not contain a conductive additive other than the electronic conductive material, and the discharge capacity value at a high discharge current such as 2C was low. Further, in FIG. 2, when Example 1 and Comparative Example 2 are compared, in Comparative Example 2, the electrodes do not contain an electronic conductive material having a characteristic of increasing the resistance as the temperature increases. Even so, the electrode short-circuit current hardly decreases because the electrode resistance does not increase. On the other hand, since the active material, the electron conductive material, the conductive additive, and the binder are mixed at a predetermined ratio in the electrode of Example 1, when a battery is configured using this electrode, the temperature of the battery is reduced. Is 160 ° C
Since the increase in short-circuit current is suppressed before the time exceeds, the safety and reliability of the battery are further improved. Further, in addition to the electronic conductive material, the function of the conductive auxiliary agent enables the current to be collected in detail, thereby reducing the resistance of the electrode and improving the battery characteristics.

【0051】ここで、導電助剤をアセチレンブラック
(電気化学社製:デンカブラック)としたがこれに限定
する必要はなく、ケッチェンブラック、ランプブラック
等のカーボンブラックや、KS6やMCMBなどといっ
た黒鉛質のカーボンといったようにPTCの機能を有し
ないでかつ、正極活物質層の導電性を高める機能を有す
る物質であれば、導電助剤は何であってもよい。このよ
うに電極が温度上昇にともなって抵抗が増大する特性を
もった電子導電性材料及び導電助剤の両方を所定量含有
することによって、高温時における短絡電流値が低くか
つ放電容量やサイクル特性等の電池特性の良い電池が得
られる。
Here, acetylene black (Denka Black, manufactured by Denki Kagaku Co., Ltd.) was used as the conductive auxiliary agent, but there is no need to be limited to this, and carbon black such as Ketjen black and lamp black, and graphite such as KS6 and MCMB. Any conductive auxiliary agent may be used as long as it does not have a PTC function and has a function of enhancing the conductivity of the positive electrode active material layer, such as high-quality carbon. As described above, the electrodes contain a predetermined amount of both an electronic conductive material having a characteristic of increasing resistance with a rise in temperature and a conductive additive, so that the short-circuit current value at high temperatures is low, and the discharge capacity and cycle characteristics are reduced. A battery having good battery characteristics such as the above can be obtained.

【0052】比較例3.さらに、比較のために実施例1
において、電子導電性材料9としてカーボンブラックと
ポリプロピレン樹脂(融点:168℃)の混練材料を用
いて電極を構成するとともに、この電極を用いて電池を
構成した。本比較例3において、負極の製造方法、電池
の製造方法は実施例1と同じである。図4は実施例1お
よび比較例3の電池に対して短絡試験を行った時の電池
の温度と最大短絡電流との関係を示す図である。図に示
すように比較例3では、融点が168℃であるポリプロ
ピレン樹脂を結晶性樹脂としたので、この結晶性樹脂を
含む電極を電池に適用したとき、PTCの機能が発現す
る温度は160℃を越えてしまうと考えられる。これに
比し、実施例1では融点が160℃よりも低いポリエチ
レンを結晶性樹脂としたので、電池の温度が160℃を
越える前に短絡電流の増加を抑制するため、電池の安全
性、信頼性が更に向上する。このように、電子導電性材
料9に含まれる結晶性樹脂はその融点が90℃〜160
℃の範囲にあるものを選択すれば、電池の性能の低下を
起こさず、かつPTCの機能が発現する温度を160℃
よりも小さくすることができる。
Comparative Example 3 Further, for comparison, Example 1 was used.
, An electrode was formed by using a kneading material of carbon black and a polypropylene resin (melting point: 168 ° C.) as the electronic conductive material 9, and a battery was formed by using the electrode. In Comparative Example 3, the method for manufacturing the negative electrode and the method for manufacturing the battery are the same as those in Example 1. FIG. 4 is a diagram showing the relationship between the battery temperature and the maximum short-circuit current when a short-circuit test was performed on the batteries of Example 1 and Comparative Example 3. As shown in the figure, in Comparative Example 3, a polypropylene resin having a melting point of 168 ° C. was used as the crystalline resin. Therefore, when an electrode containing this crystalline resin was applied to a battery, the temperature at which the function of PTC was exhibited was 160 ° C. Is considered to be exceeded. In contrast, in Example 1, polyethylene having a melting point lower than 160 ° C. was used as the crystalline resin, so that an increase in short-circuit current before the battery temperature exceeded 160 ° C. was suppressed, so that the safety and reliability of the battery were improved. The properties are further improved. As described above, the crystalline resin contained in the electronic conductive material 9 has a melting point of 90 ° C. to 160 ° C.
If the temperature is within the range of ° C., the temperature at which the performance of the PTC is exhibited is maintained at 160 ° C. without lowering the performance of the battery.
Can be smaller than

【0053】比較例4.比較のために、実施例1におい
て、電子導電性材料として、カーボンブラックを38重
量部、ポリエチレンを62重量部の割合で混練したもの
を用いて正極を製造するとともに、この正極を用いて電
池を製造した。なお、本比較例4において、負極の製造
方法、電池の製造方法は実施例1と同じである。
Comparative Example 4 For comparison, in Example 1, a positive electrode was manufactured using a material obtained by kneading 38 parts by weight of carbon black and 62 parts by weight of polyethylene as an electronic conductive material, and a battery was formed using the positive electrode. Manufactured. In Comparative Example 4, the method for manufacturing the negative electrode and the method for manufacturing the battery were the same as those in Example 1.

【0054】比較例5.比較のために、電子導電性材料
として、カーボンブラックを71重量部、ポリエチレン
を29重量部の割合で混練したものを用いて正極を製造
するとともに、この正極を用いて電池を製造した。な
お、本比較例5において、負極の製造方法、電池の製造
方法は実施例1と同じである。
Comparative Example 5 For comparison, a positive electrode was manufactured using a material obtained by kneading 71 parts by weight of carbon black and 29 parts by weight of polyethylene as an electronic conductive material, and a battery was manufactured using the positive electrode. In Comparative Example 5, the method for manufacturing the negative electrode and the method for manufacturing the battery were the same as those in Example 1.

【0055】表1は、実施例1、比較例4、比較例5の
各電池についての2Cにおける放電容量値、および14
0℃における最大短絡電流を示したものである。表1に
示すように、比較例4は実施例1に比べ電極の電子抵抗
が高く放電容量値が低い。また、比較例5は実施例1に
比べ放電容量値は高いが、カーボンブラックの割合が多
すぎてPTCの機能の働きが不十分なため、短絡試験を
行うと短絡電流値の減少はほとんどみられなかった。
Table 1 shows the discharge capacity values at 2 C for each of the batteries of Example 1, Comparative Examples 4 and 5, and 14
It shows the maximum short-circuit current at 0 ° C. As shown in Table 1, Comparative Example 4 has a higher electrode electronic resistance and lower discharge capacity value than Example 1. In Comparative Example 5, the discharge capacity value was higher than that in Example 1. However, since the ratio of carbon black was too large and the function of the PTC function was insufficient, the short-circuit test showed almost no decrease in the short-circuit current value. I couldn't.

【0056】[0056]

【表1】 [Table 1]

【0057】従って、電子導電性材料に含まれる導電性
充填材の割合を変えることにより、短絡試験時の最大短
絡電流、および電池の放電容量を適切な値にすることが
可能となる。特に電子導電性材料に含まれる導電性充填
材の割合を40〜70重量部とすることにより、短絡試
験時の最大短絡電流を低くするとともに、電池の放電容
量値を高いものにすることができる。
Therefore, by changing the ratio of the conductive filler contained in the electronic conductive material, the maximum short-circuit current during the short-circuit test and the discharge capacity of the battery can be set to appropriate values. In particular, by setting the ratio of the conductive filler contained in the electronic conductive material to 40 to 70 parts by weight, the maximum short-circuit current during the short-circuit test can be reduced and the discharge capacity value of the battery can be increased. .

【0058】実施例2. (正極の製造方法)上記実施例1と同様に、電子導電性
材料を細かく粉砕する。
Embodiment 2 FIG. (Manufacturing Method of Positive Electrode) As in the first embodiment, the electronic conductive material is finely pulverized.

【0059】次に、この微粒子を6重量部、正極活物質
(例えばLiCoO2)を87重量部、導電助剤とし
て、粒径42nm程度のアセチレンブラックを0.75
重量部、粒径30nm程度のケッチェンブラックを0.
75重量部、バインダ(例えばPVDF)5.5重量部
を分散媒であるNMPに分散させることにより調整し、
正極活物質ペーストを得る。
Next, 6 parts by weight of these fine particles, 87 parts by weight of a positive electrode active material (for example, LiCoO2), and 0.75% of acetylene black having a particle size of about 42 nm as a conductive aid.
Ketjen black having a particle size of about 30 nm by weight and 0.1 part by weight.
75 parts by weight and 5.5 parts by weight of a binder (for example, PVDF) are adjusted by dispersing in NMP which is a dispersion medium,
A positive electrode active material paste is obtained.

【0060】次に上述の正極活物質ペーストを、上記実
施例1と同様に正極集電体4上に塗布し、さらに80℃
で乾燥した後、裏面にも塗布し、乾燥した後、室温で、
2ton/cm2でプレスし、厚さ約70μmの正極活物
質層をアルミニウム箔両面に形成し、正極を得た。
Next, the above-mentioned positive electrode active material paste was applied on the positive electrode current collector 4 in the same manner as in the first embodiment.
After drying in, apply on the back side, after drying, at room temperature,
Pressing was performed at 2 ton / cm 2 , and a positive electrode active material layer having a thickness of about 70 μm was formed on both sides of the aluminum foil to obtain a positive electrode.

【0061】(負極の製造方法)MCMB90重量部、
PVDF10重量部をNMPに分散して作製した負極活
物質ペーストを、厚さ16μmの銅箔からなる負極集電
体上に、ドクターブレード法にて塗布し、80℃で乾燥
した後、裏面も同様に塗布、乾燥を行った。さらに室温
で、2ton/cm2でプレスし、厚さ約90μmの負
極活物質層を形成した負極を作製した。 (電池の作製方法)作製した両面塗工電極の正極を24
8mm×46mm、負極を342mm×50mmの大き
さに切断し、各電極の端部に正極、負極の集電端子をそ
れぞれ超音波溶接にてとりつけた。さらに、セパレータ
として用いる多孔性のポリプロピレンシート(ヘキスト
社製、商品名:セルガード#2400)を、袋状にした
ものの間に負極を挟み、その上に正極を重ねて渦巻き状
に所定回巻き回して、扁平渦巻き状積層体を作製した。
これをアルミラミネートシートにより作製した袋に入れ
て、エチレンカーボネートとジエチルカーボネートの混
合溶媒(モル比1:1)に6フッ化リン酸リチウムを
1.0mol/dm3の濃度で溶解した電解液を注液し
た後、熱融着で封口して、電池とした。
(Production Method of Negative Electrode) 90 parts by weight of MCMB,
A negative electrode active material paste prepared by dispersing 10 parts by weight of PVDF in NMP is coated on a negative electrode current collector made of a copper foil having a thickness of 16 μm by a doctor blade method, dried at 80 ° C., and the back surface is also similar. And dried. Further, the resultant was pressed at 2 ton / cm 2 at room temperature to produce a negative electrode having a negative electrode active material layer having a thickness of about 90 μm. (Battery production method) The positive electrode of the produced double-sided coated electrode was 24
The electrode was cut into a size of 8 mm × 46 mm and the negative electrode in a size of 342 mm × 50 mm, and the current collecting terminals of the positive electrode and the negative electrode were attached to the ends of each electrode by ultrasonic welding. Furthermore, a negative electrode is sandwiched between bag-like porous polypropylene sheets (trade name: Celgard # 2400, manufactured by Hoechst) used as a separator, and the positive electrode is stacked on the negative electrode and spirally wound a predetermined number of times. Then, a flat spiral laminated body was produced.
This was put in a bag made of an aluminum laminate sheet, and an electrolyte obtained by dissolving lithium hexafluorophosphate at a concentration of 1.0 mol / dm 3 in a mixed solvent of ethylene carbonate and diethyl carbonate (molar ratio 1: 1) was used. After injecting the liquid, it was sealed by heat sealing to obtain a battery.

【0062】(電池の評価)本発明の電池の評価を行う
ため以下に示すような方法を用いて評価を行った。 (容量試験)上記実施例1と同様に、作製した電池の室
温での充放電試験を実施した。 (過充電試験)上述の電池を230mAで30分予備充
電した後、2.75Vまで放電し、3Cで10Vまで充
電を行い、電池の短絡、発火、発煙等の有無を調べて安
全性の評価を行った。
(Evaluation of Battery) In order to evaluate the battery of the present invention, evaluation was performed using the following method. (Capacity test) In the same manner as in Example 1, a charge / discharge test at room temperature of the produced battery was performed. (Overcharge test) After pre-charging the above battery at 230 mA for 30 minutes, discharge it to 2.75 V, charge it to 10 V at 3 C, and check for short-circuit, ignition, smoke, etc. of the battery to evaluate safety. Was done.

【0063】比較例6.比較のために、正極の製造にお
いて、電子導電性材料を6重量部、アセチレンブラック
を1.5重量部、バインダを5.5重量部、分散媒であ
るNMPに分散させることにより調整し、正極活物質ペ
ーストを得た。本比較例において、導電助剤をアセチレ
ンブラックのみにしたことを除けば、正極の製造方法、
負極の製造方法、電池の製造方法及び電池の評価方法は
実施例2に示したものと同じである。
Comparative Example 6 For comparison, in the manufacture of the positive electrode, 6 parts by weight of the electronic conductive material, 1.5 parts by weight of acetylene black, 5.5 parts by weight of the binder, and the dispersion were dispersed in NMP which is a dispersion medium. An active material paste was obtained. In this comparative example, except that the conductive auxiliary was only acetylene black, the method of manufacturing a positive electrode,
The method for manufacturing the negative electrode, the method for manufacturing the battery, and the method for evaluating the battery are the same as those described in Example 2.

【0064】比較例7.比較のために、正極の製造にお
いて、電子導電性材料を6重量部、ケッチェンブラック
を1.5重量部、バインダを5.5重量部、分散媒であ
るNMPに分散させることにより調整し、正極活物質ペ
ーストを得た。本比較例において、導電助剤をケッチェ
ンブラックのみにしたことを除けば、正極の製造方法、
負極の製造方法、電池の製造方法及び電池の評価方法は
実施例2に示したものと同じである。
Comparative Example 7 For comparison, in the manufacture of the positive electrode, 6 parts by weight of the electronic conductive material, 1.5 parts by weight of Ketjen black, 5.5 parts by weight of the binder were adjusted by dispersing in NMP as a dispersion medium, A positive electrode active material paste was obtained. In this comparative example, except that the conductive auxiliary was only Ketjen black, the method of manufacturing the positive electrode,
The method for manufacturing the negative electrode, the method for manufacturing the battery, and the method for evaluating the battery are the same as those described in Example 2.

【0065】表2は、実施例2、比較例6、比較例7の
各電池について、2Cにおける放電容量値、100サイ
クル目の放電容量値、過充電試験の結果を示したもので
ある。なお、2Cにおける放電容量値は、1/4Cにお
ける放電容量値を100%としたときの割合(%)で示
し、100サイクル目の放電容量値は、1Cで放電した
とき1サイクル目の放電容量値を100%としたときの
割合(%)で示した。
Table 2 shows the discharge capacity value at 2C, the discharge capacity value at the 100th cycle, and the results of the overcharge test for each of the batteries of Example 2, Comparative Example 6, and Comparative Example 7. The discharge capacity value at 2C is shown as a percentage (%) when the discharge capacity value at 1 / 4C is 100%, and the discharge capacity value at the 100th cycle is the discharge capacity at the first cycle when discharging at 1C. The values are shown as percentages (%) when the value is set to 100%.

【0066】[0066]

【表2】 [Table 2]

【0067】表2に示すように、比較例6の電池は2C
の放電容量値は高いが、100サイクル目の放電容量値
が低く、サイクル特性が悪い。また、過充電試験では、
電池が10Vに到達した後、短絡して電池が発熱してし
まった。また、比較例7の電池は2Cの放電容量値は低
いが100サイクル目の放電容量値は高い。過充電試験
も良好で10Vに到達しても短絡せず、電池の発熱もほ
とんどなかった。これらに比べて導電助剤を2種加えた
実施例2の電池は、2Cの放電容量値、100サイクル
目の放電容量値、過充電試験共に良好で、電池特性がよ
く安全性の高い電池となっていることがわかる。
As shown in Table 2, the battery of Comparative Example 6 was 2C
Has a high discharge capacity value, but the discharge capacity value at the 100th cycle is low, and the cycle characteristics are poor. In the overcharge test,
After the battery reached 10 V, a short circuit occurred and the battery generated heat. The battery of Comparative Example 7 has a low discharge capacity value of 2C but a high discharge capacity value at the 100th cycle. The overcharge test was also good. Even when the voltage reached 10 V, no short circuit occurred and the battery generated almost no heat. Compared to these, the battery of Example 2 in which two kinds of conductive assistants were added was excellent in both the discharge capacity value of 2C, the discharge capacity value at the 100th cycle, and the overcharge test, and was a battery with good battery characteristics and high safety. You can see that it is.

【0068】実施例3.本実施例3は、上記実施例1に
おいて正極活物質中の電子導電性材料の含有割合を、活
物質層における溶媒などの揮発成分を除いた全ての固形
成分の略総重量に対して約6%として、導電助剤の含有
割合を種々変化させたもので、他は実施例1と同様とし
た。
Embodiment 3 FIG. In the third embodiment, the content ratio of the electron conductive material in the positive electrode active material in the first embodiment is set to about 6% with respect to substantially the total weight of all solid components excluding volatile components such as a solvent in the active material layer. %, The content of the conductive additive was changed variously, and the other conditions were the same as in Example 1.

【0069】図5は全固形分に対する導電助剤の含有割
合と短絡試験における最大短絡電流との関係、及び全固
形分に対する導電助剤の含有割合と100サイクル目の
放電容量値との関係を示す図である。導電助剤の割合が
0.1%未満であると正常時(電池の温度が十分に低い
時)の電極自体の抵抗が高いので、活物質からの集電が
悪くなり、図に示すようにサイクル特性が悪くなる。ま
た、導電助剤の割合が10%を超過すると電極中の活物
質の割合が減少することにより、サイクル特性は低下す
る。活物質の割合を変えない場合は、電極の厚みが厚く
なってしまう(この場合電極が厚いことによりサイクル
特性が低下する)。導電助剤を通じて短絡電流が多く流
れてしまい電池の発熱が防げず安全性にも問題がある。
従って電極中の導電助剤の割合を全固形分の0.1〜1
0%とすることにより電池の放電容量を高くすることが
でき、かつ短絡電流を増大させないため電池特性、安全
性両方に優れた電池が得られる。また導電助剤の割合が
この範囲であれば、正常時における電極の抵抗も低く好
ましい。
FIG. 5 shows the relationship between the content of the conductive additive to the total solid content and the maximum short-circuit current in the short circuit test, and the relationship between the content of the conductive additive to the total solid content and the discharge capacity value at the 100th cycle. FIG. When the ratio of the conductive auxiliary agent is less than 0.1%, the resistance of the electrode itself is high in a normal state (when the temperature of the battery is sufficiently low), so that the current collection from the active material is deteriorated. Cycle characteristics deteriorate. If the ratio of the conductive additive exceeds 10%, the ratio of the active material in the electrode decreases, and the cycle characteristics deteriorate. If the ratio of the active material is not changed, the thickness of the electrode becomes large (in this case, the cycle characteristics are deteriorated due to the thick electrode). A large amount of short-circuit current flows through the conductive additive, so that heat generation of the battery cannot be prevented and there is a problem in safety.
Therefore, the ratio of the conductive assistant in the electrode is set to 0.1 to 1 of the total solids.
By setting it to 0%, the discharge capacity of the battery can be increased, and a short-circuit current does not increase, so that a battery excellent in both battery characteristics and safety can be obtained. When the ratio of the conductive additive is within this range, the resistance of the electrode in a normal state is preferably low.

【0070】実施例4.本実施例4は、電子導電性材料
と導電助剤とを合わせた量の含有割合を種々変化させた
もので、その他の正極、負極の作製方法および電池の作
製方法等は実施例1と同様である。図6は、活物質10
0重量部に対する電子導電性材料と導電助剤の合計量の
割合と短絡試験時の最大短絡電流および2Cにおける放
電容量値との関係を示す図であり、詳しくは正極につい
て検討したものである。ここでは導電助剤を0.5重量
部と一定量とし、電子導電性材料の量を変化させてい
る。
Embodiment 4 FIG. In the present Example 4, the content ratio of the combined amount of the electron conductive material and the conductive auxiliary was changed variously, and other methods for manufacturing the positive electrode and the negative electrode, the method for manufacturing the battery, and the like were the same as those in Example 1. It is. FIG. 6 shows the active material 10
FIG. 6 is a diagram showing the relationship between the ratio of the total amount of the electronic conductive material and the conductive additive to 0 parts by weight, the maximum short-circuit current in a short-circuit test, and the discharge capacity value at 2 C, and specifically examined the positive electrode. Here, the conductive assistant is set to a fixed amount of 0.5 part by weight, and the amount of the electronic conductive material is changed.

【0071】電子導電性材料と導電助剤の合計量の割合
が1重量部未満であると正常時の電極自体の抵抗値が高
すぎて放電容量が低く、電池の性能の面で問題がある。
また図6に示すように、電子導電性材料と導電助剤の合
計量の割合が1重量部未満になるとPTC機能が低下し
て短絡電流が大きくなり、電池の安全性は低くなる。ま
た20重量部を超過すると電極中の活物質量が減少する
ので放電容量は低くなる。従って、電極に含まれる電子
導電性材料と導電助剤の合計量の割合は1重量部〜20
重量部とすることにより、正常時における電極の抵抗を
低くし、かつこの電極を用いた電池の放電容量を高くす
ることができ、より望ましい特性の電池が得られる。
When the ratio of the total amount of the electronic conductive material and the conductive additive is less than 1 part by weight, the resistance value of the electrode itself under normal conditions is too high, the discharge capacity is low, and there is a problem in terms of battery performance. .
As shown in FIG. 6, when the ratio of the total amount of the electronic conductive material and the conductive additive is less than 1 part by weight, the PTC function is reduced, the short circuit current is increased, and the safety of the battery is reduced. On the other hand, if the amount exceeds 20 parts by weight, the amount of active material in the electrode decreases, so that the discharge capacity decreases. Therefore, the ratio of the total amount of the electron conductive material and the conductive auxiliary agent contained in the electrode is 1 part by weight to 20 parts by weight.
By using parts by weight, the resistance of the electrode under normal conditions can be reduced, and the discharge capacity of a battery using this electrode can be increased, whereby a battery with more desirable characteristics can be obtained.

【0072】実施例5.本実施例5は、上記実施例1に
おいて、電子導電性材料の平均粒径に対する導電助剤の
平均粒径を種々変化させたもので、他は実施例1と同様
とした。
Embodiment 5 FIG. The fifth embodiment is different from the first embodiment in that the average particle size of the conductive auxiliary agent with respect to the average particle size of the electronic conductive material is variously changed.

【0073】図7は(導電助剤の平均粒径/電子導電性
材料の平均粒径)と140℃における短絡試験時の最大
短絡電流、及び放電容量値の関係を示す図である。図に
示すように、(導電助剤の平均粒径/電子導電性材料の
平均粒径)が1/10を超過すると活物質層内部の細部
の集電効率が低下し、集電が不十分となるため放電容量
が低下するとともに、最大短絡電流が増加する。また、
1/1000未満になると、最大短絡電流が増加する。
FIG. 7 is a diagram showing the relationship between (average particle size of conductive auxiliary agent / average particle size of electronic conductive material), maximum short-circuit current in a short-circuit test at 140 ° C., and discharge capacity value. As shown in the figure, when (average particle size of the conductive auxiliary agent / average particle size of the electronic conductive material) exceeds 1/10, the current collection efficiency of the details inside the active material layer is reduced, and the current collection is insufficient. Therefore, the discharge capacity decreases and the maximum short-circuit current increases. Also,
If it is less than 1/1000, the maximum short-circuit current increases.

【0074】本来電極は、電子導電性材料によって集電
経路が形成されているが、この電子導電性材料のみでは
細部の集電が不十分である。そこで粒径の細かい導電助
剤を添加することによって、活物質と電子導電性材料の
隙間にはいった導電助剤により活物質と電子導電性材料
をつなぎ細部の集電を可能にしている。しかし、この導
電助剤の粒径が大きくなり、活物質と電子導電性材料の
隙間にはいらなくなると、細部の集電ができなくなり、
集電効率が低下し放電容量が低下する。さらに電子導電
性材料による集電経路とは別に導電助剤による集電経路
が形成されてしまい、温度上昇時に電子導電性材料の抵
抗が上昇して電子導電性材料の集電経路が遮断されて
も、導電助剤による集電経路を通って電流が流れ短絡電
流が増加する。また、導電助剤の粒径が小さくなると、
導電助剤の粒数が増大し、導電助剤が活物質と電子導電
性材料の隙間にはいるばかりでなく、隙間からあふれ、
あふれた導電助剤の粒子が細い集電経路を形成し、最大
短絡電流が増加する。また、導電助剤の粒径が小さくな
りすぎると電極の成形性が悪くなり、機械強度も低くな
る。本発明の電極では、(導電助剤の平均粒径)/(電
子導電性材料の平均粒径)を1/1000〜1/10と
したので、最大短絡電流が低く、放電容量の高い電池を
作製することができる。
Originally, the electrode has a current collection path formed of an electron conductive material. However, the current collection of details is insufficient with only the electron conductive material. Therefore, by adding a conductive aid having a fine particle diameter, the active material and the electronic conductive material are connected by the conductive aid that has entered the gap between the active material and the electronic conductive material, thereby enabling current collection in detail. However, when the particle size of the conductive aid becomes large and it is not necessary to enter the gap between the active material and the electronic conductive material, it becomes impossible to collect current in details,
The current collection efficiency decreases, and the discharge capacity decreases. Furthermore, a current collecting path by the conductive auxiliary is formed separately from the current collecting path by the electronic conductive material, and when the temperature rises, the resistance of the electronic conductive material increases, and the current collecting path of the electronic conductive material is cut off. Also, a current flows through the current collecting path by the conductive additive, and the short-circuit current increases. Also, when the particle size of the conductive auxiliary becomes small,
The number of particles of the conductive aid increases, and the conductive aid not only enters the gap between the active material and the electronic conductive material, but also overflows from the gap,
The overflowing conductive auxiliary particles form a thin current collecting path, and the maximum short-circuit current increases. On the other hand, if the particle size of the conductive additive is too small, the moldability of the electrode will be poor and the mechanical strength will be low. In the electrode of the present invention, since (average particle size of the conductive additive) / (average particle size of the electronic conductive material) was 1/1000 to 1/10, a battery having a low maximum short-circuit current and a high discharge capacity was obtained. Can be made.

【0075】尚、上記実施の形態1〜5、実施例1〜5
において、特に正極についての構成、評価結果を示した
が、負極についても同様の説明ができる。
The first to fifth embodiments and examples 1 to 5
In particular, the configuration and evaluation results for the positive electrode are shown, but the same description can be given for the negative electrode.

【0076】また、上記実施の形態1〜5、実施例1〜
5に示した電極、および電池は、有機電解液型、固体電
解質型、ゲル電解質型のリチウムイオン二次電池のみな
らず、リチウム/二酸化マンガン電池などの一次電池、
その他二次電池において用いることが可能である。
The first to fifth embodiments and the first to fifth embodiments are also described.
The electrodes and batteries shown in 5 are not only organic electrolyte type, solid electrolyte type, and gel electrolyte type lithium ion secondary batteries, but also primary batteries such as lithium / manganese dioxide batteries,
In addition, it can be used in a secondary battery.

【0077】更には、水溶液系一次電池、二次電池につ
いても有効である。また、電池形状によらず、積層型、
及び巻き型、ボタン型などの一次、二次電池にも用いる
ことが可能である。
Further, the present invention is also effective for an aqueous primary battery and a secondary battery. In addition, regardless of the battery shape,
It can also be used for primary and secondary batteries such as wound type and button type.

【0078】図8は、円筒型のリチウムイオン二次電池
の構造を示す断面模式図である。図において、200は
負極端子を兼ねるステンレス製などの外装缶、100は
この外装缶内部に収納された電池体であり、電池体は正
極1、セパレータ3および負極2を渦巻状に巻いた構造
になっている。電池体100の正極1は実施の形態1〜
5、実施例1〜実施例5のいずれかに記載した電極の構
成を有する。
FIG. 8 is a schematic sectional view showing the structure of a cylindrical lithium ion secondary battery. In the figure, reference numeral 200 denotes an outer can made of stainless steel or the like also serving as a negative electrode terminal, and 100 denotes a battery body housed inside the outer can. The battery body has a structure in which a positive electrode 1, a separator 3 and a negative electrode 2 are spirally wound. Has become. The positive electrode 1 of the battery body 100 is the first embodiment.
5. It has the configuration of the electrode described in any one of Examples 1 to 5.

【0079】[0079]

【発明の効果】以上のように、この発明の電池によれ
ば、活物質と、この活物質に接触する電子導電性材料及
び導電助剤とを含有する電極を備え、上記電子導電性材
料を導電性充填材と結晶性樹脂とから構成し、上記結晶
性樹脂の融点を90℃〜160℃の範囲内としたので、
短絡などによる発熱により電池の温度が上昇しても、短
絡電流が増大することを抑制することができる。したが
って安全性の高い電池を得ることができる。
As described above, according to the battery of the present invention, there is provided an electrode containing an active material, an electronic conductive material and a conductive auxiliary in contact with the active material, and the above-mentioned electronic conductive material is provided. Since it is composed of a conductive filler and a crystalline resin, and the melting point of the crystalline resin is in a range of 90 ° C to 160 ° C,
Even if the battery temperature rises due to heat generated by a short circuit or the like, it is possible to suppress an increase in short circuit current. Therefore, a highly safe battery can be obtained.

【0080】また、粒径の異なる導電助剤を電極に含有
させたので、大きな粒径の導電助剤により電極を容易に
成形でき、小さな粒径の導電助剤により集電効果を向上
させることができる。
Further, since the conductive additives having different particle diameters are contained in the electrodes, the electrodes can be easily formed by the conductive aids having a large particle diameter, and the current collecting effect can be improved by the conductive aids having a small particle diameter. Can be.

【0081】また、正極と負極の少なくとも何れかの電
極において、導電助剤を活物質層の固形成分の略総重量
の0.1〜10%の割合で含有させたので、集電効率を
増加させることができ、PTC機能を効率良く働かすこ
とができる。したがって、サイクル特性が良好で安全性
の高い電池が得られる。
Further, in at least one of the positive electrode and the negative electrode, the conductive auxiliary agent is contained at a ratio of 0.1 to 10% of the total weight of the solid components of the active material layer, so that the current collection efficiency is increased. And the PTC function can work efficiently. Therefore, a battery having good cycle characteristics and high safety can be obtained.

【0082】また、電子導電性材料に含まれる導電性充
填材の割合を40重量部〜70重量部としたので、電極
の電子抵抗が低く、電池の放電容量値を高くすることが
でき、さらにPTC機能が十分働き、短絡試験時の短絡
電流値を低くすることができる。
Further, since the ratio of the conductive filler contained in the electronic conductive material is set to 40 parts by weight to 70 parts by weight, the electronic resistance of the electrode is low, and the discharge capacity value of the battery can be increased. The PTC function operates sufficiently, and the short-circuit current value during the short-circuit test can be reduced.

【0083】また、導電性充填材はカーボン材料または
導電性非酸化物としたので、容易に結晶性樹脂に分散で
き、PTC機能をもたせることができる。
Further, since the conductive filler is a carbon material or a conductive non-oxide, it can be easily dispersed in the crystalline resin and can have a PTC function.

【0084】また、導電助剤の平均粒径が、電子導電性
材料の平均粒径の1/1000〜1/10となるように
したので、適度な粒数の導電助剤が活物質と電子導電性
材料との隙間及び活物質同士の隙間にはいり細部の集電
を効率を向上できる効果がある。
Since the average particle size of the conductive additive is set to be 1/1000 to 1/10 of the average particle size of the electronically conductive material, the conductive auxiliary agent having an appropriate number of particles can be mixed with the active material and the electron conductive material. The gap between the conductive material and the gap between the active materials can be effectively collected in the gap between the active materials.

【図面の簡単な説明】[Brief description of the drawings]

【図1】 実施の形態1による電池の主要部の断面模式
図である。
FIG. 1 is a schematic sectional view of a main part of a battery according to a first embodiment.

【図2】 実施例1、比較例1、比較例2による電池の
最大短絡電流と温度の関係を示す図である。
FIG. 2 is a diagram showing the relationship between the maximum short-circuit current and the temperature of the batteries according to Example 1, Comparative Examples 1 and 2.

【図3】 実施例1、比較例1、比較例2による電池の
放電容量値と放電電流値との関係を示す図である。
FIG. 3 is a diagram showing a relationship between a discharge capacity value and a discharge current value of batteries according to Example 1, Comparative Examples 1 and 2.

【図4】 実施例1、比較例3による電池の最大短絡電
流と温度との関係を示す図である。
FIG. 4 is a diagram showing the relationship between the maximum short-circuit current and the temperature of the batteries according to Example 1 and Comparative Example 3.

【図5】 実施例3による最大短絡電流および100サ
イクル目の放電容量値と導電助剤の割合との関係を示す
図である。
FIG. 5 is a diagram showing the relationship between the maximum short-circuit current, the discharge capacity value at the 100th cycle, and the ratio of the conductive additive according to Example 3.

【図6】 実施例4による最大短絡電流および2Cにお
ける放電容量値と活物質に対する電子導電性材料と導電
助剤の合計量の割合との関係を示す図である。
FIG. 6 is a graph showing the relationship between the maximum short-circuit current and the discharge capacity value at 2 C according to Example 4 and the ratio of the total amount of the electronic conductive material and the conductive auxiliary to the active material.

【図7】 実施例5による最大短絡電流および放電容量
値と(導電助剤の平均粒径/電子導電性材料の平均粒
径)との関係を示す図である。
FIG. 7 is a diagram showing the relationship between the maximum short-circuit current and the discharge capacity value according to Example 5 and (average particle size of conductive additive / average particle size of electronic conductive material).

【図8】 円筒型のリチウムイオン二次電池を示す断面
図である。
FIG. 8 is a cross-sectional view showing a cylindrical lithium ion secondary battery.

【符号の説明】[Explanation of symbols]

1 正極、2 負極、3 セパレータ、4 正極集電
体、5 負極集電体、6正極活物質層、7 負極活物質
層、8 正極活物質、9 電子導電性材料、10 導電
助剤、11 バインダ、100 電池体、200 外装
REFERENCE SIGNS LIST 1 positive electrode, 2 negative electrode, 3 separator, 4 positive electrode current collector, 5 negative electrode current collector, 6 positive electrode active material layer, 7 negative electrode active material layer, 8 positive electrode active material, 9 electron conductive material, 10 conductive auxiliary, 11 Binder, 100 battery body, 200 outer can

───────────────────────────────────────────────────── フロントページの続き (72)発明者 栗木 宏徳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 漆畑 広明 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 塩田 久 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 荒金 淳 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 西村 隆 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 相原 茂 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 竹村 大吾 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 (72)発明者 白神 昭 東京都千代田区丸の内二丁目2番3号 三 菱電機株式会社内 Fターム(参考) 5H029 AJ03 AJ05 AJ06 AJ12 AJ14 AK03 AL06 AM03 AM05 AM07 BJ02 BJ04 BJ12 BJ14 DJ08 EJ03 EJ04 EJ12 HJ01 HJ03 HJ05 HJ14 5H050 AA07 AA08 AA12 AA15 AA19 BA17 CA08 CB07 DA09 DA10 EA01 EA08 FA02 FA05 HA01 HA05 HA14  ──────────────────────────────────────────────────続 き Continued on the front page (72) Inventor Hironori Kuriki 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsui Electric Co., Ltd. (72) Inventor Hiroaki Urushiba 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Within Rishi Electric Co., Ltd. (72) Hisashi Shioda 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, Japan Mitsui Electric Co., Ltd. (72) Atsushi Arakane 2-3-2 Marunouchi, Chiyoda-ku, Tokyo, Mitsubishi Inside (72) Inventor Takashi Nishimura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Shigeru Aihara 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Daigo Takemura 2-3-2 Marunouchi, Chiyoda-ku, Tokyo Mitsubishi Electric Corporation (72) Inventor Akira Shirakami Marunouchi, Chiyoda-ku, Tokyo 2-3-2 F-term in Mitsubishi Electric Co., Ltd. (Reference) EA01 EA08 FA02 FA05 HA01 HA05 HA14

Claims (6)

【特許請求の範囲】[Claims] 【請求項1】 活物質と、この活物質に接触する電子導
電性材料及び導電助剤とを含有する活物質層からなる電
極を備え、上記電子導電性材料は導電性充填材と結晶性
樹脂とから構成され、上記結晶性樹脂の融点が90℃〜
160℃の範囲内であることを特徴とする電池。
1. An electrode comprising an active material layer containing an active material and an electronic conductive material and a conductive auxiliary in contact with the active material, wherein the electronic conductive material comprises a conductive filler and a crystalline resin. The crystalline resin has a melting point of 90 ° C.
A battery characterized by being in the range of 160 ° C.
【請求項2】 電極は、粒径の異なる複数の導電助剤を
含有することを特徴とする請求項1に記載の電池。
2. The battery according to claim 1, wherein the electrode contains a plurality of conductive assistants having different particle sizes.
【請求項3】 電極は正極と負極からなり、少なくとも
何れかの電極において、導電助剤が活物質層の固形成分
の略総重量の0.1〜10%の割合で含有されているこ
とを特徴とする請求項1に記載の電池。
3. An electrode comprising a positive electrode and a negative electrode, wherein in at least one of the electrodes, a conductive auxiliary is contained in a ratio of 0.1 to 10% of a total weight of solid components of the active material layer. The battery according to claim 1, wherein:
【請求項4】 電子導電性材料に含まれる導電性充填材
の割合を40重量部〜70重量部としたことを特徴とす
る請求項1に記載の電池。
4. The battery according to claim 1, wherein the ratio of the conductive filler contained in the electronic conductive material is 40 parts by weight to 70 parts by weight.
【請求項5】 導電性充填材はカーボン材料または導電
性非酸化物としたことを特徴とする請求項1に記載の電
池。
5. The battery according to claim 1, wherein the conductive filler is a carbon material or a conductive non-oxide.
【請求項6】 導電助剤の平均粒径が、電子導電性材料
の平均粒径の1/1000〜1/10であることを特徴
とする請求項1に記載の電池。
6. The battery according to claim 1, wherein the average particle size of the conductive auxiliary agent is 1/1000 to 1/10 of the average particle size of the electronic conductive material.
JP2000220320A 2000-07-21 2000-07-21 Battery Pending JP2002042886A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2000220320A JP2002042886A (en) 2000-07-21 2000-07-21 Battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2000220320A JP2002042886A (en) 2000-07-21 2000-07-21 Battery

Publications (1)

Publication Number Publication Date
JP2002042886A true JP2002042886A (en) 2002-02-08

Family

ID=18714943

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2000220320A Pending JP2002042886A (en) 2000-07-21 2000-07-21 Battery

Country Status (1)

Country Link
JP (1) JP2002042886A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482580A1 (en) * 2003-04-15 2004-12-01 HAWKER GmbH Lead-acid battery, in particular submarine propulsion battery
JP2006318867A (en) * 2005-05-16 2006-11-24 Nissan Motor Co Ltd Non-aqueous electrolytic solution secondary cell
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2011138693A (en) * 2009-12-28 2011-07-14 Sharp Corp Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1482580A1 (en) * 2003-04-15 2004-12-01 HAWKER GmbH Lead-acid battery, in particular submarine propulsion battery
AU2004201545B2 (en) * 2003-04-15 2009-01-22 Hawker Gmbh Lead acid battery, in particular a U-boat propulsion battery
JP2006318867A (en) * 2005-05-16 2006-11-24 Nissan Motor Co Ltd Non-aqueous electrolytic solution secondary cell
JP2011029079A (en) * 2009-07-28 2011-02-10 Sharp Corp Nonaqueous electrolyte secondary battery
JP2011138693A (en) * 2009-12-28 2011-07-14 Sharp Corp Nonaqueous electrolyte secondary battery and electrode for nonaqueous electrolyte secondary battery
WO2015046469A1 (en) * 2013-09-30 2015-04-02 日立化成株式会社 Lithium ion secondary battery cathode and lithium ion secondary battery using same
JPWO2015046469A1 (en) * 2013-09-30 2017-03-09 日立化成株式会社 Positive electrode for lithium ion secondary battery and lithium ion secondary battery using the same

Similar Documents

Publication Publication Date Title
JP4011635B2 (en) Electrode manufacturing method
JP4011852B2 (en) Battery and manufacturing method thereof
JP4776918B2 (en) Non-aqueous electrolyte secondary battery
US6579641B2 (en) Battery and process for preparing the same
EP1100135A1 (en) Cell and method of producing the same
JP2004327183A (en) Battery and its manufacturing method
JP3786973B2 (en) Electrode, method for producing the electrode, and battery using the electrode
US6440605B1 (en) Electrode, method or producing electrode, and cell comprising the electrode
US6440608B1 (en) Cell and method of producing the same
US20010005559A1 (en) Battery and process for preparing the same
EP1104037A1 (en) Cell and method of producing the same
JP4011636B2 (en) Battery and manufacturing method thereof
JP4394857B2 (en) battery
JP2002042886A (en) Battery
US20030090021A1 (en) Electrode, method of fabricating thereof, and battery using thereof
KR100335030B1 (en) Battery and method of fabricating thereof
KR100337116B1 (en) Battery and method of fabricating thereof
JPH07249402A (en) Battery
KR20010020337A (en) Electrode, method of fabricating thereof, and battery using thereof
WO1999067834A1 (en) Electrode, method of producing electrode, and cell comprising the electrode

Legal Events

Date Code Title Description
RD01 Notification of change of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7421

Effective date: 20040707