JP5163354B2 - Method for manufacturing impact energy absorbing member - Google Patents

Method for manufacturing impact energy absorbing member Download PDF

Info

Publication number
JP5163354B2
JP5163354B2 JP2008205197A JP2008205197A JP5163354B2 JP 5163354 B2 JP5163354 B2 JP 5163354B2 JP 2008205197 A JP2008205197 A JP 2008205197A JP 2008205197 A JP2008205197 A JP 2008205197A JP 5163354 B2 JP5163354 B2 JP 5163354B2
Authority
JP
Japan
Prior art keywords
deformation
main body
cylinder axis
impact energy
deformation control
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008205197A
Other languages
Japanese (ja)
Other versions
JP2010038338A (en
Inventor
勝也 西口
敏嗣 上岡
研一 山本
健二 村▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008205197A priority Critical patent/JP5163354B2/en
Priority to US12/537,040 priority patent/US7918493B2/en
Publication of JP2010038338A publication Critical patent/JP2010038338A/en
Application granted granted Critical
Publication of JP5163354B2 publication Critical patent/JP5163354B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Description

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する、車両のクラッシュカン等に好適な衝撃エネルギ吸収部材の製造方法に関する技術分野に属する。 The present invention absorbs compressive load input in the cylinder axis direction with respect to the cylindrical body portion, belonging to the technical field relates to a method for manufacturing a crush can such suitable impact energy absorbing member of the vehicle.

従来より、例えば車両のフロントサイドフレームの先端又はリヤサイドフレームの後端に、衝撃エネルギ吸収部材としてクラッシュカンを設けて、このクラッシュカンにより、車両の正面衝突時や後面衝突時の衝撃エネルギ(衝撃圧縮荷重)を吸収するようにすることはよく知られている。   Conventionally, for example, a crash can has been provided as an impact energy absorbing member at the front end of the front side frame or the rear end of the rear side frame of the vehicle. It is well known to absorb (load).

上記クラッシュカン等の衝撃エネルギ吸収部材においては、衝撃エネルギの吸収性能を向上させるべく種々の提案がなされている。例えば特許文献1では、衝撃エネルギ吸収部材の筒状の本体部を、少なくとも1つの短筒形状の第1部分と、この第1部分に対して同心軸状に重ねて配置された少なくとも1つの短筒形状の第2部分とで構成し、上記第1部分と第2部分との接続部分を上記同心軸に対して傾斜する部分を含む構成として、本体部に対して筒軸方向に圧縮荷重が入力されたときに、第1部分を縮径させつつ第2部分を拡径させて、第1部材を第2部材の内側中空部に押し込むようにしている。この構成により、不安定な座屈現象の発生を抑制して変形モードを安定させ、これにより衝撃エネルギの吸収性能を高めるようにしている。
国際公開第2006/025559号パンフレット
In the impact energy absorbing member such as the crash can, various proposals have been made to improve the impact energy absorbing performance. For example, in Patent Document 1, a cylindrical main body portion of an impact energy absorbing member is arranged with at least one short cylindrical first part and at least one short cylinder arranged concentrically with respect to the first part. As a configuration including a cylindrical second portion and a portion where the connection portion between the first portion and the second portion is inclined with respect to the concentric axis, a compressive load is applied to the main body portion in the cylindrical axis direction. When it is input, the first portion is pushed into the inner hollow portion of the second member by reducing the diameter of the first portion and expanding the second portion. With this configuration, the occurrence of an unstable buckling phenomenon is suppressed to stabilize the deformation mode, thereby improving the impact energy absorption performance.
International Publication No. 2006/025559 Pamphlet

しかし、上記特許文献1のものでは、本体部に対して筒軸方向に圧縮荷重が入力されたときにおいて、第1部分と第2部分とを接続部分で分離させて第1部材を第2部材の内側中空部に押し込む際に、第1部材が第2部材の内側中空部にスムーズに押し込まれずに、第1部材又は第2部材が座屈変形する可能性があり、衝撃エネルギ吸収部材を安定して変形させることが困難になる。この座屈変形を確実に防止するためには、第1及び第2部分の長さをかなり短くしておく必要があるが、この場合、車両に生じるような圧縮荷重に対応可能にしようとすると、第1及び第2部分の数がかなり多くなる。また、第1部材を第2部材の内側中空部にスムーズに押し込むためには、第1部分と第2部分とは単に接触しているか、又は固定されていたとしても、その固定力を小さくしておく必要があるが、上記のように第1及び第2部分の数がかなり多くなると、衝撃エネルギ吸収部材の運搬時や車両等への組付け時に第1部分又は第2部分が脱落する可能性があり、取扱い性が悪いという問題がある。   However, in the thing of the said patent document 1, when a compressive load is input with respect to the main-body part in the cylinder axial direction, the 1st part and the 2nd part are separated by the connection part, and the 1st member is made into the 2nd member. When the first member is pushed into the inner hollow portion of the first member, the first member or the second member may be buckled and deformed without being smoothly pushed into the inner hollow portion of the second member, thereby stabilizing the impact energy absorbing member. It becomes difficult to deform. In order to surely prevent this buckling deformation, the lengths of the first and second portions need to be considerably shortened. In this case, if it is attempted to cope with the compressive load generated in the vehicle, , The number of first and second parts is considerably increased. Further, in order to smoothly push the first member into the inner hollow part of the second member, even if the first part and the second part are simply in contact or fixed, the fixing force is reduced. However, if the number of the first and second parts becomes considerably large as described above, the first part or the second part may fall off when the impact energy absorbing member is transported or assembled to a vehicle or the like. There is a problem that it is difficult to handle.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、筒状の本体部を座屈変形させることなく本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材の製造方法を提供しようとすることにある。 The present invention has been made in view of such a point, and an object of the present invention is to stably deform the cylindrical main body portion in the main body cylinder axis direction without causing buckling deformation. Another object of the present invention is to provide a manufacturing method of an impact energy absorbing member excellent in handling properties.

上記の目的を達成するために、請求項1の発明では、筒状の本体部を有し、該本体部に対して該本体部の筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法を対象として、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、該変形部の塑性変形の方向を制御する複数の変形制御部とからなり、上記変形制御部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側及び内側の少なくとも一方側へ塑性変形させる配置及び形状に設定されており、上記金属の溶湯との複合化により上記複数の変形制御部をそれぞれ形成することが可能な複数の予備成形体を成形する工程と、上記成形した予備成形体を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、該溶湯と予備成形体とを複合化して、上記変形部と変形制御部とを一体成形する工程とを含むものとする。 In order to achieve the above object, according to the first aspect of the present invention, there is provided a shock absorber that has a cylindrical main body portion and absorbs a compressive load input to the main body portion in the cylinder axis direction of the main body portion. as process for the production of members, the body portion includes a deformable portion for compressive plastic deformation to the body part cylinder axis direction by receiving the result and predetermined or more of the compression load of a metal, a plurality of places of the cylinder axis direction in the body portion And a plurality of deformation control units that control the direction of plastic deformation of the deformable portion, and the deformation control unit has a compressive load greater than or equal to the predetermined value on the main body portion. Is set to an arrangement and a shape that causes the deformation portion to be plastically deformed to at least one of the outer side and the inner side in the main body radial direction simultaneously with the compressive plastic deformation in the main body cylindrical axis direction, By combining with molten metal A step of forming a plurality of preforms each capable of forming a plurality of deformation control units, and a state where the molded preform is set in a cavity of a mold, the molten metal is placed in the cavity. And the step of combining the molten metal and the preform and integrally forming the deformation portion and the deformation control portion.

この発明により、予備成形体と金属の溶湯とを複合化することで、変形部及び変形制御部を容易に一体成形することができ、本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。すなわち、衝撃エネルギ吸収部材の本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、変形部は、変形制御部によって、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側及び/又は内側へ塑性変形し、このような変形部の塑性変形により圧縮荷重(衝撃エネルギ)を吸収することができる。また、変形部は、本体部筒軸方向の長さが短くなるとともに本体部径方向の外側及び/又は内側へ広がるように変形するので、本体部全体として座屈変形が生じずに筒軸方向に安定して変形する。しかも、変形部は、予備成形体と金属の溶湯との複合化により変形制御部と一体成形されたものであるので、変形制御部から分離し難く、このことでも、本体部が筒軸方向に安定して変形することになる。したがって、本体部に対して、筒軸方向の圧縮荷重と同時に、本体部を径方向に倒すような力が入力されたとしても、本体部は座屈変形し難くて筒軸方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、変形部や変形制御部の数が多くなっても、変形部と変形制御部とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。 According to the present invention, by combining the preform and the molten metal , the deformable portion and the deformation control portion can be easily integrally formed, and can be stably deformed in the main body cylinder axis direction. In addition, an impact energy absorbing member excellent in handleability can be easily manufactured. That is, when a predetermined or greater compressive load is input in the cylinder axis direction to the main body portion of the impact energy absorbing member, the deformation portion is simultaneously deformed by the deformation control portion by the deformation control portion in the main body portion cylindrical axis direction. It is possible to plastically deform outward and / or inward in the radial direction, and to absorb the compressive load (impact energy) by such plastic deformation of the deformed portion. In addition, since the deforming portion is deformed so that the length in the main body portion cylindrical axis direction is shortened and spreads outward and / or in the main body portion radial direction, the entire main body portion is not buckled and deformed in the cylindrical axis direction. Deforms stably. In addition, since the deformed portion is formed integrally with the deformation control portion by combining the preform and the molten metal, it is difficult to separate from the deformation control portion. It will be deformed stably. Therefore, even if a force is applied to the main body portion in the cylinder axis direction and a force that tilts the main body portion in the radial direction, the main body portion is unlikely to buckle and deform reliably in the cylinder axis direction. Thus, the compression load absorption performance can be enhanced. Further, even if the number of deformation parts and deformation control parts increases, the deformation parts and the deformation control parts can be firmly and easily fixed to each other by integral molding. It is possible to improve the handleability when assembling.

請求項の発明では、請求項の発明において、上記変形部及び上記変形制御部が上記本体部の筒軸方向に交互に積層され、上記各変形制御部の上記変形部と接する面が、本体部径方向外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされているものとする。 According to a second aspect of the present invention, in the first aspect of the invention, the deformation portion and the deformation control portion are alternately stacked in the cylinder axis direction of the main body portion, and the surface of the deformation control portion that contacts the deformation portion is The inclined surface is inclined toward one side or the other side in the main body cylinder axis direction toward the outer side in the main body radial direction.

このことで、衝撃エネルギ吸収部材において、各変形制御部の傾斜面によって、変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側及び/又は内側へ塑性変形させることが容易にできるようになり、このような衝撃エネルギ吸収部材を容易に製造することができる。 Thus, in the impact energy absorbing member, the deformed portion is plastically deformed outward and / or inward in the main body radial direction simultaneously with the compressive plastic deformation in the main body cylindrical axis direction by the inclined surface of each deformation control portion. Thus, such an impact energy absorbing member can be easily manufactured.

請求項の発明では、請求項又はの発明において、上記金属は、アルミニウム合金であり、上記予備成形体は、強化繊維成形体からなるものとする。 According to a third aspect of the invention, in the first or second aspect of the invention, the metal is an aluminum alloy, and the preform is a reinforcing fiber molded body.

このことにより、衝撃エネルギ吸収部材において、変形制御部は、強化繊維により変形部よりも圧縮塑性変形し難くかつ破壊し難くなって、変形部の塑性変形の方向を確実に制御できるようになる。また、衝撃エネルギ吸収部材の軽量化を図ることができる。そして、このような衝撃エネルギ吸収部材を容易に製造することができる。 As a result, in the impact energy absorbing member, the deformation control unit is more difficult to be plastically plastically deformed and more difficult to break than the deformed portion due to the reinforcing fibers, and the plastic deformation direction of the deformed portion can be reliably controlled. Further, the impact energy absorbing member can be reduced in weight. And such an impact energy absorption member can be manufactured easily.

以上説明したように、本発明の衝撃エネルギ吸収部材の製造方法によると、複数の予備成形体を成形する工程と、該成形した複数の予備成形体を金型のキャビティ内にセットした状態で、金属の溶湯を該キャビティ内に供給することで、該溶湯と各予備成形体とを複合化して、変形部及び変形制御部を一体成形する工程とを含むようにしたことにより、本体部を座屈変形させることなく筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。 As described above, according to the manufacturing method of the impact energy absorbing member of the present invention, in the state of molding a plurality of preforms and the plurality of molded preforms set in the cavity of the mold, By supplying the molten metal into the cavity, the molten metal and each preform are combined, and the step of integrally forming the deformation portion and the deformation control portion is included, so that the main body portion is seated. It is possible to easily manufacture an impact energy absorbing member that can be stably deformed in the cylinder axis direction without being bent and deformed and that is excellent in handleability.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る衝撃エネルギ吸収部材1を示し、この衝撃エネルギ吸収部材1は、筒状(本実施形態では円筒状)の本体部2を有していて、該本体部2に対して筒軸Z方向(図1の上下方向)に入力される圧縮荷重を吸収するものである。
(Embodiment 1)
FIG. 1 shows an impact energy absorbing member 1 according to Embodiment 1 of the present invention, and this impact energy absorbing member 1 has a cylindrical (cylindrical in this embodiment) body portion 2, and the body It absorbs a compressive load input to the portion 2 in the cylinder axis Z direction (vertical direction in FIG. 1).

上記衝撃エネルギ吸収部材1は、本実施形態では、図2に示すように、車両100の前部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のフロントサイドフレーム91の前端とフロントバンパー93における車幅方向に延びるバンパーレインフォースメント93aの左右両端部との間にそれぞれ介設されるクラッシュカン92として用いられる。この場合、衝撃エネルギ吸収部材1は、筒軸Z方向が車両100の前後方向に一致するように配設されて、車両100の正面衝突時にバンパーレインフォースメント93aから入力される衝突エネルギ(衝撃圧縮荷重)を吸収する。   In the present embodiment, the impact energy absorbing member 1 includes front ends of left and right front side frames 91 provided to extend in the front-rear direction at both vehicle width direction positions in the front portion of the vehicle 100, as shown in FIG. The front bumper 93 is used as a crash can 92 interposed between left and right ends of a bumper reinforcement 93a extending in the vehicle width direction. In this case, the impact energy absorbing member 1 is disposed such that the direction of the cylinder axis Z coincides with the front-rear direction of the vehicle 100, and the collision energy (impact compression) input from the bumper reinforcement 93a at the time of a frontal collision of the vehicle 100. Absorbs load).

尚、衝撃エネルギ吸収部材1は、上記クラッシュカン92に限らず、上記左右のフロントサイドフレーム91の一部(特に前端部分)、車両100の後部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のリヤサイドフレーム(図示せず)の一部(特に後端部分)、又は、この各リヤサイドフレームの後端とリヤバンパー94のバンパーレインフォースメント(図示せず)との間に介設されるクラッシュカン(図示せず)に用いてもよい。また、衝撃エネルギ吸収部材1は、車両100において衝撃エネルギを吸収する必要がある部分に広く用いることができるとともに、車両100以外のものに用いることも可能である。   The impact energy absorbing member 1 is not limited to the crash can 92 but extends in the front-rear direction at a part (particularly the front end portion) of the left and right front side frames 91 and at both sides in the vehicle width direction at the rear portion of the vehicle 100. A part of the left and right rear side frames (not shown) (particularly the rear end part) provided between the rear side frame and a bumper reinforcement (not shown) of the rear bumper 94. You may use for the crush can (not shown) provided. Further, the impact energy absorbing member 1 can be widely used in a portion where the impact energy needs to be absorbed in the vehicle 100 and can also be used for other than the vehicle 100.

上記本体部2における筒軸Z方向の両側端には、衝撃エネルギ吸収部材1を上記フロントサイドフレーム91の前端とバンパーレインフォースメント93aとにそれぞれ取付固定するための第1及び第2固定部7,8がそれぞれ設けられている。第1固定部7には、該第1固定部7をフロントサイドフレーム91の前端に締結固定するためのボルトが挿通される複数のボルト挿通孔7aが形成されており、第2固定部8には、該第2固定部8をバンパーレインフォースメント93aに締結固定するためのボルトが挿通される複数のボルト挿通孔8aが形成されている。これら第1及び第2固定部7,8の形状は、衝撃エネルギ吸収部材1の適用箇所によって異なる。   First and second fixing portions 7 for attaching and fixing the impact energy absorbing member 1 to the front end of the front side frame 91 and the bumper reinforcement 93a, respectively, at both ends of the main body portion 2 in the cylinder axis Z direction. , 8 are provided. The first fixing portion 7 has a plurality of bolt insertion holes 7a through which bolts for fastening and fixing the first fixing portion 7 to the front end of the front side frame 91 are formed. Are formed with a plurality of bolt insertion holes 8a through which bolts for fastening and fixing the second fixing portion 8 to the bumper reinforcement 93a are inserted. The shapes of the first and second fixing portions 7 and 8 differ depending on the application location of the impact energy absorbing member 1.

本実施形態のように衝撃エネルギ吸収部材1をクラッシュカン92に用いる場合、本体部2の外径Dは40〜100mmが好ましく、肉厚tは2〜8mmが好ましく、長さLは80〜150mmが好ましい。尚、本体部の外径Dは、図1では、本体部2の筒軸Z方向全体に亘って一定に記載しているが、厳密には一定ではなくて、第2固定部8側に向かって徐々に小さくなっている。これは、衝撃エネルギ吸収部材1を後述の鋳造金型30(図8参照)で鋳造した後に該鋳造金型30からの離型を容易にするためである。   When the impact energy absorbing member 1 is used for the crash can 92 as in this embodiment, the outer diameter D of the main body 2 is preferably 40 to 100 mm, the wall thickness t is preferably 2 to 8 mm, and the length L is 80 to 150 mm. Is preferred. In FIG. 1, the outer diameter D of the main body portion is shown to be constant throughout the entire cylinder axis Z direction of the main body portion 2, but is not strictly constant and is directed toward the second fixing portion 8 side. Gradually getting smaller. This is for facilitating mold release from the casting mold 30 after the impact energy absorbing member 1 is cast with a casting mold 30 (see FIG. 8) described later.

上記本体部2は、該本体部2に対する筒軸Z方向の所定以上の圧縮荷重を受けて筒軸Z方向に圧縮塑性変形する複数(本実施形態では4つ)の変形部3と、該本体部2における筒軸Z方向の複数箇所に本体部2周方向に沿ってそれぞれ環状に配置され、該変形部3の塑性変形の方向を制御する複数(本実施形態では5つ)の変形制御部4とが一体成形されてなる。この変形制御部4は、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難い材料、つまり上記圧縮荷重に対する強度及び剛性が変形部3よりも高い材料で構成すればよいが、これに限られるものでもない。本実施形態で用いる具体的な材料については後述する。   The main body 2 includes a plurality of (four in the present embodiment) deformable portions 3 that undergo a compressive plastic deformation in the cylinder axis Z direction upon receiving a predetermined or greater compressive load in the cylinder axis Z direction with respect to the main body 2, and the main body A plurality (five in this embodiment) of deformation control units that are annularly arranged along the circumferential direction of the main body unit 2 at a plurality of locations in the cylinder axis Z direction of the unit 2 and control the direction of plastic deformation of the deformation unit 3. 4 is integrally formed. The deformation control unit 4 is made of a material that is less likely to be plastically plastically deformed and less likely to break than the deformation unit 3 with respect to the compressive load in the cylinder axis Z direction, that is, a material that has higher strength and rigidity with respect to the compression load than the deformation unit 3. However, the present invention is not limited to this. Specific materials used in this embodiment will be described later.

上記変形制御部4は、上記本体部2に上記所定以上の圧縮荷重が入力されたときに、上記変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ強制的に塑性変形(縮径変形)させる配置及び形状に設定されている。   The deformation control unit 4 moves the deformation unit 3 inwardly in the radial direction of the main body 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction when a compression load greater than or equal to the predetermined value is input to the main body 2. The arrangement and shape are forcibly plastically deformed (reduced diameter deformation).

具体的には、上記複数の環状の変形部3及び上記複数の環状の変形制御部4が、本体部2の筒軸Z方向に交互に積層され、各変形制御部4の変形部3と接する面が、本体部2の径方向外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傾斜面4aとされている。そして、筒軸Z方向に隣り合う任意の2つの傾斜面4aは、本体部2径方向の外側に向かって互いに反対側に傾斜している。本実施形態では、各傾斜面4aは、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、全変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形させるように傾斜している。すなわち、各変形制御部4の筒軸Z方向の長さが、本体部2径方向の外側に向かって大きくなっている一方、各変形部3の筒軸Z方向の長さが、本体部2径方向の外側に向かって小さくなっている。   Specifically, the plurality of annular deformation portions 3 and the plurality of annular deformation control portions 4 are alternately stacked in the cylinder axis Z direction of the main body portion 2 and are in contact with the deformation portions 3 of the respective deformation control portions 4. The surface is an inclined surface 4 a that is inclined toward one side or the other side in the cylinder axis Z direction toward the radially outer side of the main body 2. And two arbitrary inclined surfaces 4a adjacent in the cylinder axis Z direction are inclined to opposite sides toward the outer side in the main body portion 2 radial direction. In the present embodiment, each inclined surface 4a is configured such that when a predetermined compressive load or more in the cylinder axis Z direction is input to the main body 2, the entire deformed portion 3 is compressed and plastically deformed in the cylinder axis Z direction. At the same time, the main body portion 2 is inclined so as to be plastically deformed inward in the radial direction. That is, the length of each deformation control unit 4 in the cylinder axis Z direction increases toward the outer side in the radial direction of the main body 2, while the length of each deformation unit 3 in the cylinder axis Z direction increases. It becomes smaller toward the outside in the radial direction.

尚、各傾斜面4aは、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、全変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形(拡径変形)させるように傾斜していてもよい。すなわち、各変形制御部4の筒軸Z方向の長さを、本体部2径方向の外側に向かって小さくする一方、各変形部3の筒軸Z方向の長さを、本体部2径方向の外側に向かって大きくする。但し、変形部3が本体部2径方向の内側へ塑性変形する場合の変形抵抗は、外側へ塑性変形する場合の変形抵抗に比べて大きいので、圧縮荷重の吸収量を大きくする観点からは、変形部3を本体部2径方向の内側へ塑性変形させる方が好ましい。   Each inclined surface 4a is configured such that when a predetermined or more compressive load is input to the main body portion 2 in the cylinder axis Z direction, the main body portion simultaneously moves the entire deformation portion 3 to compressive plastic deformation in the cylinder axis Z direction. You may incline so that it may carry out plastic deformation (diameter expansion deformation) to the outer side of a two radial direction. That is, the length of each deformation control unit 4 in the cylinder axis Z direction is reduced toward the outer side in the main body part 2 radial direction, while the length of each deformation part 3 in the cylinder axis Z direction is reduced in the main body part 2 radial direction. Increase toward the outside. However, since the deformation resistance when the deformable portion 3 is plastically deformed inward in the main body portion 2 radial direction is larger than the deformation resistance when plastically deformed outward, from the viewpoint of increasing the absorption amount of the compressive load, It is preferable to plastically deform the deformable portion 3 inward in the radial direction of the main body portion 2.

上記各傾斜面4aの傾斜角度θ(筒軸Z方向に対して垂直な面に対する傾斜角度)は、30°〜60°が好ましく、特に好ましいのは40°〜50°である。本体部2径方向の外側に向かって筒軸Z方向の一方側に傾斜する傾斜面4aの傾斜角度と、他方側に傾斜する傾斜面4aの傾斜角度とは同じであることが好ましいが、互いに異なっていてもよい。   The inclination angle θ of each of the inclined surfaces 4a (inclination angle with respect to a surface perpendicular to the cylinder axis Z direction) is preferably 30 ° to 60 °, and particularly preferably 40 ° to 50 °. It is preferable that the inclination angle of the inclined surface 4a inclined to the one side in the cylinder axis Z direction and the inclination angle of the inclined surface 4a inclined to the other side are the same as each other outward in the radial direction of the main body portion. May be different.

本実施形態では、本体部2における筒軸Z方向の両側端部が変形制御部4でそれぞれ構成されているが、変形部3でそれぞれ構成してもよく、該両側端部のうちいずれか一方の端部のみを変形制御部4で構成してもよい。また、変形部3は1つであってもよく、この場合には、本体部2における筒軸Z方向の両側端部が変形制御部4でそれぞれ構成されることになる。   In the present embodiment, both end portions in the cylinder axis Z direction of the main body portion 2 are each configured by the deformation control unit 4, but each may be configured by the deformation unit 3, and either one of the both side end portions. Only the end portion may be configured by the deformation control unit 4. Further, the number of the deforming portions 3 may be one, and in this case, both end portions in the cylinder axis Z direction of the main body portion 2 are respectively configured by the deformation control portion 4.

上記複数の変形部3の形状及び大きさは略同じであることが好ましい。これは、圧縮荷重が全ての変形部3に均一に作用して特定の変形部3に集中しないようにするためである。 It is preferable that the shapes and sizes of the plurality of deformation portions 3 are substantially the same. This is to prevent the compressive load from acting uniformly on all the deformable portions 3 and concentrating on the specific deformable portion 3.

本実施形態では、上記変形部3はアルミニウム合金鋳物からなり、上記変形制御部4は、強化繊維が含有されたアルミニウム合金鋳物からなる。これら変形部3及び変形制御部4は、後述の如くアルミニウム合金の溶湯と強化繊維成形体からなる予備成形体15(図5参照)との複合化により一体成形されたものである。   In this embodiment, the said deformation | transformation part 3 consists of aluminum alloy castings, and the said deformation | transformation control part 4 consists of aluminum alloy castings containing the reinforced fiber. The deformation section 3 and the deformation control section 4 are integrally formed by combining a molten aluminum alloy and a preformed body 15 (see FIG. 5) made of a reinforcing fiber molded body, as will be described later.

上記アルミニウム合金として好ましいのは、Al−Mn−Fe−Mg系合金である。このAl−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。具体的には、0.5〜2.5%のMn成分と、0.1〜1.5%のFe成分と、0.01〜1.2%のMg成分と、残部が不可避不純物を含むAl成分とからなるアルミニウム合金とする(含有量の数値は質量百分率である)。   The aluminum alloy is preferably an Al—Mn—Fe—Mg alloy. This Al-Mn-Fe-Mg-based alloy is high in casting as it can improve the castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with elongation. Specifically, 0.5 to 2.5% Mn component, 0.1 to 1.5% Fe component, 0.01 to 1.2% Mg component, and the balance contains inevitable impurities The aluminum alloy is composed of an Al component (the numerical value of the content is a mass percentage).

また、上記各成分含有量を有するAl−Mn−Fe−Mg系合金に、質量百分率で0.1〜0.2%のTi成分、質量百分率で0.01〜0.1%のB成分、及び、質量百分率で0.01〜0.2%のBe成分のうちの少なくとも1つを添加することがより好ましい。すなわち、Ti成分、B成分及びBe成分は、鋳物の結晶粒を微細化することによりその特性を向上させて鋳造割れ性を改善することができるが、含有量が多すぎると、粗大化合物が生成されて伸びが低下する。そこで、Ti成分、B成分及びBe成分の各含有量を上記範囲に設定して、伸びの低下を防ぎつつ、鋳造割れ性をさらに良好にする。   In addition, to the Al-Mn-Fe-Mg based alloy having the above respective component contents, 0.1 to 0.2% Ti component by mass percentage, 0.01 to 0.1% B component by mass percentage, And it is more preferable to add at least one of Be components of 0.01 to 0.2% by mass percentage. That is, the Ti component, the B component and the Be component can improve the casting cracking property by refining the crystal grains of the casting, but if the content is too large, a coarse compound is generated. As a result, the elongation decreases. Then, each content of Ti component, B component, and Be component is set to the said range, and cast cracking property is made further favorable, preventing the fall of elongation.

尚、上記Al−Mn−Fe−Mg系合金に代えて、例えば、Al−Si系合金を用いてもよく(この合金の場合には、高真空ダイカスト法で鋳造する)、Mg系合金やその他の金属を用いてもよい。   In place of the Al—Mn—Fe—Mg alloy, for example, an Al—Si alloy may be used (in the case of this alloy, casting is performed by a high vacuum die casting method). The metal may be used.

上記強化繊維としては、アルミナ繊維、シリカ繊維、シリコンカーバイト繊維等が好ましい。アルミナ繊維及びシリカ繊維の場合には、例えば、平均繊維径3μm〜5μm、繊維長さ5mm〜10mmのものを用い、シリコンカーバイト繊維の場合には、例えば、平均繊維径10μm〜15μm、繊維長さ5mm〜10mmのものを用いればよい。上記強化繊維成形体(予備成形体15)の繊維体積率は5〜10%であることが好ましく、予備成形体15の強化繊維が存在しない部分は空孔となっている。   As the reinforcing fiber, alumina fiber, silica fiber, silicon carbide fiber and the like are preferable. In the case of alumina fibers and silica fibers, for example, those having an average fiber diameter of 3 μm to 5 μm and a fiber length of 5 mm to 10 mm are used. In the case of silicon carbide fibers, for example, the average fiber diameter of 10 μm to 15 μm, the fiber length is used. The thing of 5 mm-10 mm should just be used. The fiber volume fraction of the reinforcing fiber molded body (preliminary molded body 15) is preferably 5 to 10%, and the portion of the preformed body 15 where the reinforcing fiber is not present is a void.

上記強化繊維に代えて、平均径8μm〜12μm、長さが数cmのスチール又はステンレスワイヤーがアルミニウム合金鋳物に含有していてもよい。この場合も、上記強化繊維と同様に、ワイヤーを固めたものからなる予備成形体を成形して、アルミニウム合金の溶湯とその予備成形体とを複合化する。この予備成形体のワイヤー体積率は5〜10%であることが好ましい。   Instead of the reinforcing fiber, steel or stainless steel wire having an average diameter of 8 μm to 12 μm and a length of several centimeters may be contained in the aluminum alloy casting. Also in this case, similarly to the reinforcing fiber, a preformed body made of a hardened wire is formed, and the molten aluminum alloy and the preformed body are combined. It is preferable that the wire volume ratio of this preform is 5 to 10%.

上記溶湯と複合化する予備成形体としては、多孔質金属体であってもよい。例えば気孔率98%のニッケル多孔体(商品名:ニッケルセルメット)を予備成形体として用いることができる。また、筒軸Z方向に対応する方向に貫通する複数の貫通孔を有する金属製(筒軸Z方向の圧縮荷重に対してアルミニウム合金鋳物よりも圧縮塑性変形し難くかつ破壊し難い金属(例えばスチール))の予備成形体を用いることも可能である(上記貫通孔にアルミニウム合金の溶湯を含浸させる)。   A porous metal body may be used as the preform to be combined with the molten metal. For example, a porous nickel body (trade name: nickel cermet) having a porosity of 98% can be used as a preform. Also, a metal having a plurality of through-holes penetrating in a direction corresponding to the cylinder axis Z direction (a metal (for example, steel) that is less likely to be plastically deformed and more difficult to break than an aluminum alloy casting against a compressive load in the cylinder axis Z direction. )) Can also be used (the through hole is impregnated with molten aluminum alloy).

このように変形制御部4は、変形部3の構成材料であるアルミニウム合金と強化繊維との複合化により強化されて、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難くなっており、これにより、本体部2に対して筒軸Z方向に所定以上の圧縮荷重(但し、変形制御部4が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときには、図3に示すように、変形制御部4が圧縮塑性変形しない状態で(但し、弾性変形はする)、変形部3が筒軸Z方向に圧縮塑性変形することになる。また、変形制御部4の傾斜面4aによって、変形部3が、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形することになる。この変形部3の塑性変形によって上記圧縮荷重を吸収する。このとき、変形部3は、その筒軸Z方向の長さが短くなりながら本体部2径方向の内側へ広がることにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。尚、変形部3は、筒軸Z方向の圧縮塑性変形に伴って、本体部2径方向の外側へも少し塑性変形することになるが、その外側への塑性変形量は、強制的に変形させられる内側への塑性変形量に比べてかなり小さい。 In this way, the deformation control unit 4 is reinforced by the composite of the aluminum alloy that is the constituent material of the deformation unit 3 and the reinforcing fiber, and is subjected to compressive plastic deformation than the deformation unit 3 with respect to the compressive load in the cylinder axis Z direction. As a result, a compressive load greater than or equal to a predetermined value in the direction of the cylinder axis Z (provided that the deformation control unit 4 does not compressively plastically deform) is input to the main body 2. In some cases, as shown in FIG. 3, the deformation control unit 4 does not undergo plastic plastic deformation (but undergoes elastic deformation), and the deformation unit 3 undergoes plastic plastic deformation in the cylinder axis Z direction. Further, due to the inclined surface 4 a of the deformation control unit 4, the deformation unit 3 is plastically deformed inward in the main body 2 radial direction simultaneously with the compressive plastic deformation in the cylinder axis Z direction. The compressive load is absorbed by the plastic deformation of the deformable portion 3. At this time, the deforming portion 3 spreads inward in the radial direction of the main body portion 2 while its length in the cylindrical axis Z direction is shortened, so that the main body portion 2 as a whole is stable in the cylindrical axis Z direction without causing buckling deformation. And deform. The deformable portion 3 is slightly plastically deformed outward in the radial direction of the main body 2 along with the compressive plastic deformation in the cylinder axis Z direction, but the amount of plastic deformation to the outside is forcibly deformed. It is considerably smaller than the amount of plastic deformation inward.

また、本体部2に対して筒軸Z方向に、変形制御部4が圧縮塑性変形するような大きさの圧縮荷重が入力されたときには、図4に示すように、変形制御部4も筒軸Z方向に圧縮塑性変形する。さらに、傾斜面4aが変形部3から受ける反力によって、変形制御部4が本体部2径方向の外側へ塑性変形することになる。この変形制御部4の塑性変形時においても、変形制御部4は、傾斜面4aの傾斜角度θが0になるまでは、変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形させる役目を果たす。そして、変形制御部4の塑性変形により傾斜面4aの傾斜角度θが0になったとしても、その時点では既に、変形部3の塑性変形量がかなり大きくなっており、この結果、その時点以降も圧縮荷重が作用し続けたとしても、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。 Further, when a compressive load having such a magnitude that the deformation control unit 4 is compressively plastically deformed in the cylinder axis Z direction with respect to the main body 2, as shown in FIG. 4, the deformation control unit 4 is also connected to the cylinder axis. Compressive plastic deformation in the Z direction. Furthermore, the deformation control unit 4 is plastically deformed outward in the radial direction of the main body 2 by the reaction force received by the inclined surface 4a from the deformation unit 3. Even during the plastic deformation of the deformation control unit 4, the deformation control unit 4 moves the main body unit simultaneously with the compressive plastic deformation in the cylinder axis Z direction until the inclination angle θ of the inclined surface 4a becomes zero. It plays the role of plastic deformation inward in the two radial directions. Even if the inclination angle θ of the inclined surface 4a becomes 0 due to plastic deformation of the deformation control unit 4, the plastic deformation amount of the deformation unit 3 is already considerably large at that time, and as a result, after that time, Even if the compressive load continues to act, the main body 2 as a whole is deformed in the direction of the cylinder axis Z without causing buckling deformation.

上記衝撃エネルギ吸収部材1を製造するには、先ず、図5に示すように、上記アルミニウム合金の溶湯との複合化により上記複数の変形制御部4をそれぞれ形成することが可能な複数の予備成形体15を成形する。この各予備成形体15の形状は、変形制御部4と同じ形状をなしている。尚、図5に示す予備成形体15は、本体部2における筒軸Z方向の両側端部に位置する2つの変形制御部4以外の3つの変形制御部4を形成するためのものである。   In order to manufacture the impact energy absorbing member 1, first, as shown in FIG. 5, a plurality of preforms capable of forming the plurality of deformation control portions 4 by combining with the molten aluminum alloy, respectively. The body 15 is molded. Each preform 15 has the same shape as the deformation control unit 4. Note that the preform 15 shown in FIG. 5 is for forming three deformation control units 4 other than the two deformation control units 4 located at both end portions in the cylinder axis Z direction of the main body unit 2.

各予備成形体15は、以下のようにして作製する。すなわち、最初に、不図示の容器内に、上記強化繊維と、水と、添加剤とを入れて撹拌混合してスラリー24(図6参照)を調製する。上記添加剤は、予備成形体15の強度を確保するための強化剤(例えば粒状アルミナゾル)、該強化剤の強化繊維への付着を促進させるための付着促進剤(例えば硫酸アンモン)、及び、強化繊維の分散性を向上させるための分散剤(例えばポリアミド)である。   Each preform 15 is produced as follows. That is, first, the reinforcing fiber, water, and additives are put in a container (not shown), and the mixture is stirred and mixed to prepare a slurry 24 (see FIG. 6). The additive includes a reinforcing agent (for example, granular alumina sol) for securing the strength of the preform 15, an adhesion promoter (for example, ammonium sulfate) for promoting adhesion of the reinforcing agent to the reinforcing fibers, and a reinforcing material. It is a dispersing agent (for example, polyamide) for improving the dispersibility of the fiber.

続いて、図6に示すように、濾過装置20により、スラリー24中の水等の液体成分を除去する。この濾過装置20は、内部に多孔性フィルタ22が配設された容器21と、この容器21の底部と接続された吸引装置(図示せず)とを備えている。この多孔性フィルタ22の中央部には、上方に突出する突部22a(フィルタとしての機能はない)が形成され、この突部22aの周囲部分(フィルタとして機能する)は、変形制御部4の傾斜面4aに対応するべく水平に対して傾斜している。そして、容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に上記スラリー24を投入し、その後、上記吸引装置により、多孔性フィルタ22を介して、スラリー24中の水等の液体成分を除去(吸引脱水)する。   Subsequently, as shown in FIG. 6, liquid components such as water in the slurry 24 are removed by the filtration device 20. The filtration device 20 includes a container 21 in which a porous filter 22 is disposed, and a suction device (not shown) connected to the bottom of the container 21. A protrusion 22 a (not functioning as a filter) protruding upward is formed at the center of the porous filter 22, and a peripheral portion (functioning as a filter) of the protrusion 22 a is formed by the deformation control unit 4. It inclines with respect to the horizontal to correspond to the inclined surface 4a. Then, the slurry 24 is introduced into the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22, and then the liquid such as water in the slurry 24 is passed through the porous filter 22 by the suction device. Remove components (suction dehydration).

次いで、図7に示すように、スラリー24中の液体成分を除去することにより得られた脱液体部材25を圧縮する。すなわち、上記容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に脱液体部材25を配置したまま、脱液体部材25をその上方からパンチ27により加圧して予備成形体15の形状となるように圧縮成形する。上記パンチ27の下面の中央部には、上記突部22aが嵌合する嵌合孔27aが形成され、この嵌合孔27aの周囲部分は、変形制御部4の傾斜面4aに対応するべく水平に対して傾斜している。尚、本体部2における筒軸Z方向の両側端部に配置する変形制御部4を形成するための予備成形体15を成形する際には、パンチ27の下面を傾斜させないで水平に延びる形状にする。   Next, as shown in FIG. 7, the liquid removal member 25 obtained by removing the liquid component in the slurry 24 is compressed. That is, the shape of the preform 15 is formed by pressurizing the liquid removal member 25 from above with the punch 27 while the liquid removal member 25 is disposed in the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22. Compression molding is performed. A fitting hole 27 a into which the protrusion 22 a is fitted is formed at the center of the lower surface of the punch 27, and the peripheral portion of the fitting hole 27 a is horizontal to correspond to the inclined surface 4 a of the deformation control unit 4. It is inclined with respect to. In addition, when forming the preform 15 for forming the deformation control unit 4 disposed at both side ends in the cylinder axis Z direction in the main body 2, the shape is extended horizontally without inclining the lower surface of the punch 27. To do.

続いて、上記圧縮成形した脱液体部材25を乾燥させた後に焼結する。この焼結は、例えば、640〜840℃で1.5時間行う。こうして強化繊維成形体からなる予備成形体15が完成する。   Subsequently, the demolded liquid removal member 25 is dried and then sintered. This sintering is performed at 640-840 degreeC for 1.5 hours, for example. In this way, the preform 15 made of the reinforcing fiber molded body is completed.

次に、図8に示すような鋳造金型30を用いて衝撃エネルギ吸収部材1を製造(鋳造)する。この鋳造金型30は、固定金型プレート31に取付固定された固定金型32と、固定金型プレート31に対して図8の左右方向に移動可能に支持された可動金型プレート33に取付固定された可動金型34とを備えている。固定金型32には、可動金型34側に開口する凹陥部32aが形成されている一方、可動金型34には、その凹陥部32a内に入り込む突出部34aが形成され、これら凹陥部32a及び突出部34a間にキャビティ35が形成される。上記突出部34aの外周面には、複数の予備成形体15をそれぞれ支持するための複数の溝(図示せず)が形成されている。また、固定金型32には、第2固定部8の複数のボルト挿通孔8aをそれぞれ形成するための複数のピン32bが設けられており、可動金型34には、第1固定部7の複数のボルト挿通孔7aをそれぞれ形成するための複数のピン34bが設けられている。   Next, the impact energy absorbing member 1 is manufactured (cast) using a casting mold 30 as shown in FIG. The casting mold 30 is attached to a fixed mold 32 attached and fixed to a fixed mold plate 31 and a movable mold plate 33 supported so as to be movable in the left-right direction in FIG. A fixed movable mold 34 is provided. The fixed mold 32 is formed with a recessed portion 32a that opens to the movable mold 34 side, while the movable mold 34 is formed with a projecting portion 34a that enters the recessed portion 32a, and these recessed portions 32a. And a cavity 35 is formed between the protrusions 34a. A plurality of grooves (not shown) for supporting the plurality of preforms 15 are formed on the outer peripheral surface of the protrusion 34a. Further, the fixed mold 32 is provided with a plurality of pins 32 b for forming a plurality of bolt insertion holes 8 a of the second fixed portion 8. The movable mold 34 has the first fixed portion 7. A plurality of pins 34b for forming a plurality of bolt insertion holes 7a are provided.

また、上記鋳造金型30には、上記キャビティ35内にアルミニウム合金の溶湯を供給するための射出スリーブ37が設けられている。この射出スリーブ37には上記溶湯の給湯口37aが形成されている。また、射出スリーブ37内には、射出スリーブ37に対して摺動可能に嵌装された射出プランジャ38が設けられており、この射出プランジャ38を図8の左側へ移動させることで、給湯口37aから射出スリーブ37内に供給された溶湯をキャビティ35内へ射出する。   The casting mold 30 is provided with an injection sleeve 37 for supplying a molten aluminum alloy into the cavity 35. The injection sleeve 37 is formed with a hot water supply port 37a for the molten metal. In addition, an injection plunger 38 slidably fitted to the injection sleeve 37 is provided in the injection sleeve 37. By moving the injection plunger 38 to the left side in FIG. 8, a hot water supply port 37a is provided. The molten metal supplied into the injection sleeve 37 is injected into the cavity 35.

上記鋳造金型30を用いて衝撃エネルギ吸収部材1を製造するには、先ず、型開き状態で、可動金型34の突出部34aに形成された複数の溝に、上記成形した複数の予備成形体15をそれぞれ支持させ、その後、可動金型34を固定金型32側へ移動させて型を閉じる。これにより、複数の予備成形体15が鋳造金型30のキャビティ15内にセットされた状態となる。   In order to manufacture the impact energy absorbing member 1 using the casting mold 30, first, in the mold open state, the plurality of preformed moldings are formed in the plurality of grooves formed in the protrusions 34 a of the movable mold 34. Each of the bodies 15 is supported, and then the movable mold 34 is moved to the fixed mold 32 side to close the mold. As a result, the plurality of preforms 15 are set in the cavity 15 of the casting mold 30.

続いて、射出スリーブ37内に給湯口37aからアルミニウム合金の溶湯(溶湯温度700℃程度)を供給し、この溶湯を射出プランジャ38によりキャビティ35内に射出して供給する。これにより、キャビティ35内における予備成形体15が存在しない部分では、変形部3並びに第1及び第2固定部7,8が成形されるとともに、各予備成形体15内の空孔に溶湯が充填されて予備成形体15と溶湯とが複合化され、このことで変形制御部4が変形部3並びに第1及び第2固定部7,8と一体成形される。そして、キャビティ15内の溶湯が凝固すれば、衝撃エネルギ吸収部材1の鋳造が完了する。   Subsequently, a molten aluminum alloy (a molten metal temperature of about 700 ° C.) is supplied into the injection sleeve 37 from the hot water supply port 37 a, and this molten metal is injected into the cavity 35 by the injection plunger 38 and supplied. As a result, the deformed portion 3 and the first and second fixing portions 7 and 8 are formed in the portion in the cavity 35 where the preform 15 does not exist, and the holes in each preform 15 are filled with molten metal. Thus, the preform 15 and the molten metal are combined, whereby the deformation control unit 4 is integrally formed with the deformation unit 3 and the first and second fixing units 7 and 8. When the molten metal in the cavity 15 is solidified, the casting of the impact energy absorbing member 1 is completed.

したがって、本実施形態では、衝撃エネルギ吸収部材1の本体部2が、複数の変形部3と該変形部3の塑性変形の方向を制御する複数の変形制御部4とが本体部2の筒軸Z方向に交互に積層された状態で一体成形されてなり、各変形制御部4の変形部3と接する面を傾斜面4aとすることによって、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、変形部3が筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形するようにしたので、変形部3は、その筒軸Z方向の長さが短くなりながら本体部2の径方向内側へ広がることになり、これにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。しかも、変形部3は、変形制御部4と一体成形されたものであるので、変形制御部4から分離し難く、このことでも、本体部2が筒軸Z方向に安定して変形することになる。この結果、本体部2に対して、筒軸Z方向の圧縮荷重と同時に、本体部2を径方向に倒すような力が入力されたとしても、本体部2は座屈変形し難くて筒軸Z方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、変形部3が本体部2径方向の内側へ塑性変形する場合の変形抵抗が、外側へ塑性変形する場合の変形抵抗に比べて大きいので、圧縮荷重の吸収量をより一層大きくすることができる。さらに、変形部3や変形制御部4の数が多くなっても、変形部3と変形制御部4とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材1の運搬時や車両への組付け時における取扱い性を向上させることができる。   Therefore, in the present embodiment, the main body 2 of the impact energy absorbing member 1 includes the plurality of deformation portions 3 and the plurality of deformation control portions 4 that control the direction of plastic deformation of the deformation portions 3. It is integrally molded in a state of being alternately stacked in the Z direction, and a surface in contact with the deformation portion 3 of each deformation control portion 4 is an inclined surface 4a, whereby a predetermined amount or more in the cylinder axis Z direction with respect to the main body portion 2 When the compressive load is input, the deformable portion 3 is plastically deformed inward in the radial direction of the main body portion 2 simultaneously with the compressive plastic deformation in the tube axis Z direction. While the length in the direction is shortened, the main body portion 2 spreads inward in the radial direction, so that the main body portion 2 as a whole is stably deformed in the cylinder axis Z direction without causing buckling deformation. Moreover, since the deformable portion 3 is integrally formed with the deformation control portion 4, it is difficult to separate from the deformation control portion 4, and this also allows the main body portion 2 to be stably deformed in the cylinder axis Z direction. Become. As a result, even if a force is applied to the main body 2 simultaneously with the compressive load in the cylinder axis Z direction and the main body 2 is tilted in the radial direction, the main body 2 is hardly buckled and deformed. It is possible to reliably deform in the Z direction, thereby improving the compression load absorption performance. Further, since the deformation resistance when the deformable portion 3 plastically deforms inward in the radial direction of the main body portion 2 is larger than the deformation resistance when plastically deforms outward, it is possible to further increase the amount of compression load absorbed. it can. Furthermore, even if the number of the deformation parts 3 and the deformation control parts 4 increases, the deformation parts 3 and the deformation control parts 4 can be firmly and easily fixed to each other by integral molding, and the impact energy absorbing member 1 can be transported. It is possible to improve handling at the time of installation to a vehicle or a vehicle.

(実施形態2)
図9は、本発明の実施形態2を示し、変形制御部4の形状を上記実施形態1とは異ならせたものである。
(Embodiment 2)
FIG. 9 shows a second embodiment of the present invention, in which the shape of the deformation control unit 4 is different from that of the first embodiment.

すなわち、本実施形態では、衝撃エネルギ吸収部材1の本体部2における各変形制御部4の外形(傾斜面4aの形状)は、上記実施形態1と同じ形状であるが、本体部2における筒軸Z方向の両側端部に位置する2つの変形制御部4以外の3つの変形制御部4には、その外周側の面(本体部の外周面を構成する面)から内周側に向かって凹む凹部4bが変形制御部4全周に亘って設けられている。そして、この各凹部4b内に変形部3がそれぞれ位置する。また、上記実施形態1と同様に、5つの変形制御部4間にも変形部3がそれぞれ位置する。以下、変形制御部4間の変形部3と凹部4b内の変形部3とを区別する場合には、変形制御部4間の変形部3を大変形部3aといい、凹部4b内の変形部を小変形部3bという。小変形部3bの体積は大変形部3aの体積よりも小さい。   That is, in the present embodiment, the outer shape of each deformation control unit 4 in the main body 2 of the impact energy absorbing member 1 (the shape of the inclined surface 4a) is the same as that in the first embodiment, but the cylinder shaft in the main body 2 is the same. The three deformation control units 4 other than the two deformation control units 4 positioned at both end portions in the Z direction are recessed from the outer peripheral surface (surface constituting the outer peripheral surface of the main body) toward the inner peripheral side. A recess 4 b is provided over the entire circumference of the deformation control unit 4. And the deformation | transformation part 3 is located in each recessed part 4b, respectively. Further, similarly to the first embodiment, the deformation units 3 are located between the five deformation control units 4. Hereinafter, when the deformation part 3 between the deformation control parts 4 and the deformation part 3 in the concave part 4b are distinguished, the deformation part 3 between the deformation control parts 4 is referred to as a large deformation part 3a, and the deformation part in the concave part 4b. Is referred to as a small deformation portion 3b. The volume of the small deformation part 3b is smaller than the volume of the large deformation part 3a.

上記変形部3の配置により、本体部2の内周側では、4つの変形部3(大変形部3a)と5つの変形制御部4とが本体部2の筒軸Z方向に交互に積層され、本体部2の外周側では、7つの変形部3(4つの大変形部3a及び3つの小変形部3b)と8つの変形制御部4とが本体部2の筒軸Z方向に交互に積層されているといえる。   Due to the arrangement of the deformation portion 3, four deformation portions 3 (large deformation portions 3 a) and five deformation control portions 4 are alternately stacked in the cylinder axis Z direction of the main body portion 2 on the inner peripheral side of the main body portion 2. On the outer peripheral side of the main body 2, seven deformation portions 3 (four large deformation portions 3 a and three small deformation portions 3 b) and eight deformation control portions 4 are alternately stacked in the cylinder axis Z direction of the main body portion 2. It can be said that.

上記各凹部4bの筒軸Z方向の長さは、本体部2の径方向外側に向かって大きくなっている。すなわち、各変形制御部4の小変形部3bと接する面も、本体部2の径方向外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傾斜面4cとされている。但し、この傾斜面4cは、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、上記小変形部3bを、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形させるように傾斜している。   The length of each concave portion 4b in the cylinder axis Z direction increases toward the radially outer side of the main body 2. That is, the surface in contact with the small deformation portion 3 b of each deformation control portion 4 is also an inclined surface 4 c inclined toward one side or the other side in the cylinder axis Z direction toward the radially outer side of the main body portion 2. However, the inclined surface 4c allows the small deformation portion 3b to move the main body 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction when a compression load greater than a predetermined value is input to the main body portion 2 in the cylinder axis Z direction. The part 2 is inclined so as to be plastically deformed outward in the radial direction.

本実施形態においても、上記実施形態1と同様に、変形部3はアルミニウム合金鋳物からなり、変形制御部4は、強化繊維が含有されたアルミニウム合金鋳物からなる。尚、変形部3及び変形制御部4の材料は、これ以外にも、上記実施形態1で説明したものを用いることができる(後述の実施形態3及び4においても同様)。そして、これら変形部3及び変形制御部4は、アルミニウム合金の溶湯と強化繊維成形体からなる予備成形体との複合化により一体成形されたものである。   Also in this embodiment, the deformation | transformation part 3 consists of aluminum alloy castings similarly to the said Embodiment 1, and the deformation | transformation control part 4 consists of aluminum alloy castings containing the reinforced fiber. In addition, the materials described in the first embodiment can be used for the materials of the deformable portion 3 and the deformation control portion 4 (the same applies to later-described third and fourth embodiments). And these deformation | transformation part 3 and the deformation | transformation control part 4 are integrally molded by compounding with the molten metal of aluminum alloy, and the preforming body which consists of a reinforced fiber molded object.

上記本体部2に対して筒軸Z方向に所定以上の圧縮荷重(但し、変形制御部4が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときには、図10に示すように、上記大変形部3aが、上記実施形態1と同様に、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形する。ここで、変形制御部4の外周側における筒軸Z方向の弾性変形量は、凹部4bがあるために、内周側よりも大きくなる。この変形制御部4の外周側の弾性変形により、小変形部3bが、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形する。この小変形部3bにおける本体部2径方向の外側への塑性変形量は、大変形部3aにおける本体部2径方向の内側への塑性変形量よりも小さい。   When a compressive load greater than a predetermined value is input to the main body 2 in the cylinder axis Z direction (however, a large compressive load that does not cause the plastic deformation of the deformation control unit 4), as shown in FIG. Similar to the first embodiment, the deformable portion 3a is plastically deformed inward in the main body portion 2 radial direction simultaneously with the compressive plastic deformation in the cylinder axis Z direction. Here, the amount of elastic deformation in the cylinder axis Z direction on the outer peripheral side of the deformation control unit 4 is larger than that on the inner peripheral side due to the presence of the recess 4b. Due to the elastic deformation on the outer peripheral side of the deformation control section 4, the small deformation section 3b is plastically deformed outward in the radial direction of the main body section 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction. The amount of plastic deformation to the outside in the main body portion 2 radial direction in the small deformation portion 3 b is smaller than the amount of plastic deformation to the inside in the main body portion 2 radial direction in the large deformation portion 3 a.

尚、上記変形制御部4の外周側の弾性変形により傾斜面4aの傾斜角度θが小さくなるが、この傾斜角度θが小さくなることを考慮して、傾斜角度θを実施形態1よりも大きくしておくことが好ましい。   The inclination angle θ of the inclined surface 4a is reduced by the elastic deformation on the outer peripheral side of the deformation control unit 4, and the inclination angle θ is set larger than that of the first embodiment in consideration of the decrease of the inclination angle θ. It is preferable to keep it.

また、本体部2に対して筒軸Z方向に、変形制御部4が圧縮塑性変形するような大きさの圧縮荷重が入力されたときには、変形制御部4も筒軸Z方向に圧縮塑性変形する。このとき、傾斜面4aが大変形部3aから受ける反力と傾斜面4cが小変形部3bから受ける反力とが互いに打ち消しあうため(傾斜面4aが大変形部3aから受ける反力の方が少し大きい)、変形制御部4は実施形態1のように大きくは本体部2径方向の外側へ塑性変形しない。そして、変形制御部4が塑性変形したとしても、上記実施形態1と同様に、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。 In addition, when a compressive load having such a magnitude that the deformation control unit 4 is compressively plastically deformed in the cylinder axis Z direction with respect to the main body 2, the deformation control unit 4 is also compressively plastically deformed in the cylinder axis Z direction. . At this time, the reaction force received by the inclined surface 4a from the large deformation portion 3a and the reaction force received by the inclined surface 4c from the small deformation portion 3b cancel each other (the reaction force received by the inclined surface 4a from the large deformation portion 3a is greater). The deformation control unit 4 is not plastically deformed outward in the radial direction of the main body unit 2 as in the first embodiment. And even if the deformation | transformation control part 4 deforms plastically, like the said Embodiment 1, the main-body part 2 whole deform | transforms in the cylinder axis Z direction, without producing buckling deformation.

本実施形態の衝撃エネルギ吸収部材1の製造方法は、上記実施形態1で説明した方法と同様であり、上記アルミニウム合金の溶湯との複合化により上記複数の変形制御部4をそれぞれ形成することが可能な複数の予備成形体を成形し、該成形した予備成形体を、記実施形態1で説明した鋳造金型30のキャビティ35内にセットした状態で、上記アルミニウム合金の溶湯を該キャビティ35内に供給することで、該溶湯と各予備成形体とを複合化して、変形部3、変形制御部4並びに第1及び第2固定部7,8を一体成形する。尚、各予備成形体を成形する際、予備成形体に、変形制御部4の凹部4bに対応する凹部を形成する。この予備成形体の凹部は、濾過装置20の容器21内に、該凹部に対応する型を配設するようにすれば、その型により形成することができる。   The manufacturing method of the impact energy absorbing member 1 of the present embodiment is the same as the method described in the first embodiment, and the plurality of deformation control units 4 may be formed by combining with the molten aluminum alloy. A plurality of possible preforms are formed, and the preforms thus formed are set in the cavities 35 of the casting mold 30 described in the first embodiment. The molten metal and the preforms are combined to form the deformable portion 3, the deformation control portion 4, and the first and second fixing portions 7 and 8. When each preform is molded, a recess corresponding to the recess 4b of the deformation control unit 4 is formed in the preform. The concave portion of the preform can be formed by using a mold corresponding to the concave portion in the container 21 of the filtration device 20.

したがって、本実施形態では、大変形部3aを、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形することに加えて、小変形部3bを、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形するようにしたので、上記実施形態1と同様の作用効果が得られるとともに、全変形部3を、本体部2全体として径方向外側及び内側にバランス良く広がるようにすることができ、本体部2の座屈変形をより一層確実に防止することができる。   Therefore, in this embodiment, in addition to the large deformation portion 3a being plastically deformed inward in the radial direction of the main body portion 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction, the small deformation portion 3b is At the same time as the plastic deformation of the body, it is plastically deformed outward in the radial direction of the main body 2, so that the same effects as those of the first embodiment can be obtained, It can be spread in a balanced manner on the outer side and the inner side, and the buckling deformation of the main body 2 can be more reliably prevented.

(実施形態3)
図11は、本発明の実施形態3を示し、上記実施形態1の変形制御部4に代えて、本体部2の外周部に複数の外周側変形制御部5を配置し、本体部2の内周部に複数の内周側変形制御部6を配置したものである。
(Embodiment 3)
FIG. 11 shows a third embodiment of the present invention. Instead of the deformation control unit 4 of the first embodiment, a plurality of outer peripheral side deformation control units 5 are arranged on the outer peripheral part of the main body unit 2, A plurality of inner periphery side deformation control units 6 are arranged on the periphery.

すなわち、本実施形態では、衝撃エネルギ吸収部材1の本体部2は、変形部3と、本体部2の外周部における筒軸Z方向の複数箇所に本体部2周方向に沿ってそれぞれ環状に配置され、上記変形部3の塑性変形の方向を制御する複数の外周側変形制御部5と、本体部2の内周部における筒軸Z方向の複数箇所に本体部2周方向に沿ってそれぞれ環状に配置され、上記変形部3の塑性変形の方向を制御する複数の内周側変形制御部6とが一体成形されてなるものである。そして、上記外周側及び内周側変形制御部5,6は、本体部2の筒軸Z方向において交互に配置されていて、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、上記変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ強制的に塑性変形させるとともに本体部2内周部に位置する部分を本体部2径方向の内側へ強制的に塑性変形させる。   That is, in the present embodiment, the main body 2 of the impact energy absorbing member 1 is annularly arranged along the circumferential direction of the main body 2 at a plurality of locations in the cylindrical axis Z direction on the outer periphery of the deformable portion 3 and the main body 2. And a plurality of outer peripheral side deformation control sections 5 for controlling the direction of plastic deformation of the deformable section 3 and a plurality of locations in the cylindrical axis Z direction on the inner peripheral section of the main body section 2 along the circumferential direction of the main body section 2 respectively. And a plurality of inner peripheral deformation control units 6 for controlling the direction of plastic deformation of the deformation unit 3 are integrally formed. The outer peripheral side and inner peripheral side deformation control units 5 and 6 are alternately arranged in the cylindrical axis Z direction of the main body 2, and a predetermined or more compressive load is applied to the main body 2 in the cylindrical axis Z direction. When input, simultaneously with the compressive plastic deformation of the deformable portion 3 in the cylinder axis Z direction, the portion located on the outer peripheral portion of the main body portion 2 in the deformable portion 3 is forcibly plastically deformed outward in the main body portion 2 radial direction. At the same time, the portion located in the inner periphery of the main body 2 is forcibly plastically deformed inward in the radial direction of the main body 2.

本実施形態においても、上記実施形態1と同様に、変形部3はアルミニウム合金鋳物からなり、外周側及び内周側変形制御部5,6は、強化繊維が含有されたアルミニウム合金鋳物からなり、変形部3並びに外周側及び内周側変形制御部5,6は、アルミニウム合金の溶湯と強化繊維成形体からなる予備成形体との複合化により一体成形されたものである。尚、外周側及び内周側変形制御部5,6の構成材料は、同じであることが好ましいが、互いに異なっていてもよい。   Also in the present embodiment, as in the first embodiment, the deformable portion 3 is made of an aluminum alloy casting, and the outer peripheral side and inner peripheral side deformation control portions 5 and 6 are made of an aluminum alloy cast containing reinforcing fibers, The deformable portion 3 and the outer peripheral side and inner peripheral side deformation control portions 5 and 6 are integrally formed by combining a molten aluminum alloy and a preformed body made of a reinforcing fiber molded body. The constituent materials of the outer peripheral side and the inner peripheral side deformation control units 5 and 6 are preferably the same, but may be different from each other.

本実施形態では、上記外周側及び内周側変形制御部5,6の強化繊維は、本体部2の径方向に延びていることが好ましい。これは、本体部2に対して筒軸Z方向に、外周側及び内周側変形制御部5,6が圧縮塑性変形するような大きさの圧縮荷重が入力されたときに、外周側及び内周側変形制御部5,6が筒軸Z方向に真っ直ぐに圧縮塑性変形するようにして、本体部2の座屈変形を抑制するためである。 In the present embodiment, it is preferable that the reinforcing fibers of the outer peripheral side and inner peripheral side deformation control parts 5 and 6 extend in the radial direction of the main body part 2. This is because when a compressive load having such a magnitude that the outer peripheral side and inner peripheral side deformation control parts 5 and 6 are subjected to compressive plastic deformation in the cylinder axis Z direction with respect to the main body 2 is input. This is because the circumferential deformation control units 5 and 6 are subjected to compression plastic deformation straight in the cylinder axis Z direction to suppress buckling deformation of the main body unit 2.

上記変形部3は、本体部2において外周側及び内周側変形制御部5,6以外の部分に位置している。すなわち、変形部3は、本体部2において筒軸Z方向全体に亘って延びる1つのものであり、外周側及び内周側変形制御部5,6の上記配置によって蛇腹状をなしており、本体部2外周部に位置する部分と本体部2内周部に位置する部分とが筒軸Z方向に交互に配置されている。そして、本体部2に対して筒軸Z方向に所定以上の圧縮荷重(但し、外周側及び内周側変形制御部5,6が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときには、図12に示すように、外周側及び内周側変形制御部5,6によって、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分が本体部2径方向の外側へ塑性変形するとともに本体部2内周部に位置する部分が本体部2径方向の内側へ塑性変形する。変形部3において本体部2径方向の外側へ塑性変形する部分と内側へ塑性変形する部分とは、本体部2の筒軸Z方向において交互に位置することになる。   The deformation portion 3 is located in a portion other than the outer peripheral side and inner peripheral side deformation control portions 5 and 6 in the main body portion 2. That is, the deforming portion 3 is one that extends over the entire cylinder axis Z direction in the main body portion 2 and has a bellows shape due to the above arrangement of the outer peripheral side and inner peripheral side deformation control portions 5 and 6. The part located in the outer peripheral part of the part 2 and the part located in the inner peripheral part of the main body part 2 are alternately arranged in the cylinder axis Z direction. Then, when a compressive load of a predetermined value or more in the cylinder axis Z direction is input to the main body 2 (however, a compressive load having a magnitude such that the outer peripheral side and inner peripheral side deformation control units 5 and 6 do not undergo plastic plastic deformation) As shown in FIG. 12, the outer peripheral side and inner peripheral side deformation control units 5 and 6 are portions positioned on the outer peripheral portion of the main body portion 2 in the deformable portion 3 simultaneously with the compressive plastic deformation of the deformable portion 3 in the cylinder axis Z direction. Is plastically deformed outward in the main body portion 2 radial direction, and a portion located in the inner peripheral portion of the main body portion 2 is plastically deformed inward in the main body portion 2 radial direction. In the deformable portion 3, the portions that are plastically deformed outward in the radial direction of the main body portion 2 and the portions that are plastically deformed inward are alternately positioned in the cylinder axis Z direction of the main body portion 2.

また、本体部2に対して筒軸Z方向に、外周側及び内周側変形制御部5,6が圧縮塑性変形するような大きさの圧縮荷重が入力されたときには、外周側及び内周側変形制御部5,6も筒軸Z方向に圧縮塑性変形する。このとき、上述の如く、強化繊維の配向により、外周側及び内周側変形制御部5,6が筒軸Z方向に真っ直ぐに圧縮塑性変形する。この圧縮塑性変形に伴って、外周側変形制御部5は主として本体部2径方向の外側へ塑性変形し、内周側変形制御部6は主として本体部2径方向の内側塑性変形する。外周側及び内周側変形制御部5,6の塑性変形時においても、外周側及び内周側変形制御部5,6は、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ塑性変形させるとともに本体部2内周部に位置する部分を本体部2径方向の内側へ塑性変形させる役目を果たす。そして、外周側及び内周側変形制御部5,6が塑性変形し始めた時点では、先に塑性変形した変形部3が、既に本体部2径方向の外側及び内側へ大きく塑性変形している。よって、外周側及び内周側変形制御部5,6が塑性変形したとしても、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。 Further, when a compressive load having such a magnitude that the outer peripheral side and inner peripheral side deformation control units 5 and 6 are subjected to compressive plastic deformation in the cylinder axis Z direction with respect to the main body 2 is input to the outer peripheral side and the inner peripheral side. The deformation control units 5 and 6 also compressively plastically deform in the cylinder axis Z direction. At this time, as described above, due to the orientation of the reinforcing fibers, the outer peripheral side and inner peripheral side deformation control units 5 and 6 are compressively plastically deformed in the cylinder axis Z direction. Accompanying this compressive plastic deformation, the outer peripheral side deformation control unit 5 mainly plastically deforms outward in the main body part 2 radial direction, and the inner peripheral side deformation control part 6 mainly undergoes inner plastic deformation in the main body part 2 radial direction. Even during the plastic deformation of the outer peripheral side and inner peripheral side deformation control units 5, 6, the outer peripheral side and inner peripheral side deformation control units 5, 6 are deformed simultaneously with the compressive plastic deformation of the deformation unit 3 in the cylinder axis Z direction. The portion located in the outer peripheral portion of the main body portion 2 in the portion 3 is plastically deformed outward in the radial direction of the main body portion 2 and the portion positioned in the inner peripheral portion of the main body portion 2 is plastically deformed inward in the radial direction of the main body portion 2. . And when the outer peripheral side and inner peripheral side deformation control parts 5 and 6 begin to plastically deform, the deformed part 3 previously plastically deformed has already been greatly plastically deformed outward and inward in the main body part 2 radial direction. . Therefore, even if the outer peripheral side and inner peripheral side deformation control portions 5 and 6 are plastically deformed, the entire body portion 2 is deformed in the cylinder axis Z direction without causing buckling deformation.

本実施形態の衝撃エネルギ吸収部材1の製造方法は、上記実施形態1で説明した方法と同様であり、上記アルミニウム合金の溶湯との複合化により上記複数の外周側変形制御部5及び複数の内周側変形制御部6をそれぞれ形成することが可能な複数の外周側予備成形体及び複数の内周側予備成形体を成形し、該成形した外周側及び内周側予備成形体を鋳造金型30のキャビティ35内にセットした状態で、上記アルミニウム合金の溶湯を該キャビティ35内に供給することで、該溶湯と外周側及び内周側予備成形体とを複合化して、変形部3、外周側及び内周側変形制御部5,6並びに第1及び第2固定部7,8を一体成形する。尚、複数の内周側予備成形体6は、上記実施形態1と同様に、可動金型34の突出部34aの複数の溝にそれぞれ支持させるが、複数の外周側予備成形体5は、固定金型32の凹陥部32aの側壁面に形成した複数の溝にそれぞれ支持させる。   The manufacturing method of the impact energy absorbing member 1 of the present embodiment is the same as the method described in the first embodiment. By combining the molten aluminum alloy with the molten aluminum alloy, the plurality of outer peripheral side deformation control units 5 and the plurality of inner members are manufactured. A plurality of outer periphery side preforms and a plurality of inner periphery side preforms each capable of forming the circumferential side deformation control unit 6 are formed, and the outer periphery side and inner periphery side preforms are cast into a casting mold. The molten aluminum alloy is supplied into the cavity 35 in a state of being set in the cavity 35, so that the molten metal, the outer peripheral side and the inner peripheral side preform are combined, and the deformed portion 3, the outer periphery The side and inner peripheral side deformation control parts 5 and 6 and the first and second fixing parts 7 and 8 are integrally formed. The plurality of inner peripheral side preforms 6 are respectively supported by the plurality of grooves of the projecting portions 34a of the movable mold 34 as in the first embodiment, but the plurality of outer periphery side preforms 5 are fixed. The mold 32 is supported by a plurality of grooves formed on the side wall surface of the recessed portion 32a.

したがって、本実施形態では、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ塑性変形するとともに本体部2内周部に位置する部分を本体部2径方向の内側へ塑性変形するようにしたので、変形部3が本体部2全体として径方向外側及び内側にバランス良く広がり、上記実施形態2と同様の作用効果が得られる。   Therefore, in this embodiment, simultaneously with the compressive plastic deformation of the deformable portion 3 in the cylinder axis Z direction, the portion located in the outer peripheral portion of the main body portion 2 in the deformable portion 3 is plastically deformed outward in the radial direction of the main body portion 2 and the main body. Since the portion located in the inner peripheral portion of the portion 2 is plastically deformed inward of the main body portion 2 in the radial direction, the deformable portion 3 spreads in a well-balanced manner outward and inward in the radial direction as the main body portion 2 as a whole. Similar effects can be obtained.

(実施形態4)
図13は、本発明の実施形態4を示し、外周側及び内周側変形制御部5,6の形状を上記実施形態3とは異ならせたものである。
(Embodiment 4)
FIG. 13 shows a fourth embodiment of the present invention, in which the shapes of the outer peripheral side and inner peripheral side deformation control units 5 and 6 are different from those of the third embodiment.

すなわち、本実施形態では、外周側及び内周側変形制御部5,6の断面形状が半円形状をなしており、外周側変形制御部5の内周側及び内周側変形制御部6の外周側がそれぞれ円弧状をなしている。これにより、圧縮荷重が変形部3全体に均一に作用して特定部位に集中しないようにすることができ、この結果、変形部3の圧縮塑性変形及び本体部2径方向の外側及び内側への塑性変形が均一に生じ、本体部2の座屈変形が生じ難くなる。このときの本体部2(変形部3)の変形の様子を図14に示す。本実施形態の衝撃エネルギ吸収部材1の製造方法は、上記実施形態3と同様である。 That is, in this embodiment, the cross-sectional shapes of the outer peripheral side and inner peripheral side deformation control units 5 and 6 are semicircular, and the inner peripheral side of the outer peripheral side deformation control unit 5 and the inner peripheral side deformation control unit 6 Each outer peripheral side has an arc shape. Thereby, it is possible to prevent the compressive load from acting uniformly on the entire deformed portion 3 so as not to concentrate on a specific portion. As a result, the compressive plastic deformation of the deformable portion 3 and the outer and inner sides of the main body portion 2 in the radial direction are achieved. Plastic deformation occurs uniformly, and buckling deformation of the main body 2 is less likely to occur. FIG. 14 shows how the main body 2 (deformation part 3) is deformed at this time. The manufacturing method of the impact energy absorbing member 1 of the present embodiment is the same as that of the third embodiment.

したがって、本実施形態では、上記実施形態3に比べて、本体部2を筒軸Z方向に更に安定させて変形させることができ、圧縮荷重の吸収性能をより一層高めることができる。   Therefore, in this embodiment, compared with the said Embodiment 3, the main-body part 2 can be deform | transformed further stably in the cylinder axis Z direction, and the absorption capability of a compressive load can be improved further.

尚、外周側及び内周側変形制御部5,6の断面形状については、上記実施形態3,4の形状に限らず、台形、三角形、正方形、円形等の種々の断面形状が適応可能である。   In addition, about the cross-sectional shape of the outer peripheral side and the inner peripheral side deformation | transformation control parts 5 and 6, not only the shape of the said Embodiment 3 and 4 but various cross-sectional shapes, such as a trapezoid, a triangle, a square, and a circle, are applicable. .

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材及びその製造方法に有用であり、特に車両のクラッシュカン(車両前部に配設されるものと後部に配設されるものとを含む)、左右のフロントサイドフレーム及び左右のリヤサイドフレームに適用する場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for an impact energy absorbing member that absorbs a compressive load that is input to a cylindrical main body in the cylinder axis direction, and a method for manufacturing the same. This is useful when applied to left and right front side frames and left and right rear side frames.

本発明の実施形態1に係る衝撃エネルギ吸収部材を示す断面図である。It is sectional drawing which shows the impact energy absorption member which concerns on Embodiment 1 of this invention. 衝撃エネルギ吸収部材が適用されるクラッシュカンを示す車両の前部を破断した側面図である。It is the side view which fractured | ruptured the front part of the vehicle which shows the crash can to which an impact energy absorption member is applied. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に所定以上の圧縮荷重(変形制御部が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときの該本体部の変形状態を示す断面図である。Sectional drawing which shows the deformation | transformation state of this main-body part when a compressive load more than predetermined (compression load of the magnitude | size which a deformation | transformation control part does not compress-plastically deform) is input with respect to the main-body part of an impact energy absorption member in a cylinder axis direction. It is. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に、変形制御部が塑性変形するような大きさの圧縮荷重が入力されたときの状態を示す断面図である。It is sectional drawing which shows a state when the compressive load of the magnitude | size which a plastic deformation of a deformation | transformation control part is input with respect to the main-body part of an impact energy absorption member in a cylinder axial direction. 予備成形体を示す断面図である。It is sectional drawing which shows a preforming body. スラリー中の液体成分を除去している状態を示す濾過装置の容器の断面図である。It is sectional drawing of the container of the filtration apparatus which shows the state which has removed the liquid component in a slurry. スラリー中の液体成分を除去することにより得られた脱液体部材を圧縮している状態を示す図6相当図である。FIG. 7 is a view corresponding to FIG. 6, illustrating a state where a liquid removal member obtained by removing a liquid component in a slurry is compressed. 鋳造金型を示す断面図である。It is sectional drawing which shows a casting mold. 本発明の実施形態2を示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 showing Embodiment 2 of the present invention. 実施形態2に係る衝撃エネルギ吸収部材の本体部の図3相当図である。FIG. 6 is a view corresponding to FIG. 3 of a main body portion of an impact energy absorbing member according to Embodiment 2. 本発明の実施形態3を示す図1相当図である。It is FIG. 1 equivalent view which shows Embodiment 3 of this invention. 実施形態3に係る衝撃エネルギ吸収部材の本体部の図3相当図である。FIG. 6 is a view corresponding to FIG. 3 of a main body portion of an impact energy absorbing member according to Embodiment 3. 本発明の実施形態4を示す図1相当図である。It is FIG. 1 equivalent view which shows Embodiment 4 of this invention. 実施形態4に係る衝撃エネルギ吸収部材の本体部の図3相当図である。FIG. 6 is a view corresponding to FIG. 3 of a main body portion of an impact energy absorbing member according to a fourth embodiment.

1 衝撃エネルギ吸収部材
2 本体部
3 変形部
4 変形制御部
4a 傾斜面
4c 傾斜面
5 外周側変形制御部
6 内周側変形制御部
15 予備成形体
30 鋳造金型
35 キャビティ
91 フロントサイドフレーム
92 クラッシュカン
DESCRIPTION OF SYMBOLS 1 Impact energy absorption member 2 Main body part 3 Deformation part 4 Deformation control part 4a Inclined surface 4c Inclined surface 5 Outer peripheral side deformation control part 6 Inner peripheral side deformation control part 15 Preliminary body 30 Casting die 35 Cavity 91 Front side frame 92 Crash Kang

Claims (3)

筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、該変形部の塑性変形の方向を制御する複数の変形制御部とからなり、
上記変形制御部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側及び内側の少なくとも一方側へ塑性変形させる配置及び形状に設定されており、
上記金属の溶湯との複合化により上記複数の変形制御部をそれぞれ形成することが可能な複数の予備成形体を成形する工程と、
上記成形した予備成形体を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、該溶湯と予備成形体とを複合化して、上記変形部と変形制御部とを一体成形する工程とを含むことを特徴とする衝撃エネルギ吸収部材の製造方法。
A method for manufacturing an impact energy absorbing member that has a cylindrical main body part and absorbs a compressive load input in the cylinder axis direction with respect to the main body part,
The main body is made of a metal and receives a compressive load of a predetermined value or more, and deforms and compressively plastically deforms in the main body cylinder axis direction, and along the main body circumferential direction at a plurality of positions in the cylinder axis direction of the main body section. Each comprising a plurality of deformation control units arranged annularly and controlling the direction of plastic deformation of the deformation unit,
The deformation control unit, when a compressive load greater than or equal to the predetermined value is input to the main body unit, causes the deformation unit to be at least on the outer side and the inner side in the main body radial direction simultaneously with the compressive plastic deformation in the main body unit cylindrical axis direction. It is set to an arrangement and shape that plastically deforms to one side,
Forming a plurality of preforms capable of forming each of the plurality of deformation control units by combining with the molten metal;
In the state where the molded preform is set in the cavity of the mold, the molten metal is supplied into the cavity, so that the molten metal and the preform are combined, and the deformed portion and deformation control are combined. A method of manufacturing the impact energy absorbing member.
請求項記載の衝撃エネルギ吸収部材の製造方法において、
上記変形部及び上記変形制御部が上記本体部の筒軸方向に交互に積層され、
上記各変形制御部の上記変形部と接する面が、本体部径方向外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傾斜面とされていることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 1 ,
The deformation part and the deformation control part are alternately stacked in the cylinder axis direction of the main body part,
The impact energy absorption, wherein a surface of each of the deformation control units that is in contact with the deformation portion is an inclined surface that is inclined toward one side or the other side in the main body cylindrical direction toward the outer side in the main body radial direction. Manufacturing method of member.
請求項又は記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記予備成形体は、強化繊維成形体からなることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 1 or 2 ,
The metal is an aluminum alloy,
The said preforming body consists of a reinforced fiber molded object, The manufacturing method of the impact energy absorption member characterized by the above-mentioned.
JP2008205197A 2008-08-08 2008-08-08 Method for manufacturing impact energy absorbing member Expired - Fee Related JP5163354B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008205197A JP5163354B2 (en) 2008-08-08 2008-08-08 Method for manufacturing impact energy absorbing member
US12/537,040 US7918493B2 (en) 2008-08-08 2009-08-06 Impact energy absorber and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205197A JP5163354B2 (en) 2008-08-08 2008-08-08 Method for manufacturing impact energy absorbing member

Publications (2)

Publication Number Publication Date
JP2010038338A JP2010038338A (en) 2010-02-18
JP5163354B2 true JP5163354B2 (en) 2013-03-13

Family

ID=42011100

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205197A Expired - Fee Related JP5163354B2 (en) 2008-08-08 2008-08-08 Method for manufacturing impact energy absorbing member

Country Status (1)

Country Link
JP (1) JP5163354B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
US7967118B2 (en) * 2004-08-31 2011-06-28 Chen Dai-Heng Impact absorber device
JP4420830B2 (en) * 2005-01-24 2010-02-24 本田技研工業株式会社 Shock absorbing member

Also Published As

Publication number Publication date
JP2010038338A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US7918493B2 (en) Impact energy absorber and fabrication method thereof
WO2002076809A1 (en) Automobile strengthening member
JP5741041B2 (en) Crush can made of die-cast aluminum alloy
JP5587696B2 (en) Vehicle shock absorber and vehicle bumper device
EP1293390A2 (en) Taper and flare energy absorption system
JP2007509760A (en) Feeder element for metal casting
JPH1159298A (en) Energy absorbing element
EP2664396B1 (en) Arched DISA-K feeder sleeve
WO2010026778A1 (en) Forged billet and wheel
KR101575314B1 (en) Aluminium wheel for vehicle and the manufacturing method
JP2011530054A (en) Energy absorption structure
JP2001525039A (en) Deformable element, its manufacturing method and application
CN109154347A (en) For the spring element of vehicle shock absorber, vehicle shock absorber and with the vehicle of vehicle shock absorber
JP5163354B2 (en) Method for manufacturing impact energy absorbing member
JP5071299B2 (en) Impact energy absorbing member and manufacturing method thereof
JP2017106611A (en) Shock energy absorption structure for vehicle
JP2003105407A (en) Porous energy-absorbing member, and member for car body frame
JP2012166673A (en) Die cast aluminum alloy-made crash can
JP2012166645A (en) Die-cast aluminum alloy crash can
JP2003184928A (en) Shock-energy absorbing structure member
JP5067309B2 (en) Impact energy absorbing member and manufacturing method thereof
JP2010038341A (en) Impact energy absorbing member and fabrication method thereof
JP2010077986A (en) Impact energy absorbing member
JP2003225714A (en) Method for forming metallic tube and member for absorbing collision energy
US20030110882A1 (en) Vehicle steering wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120918

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163354

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees