JP5098278B2 - Assembled battery - Google Patents

Assembled battery Download PDF

Info

Publication number
JP5098278B2
JP5098278B2 JP2006270324A JP2006270324A JP5098278B2 JP 5098278 B2 JP5098278 B2 JP 5098278B2 JP 2006270324 A JP2006270324 A JP 2006270324A JP 2006270324 A JP2006270324 A JP 2006270324A JP 5098278 B2 JP5098278 B2 JP 5098278B2
Authority
JP
Japan
Prior art keywords
assembled battery
load
cell group
cells
capacity
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006270324A
Other languages
Japanese (ja)
Other versions
JP2008091188A (en
Inventor
雄児 丹上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2006270324A priority Critical patent/JP5098278B2/en
Publication of JP2008091188A publication Critical patent/JP2008091188A/en
Application granted granted Critical
Publication of JP5098278B2 publication Critical patent/JP5098278B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、複数の単電池を接続してなる組電池に関する。   The present invention relates to an assembled battery formed by connecting a plurality of unit cells.

シート状部材から成る外装部材をその外周縁に沿って熱融着して電極板を内部に収容して封止すると共に、その電極板に接続された電極端子が外装部材の外周縁から導出した二次電池が知られている(特許文献1参照)。この種の単電池の出力は電極の総面積に相関し、単電池の容量(満充電容量)は電極間に介装される活物質の量に相関する。   The exterior member made of a sheet-like member is heat-sealed along the outer peripheral edge thereof to accommodate and seal the electrode plate, and the electrode terminals connected to the electrode plate are led out from the outer peripheral edge of the exterior member. Secondary batteries are known (see Patent Document 1). The output of this type of unit cell correlates with the total area of the electrode, and the unit cell capacity (full charge capacity) correlates with the amount of active material interposed between the electrodes.

ところで、複数の単電池を接続してなる従来の組電池は、同じ容量の単電池を組み合わせ、この組電池に接続される負荷、たとえば自動車のセルモータや電装品などに流れる暗電流(スイッチOFF時に流れる電流)の総和に応じて組み合わせる単電池の数量が決定され、またこれらの負荷の最大出力(最大消費電力)に応じて組み合わせる単電池の数量が決定されていた。   By the way, a conventional assembled battery in which a plurality of unit cells are connected is a combination of unit cells having the same capacity, and a dark current that flows to a load connected to the assembled battery, for example, a cell motor or an electrical component of an automobile (when the switch is OFF). The number of unit cells to be combined is determined according to the sum of the flowing currents), and the number of unit cells to be combined is determined according to the maximum output (maximum power consumption) of these loads.

したがって、負荷に流れる暗電流の総和を充分に満足できる数量であっても、負荷の最大出力を満足するために、それより多い数量の単電池を組み合わせる必要があった。その結果、組電池が不必要に大型化、重量増及び高コスト化するといった問題があった。   Therefore, even in a quantity that can sufficiently satisfy the sum of the dark currents flowing through the load, it is necessary to combine a larger number of single cells in order to satisfy the maximum output of the load. As a result, there has been a problem that the assembled battery is unnecessarily increased in size, weight, and cost.

特開2005−56654号公報JP 2005-56654 A

本発明は、接続される負荷の暗電流及び出力に応じた適切な量の単電池が接続された組電池を提供することを目的とする。   An object of the present invention is to provide an assembled battery in which a suitable amount of single cells according to the dark current and output of a connected load are connected.

上記目的を達成するために、本発明の組電池は、複数の単電池が直列に接続されてなり、複数の負荷が接続される組電池において、当該組電池は複数の第1の単電池を接続してなる第1の単電池群と前記第1の単電池よりも容量が小さく且つ出力密度が大きい複数の第2の単電池を接続してなる第2の単電池群とを直列に接続して構成され、前記複数の負荷のうち暗電流が他の負荷に比べて相対的に大きい負荷が前記第1の単電池群のみに接続されるとともに、前記複数の負荷のうち暗電流が他の負荷に比べて相対的に小さい負荷が前記第1の単電池群及び前記第2の単電池群の全体に接続されることを特徴とする。 To achieve the above object, the battery pack of the present invention will become more unit cells connected in series, the assembled battery in which a plurality of loads are connected, the battery pack includes a plurality of first unit cells a first cell group formed by connecting a, and a second cell group formed by connecting a plurality of second unit cells and the output density is greater smaller capacity than the first unit cell is constructed by connecting in series, the relatively large load than dark current in the other loads of the plurality of loads, the first is connected only to a single cell group Rutotomoni, among the plurality of loads A load having a relatively low dark current compared to other loads is connected to the entire first cell group and the second cell group .

また、複数の単電池が直列に接続されてなり、複数の負荷が接続される組電池において、当該組電池は複数の第1の単電池を接続してなる第1の単電池群と前記第1の単電池よりも容量が小さく且つ出力密度が大きい複数の第2の単電池を接続してなる第2の単電池群とを直列に接続して構成され、前記複数の負荷のうち常時電力を消費する負荷が前記第1の単電池群のみに接続されるとともに、前記複数の負荷のうち特定の瞬間だけ電力を消費する負荷が前記第1の単電池群及び前記第2の単電池群の全体に接続されることを特徴とする。 Further, in an assembled battery in which a plurality of unit cells are connected in series and a plurality of loads are connected, the assembled battery includes a first group of unit cells formed by connecting a plurality of first unit cells , A plurality of second unit cells connected by connecting a plurality of second unit cells having a smaller capacity and a higher output density than the first unit cells, and the plurality of loads A load that constantly consumes power is connected only to the first cell group, and a load that consumes power only at a specific moment among the plurality of loads is the first cell group and the second cell. It is connected to the whole cell group .

本発明では、単電池群を電池容量が大きく出力密度が小さい群と、電池容量が小さく出力密度が大きい群とに分けて構成し、電池容量が大きく出力密度が小さい群に暗電流が大きい負荷または常時電力を消費する負荷を接続する一方で、暗電流が小さい負荷または常時電力を消費しない負荷を組電池全体に接続する。   In the present invention, the unit cell group is divided into a group having a large battery capacity and a small output density and a group having a small battery capacity and a large output density. Alternatively, a load that constantly consumes power is connected, while a load with a small dark current or a load that does not always consume power is connected to the entire battery pack.

すなわち本発明では、接続される負荷の暗電流に応じて電池容量が大きく出力密度が小さい第1の単電池群を構成する一方で、接続される負荷の最大出力に応じて電池容量が小さく出力密度が大きい第2の単電池群を構成する。   That is, according to the present invention, the first single cell group having a large battery capacity and a small output density is configured according to the dark current of the connected load, while the battery capacity is decreased according to the maximum output of the connected load. A second cell group having a high density is formed.

電池容量は活物質量に相関し、電池出力は電極総面積に相関することから、電極総面積を等しくして活物質量を減らせば、電池出力が等しく電池容量が小さい電池となり、こうした電池は、電池容量は相対的に小さいが、小型・軽量かつ低コストの電池となる。 Since the battery capacity correlates with the amount of active material and the battery output correlates with the total electrode area, reducing the amount of active material by making the electrode total area equal reduces the battery capacity to the same battery capacity. The battery capacity is relatively small, but the battery is small, light and low cost.

そして、接続される負荷の暗電流は第1の単電池群で対応することができ、接続される負荷の最大出力は第1の単電池群および第2の単電池群を含めた組電池全体で対応することができる。 The dark current of the connected load can be handled by the first unit cell group, and the maximum output of the connected load is the entire assembled battery including the first unit cell group and the second unit cell group. Can respond.

発明の実施の形態BEST MODE FOR CARRYING OUT THE INVENTION

以下、本発明の実施形態を図面に基づいて説明する。   Hereinafter, embodiments of the present invention will be described with reference to the drawings.

図1は本発明の実施形態に係る薄型単電池の全体を示す平面図、図2は図1のII-II線に沿う断面図、図3(A)は本発明の実施形態に係る組電池を示す側面図、図3(B)は従来の組電池を示す側面図である。 FIG. 1 is a plan view showing an entire thin cell according to an embodiment of the present invention, FIG. 2 is a cross-sectional view taken along line II-II in FIG. 1, and FIG. 3 (A) is an assembled battery according to an embodiment of the present invention. FIG. 3B is a side view showing a conventional assembled battery.

まず、図1及び図2を参照して単電池の構成を説明する。同図は一つの薄型単電池10(単位電池)を示し、この薄型電池10を複数積層することにより所望の出力及び容量の組電池が構成される。 First, the structure of the unit cell will be described with reference to FIGS. The figure shows one thin single battery 10 (unit battery), and an assembled battery having a desired output and capacity is formed by stacking a plurality of thin batteries 10.

本例の薄型単電池10は、リチウム系の薄型の二次電池であり、同図に示すように、3枚の正極板101と、5枚のセパレータ102と、3枚の負極板103と、正極端子104と、負極端子105と、上部外装部材106と、下部外装部材107と、特に図示しない電解質と、から構成されている。このうち、正極板101、セパレータ102、負極板103及び電解質を特に発電要素108と称する。   The thin unit cell 10 of this example is a lithium-based thin secondary battery, and as shown in the figure, three positive plates 101, five separators 102, three negative plates 103, The positive electrode terminal 104, the negative electrode terminal 105, the upper exterior member 106, the lower exterior member 107, and an electrolyte not specifically shown are configured. Among these, the positive electrode plate 101, the separator 102, the negative electrode plate 103, and the electrolyte are particularly referred to as a power generation element 108.

発電要素108を構成する正極板101は、正極端子104まで延びている正極側集電体101aと、この正極側集電体101aの一部の両主面にそれぞれ形成された正極層101b、101cと、を有する。   The positive electrode plate 101 constituting the power generation element 108 includes a positive electrode current collector 101a extending to the positive electrode terminal 104, and positive electrode layers 101b and 101c formed on both main surfaces of a part of the positive electrode current collector 101a, respectively. And having.

正極側集電体101aは、例えば、アルミニウム箔、アルミニウム合金箔、銅箔、又は、ニッケル箔等の電気化学的に安定した金属箔で構成されている。   The positive electrode side current collector 101a is made of an electrochemically stable metal foil such as an aluminum foil, an aluminum alloy foil, a copper foil, or a nickel foil.

正極層101b、101cは、正極活物質と、カーボンブラック等の導電剤と、ポリ四フッ化エチレンの水性ディスパージョン等の接着剤等と、を混合したものを、正極側集電体101aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。正極活物質としては、例えば、ニッケル酸リチウム(LiNiO)、マンガン酸リチウム(LiMnO)、又は、コバルト酸リチウム(LiCoO)等のリチウム複合酸化物や、カルコゲン(S、Se、Te)化物等を挙げることができる。 The positive electrode layers 101b and 101c are formed by mixing a positive electrode active material, a conductive agent such as carbon black, and an adhesive such as an aqueous dispersion of polytetrafluoroethylene with a positive electrode current collector 101a. It is formed by applying to both main surfaces of the part, drying and rolling. Examples of the positive electrode active material include lithium composite oxides such as lithium nickelate (LiNiO 2 ), lithium manganate (LiMnO 2 ), and lithium cobaltate (LiCoO 2 ), and chalcogen (S, Se, Te) compounds. Etc.

発電要素108を構成する負極板103は、負極端子105まで延びている負極側集電体103aと、この負極側集電体103aの一部の両主面にそれぞれ形成された負極層103b、103cと、を有している。   The negative electrode plate 103 constituting the power generation element 108 includes a negative electrode side current collector 103a extending to the negative electrode terminal 105, and negative electrode layers 103b and 103c formed on both main surfaces of a part of the negative electrode side current collector 103a, respectively. And have.

この負極板103の負極側集電体103aは、例えば、ニッケル箔、銅箔、ステンレス箔、又は、鉄箔等の電気化学的に安定した金属箔で構成されている。   The negative electrode side current collector 103a of the negative electrode plate 103 is made of an electrochemically stable metal foil such as a nickel foil, a copper foil, a stainless steel foil, or an iron foil.

負極層103b、103cは、上記の正極活物質のリチウムイオンを吸蔵及び放出する負極活物質に、有機物焼成体の前駆体としてのスチレンブタジエンゴム樹脂粉末の水性ディスパージョンを混合し乾燥させた後に粉砕することで、炭素粒子表面に炭化したスチレンブタジエンゴムを担持させたものを主材料とし、これにアクリル樹脂エマルジョン等の結着剤をさらに混合し、この混合物を負極側集電体103aの一部の両主面に塗布し、乾燥及び圧延することにより形成されている。具体的な負極活物質としては、例えば、非晶質炭素、難黒鉛化炭素、易黒鉛化炭素又は黒鉛等を挙げることができる。   The negative electrode layers 103b and 103c are pulverized after mixing and drying an aqueous dispersion of styrene butadiene rubber resin powder as a precursor of an organic fired body into the negative electrode active material that absorbs and releases lithium ions of the positive electrode active material. Thus, the main material is a carbon particle surface supporting carbonized styrene butadiene rubber, and a binder such as an acrylic resin emulsion is further mixed therewith, and this mixture is used as a part of the negative electrode side current collector 103a. It is formed by applying to both main surfaces, drying and rolling. Specific examples of the negative electrode active material include amorphous carbon, non-graphitizable carbon, graphitizable carbon, and graphite.

特に、負極活物質として非晶質炭素や難黒鉛化炭素を用いると、充放電時における電位の平坦特性に乏しく放電量に伴って出力電圧も低下するので、通信機器や事務機器の電源には不向きであるが、電気自動車の電源として用いると急激な出力低下がないので有利である。   In particular, when amorphous carbon or non-graphitizable carbon is used as the negative electrode active material, the flatness of the potential during charge / discharge is poor and the output voltage decreases with the amount of discharge. Although unsuitable, it is advantageous when used as a power source for an electric vehicle because there is no sudden drop in output.

発電要素108のセパレータ102は、正極板101と負極板103との短絡を防止するもので、電解質を保持する機能を備えても良い。このセパレータ102は、例えば、ポリエチレン(PE)やポリプロピレン(PP)等のポリオレフィンから構成される微多孔性膜であり、過電流が流れると、その発熱によって層の空孔が閉塞され電流を遮断する機能をも有する。   The separator 102 of the power generation element 108 prevents a short circuit between the positive electrode plate 101 and the negative electrode plate 103 and may have a function of holding an electrolyte. The separator 102 is a microporous film made of a polyolefin such as polyethylene (PE) or polypropylene (PP), for example. When an overcurrent flows, the pores of the layer are blocked by the heat generation, thereby blocking the current. It also has a function.

なお、本発明におけるセパレータは、ポリオレフィン等の単層膜のみに限定されず、ポリプロピレン膜をポリエチレン膜でサンドイッチした三層構造や、ポリオレフィン微多孔性膜と有機不織布等を積層したものを用いることもできる。このように、セパレータを複層化することで、過電流の防止機能、電解質保持機能及びセパレータの形状維持(剛性向上)機能等の諸機能を付与することができる。   The separator in the present invention is not limited to a single-layer film such as polyolefin, but may be a three-layer structure in which a polypropylene film is sandwiched with a polyethylene film, or a laminate of a polyolefin microporous film and an organic nonwoven fabric or the like. it can. Thus, by forming the separator in multiple layers, various functions such as an overcurrent prevention function, an electrolyte holding function, and a separator shape maintenance (stiffness improvement) function can be provided.

発電要素108は、セパレータ102を介して正極板101と負極板103とが交互に積層されている。そして、3枚の正極板101は、正極側集電体101aを介して、正極端子104にそれぞれ接続される一方で、3枚の負極板103は、負極側集電体103aを介して、負極端子105にそれぞれ接続されている。   In the power generation element 108, the positive electrode plates 101 and the negative electrode plates 103 are alternately stacked via the separators 102. The three positive plates 101 are respectively connected to the positive terminal 104 via a positive current collector 101a, while the three negative plates 103 are connected to a negative electrode via a negative current collector 103a. Each is connected to a terminal 105.

発電要素を構成する正極板、セパレータ、及び、負極板の枚数は、本発明では上記の数に限定されない。例えば、1枚の正極板、3枚のセパレータ、及び、1枚の負極板でも発電要素を構成することができ、必要に応じて正極板、セパレータ及び負極板の枚数を選択して構成することができる。   The number of positive electrode plates, separators, and negative electrode plates constituting the power generation element is not limited to the above number in the present invention. For example, a power generation element can also be configured with one positive plate, three separators, and one negative plate, and the number of positive plates, separators, and negative plates can be selected as necessary. Can do.

特に、単電池10の出力(ワットW=V・A)は電極の総面積に相関し、満充電容量(クーロンQ=A・h)は活物質量に相関することから、たとえば電極の総面積を等しくし、活物質量を減少させることで、容量は相対的に小さいが出力が等しい単電池10を得ることができる。この電池10は活物質量が少ないので、電池の厚さが薄くなり、軽量かつ廉価な電池にすることができる。逆に、活物質量を等しくし、電極の総面積を小さくすることで、出力は小さいが容量が等しい単電池10を得ることができる。すなわち、活物質量と電極総面積を変えることで、単位体積あたりの出力(出力密度)や容量(容量密度)を変えることができる。   In particular, since the output (watt W = V · A) of the unit cell 10 correlates with the total area of the electrode and the full charge capacity (Coulomb Q = A · h) correlates with the amount of active material, for example, the total area of the electrode And by reducing the amount of active material, it is possible to obtain a unit cell 10 having a relatively small capacity but the same output. Since the battery 10 has a small amount of active material, the thickness of the battery is reduced, and a lightweight and inexpensive battery can be obtained. On the other hand, by making the amount of active material equal and reducing the total area of the electrodes, it is possible to obtain a unit cell 10 having a small output but the same capacity. That is, by changing the amount of active material and the total electrode area, the output per unit volume (output density) and the capacity (capacity density) can be changed.

以上の単電池10において、電極の総面積は等しくする一方で活物質量をたとえば約8分の1にした単電池を作製し、2種類の単電池10a,10bを組み合わせた組電池を構成する。たとえば、電極の大きさは等しく、厚さを約4分の1に薄くし、積層枚数を2分の1にし、活物質量を8分の1にした単電池10bは、電池容量が8分の1になるが、図3(A)に示すように単電池10aに比べて厚さtbが薄くなり(ta>tb)、重量wbも軽量になる(wa>wb)。また、活物質量が少なくなるだけコストも安くなる。したがって、同図(B)に示す単電池10aのみを組み合わせた組電池に比べて、出力は等しいにも拘らず、組電池全体の厚さ(大きさ)が薄くなり、軽量かつ廉価となる。相対的に容量が大きい単電池を高容量単電池10a、出力が等しく相対的に容量が小さい単電池、換言すれば相対的に出力密度(体積あたりの出力)が大きい単電池を高出力単電池10bと称する。   In the above unit cell 10, a unit cell in which the total area of the electrodes is made equal while the amount of the active material is reduced to, for example, about one-eighth is manufactured, and an assembled battery in which two types of unit cells 10a and 10b are combined is formed. . For example, the unit cell 10b in which the electrodes have the same size, the thickness is reduced to about one-fourth, the number of stacked layers is halved, and the active material amount is one-eighth, the battery capacity is 8 minutes. However, as shown in FIG. 3A, the thickness tb is thinner (ta> tb) and the weight wb is lighter (wa> wb) than the unit cell 10a. Further, the cost is reduced as the amount of the active material is reduced. Therefore, as compared with the assembled battery combining only the unit cells 10a shown in FIG. 5B, the thickness (size) of the entire assembled battery is reduced although the output is the same, and it is light and inexpensive. A high-capacity cell 10a is a unit cell having a relatively large capacity, a unit cell having the same output and a relatively small capacity, in other words, a unit cell having a relatively large output density (output per volume). 10b.

次に、2種類の単電池、すなわち高容量単電池10aと高出力単電池10bを組み合わせた組電池1を用いた電気回路の実例を説明する。図4〜図7は、それぞれ本発明に係る組電池1を用いた電気回路の実施形態であり、それぞれ3つの単電池10a(本発明の第1の電池群に相当する)と、1つの単電池10b(本発明の第2の電池群に相当する)の、合計4つの単電池を直列に接続して組電池1が構成されている。なお、組電池1を構成する単電池10a,10bの数量は単なる一例であり任意の数量で構成することができる。   Next, an example of an electric circuit using two types of cells, that is, the assembled battery 1 in which the high-capacity cell 10a and the high-power cell 10b are combined will be described. 4 to 7 are embodiments of an electric circuit using the assembled battery 1 according to the present invention, each of which includes three single cells 10a (corresponding to the first battery group of the present invention) and one single cell. The assembled battery 1 is configured by connecting a total of four unit cells of the battery 10b (corresponding to the second battery group of the present invention) in series. In addition, the quantity of the single cells 10a and 10b constituting the assembled battery 1 is merely an example, and can be configured with an arbitrary quantity.

まず、図4に示す例では、組電池1により車両負荷2Aと車両負荷2Bとが駆動される。車両負荷2Aは、たとえばセルモータや時計のような暗電流が無い、もしくは相対的に小さい負荷であるのに対し、車両負荷2Bは、たとえばスイッチオフ時にも電流を消費するCPUを備えた車載電装品やメモリのような暗電流が相対的に大きい負荷である。そして、暗電流が相対的に大きい車両負荷2Bは3つの高容量単電池10aの両端に接続され、車両負荷2Aは3つの高容量単電池10aと1つの高出力単電池10bを含む組電池1全体に接続されている。   First, in the example shown in FIG. 4, the vehicle load 2 </ b> A and the vehicle load 2 </ b> B are driven by the assembled battery 1. The vehicle load 2A has no dark current, such as a cell motor or a watch, or a relatively small load, whereas the vehicle load 2B has a CPU that consumes current even when the switch is turned off, for example. Or a load such as a memory that has a relatively large dark current. The vehicle load 2B having a relatively large dark current is connected to both ends of the three high-capacity single cells 10a, and the vehicle load 2A includes the three high-capacity single cells 10a and one high-power single cell 10b. Connected to the whole.

既述したとおり、高容量単電池10aは高出力単電池10bに比べて高容量であることから、車両負荷2Bの暗電流に対応できる容量となる。一方、車両負荷2Aは、暗電流は小さいが瞬間的に高出力(大電流)が必要とされる負荷を含むが、本例では出力が等しい4つの単電池10a,10bの両端に接続されているため、必要とされる高出力に対応することができる。   As described above, the high-capacity single cell 10a has a higher capacity than the high-power single cell 10b, and therefore has a capacity that can handle the dark current of the vehicle load 2B. On the other hand, the vehicle load 2A includes a load that has a small dark current but requires a high output (a large current) instantaneously. In this example, the vehicle load 2A is connected to both ends of four unit cells 10a and 10b having the same output. Therefore, the required high output can be accommodated.

このように、暗電流が大きい負荷2Bは高容量単電池10aに接続するとともに暗電流が小さく高出力が要求される負荷2Aは高容量単電池10aと高出力単電池10bとを含む組電池1全体に接続するので、負荷2Bの暗電流にも負荷2Aの高出力にも対応することができると同時に、組電池を小型化、軽量化及び低コスト化することができる。   As described above, the load 2B having a large dark current is connected to the high-capacity single battery 10a, and the load 2A having a small dark current and a high output required includes the high-capacity single battery 10a and the high-power single battery 10b. Since it is connected to the whole, it is possible to cope with both the dark current of the load 2B and the high output of the load 2A, and at the same time, the assembled battery can be reduced in size, weight and cost.

図5に示す例では、図4に示す例に加えて高出力単電池10bに、容量調整回路3が設けられている。この容量調整回路3は、たとえば高出力単電池10bの電圧を検出する電圧検出回路と、高出力単電池10bを放電させる放電回路とを有し、高容量単電池10aと等しい残容量(SOC)となるように高出力単電池10bの放電を行う。これにより、使用を続けていく間に高容量単電池10aの方の残容量(SOC)が低下し、高出力単電池10bの残容量(SOC)とのばらつきが生じても、この容量調整回路3により容量を等しくできるので、過放電や過充電が防止され、組電池を延命することができる。   In the example shown in FIG. 5, the capacity adjustment circuit 3 is provided in the high-power single cell 10 b in addition to the example shown in FIG. 4. The capacity adjustment circuit 3 includes, for example, a voltage detection circuit that detects the voltage of the high-power single battery 10b and a discharge circuit that discharges the high-power single battery 10b, and has a remaining capacity (SOC) equal to that of the high-capacity single battery 10a. The high-power unit cell 10b is discharged so that As a result, even if the remaining capacity (SOC) of the high-capacity single cell 10a decreases while continuing to be used, even if a variation with the remaining capacity (SOC) of the high-power single cell 10b occurs, this capacity adjustment circuit Since the capacity can be made equal to 3, overdischarge and overcharge can be prevented, and the battery life can be extended.

図6に示す例では、車両負荷2Aが常時ONされない、換言すれば、たとえばセルモータのようにある特定の瞬間だけONされる、すなわち選択的に電力を消費する負荷であり、暗電流がゼロの負荷である。したがって、車両負荷2Aは組電池1の全体に接続されるが、常時ONされないのでスイッチ4が高出力単電池10bと高容量単電池10aとの間に設けられ、車両負荷2Aを作動するときのみスイッチ4がONとなる。   In the example shown in FIG. 6, the vehicle load 2 </ b> A is not always turned on, in other words, it is turned on only at a specific moment, such as a cell motor, that is, a load that selectively consumes power, and the dark current is zero. It is a load. Therefore, the vehicle load 2A is connected to the entire assembled battery 1, but is not always turned on. Therefore, the switch 4 is provided between the high-power single cell 10b and the high-capacity single cell 10a and only operates the vehicle load 2A. Switch 4 is turned on.

一方、暗電流が相対的に大きい車両負荷2Bは、図4及び図5に示す例と同様、3つの高容量単電池10aに接続されているので、充分な電流を常時供給することができる。   On the other hand, the vehicle load 2B having a relatively large dark current is connected to the three high-capacity single cells 10a as in the examples shown in FIGS.

図7に示す例は、図5に示す容量調整回路3に代えて充電器5が高出力単電池10bに接続されている。この充電器5は、たとえば車両負荷2Bにより作動する充電器であって高出力単電池10bの残容量(SOC)が低下したときに当該高出力単電池10bを充電する。これにより、使用を続けていく間に高出力単電池10bの方の残容量(SOC)が低下し、高容量単電池10aの残容量(SOC)とのばらつきが生じても、この充電器5により容量を等しくできるので、過放電や過充電が防止され、組電池を延命することができる。   In the example shown in FIG. 7, the charger 5 is connected to the high-power single cell 10b instead of the capacity adjustment circuit 3 shown in FIG. The charger 5 is, for example, a charger that is operated by the vehicle load 2B, and charges the high-power single cell 10b when the remaining capacity (SOC) of the high-power single cell 10b decreases. As a result, even if the remaining capacity (SOC) of the high-power single cell 10b decreases while the use continues, even if a variation with the remaining capacity (SOC) of the high-capacity single cell 10a occurs, the charger 5 Since the capacity can be made equal, overdischarge and overcharge can be prevented, and the battery life can be extended.

なお、以上説明した実施形態は、本発明の理解を容易にするために記載されたものであって、本発明を限定するために記載されたものではない。したがって、上記の実施形態に開示された各要素は、本発明の技術的範囲に属する全ての設計変更や均等物をも含む趣旨である。   The embodiment described above is described for facilitating the understanding of the present invention, and is not described for limiting the present invention. Therefore, each element disclosed in the above embodiment is intended to include all design changes and equivalents belonging to the technical scope of the present invention.

本発明の実施形態に係る薄型単電池の全体を示す平面図である。It is a top view which shows the whole thin unit cell which concerns on embodiment of this invention. 図1のII-II線に沿う断面図である。It is sectional drawing which follows the II-II line of FIG. (A)は本発明の実施形態に係る組電池を示す側面図、(B)は従来の組電池を示す側面図である。(A) is a side view which shows the assembled battery which concerns on embodiment of this invention, (B) is a side view which shows the conventional assembled battery. 本発明の実施形態に係る組電池を用いた電気回路の一例である。It is an example of the electric circuit using the assembled battery which concerns on embodiment of this invention. 本発明の実施形態に係る組電池を用いた電気回路の他の例である。It is another example of the electric circuit using the assembled battery which concerns on embodiment of this invention. 本発明の実施形態に係る組電池を用いた電気回路のさらに他の例である。It is a further another example of the electric circuit using the assembled battery which concerns on embodiment of this invention. 本発明の実施形態に係る組電池を用いた電気回路のさらに他の例である。It is a further another example of the electric circuit using the assembled battery which concerns on embodiment of this invention.

符号の説明Explanation of symbols

1…組電池
10…薄型電池
10a…高容量単電池
10b…高出力単電池
101…正極板
101a…正極側集電体
101b、101c…正極層
102…セパレータ
103…負極板
103a…負極側集電体
103b、103c…負極層
104…正極端子
105…負極端子
106…上部外装部材
107…下部外装部材
108…発電要素
2A,2B…車両負荷
DESCRIPTION OF SYMBOLS 1 ... Assembly battery 10 ... Thin battery 10a ... High capacity | capacitance single cell 10b ... High output single cell 101 ... Positive electrode plate 101a ... Positive electrode side collector 101b, 101c ... Positive electrode layer 102 ... Separator 103 ... Negative electrode plate 103a ... Negative electrode side current collector Body 103b, 103c ... Negative electrode layer 104 ... Positive electrode terminal 105 ... Negative electrode terminal 106 ... Upper exterior member 107 ... Lower exterior member 108 ... Power generation element 2A, 2B ... Vehicle load

Claims (5)

複数の単電池が直列に接続されてなり、複数の負荷が接続される組電池において、
当該組電池は複数の第1の単電池を接続してなる第1の単電池群と前記第1の単電池よりも容量が小さく且つ出力密度が大きい複数の第2の単電池を接続してなる第2の単電池群とを直列に接続して構成され、
前記複数の負荷のうち暗電流が他の負荷に比べて相対的に大きい負荷が前記第1の単電池群のみに接続されるとともに、
前記複数の負荷のうち暗電流が他の負荷に比べて相対的に小さい負荷が前記第1の単電池群及び前記第2の単電池群の全体に接続されることを特徴とする組電池。
In an assembled battery in which a plurality of cells are connected in series and a plurality of loads are connected,
The assembled battery connects a first group of cells formed by connecting a plurality of first cells and a plurality of second cells having a smaller capacity and a higher output density than the first cells. configured and second cell group which is formed by the connected in series,
The relatively large load than dark current in the other loads of the plurality of loads is connected only to the first cell group Rutotomoni,
The assembled battery, wherein a load having a relatively small dark current compared to other loads among the plurality of loads is connected to the entire first cell group and the second cell group .
前記複数の負荷のうち駆動時の消費電力が他の負荷に比べて相対的に大きい負荷が前記第1の単電池群及び前記第2の単電池群の全体に接続されることを特徴とする請求項1記載の組電池。 And wherein the power consumption during the driving of the plurality of load is relatively large load than the other load is connected to the entirety of the first cell group and the second cell group The assembled battery according to claim 1. 複数の単電池が直列に接続されてなり、複数の負荷が接続される組電池において、
当該組電池は複数の第1の単電池を接続してなる第1の単電池群と前記第1の単電池よりも容量が小さく且つ出力密度が大きい複数の第2の単電池を接続してなる第2の単電池群とを直列に接続して構成され、
前記複数の負荷のうち常時電力を消費する負荷が前記第1の単電池群のみに接続されるとともに、
前記複数の負荷のうち特定の瞬間だけ電力を消費する負荷が前記第1の単電池群及び前記第2の単電池群の全体に接続されることを特徴とする組電池。
In an assembled battery in which a plurality of cells are connected in series and a plurality of loads are connected,
The assembled battery connects a first group of cells formed by connecting a plurality of first cells and a plurality of second cells having a smaller capacity and a higher output density than the first cells. configured and second cell group which is formed by the connected in series,
A load that constantly consumes electric power among the plurality of loads is connected only to the first cell group ,
The assembled battery, wherein a load that consumes power only at a specific moment among the plurality of loads is connected to the entire first cell group and the second cell group .
前記第2の単電池群に電池容量を調節する手段が設けられていることを特徴とする請求項1〜の何れか一項に記載の組電池。 The assembled battery according to any one of claims 1 to 3 , wherein means for adjusting a battery capacity is provided in the second cell group. 前記第2の単電池群に電池を充電する手段が設けられていることを特徴とする請求項1〜の何れか一項に記載の組電池。 The assembled battery according to any one of claims 1 to 4 , wherein means for charging a battery is provided in the second cell group.
JP2006270324A 2006-10-02 2006-10-02 Assembled battery Expired - Fee Related JP5098278B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006270324A JP5098278B2 (en) 2006-10-02 2006-10-02 Assembled battery

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006270324A JP5098278B2 (en) 2006-10-02 2006-10-02 Assembled battery

Publications (2)

Publication Number Publication Date
JP2008091188A JP2008091188A (en) 2008-04-17
JP5098278B2 true JP5098278B2 (en) 2012-12-12

Family

ID=39375127

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006270324A Expired - Fee Related JP5098278B2 (en) 2006-10-02 2006-10-02 Assembled battery

Country Status (1)

Country Link
JP (1) JP5098278B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US9352644B2 (en) 2011-08-30 2016-05-31 Toyota Jidosha Kabushiki Kaisha Vehicle
DE102012203467A1 (en) 2012-03-06 2013-09-12 Continental Automotive Gmbh On-board network for a vehicle
US9849792B2 (en) 2012-04-20 2017-12-26 Toyota Jidosha Kabushiki Kaisha Vehicle

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2503673B2 (en) * 1989-07-31 1996-06-05 トヨタ自動車株式会社 Method for manufacturing precision casting mold
JP3879494B2 (en) * 2001-11-22 2007-02-14 日立工機株式会社 Battery pack
JP2004095400A (en) * 2002-08-30 2004-03-25 Nissan Motor Co Ltd Bipolar battery and its control method
JP2004303456A (en) * 2003-03-28 2004-10-28 Sanyo Electric Co Ltd Battery pack
JP4738730B2 (en) * 2003-04-21 2011-08-03 株式会社マキタ Battery pack and battery pack

Also Published As

Publication number Publication date
JP2008091188A (en) 2008-04-17

Similar Documents

Publication Publication Date Title
KR101275407B1 (en) Hybrid power supply
EP2017911B1 (en) Electric Storage Device
KR100686804B1 (en) Electrod Assemblay with Supercapacitor and Li Secondary Battery comprising the same
US20190334205A1 (en) All-solid-state battery
JP2008536272A (en) Lithium-ion rocking chair rechargeable battery
JP2004087238A (en) Layer built cell
US8012614B2 (en) Non-aqueous electrolyte battery, and power supply unit
JPH11238528A (en) Lithium secondary battery
JP2006324143A (en) Secondary battery
JP2006079987A (en) Hybrid battery system
KR20120137289A (en) Electrode assembly and lithium secondary battery comprising the same
JP2005267886A (en) Secondary battery
KR101569055B1 (en) Hybrid-typed Secondary Battery Comprising Electrodes Having Different Output and Capacity Properties
JP5098278B2 (en) Assembled battery
JP6037472B2 (en) Lithium storage battery
US7166387B2 (en) Thin battery with an electrode having a higher strength base portion than a tip portion
JP2015502626A5 (en)
JP2013037863A (en) Battery pack
KR20200064753A (en) Electrode Assembly
JP5167577B2 (en) Non-aqueous electrolyte secondary battery
JP2010232011A (en) Secondary battery
JP2002313348A (en) Secondary battery
JP4107214B2 (en) Secondary battery
WO2006135183A1 (en) Lithium secondary battery having anode lead and cathode lead oppositely projected from pouch
JP2011216685A (en) Composite electricity storage device

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090827

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20100202

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120530

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120605

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120801

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120828

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120910

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151005

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees