JP5071299B2 - Impact energy absorbing member and manufacturing method thereof - Google Patents

Impact energy absorbing member and manufacturing method thereof Download PDF

Info

Publication number
JP5071299B2
JP5071299B2 JP2008205202A JP2008205202A JP5071299B2 JP 5071299 B2 JP5071299 B2 JP 5071299B2 JP 2008205202 A JP2008205202 A JP 2008205202A JP 2008205202 A JP2008205202 A JP 2008205202A JP 5071299 B2 JP5071299 B2 JP 5071299B2
Authority
JP
Japan
Prior art keywords
main body
peripheral side
outer peripheral
deformation
impact energy
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008205202A
Other languages
Japanese (ja)
Other versions
JP2010038339A (en
Inventor
勝也 西口
敏嗣 上岡
研一 山本
健二 村▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008205202A priority Critical patent/JP5071299B2/en
Priority to US12/537,040 priority patent/US7918493B2/en
Publication of JP2010038339A publication Critical patent/JP2010038339A/en
Application granted granted Critical
Publication of JP5071299B2 publication Critical patent/JP5071299B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する、車両のクラッシュカン等に好適な衝撃エネルギ吸収部材及びその製造方法に関する技術分野に属する。   The present invention belongs to a technical field related to an impact energy absorbing member suitable for a crash can of a vehicle and the like and a method for manufacturing the same, which absorbs a compressive load input in a cylindrical axis direction with respect to a cylindrical main body.

従来より、例えば車両のフロントサイドフレームの先端又はリヤサイドフレームの後端に、衝撃エネルギ吸収部材としてクラッシュカンを設けて、このクラッシュカンにより、車両の正面衝突時や後面衝突時の衝撃エネルギ(衝撃圧縮荷重)を吸収するようにすることはよく知られている。   Conventionally, for example, a crash can has been provided as an impact energy absorbing member at the front end of the front side frame or the rear end of the rear side frame of the vehicle. It is well known to absorb (load).

上記クラッシュカン等の衝撃エネルギ吸収部材においては、衝撃エネルギの吸収性能を向上させるべく種々の提案がなされている。例えば特許文献1では、衝撃エネルギ吸収部材の筒状の本体部を、少なくとも1つの短筒形状の第1部分と、この第1部分に対して同心軸状に重ねて配置された少なくとも1つの短筒形状の第2部分とで構成し、上記第1部分と第2部分との接続部分を上記同心軸に対して傾斜する部分を含む構成として、本体部に対して筒軸方向に圧縮荷重が入力されたときに、第1部分を縮径させつつ第2部分を拡径させて、第1部材を第2部材の内側中空部に押し込むようにしている。この構成により、不安定な座屈現象の発生を抑制して変形モードを安定させ、これにより衝撃エネルギの吸収性能を高めるようにしている。
国際公開第2006/025559号パンフレット
In the impact energy absorbing member such as the crash can, various proposals have been made to improve the impact energy absorbing performance. For example, in Patent Document 1, a cylindrical main body portion of an impact energy absorbing member is arranged with at least one short cylindrical first part and at least one short cylinder arranged concentrically with respect to the first part. As a configuration including a cylindrical second portion and a portion where the connection portion between the first portion and the second portion is inclined with respect to the concentric axis, a compressive load is applied to the main body portion in the cylindrical axis direction. When it is input, the first portion is pushed into the inner hollow portion of the second member by reducing the diameter of the first portion and expanding the second portion. With this configuration, the occurrence of an unstable buckling phenomenon is suppressed to stabilize the deformation mode, thereby improving the impact energy absorption performance.
International Publication No. 2006/025559 Pamphlet

しかし、上記特許文献1のものでは、本体部に対して筒軸方向に圧縮荷重が入力されたときにおいて、第1部分と第2部分とを接続部分で分離させて第1部材を第2部材の内側中空部に押し込む際に、第1部材が第2部材の内側中空部にスムーズに押し込まれずに、第1部材又は第2部材が座屈変形する可能性があり、衝撃エネルギ吸収部材を安定して変形させることが困難になる。この座屈変形を確実に防止するためには、第1及び第2部分の長さをかなり短くしておく必要があるが、この場合、車両に生じるような圧縮荷重に対応可能にしようとすると、第1及び第2部分の数がかなり多くなる。また、第1部材を第2部材の内側中空部にスムーズに押し込むためには、第1部分と第2部分とは単に接触しているか、又は固定されていたとしても、その固定力を小さくしておく必要があるが、上記のように第1及び第2部分の数がかなり多くなると、衝撃エネルギ吸収部材の運搬時や車両等への組付け時に第1部分又は第2部分が脱落する可能性があり、取扱い性が悪いという問題がある。   However, in the thing of the said patent document 1, when a compressive load is input with respect to the main-body part in the cylinder axial direction, the 1st part and the 2nd part are separated by the connection part, and the 1st member is made into the 2nd member. When the first member is pushed into the inner hollow portion of the first member, the first member or the second member may be buckled and deformed without being smoothly pushed into the inner hollow portion of the second member, thereby stabilizing the impact energy absorbing member. It becomes difficult to deform. In order to surely prevent this buckling deformation, the lengths of the first and second portions need to be considerably shortened. In this case, if it is attempted to cope with the compressive load generated in the vehicle, , The number of first and second parts is considerably increased. Further, in order to smoothly push the first member into the inner hollow part of the second member, even if the first part and the second part are simply in contact or fixed, the fixing force is reduced. However, if the number of the first and second parts becomes considerably large as described above, the first part or the second part may fall off when the impact energy absorbing member is transported or assembled to a vehicle or the like. There is a problem that it is difficult to handle.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、筒状の本体部を座屈変形させることなく本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を提供しようとすることにある。   The present invention has been made in view of such a point, and an object of the present invention is to stably deform the cylindrical main body portion in the main body cylinder axis direction without causing buckling deformation. Another object of the present invention is to provide an impact energy absorbing member excellent in handleability.

上記の目的を達成するために、請求項1の発明では、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材を対象として、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部の外周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の外周側変形制御部と、該本体部の内周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の内周側変形制御部とが一体成形されてなり、上記外周側及び内周側変形制御部は、上記本体部の筒軸方向において交互に配置されていて、該本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部の本体部筒軸方向への圧縮塑性変形と同時に該変形部において本体部外周部に位置する部分を本体部径方向の外側へ塑性変形させるとともに本体部内周部に位置する部分を本体部径方向の内側へ塑性変形させる構成とした。   In order to achieve the above object, the invention of claim 1 is directed to an impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction. The body portion is made of metal and receives a compressive load of a predetermined level or more, and deforms and compressively plastically deforms in the body portion cylindrical axis direction. A plurality of outer peripheral side deformation control units that are arranged annularly along the direction and control the direction of plastic deformation of the deformation unit, and in the body portion circumferential direction at a plurality of locations in the cylinder axis direction on the inner peripheral portion of the main body unit A plurality of inner peripheral side deformation control units that are arranged in a ring shape and control the direction of plastic deformation of the deformable portion are integrally formed, and the outer peripheral side and the inner peripheral side deformation control portion are the main body portion. Are arranged alternately in the cylinder axis direction of the When a compressive load greater than or equal to the predetermined value is input to the part, the part located on the outer peripheral part of the main body part in the deformed part at the same time as the compressive plastic deformation of the deformed part in the cylinder axial direction is And a portion located in the inner peripheral part of the main body part is plastically deformed inward in the radial direction of the main body part.

上記の構成により、本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、変形部は、外周側及び内周側変形制御部によって、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側及び内側へ塑性変形し、このような変形部の塑性変形により圧縮荷重(衝撃エネルギ)を吸収することができる。また、変形部は、本体部筒軸方向の長さが短くなるとともに本体部径方向の外側及び内側へバランス良く広がることとなり、これにより、本体部全体として座屈変形が生じずに筒軸方向に安定して変形する。しかも、変形部は、外周側及び内周側変形制御部と一体成形されたものであるので、外周側及び内周側変形制御部から分離し難く、このことでも、本体部が筒軸方向に安定して変形することになる。したがって、本体部に対して、筒軸方向の圧縮荷重と同時に、本体部を径方向に倒すような力が入力されたとしても、本体部は座屈変形し難くて筒軸方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、外周側及び内周側変形制御部の数が多くなっても、外周側及び内周側変形制御部を変形部に対し一体成形により強固にかつ容易に固定することができ、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。尚、外周側及び内周側変形制御部は、例えば、本体部筒軸方向の圧縮荷重に対して変形部よりも圧縮塑性変形し難くかつ破壊し難い材料、つまり上記圧縮荷重に対する強度及び剛性が変形部よりも高い材料で構成すればよい。   With the above configuration, when a predetermined or greater compressive load is input to the main body in the cylinder axis direction, the deformable portion is compressed by the outer peripheral side and inner peripheral side deformation control units in the main body portion cylindrical axis direction. At the same time as the deformation, plastic deformation is performed outward and inward in the main body radial direction, and the compressive load (impact energy) can be absorbed by the plastic deformation of the deformed portion. In addition, the length of the deforming portion in the main body portion cylindrical axis direction is shortened and spreads in a balanced manner toward the outer side and the inner side in the main body portion radial direction, so that the entire main body portion is not buckled and deformed in the cylindrical axis direction. Deforms stably. In addition, since the deforming part is integrally formed with the outer peripheral side and the inner peripheral side deformation control part, it is difficult to separate from the outer peripheral side and the inner peripheral side deformation control part. It will be deformed stably. Therefore, even if a force is applied to the main body portion in the cylinder axis direction and a force that tilts the main body portion in the radial direction, the main body portion is unlikely to buckle and deform reliably in the cylinder axis direction. Thus, the compression load absorption performance can be enhanced. Further, even if the number of outer peripheral side and inner peripheral side deformation control units increases, the outer peripheral side and inner peripheral side deformation control units can be firmly and easily fixed to the deformed unit by integral molding, absorbing impact energy. The handling property at the time of carrying the member or assembling the vehicle or the like can be improved. Note that the outer peripheral side and inner peripheral side deformation control units have, for example, a material that is less likely to be plastically plastically deformed and more difficult to break than a deformed portion with respect to a compressive load in the main body cylinder axis direction, that is, strength and rigidity against the compressive load. What is necessary is just to comprise with a material higher than a deformation | transformation part.

請求項2の発明では、請求項1の発明において、上記変形部は、アルミニウム合金鋳物からなり、上記外周側及び内周側変形制御部は、強化繊維が含有されたアルミニウム合金鋳物からなるものとする。   According to a second aspect of the present invention, in the first aspect of the invention, the deformed portion is made of an aluminum alloy casting, and the outer peripheral side and inner peripheral side deformation control portions are made of an aluminum alloy cast containing reinforcing fibers. To do.

このことにより、外周側及び内周側変形制御部は、強化繊維により変形部よりも圧縮塑性変形し難くかつ破壊し難くなって、変形部の塑性変形の方向を確実に制御できるようになる。また、衝撃エネルギ吸収部材の軽量化を図ることができる。さらに、強化繊維成形体からなる外周側及び内周側予備成形体を成形しておいて、これら外周側及び内周側予備成形体とアルミニウム合金の溶湯とを複合化することで、変形部並びに外周側及び内周側変形制御部を容易に一体成形することができる。   This makes it possible for the outer peripheral side and inner peripheral side deformation control sections to be more difficult to be plastically plastically deformed and to be more difficult to break than the deformed section by the reinforcing fibers, and to reliably control the direction of plastic deformation of the deformed section. Further, the impact energy absorbing member can be reduced in weight. Furthermore, by molding the outer peripheral side and inner peripheral side preforms made of reinforcing fiber moldings, by combining these outer peripheral side and inner peripheral side preforms and molten aluminum alloy, the deformed portion and The outer peripheral side and inner peripheral side deformation control unit can be easily formed integrally.

請求項3の発明では、請求項2の発明において、上記強化繊維は、上記本体部の径方向に延びているものとする。   In the invention of claim 3, in the invention of claim 2, the reinforcing fibers extend in the radial direction of the main body.

このことで、本体部に対して筒軸方向に、外周側及び内周側変形制御部が圧縮塑性変形するような大きさの圧縮加重が入力されたときに、外周側及び内周側変形制御部が本体部の筒軸方向に真っ直ぐに圧縮塑性変形するようになり、本体部の座屈変形をより確実に抑制することができる。   Thus, when a compressive load having such a magnitude that the outer peripheral side and inner peripheral side deformation control part compressively plastically deforms in the cylinder axis direction with respect to the main body part is input, the outer peripheral side and inner peripheral side deformation control. The portion comes to compressively plastically deform straight in the cylinder axis direction of the main body portion, and the buckling deformation of the main body portion can be more reliably suppressed.

請求項4の発明では、請求項2又は3の発明において、上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であるものとする。   In the invention of claim 4, in the invention of claim 2 or 3, the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.

すなわち、Al−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。よって、衝撃エネルギ吸収部材の軽量化を図りつつ、圧縮荷重の吸収性能を高めることができる。   That is, the Al-Mn-Fe-Mg-based alloy can improve both castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with high elongation. Therefore, it is possible to improve the absorption performance of the compressive load while reducing the weight of the impact energy absorbing member.

請求項5の発明では、請求項1〜4のいずれか1つの発明において、衝撃エネルギ吸収部材は、車両のフロントサイドフレーム又はクラッシュカンに用いられるものとする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the impact energy absorbing member is used for a front side frame or a crash can of a vehicle.

このことにより、車両の正面衝突時や後面衝突時の衝撃エネルギを確実に吸収して、車両の安全性を高めることが可能になる。また、変形部並びに外周側及び内周側変形制御部を、請求項2の発明のような材料にすることで、車両の軽量化を図りつつ、安全性の向上化を図ることができる。   This makes it possible to reliably absorb impact energy at the time of a frontal collision or a rearward collision of the vehicle and improve the safety of the vehicle. Further, by using the deformable portion and the outer peripheral side and inner peripheral side deformation control portions as the material as in the invention of claim 2, it is possible to improve the safety while reducing the weight of the vehicle.

請求項6の発明は、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法の発明であり、この発明では、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部の外周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の外周側変形制御部と、該本体部の内周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の内周側変形制御部とからなり、上記外周側及び内周側変形制御部は、上記本体部の筒軸方向において交互に配置されていて、該本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部の本体部筒軸方向への圧縮塑性変形と同時に該変形部において本体部外周部に位置する部分を本体部径方向の外側へ塑性変形させるとともに本体部内周部に位置する部分を本体部径方向の内側へ塑性変形させるように構成されており、上記金属の溶湯との複合化により上記複数の外周側変形制御部及び複数の内周側変形制御部をそれぞれ形成することが可能な複数の外周側予備成形体及び複数の内周側予備成形体を成形する工程と、上記成形した外周側及び内周側予備成形を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、該溶湯と外周側及び内周側予備成形体とを複合化して、上記変形部と外周側及び内周側変形制御部とを一体成形する工程とを含むものとする。   The invention of claim 6 is an invention of a manufacturing method of an impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load input to the main body portion in the cylinder axial direction. The main body is made of metal and receives a compressive load of a predetermined value or more, and undergoes compression plastic deformation in the main body cylindrical axis direction, and the main body circumferential direction at a plurality of locations in the cylindrical axis direction on the outer peripheral portion of the main body A plurality of outer peripheral side deformation control units that are arranged annularly along the outer peripheral side to control the direction of plastic deformation of the deformation unit, and along the circumferential direction of the main body at a plurality of locations in the cylindrical axis direction at the inner peripheral portion of the main body Each of which is arranged in an annular shape and includes a plurality of inner peripheral side deformation control units that control the direction of plastic deformation of the deformation unit, and the outer peripheral side and the inner peripheral side deformation control unit are arranged in the cylinder axis direction of the main body unit. Alternatingly arranged, the main body part is more than the predetermined above When a compressive load is input, simultaneously with the compressive plastic deformation of the deformable portion in the main body cylinder axis direction, the portion located on the outer peripheral portion of the main body portion in the deformable portion is plastically deformed outward in the main body radial direction and the main body The portion located in the inner peripheral portion is configured to be plastically deformed inward in the radial direction of the main body, and the plurality of outer peripheral side deformation control units and the plurality of inner peripheral side deformation controls are formed by combining with the molten metal. Forming a plurality of outer periphery side preforms and a plurality of inner periphery side preforms capable of forming the respective parts, and setting the molded outer periphery side and inner periphery side preforms in the cavity of the mold In this state, by supplying the molten metal into the cavity, the molten metal, the outer peripheral side and the inner peripheral side preform are combined, and the deformed portion, the outer peripheral side and the inner peripheral side deformation control unit, Including the step of integrally molding And things.

この発明により、外周側及び内周側予備成形体とアルミニウム合金の溶湯とを複合化することで、変形部と外周側及び内周側変形制御部とを容易に一体成形することができ、本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   According to this invention, the outer peripheral side and inner peripheral side preform and the molten aluminum alloy can be combined to easily form the deformed portion and the outer peripheral side and inner peripheral side deformation control portion integrally. It is possible to easily manufacture an impact energy absorbing member that can be stably deformed in the direction of the partial cylinder axis and that is excellent in handleability.

請求項7の発明では、請求項6の発明において、上記金属は、アルミニウム合金であり、上記外周側及び内周側予備成形体は、強化繊維成形体からなるものとする。   In the invention of claim 7, in the invention of claim 6, the metal is an aluminum alloy, and the outer peripheral side and inner peripheral side preforms are made of reinforcing fiber moldings.

このことにより、請求項2の発明に係る衝撃エネルギ吸収部材を容易に製造することができる。   Thus, the impact energy absorbing member according to the invention of claim 2 can be easily manufactured.

以上説明したように、本発明の衝撃エネルギ吸収部材によると、本体部が、変形部と複数の外周側変形制御部と複数の内周側変形制御部とが一体成形されてなり、上記外周側及び内周側変形制御部が、本体部の筒軸方向において交互に配置されていて、該本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、上記変形部の本体部筒軸方向への圧縮塑性変形と同時に該変形部において本体部外周部に位置する部分を本体部径方向の外側へ塑性変形させるとともに本体部内周部に位置する部分を本体部径方向の内側へ塑性変形させる構成としたことにより、本体部が筒軸方向に安定して変形するようになり、圧縮荷重の吸収性能を高めることができるとともに、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。   As described above, according to the impact energy absorbing member of the present invention, the main body portion is formed by integrally forming the deformation portion, the plurality of outer peripheral side deformation control portions, and the plurality of inner peripheral side deformation control portions. And the inner peripheral side deformation control unit is alternately arranged in the cylinder axis direction of the main body, and when a predetermined or more compressive load is input to the main body in the cylinder axis direction, the main body of the deformation unit At the same time as the compressive plastic deformation in the cylinder axis direction, the part located in the outer peripheral part of the main body part in the deformed part is plastically deformed outward in the radial direction of the main body part and the part located in the inner peripheral part of the main body part in the radial direction of the main body part By adopting a configuration in which the plastic body is deformed plastically, the main body portion can be stably deformed in the cylinder axis direction, the compression load absorption performance can be improved, and the impact energy absorbing member can be transported or applied to a vehicle or the like. Handling during assembly It is possible to improve the.

また、本発明の衝撃エネルギ吸収部材の製造方法によると、複数の外周側予備成形体及び複数の内周側予備成形体を成形する工程と、該成形した外周側及び内周側予備成形を金型のキャビティ内にセットした状態で、金属の溶湯を該キャビティ内に供給することで、該溶湯と外周側及び内周側予備成形体とを複合化して、上記変形部と外周側及び内周側変形制御部とを一体成形する工程と含むようにしたことにより、本体部を座屈変形させることなく筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   In addition, according to the manufacturing method of the impact energy absorbing member of the present invention, a step of forming a plurality of outer peripheral side preforms and a plurality of inner periphery side preforms, and forming the outer periphery side and inner periphery side preforms into gold In the state set in the cavity of the mold, the molten metal is supplied into the cavity, so that the molten metal, the outer peripheral side and the inner peripheral side preform are combined, and the deformed portion, the outer peripheral side and the inner peripheral part are combined. By including the step of integrally forming the side deformation control unit, the impact energy absorbing member that can be stably deformed in the cylinder axis direction without buckling deformation of the main body portion and has excellent handleability. Can be easily manufactured.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る衝撃エネルギ吸収部材1を示し、この衝撃エネルギ吸収部材1は、筒状(本実施形態では円筒状)の本体部2を有していて、該本体部2に対して筒軸Z方向(図1の上下方向)に入力される圧縮荷重を吸収するものである。
(Embodiment 1)
FIG. 1 shows an impact energy absorbing member 1 according to Embodiment 1 of the present invention, and this impact energy absorbing member 1 has a cylindrical (cylindrical in this embodiment) body portion 2, and the body It absorbs a compressive load input to the portion 2 in the cylinder axis Z direction (vertical direction in FIG. 1).

上記衝撃エネルギ吸収部材1は、本実施形態では、図2に示すように、車両100の前部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のフロントサイドフレーム91の前端とフロントバンパー93における車幅方向に延びるバンパーレインフォースメント93aの左右両端部との間にそれぞれ介設されるクラッシュカン92として用いられる。この場合、衝撃エネルギ吸収部材1は、筒軸Z方向が車両100の前後方向に一致するように配設されて、車両100の正面衝突時にバンパーレインフォースメント93aから入力される衝突エネルギ(衝撃圧縮荷重)を吸収する。   In the present embodiment, the impact energy absorbing member 1 includes front ends of left and right front side frames 91 provided to extend in the front-rear direction at both vehicle width direction positions in the front portion of the vehicle 100, as shown in FIG. The front bumper 93 is used as a crash can 92 interposed between left and right ends of a bumper reinforcement 93a extending in the vehicle width direction. In this case, the impact energy absorbing member 1 is disposed such that the direction of the cylinder axis Z coincides with the front-rear direction of the vehicle 100, and the collision energy (impact compression) input from the bumper reinforcement 93a at the time of a frontal collision of the vehicle 100. Absorbs load).

尚、衝撃エネルギ吸収部材1は、上記クラッシュカン92に限らず、上記左右のフロントサイドフレーム91の一部(特に前端部分)、車両100の後部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のリヤサイドフレーム(図示せず)の一部(特に後端部分)、又は、この各リヤサイドフレームの後端とリヤバンパー94のバンパーレインフォースメント(図示せず)との間に介設されるクラッシュカン(図示せず)に用いてもよい。また、衝撃エネルギ吸収部材1は、車両100において衝撃エネルギを吸収する必要がある部分に広く用いることができるとともに、車両100以外のものに用いることも可能である。   The impact energy absorbing member 1 is not limited to the crash can 92 but extends in the front-rear direction at a part (particularly the front end portion) of the left and right front side frames 91 and at both sides in the vehicle width direction at the rear portion of the vehicle 100. A part of the left and right rear side frames (not shown) (particularly the rear end part) provided between the rear side frame and a bumper reinforcement (not shown) of the rear bumper 94. You may use for the crush can (not shown) provided. Further, the impact energy absorbing member 1 can be widely used in a portion where the impact energy needs to be absorbed in the vehicle 100 and can also be used for other than the vehicle 100.

上記本体部2における筒軸Z方向の両側端には、衝撃エネルギ吸収部材1を上記フロントサイドフレーム91の前端とバンパーレインフォースメント93aとにそれぞれ取付固定するための第1及び第2固定部7,8がそれぞれ設けられている。第1固定部7には、該第1固定部7をフロントサイドフレーム91の前端に締結固定するためのボルトが挿通される複数のボルト挿通孔7aが形成されており、第2固定部8には、該第2固定部8をバンパーレインフォースメント93aに締結固定するためのボルトが挿通される複数のボルト挿通孔8aが形成されている。これら第1及び第2固定部7,8の形状は、衝撃エネルギ吸収部材1の適用箇所によって異なる。   First and second fixing portions 7 for attaching and fixing the impact energy absorbing member 1 to the front end of the front side frame 91 and the bumper reinforcement 93a, respectively, at both ends of the main body portion 2 in the cylinder axis Z direction. , 8 are provided. The first fixing portion 7 has a plurality of bolt insertion holes 7a through which bolts for fastening and fixing the first fixing portion 7 to the front end of the front side frame 91 are formed. Are formed with a plurality of bolt insertion holes 8a through which bolts for fastening and fixing the second fixing portion 8 to the bumper reinforcement 93a are inserted. The shapes of the first and second fixing portions 7 and 8 differ depending on the application location of the impact energy absorbing member 1.

本実施形態のように衝撃エネルギ吸収部材1をクラッシュカン92に用いる場合、本体部2の外径Dは40〜100mmが好ましく、肉厚tは2〜8mmが好ましく、長さLは80〜150mmが好ましい。尚、本体部の外径Dは、図1では、本体部2の筒軸Z方向全体に亘って一定に記載しているが、厳密には一定ではなくて、第2固定部8側に向かって徐々に小さくなっている。これは、衝撃エネルギ吸収部材1を後述の鋳造金型30(図7参照)で鋳造した後に該鋳造金型30からの離型を容易にするためである。   When the impact energy absorbing member 1 is used for the crash can 92 as in this embodiment, the outer diameter D of the main body 2 is preferably 40 to 100 mm, the wall thickness t is preferably 2 to 8 mm, and the length L is 80 to 150 mm. Is preferred. In FIG. 1, the outer diameter D of the main body portion is shown to be constant throughout the entire cylinder axis Z direction of the main body portion 2, but is not strictly constant and is directed toward the second fixing portion 8 side. Gradually getting smaller. This is for facilitating release from the casting mold 30 after casting the impact energy absorbing member 1 with a casting mold 30 (see FIG. 7) described later.

上記本体部2は、該本体部2に対する筒軸Z方向の所定以上の圧縮荷重を受けて筒軸Z方向に圧縮塑性変形する変形部3と、本体部2の外周部における筒軸Z方向の複数箇所に本体部2周方向に沿ってそれぞれ環状に配置され、上記変形部3の塑性変形の方向を制御する複数の外周側変形制御部5と、本体部2の内周部における筒軸Z方向の複数箇所に本体部2周方向に沿ってそれぞれ環状に配置され、上記変形部3の塑性変形の方向を制御する複数の内周側変形制御部6とが一体成形されてなるものである。そして、上記外周側及び内周側変形制御部5,6は、本体部2の筒軸Z方向において交互に配置されていて、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、上記変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ強制的に塑性変形(拡径変形)させるとともに本体部2内周部に位置する部分を本体部2径方向の内側へ強制的に塑性変形(縮径変形)させる。これら外周側及び内周側変形制御部5,6は、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難い材料、つまり上記圧縮荷重に対する強度及び剛性が変形部3よりも高い材料で構成すればよいが、これに限られるものでもない。   The main body 2 is subjected to a compressive plastic deformation in the cylinder axis Z direction upon receiving a predetermined compressive load in the cylinder axis Z direction with respect to the main body 2, and the cylinder axis Z direction in the outer peripheral portion of the main body 2. A plurality of outer peripheral side deformation control units 5 that are arranged annularly along the circumferential direction of the main body 2 at a plurality of locations and control the direction of plastic deformation of the deformation unit 3, and the cylinder axis Z at the inner peripheral part of the main body 2 A plurality of inner circumferential side deformation control units 6 that are arranged annularly along the circumferential direction of the main body 2 and control the direction of plastic deformation of the deformation unit 3 are integrally formed at a plurality of locations in the direction. . The outer peripheral side and inner peripheral side deformation control units 5 and 6 are alternately arranged in the cylindrical axis Z direction of the main body 2, and a predetermined or more compressive load is applied to the main body 2 in the cylindrical axis Z direction. When input, simultaneously with the compressive plastic deformation of the deformable portion 3 in the cylinder axis Z direction, the portion located on the outer peripheral portion of the main body portion 2 in the deformable portion 3 is forcibly plastically deformed outward in the main body portion 2 radial direction. (Diameter expansion deformation) and a portion located in the inner peripheral portion of the main body portion 2 is forcibly plastically deformed (reduction in diameter) inward in the radial direction of the main body portion 2. These outer peripheral side and inner peripheral side deformation control units 5 and 6 are made of a material that is more difficult to be plastically plastically deformed and less likely to be destroyed than the deformable portion 3 with respect to the compressive load in the cylinder axis Z direction, that is, the strength and rigidity against the compressive load. What is necessary is just to comprise with a material higher than the deformation | transformation part 3, but it is not restricted to this.

本実施形態では、上記変形部3はアルミニウム合金鋳物からなり、外周側及び内周側変形制御部5,6は、強化繊維が含有されたアルミニウム合金鋳物からなる。これら変形部3と外周側及び内周側変形制御部5,6とは、後述の如くアルミニウム合金の溶湯と強化繊維成形体からなる外周側及び内周側予備成形体15,16(図7参照)との複合化により一体成形されたものである。   In this embodiment, the said deformation | transformation part 3 consists of aluminum alloy castings, and the outer peripheral side and inner peripheral side deformation control parts 5 and 6 consist of aluminum alloy castings in which the reinforced fiber contained. The deformation part 3 and the outer peripheral side and inner peripheral side deformation control parts 5 and 6 are, as will be described later, outer peripheral side and inner peripheral side preforms 15 and 16 made of a molten aluminum alloy and a reinforcing fiber molded body (see FIG. 7). ) And formed integrally.

上記アルミニウム合金として好ましいのは、Al−Mn−Fe−Mg系合金である。このAl−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。具体的には、0.5〜2.5%のMn成分と、0.1〜1.5%のFe成分と、0.01〜1.2%のMg成分と、残部が不可避不純物を含むAl成分とからなるアルミニウム合金とする(含有量の数値は質量百分率である)。   The aluminum alloy is preferably an Al—Mn—Fe—Mg alloy. This Al-Mn-Fe-Mg-based alloy is high in casting as it can improve the castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with elongation. Specifically, 0.5 to 2.5% Mn component, 0.1 to 1.5% Fe component, 0.01 to 1.2% Mg component, and the balance contains inevitable impurities The aluminum alloy is composed of an Al component (the numerical value of the content is a mass percentage).

また、上記各成分含有量を有するAl−Mn−Fe−Mg系合金に、質量百分率で0.1〜0.2%のTi成分、質量百分率で0.01〜0.1%のB成分、及び、質量百分率で0.01〜0.2%のBe成分のうちの少なくとも1つを添加することがより好ましい。すなわち、Ti成分、B成分及びBe成分は、鋳物の結晶粒を微細化することによりその特性を向上させて鋳造割れ性を改善することができるが、含有量が多すぎると、粗大化合物が生成されて伸びが低下する。そこで、Ti成分、B成分及びBe成分の各含有量を上記範囲に設定して、伸びの低下を防ぎつつ、鋳造割れ性をさらに良好にする。   In addition, to the Al-Mn-Fe-Mg based alloy having the above respective component contents, 0.1 to 0.2% Ti component by mass percentage, 0.01 to 0.1% B component by mass percentage, And it is more preferable to add at least one of Be components of 0.01 to 0.2% by mass percentage. That is, the Ti component, the B component and the Be component can improve the casting cracking property by refining the crystal grains of the casting, but if the content is too large, a coarse compound is generated. As a result, the elongation decreases. Then, each content of Ti component, B component, and Be component is set to the said range, and cast cracking property is made further favorable, preventing the fall of elongation.

尚、上記Al−Mn−Fe−Mg系合金に代えて、例えば、Al−Si系合金を用いてもよく(この合金の場合には、高真空ダイカスト法で鋳造する)、Mg系合金やその他の金属を用いてもよい。   In place of the Al—Mn—Fe—Mg alloy, for example, an Al—Si alloy may be used (in the case of this alloy, casting is performed by a high vacuum die casting method). The metal may be used.

上記強化繊維としては、アルミナ繊維、シリカ繊維、シリコンカーバイト繊維等が好ましい。アルミナ繊維及びシリカ繊維の場合には、例えば、平均繊維径3μm〜5μm、繊維長さ5mm〜10mmのものを用い、シリコンカーバイト繊維の場合には、例えば、平均繊維径10μm〜15μm、繊維長さ5mm〜10mmのものを用いればよい。上記強化繊維成形体(予備成形体15)の繊維体積率は5〜10%であることが好ましく、予備成形体15の強化繊維が存在しない部分は空孔となっている。   As the reinforcing fiber, alumina fiber, silica fiber, silicon carbide fiber and the like are preferable. In the case of alumina fibers and silica fibers, for example, those having an average fiber diameter of 3 μm to 5 μm and a fiber length of 5 mm to 10 mm are used. In the case of silicon carbide fibers, for example, the average fiber diameter of 10 μm to 15 μm, the fiber length is used. The thing of 5 mm-10 mm should just be used. The fiber volume fraction of the reinforcing fiber molded body (preliminary molded body 15) is preferably 5 to 10%, and the portion of the preformed body 15 where the reinforcing fiber is not present is a void.

上記強化繊維に代えて、平均径8μm〜12μm、長さが数cmのスチール又はステンレスワイヤーがアルミニウム合金鋳物に含有していてもよい。この場合も、上記強化繊維と同様に、ワイヤーを固めたものからなる予備成形体を成形して、アルミニウム合金の溶湯とその予備成形体とを複合化する。この予備成形体のワイヤー体積率は5〜10%であることが好ましい。   Instead of the reinforcing fiber, steel or stainless steel wire having an average diameter of 8 μm to 12 μm and a length of several centimeters may be contained in the aluminum alloy casting. Also in this case, similarly to the reinforcing fiber, a preformed body made of a hardened wire is formed, and the molten aluminum alloy and the preformed body are combined. It is preferable that the wire volume ratio of this preform is 5 to 10%.

上記溶湯と複合化する予備成形体としては、多孔質金属体であってもよい。例えば気孔率98%のニッケル多孔体(商品名:ニッケルセルメット)を予備成形体として用いることができる。また、筒軸Z方向に対応する方向に貫通する複数の貫通孔を有する金属製(筒軸Z方向の圧縮荷重に対してアルミニウム合金鋳物よりも圧縮塑性変形し難くかつ破壊し難い金属(例えばスチール))の予備成形体を用いることも可能である(上記貫通孔にアルミニウム合金の溶湯を含浸させる)。   A porous metal body may be used as the preform to be combined with the molten metal. For example, a porous nickel body (trade name: nickel cermet) having a porosity of 98% can be used as a preform. Also, a metal having a plurality of through-holes penetrating in a direction corresponding to the cylinder axis Z direction (a metal (for example, steel) that is less likely to be plastically deformed and more difficult to break than an aluminum alloy casting against a compressive load in the cylinder axis Z direction. )) Can also be used (the through hole is impregnated with molten aluminum alloy).

尚、外周側及び内周側変形制御部5,6の構成材料は、同じであることが好ましいが、互いに異なっていてもよい。   The constituent materials of the outer peripheral side and the inner peripheral side deformation control units 5 and 6 are preferably the same, but may be different from each other.

上記外周側及び内周側変形制御部5,6の強化繊維は、本体部2の径方向に延びていることが好ましい。これは、本体部2に対して筒軸Z方向に、外周側及び内周側変形制御部5,6が圧縮塑性変形するような大きさの圧縮加重が入力されたときに、外周側及び内周側変形制御部5,6が本体部2の筒軸Z方向に真っ直ぐに圧縮塑性変形するようにして、本体部2の座屈変形を抑制するためである。   The reinforcing fibers of the outer peripheral side and inner peripheral side deformation control parts 5, 6 preferably extend in the radial direction of the main body part 2. This is because the outer peripheral side and the inner peripheral side when the outer peripheral side and inner peripheral side deformation control units 5 and 6 are compressed and plastically deformed in the direction of the cylinder axis Z with respect to the main body 2 are input. This is because the peripheral side deformation control units 5 and 6 are subjected to compression plastic deformation straight in the cylinder axis Z direction of the main body 2 to suppress buckling deformation of the main body 2.

このように外周側及び内周側変形制御部5,6は、変形部3の構成材料であるアルミニウム合金と強化繊維との複合化により強化されて、筒軸Z方向の圧縮荷重に対して変形部3よりも圧縮塑性変形し難くかつ破壊し難くなっている。   As described above, the outer peripheral side and inner peripheral side deformation control units 5 and 6 are reinforced by the composite of the aluminum alloy that is the constituent material of the deformation unit 3 and the reinforcing fiber, and are deformed against the compressive load in the cylinder axis Z direction. It is more difficult to compress and plastically deform and harder to break than part 3.

一方、変形部3は、本体部2において外周側及び内周側変形制御部5,6以外の部分に位置している。すなわち、変形部3は、本体部2において筒軸Z方向全体に亘って延びるものであり、外周側及び内周側変形制御部5,6の上記配置によって蛇腹状をなしており、本体部2外周部に位置する部分と本体部2内周部に位置する部分とが筒軸Z方向に交互に配置されている。そして、本体部2に対して筒軸Z方向に所定以上の圧縮荷重(但し、外周側及び内周側変形制御部5,6が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときには、図3に示すように、圧縮塑性変形していない状態にある(但し、弾性変形はする)外周側及び内周側変形制御部5,6によって、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分が本体部2径方向の外側へ塑性変形するとともに本体部2内周部に位置する部分が本体部2径方向の内側へ塑性変形する。変形部3において本体部2径方向の外側へ塑性変形する部分と内側へ塑性変形する部分とは、本体部2の筒軸Z方向において交互に位置することになる。この変形部3の塑性変形によって上記圧縮加重を吸収する。そして、変形部3は、その筒軸Z方向の長さが短くなりながら本体部2径方向の外側及び内側へ広がることにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。   On the other hand, the deforming part 3 is located in a part other than the outer peripheral side and inner peripheral side deformation control parts 5 and 6 in the main body part 2. That is, the deforming portion 3 extends in the main body portion 2 over the entire cylinder axis Z direction, and has a bellows shape due to the above arrangement of the outer peripheral side and inner peripheral side deformation control portions 5 and 6. The part located in the outer peripheral part and the part located in the inner peripheral part of the main body part 2 are alternately arranged in the cylinder axis Z direction. Then, when a compressive load of a predetermined value or more in the cylinder axis Z direction is input to the main body 2 (however, a compressive load having a magnitude such that the outer peripheral side and inner peripheral side deformation control units 5 and 6 do not undergo plastic plastic deformation) As shown in FIG. 3, compression plasticity in the direction of the cylinder axis Z of the deformed portion 3 is performed by the outer peripheral side and inner peripheral side deformation control units 5 and 6 that are not compressed plastically deformed (but elastically deform). At the same time as the deformation, the portion located on the outer peripheral portion of the main body portion 2 in the deformable portion 3 is plastically deformed outward in the radial direction of the main body portion 2 and the portion positioned on the inner peripheral portion of the main body portion 2 is plastically inward in the main body portion 2 radial direction. Deform. In the deformable portion 3, the portions that are plastically deformed outward in the radial direction of the main body portion 2 and the portions that are plastically deformed inward are alternately positioned in the cylinder axis Z direction of the main body portion 2. The compression load is absorbed by the plastic deformation of the deformable portion 3. And the deformation | transformation part 3 spreads to the outer side and inner side of the main-body part 2 radial direction, while the length of the cylinder-axis Z direction becomes short, and does not produce buckling deformation as the whole main-body part 2, but to a cylinder-axis Z direction. Deforms stably.

また、本体部2に対して筒軸Z方向に、外周側及び内周側変形制御部5,6が圧縮塑性変形するような大きさの圧縮加重が入力されたときには、図4に示すように、外周側及び内周側変形制御部5,6も筒軸Z方向に圧縮塑性変形する。このとき、上述の如く、外周側及び内周側変形制御部5,6の強化繊維の配向により、外周側及び内周側変形制御部5,6が筒軸Z方向に真っ直ぐに圧縮塑性変形する。この圧縮塑性変形に伴って、外周側変形制御部5は主として本体部2径方向の外側へ塑性変形し、内周側変形制御部6は主として本体部2径方向の内側塑性変形する。外周側及び内周側変形制御部5,6の塑性変形時においても、外周側及び内周側変形制御部5,6は、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ塑性変形させるとともに本体部2内周部に位置する部分を本体部2径方向の内側へ塑性変形させる役目を果たす。そして、外周側及び内周側変形制御部5,6が塑性変形し始めた時点では、先に塑性変形した変形部3が、既に本体部2径方向の外側及び内側へ大きく塑性変形している。よって、外周側及び内周側変形制御部5,6が塑性変形したとしても、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。   Further, when a compression load having such a magnitude that the outer peripheral side and inner peripheral side deformation control units 5 and 6 are subjected to compressive plastic deformation in the cylinder axis Z direction with respect to the main body 2 is input as shown in FIG. The outer peripheral side and inner peripheral side deformation control units 5 and 6 also compressively plastically deform in the cylinder axis Z direction. At this time, as described above, due to the orientation of the reinforcing fibers of the outer peripheral side and inner peripheral side deformation control units 5 and 6, the outer peripheral side and inner peripheral side deformation control units 5 and 6 are directly compression-plastically deformed in the cylinder axis Z direction. . Accompanying this compressive plastic deformation, the outer peripheral side deformation control unit 5 mainly plastically deforms outward in the main body part 2 radial direction, and the inner peripheral side deformation control part 6 mainly undergoes inner plastic deformation in the main body part 2 radial direction. Even during the plastic deformation of the outer peripheral side and inner peripheral side deformation control units 5, 6, the outer peripheral side and inner peripheral side deformation control units 5, 6 are deformed simultaneously with the compressive plastic deformation of the deformation unit 3 in the cylinder axis Z direction. The portion located in the outer peripheral portion of the main body portion 2 in the portion 3 is plastically deformed outward in the radial direction of the main body portion 2 and the portion positioned in the inner peripheral portion of the main body portion 2 is plastically deformed inward in the radial direction of the main body portion 2. . And when the outer peripheral side and inner peripheral side deformation control parts 5 and 6 begin to plastically deform, the deformed part 3 previously plastically deformed has already been greatly plastically deformed outward and inward in the main body part 2 radial direction. . Therefore, even if the outer peripheral side and inner peripheral side deformation control portions 5 and 6 are plastically deformed, the entire body portion 2 is deformed in the cylinder axis Z direction without causing buckling deformation.

上記衝撃エネルギ吸収部材1を製造するには、先ず、上記アルミニウム合金の溶湯との複合化により上記複数の外周側変形制御部5及び複数の内周側変形制御部6をそれぞれ形成することが可能な複数の外周側予備成形体15(図7参照)及び複数の内周側予備成形体16(図7参照)を成形する。この外周側及び内周側予備成形体15,16の形状は、外周側及び内周側変形制御部5,6とそれぞれ同じ形状(リング状)をなしている。   In order to manufacture the impact energy absorbing member 1, first, it is possible to form each of the plurality of outer peripheral side deformation control units 5 and the plurality of inner peripheral side deformation control units 6 by combining with the molten aluminum alloy. A plurality of outer peripheral side preforms 15 (see FIG. 7) and a plurality of inner periphery side preforms 16 (see FIG. 7) are molded. The shapes of the outer peripheral side and inner peripheral side preforms 15 and 16 have the same shape (ring shape) as the outer peripheral side and inner peripheral side deformation control parts 5 and 6, respectively.

外周側及び内周側予備成形体15,16は、以下のようにして作製する。すなわち、最初に、不図示の容器内に、上記強化繊維と、水と、添加剤とを入れて撹拌混合してスラリー24(図5参照)を調製する。上記添加剤は、外周側及び内周側予備成形体15,16の強度を確保するための強化剤(例えば粒状アルミナゾル)、該強化剤の強化繊維への付着を促進させるための付着促進剤(例えば硫酸アンモン)、及び、強化繊維の分散性を向上させるための分散剤(例えばポリアミド)である。   The outer peripheral side and inner peripheral side preforms 15 and 16 are produced as follows. That is, first, the reinforcing fiber, water, and the additive are put in a container (not shown) and mixed by stirring to prepare a slurry 24 (see FIG. 5). The additive includes a reinforcing agent (for example, granular alumina sol) for securing the strength of the outer peripheral side and inner peripheral side preforms 15 and 16, and an adhesion promoter for promoting the adhesion of the reinforcing agent to the reinforcing fibers ( For example, ammonium sulfate) and a dispersant (for example, polyamide) for improving the dispersibility of the reinforcing fiber.

続いて、図5に示すように、濾過装置20により、スラリー24中の水等の液体成分を除去する。この濾過装置20は、内部に多孔性フィルタ22が配設された容器21と、この容器21の底部と接続された吸引装置(図示せず)とを備えている。この多孔性フィルタ22の中央部には、上方に突出する突部22a(フィルタとしての機能はない)が形成されている。そして、容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に上記スラリー24を投入し、その後、上記吸引装置により、多孔性フィルタ22を介して、スラリー24中の水等の液体成分を除去(吸引脱水)する。   Subsequently, as shown in FIG. 5, the liquid component such as water in the slurry 24 is removed by the filtration device 20. The filtration device 20 includes a container 21 in which a porous filter 22 is disposed, and a suction device (not shown) connected to the bottom of the container 21. At the center of the porous filter 22, a protrusion 22a (not functioning as a filter) protruding upward is formed. Then, the slurry 24 is introduced into the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22, and then the liquid such as water in the slurry 24 is passed through the porous filter 22 by the suction device. Remove components (suction dehydration).

次いで、図6に示すように、スラリー24中の液体成分を除去することにより得られた脱液体部材25を圧縮する。すなわち、上記容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に脱液体部材25を配置したまま、脱液体部材25をその上方からパンチ27により加圧して外周側予備成形体15又は内周側予備成形体16の形状となるように圧縮成形する。上記パンチ27の下面の中央部には、上記突部22aが嵌合する嵌合孔27aが形成されている。尚、外周側予備成形体15を成形する場合と、内周側予備成形体16を成形する場合とでは、容器21の内径及び多孔性フィルタ22の突部22aの外径が異なる。   Next, as shown in FIG. 6, the liquid removal member 25 obtained by removing the liquid component in the slurry 24 is compressed. That is, while the liquid removal member 25 is disposed above the peripheral portion of the protrusion 22a in the porous filter 22 in the container 21, the liquid removal member 25 is pressurized by the punch 27 from above to form the outer peripheral side preform 15. Alternatively, compression molding is performed so that the inner peripheral side preform 16 is shaped. A fitting hole 27 a into which the protrusion 22 a is fitted is formed at the center of the lower surface of the punch 27. Note that the inner diameter of the container 21 and the outer diameter of the protrusion 22a of the porous filter 22 are different between when the outer peripheral side preform 15 is molded and when the inner periphery side preform 16 is molded.

続いて、上記圧縮成形した脱液体部材25を乾燥させた後に焼結する。この焼結は、例えば、640〜840℃で1.5時間行う。こうして強化繊維成形体からなる外周側及び内周側予備成形体15,16が完成する。   Subsequently, the demolded liquid removal member 25 is dried and then sintered. This sintering is performed at 640-840 degreeC for 1.5 hours, for example. Thus, the outer peripheral side and inner peripheral side preforms 15 and 16 made of the reinforcing fiber molded body are completed.

次に、図7に示すような鋳造金型30を用いて衝撃エネルギ吸収部材1を製造(鋳造)する。この鋳造金型30は、固定金型プレート31に取付固定された固定金型32と、固定金型プレート31に対して図7の左右方向に移動可能に支持された可動金型プレート33に取付固定された可動金型34とを備えている。固定金型32には、可動金型34側に開口する凹陥部32aが形成されている一方、可動金型34には、その凹陥部32a内に入り込む突出部34aが形成され、これら凹陥部32a及び突出部34a間にキャビティ35が形成される。上記固定金型32の凹陥部32aの側周面には、複数の外周側予備成形体15をそれぞれ支持するための複数の溝(図示せず)が形成されており、上記突出部34aの外周面には、複数の内周側予備成形体16をそれぞれ支持するための複数の溝(図示せず)が形成されている。また、固定金型32には、第2固定部8の複数のボルト挿通孔8aをそれぞれ形成するための複数のピン32bが設けられており、可動金型34には、第1固定部7の複数のボルト挿通孔7aをそれぞれ形成するための複数のピン34bが設けられている。   Next, the impact energy absorbing member 1 is manufactured (cast) using a casting mold 30 as shown in FIG. The casting mold 30 is attached to a fixed mold 32 attached and fixed to a fixed mold plate 31 and a movable mold plate 33 supported so as to be movable in the left-right direction in FIG. A fixed movable mold 34 is provided. The fixed mold 32 is formed with a recessed portion 32a that opens to the movable mold 34 side, while the movable mold 34 is formed with a projecting portion 34a that enters the recessed portion 32a, and these recessed portions 32a. And a cavity 35 is formed between the protrusions 34a. A plurality of grooves (not shown) for supporting each of the plurality of outer peripheral preforms 15 are formed on the side peripheral surface of the recessed portion 32a of the fixed mold 32, and the outer periphery of the protruding portion 34a. A plurality of grooves (not shown) for supporting the plurality of inner peripheral side preforms 16 are formed on the surface. Further, the fixed mold 32 is provided with a plurality of pins 32 b for forming a plurality of bolt insertion holes 8 a of the second fixed portion 8. The movable mold 34 has the first fixed portion 7. A plurality of pins 34b for forming a plurality of bolt insertion holes 7a are provided.

また、上記鋳造金型30には、上記キャビティ35内にアルミニウム合金の溶湯を供給するための射出スリーブ37が設けられている。この射出スリーブ37には上記溶湯の給湯口37aが形成されている。また、射出スリーブ37内には、射出スリーブ37に対して摺動可能に嵌装された射出プランジャ38が設けられており、この射出プランジャ38を図7の左側へ移動させることで、給湯口37aから射出スリーブ37内に供給された溶湯をキャビティ35内へ射出する。   The casting mold 30 is provided with an injection sleeve 37 for supplying a molten aluminum alloy into the cavity 35. The injection sleeve 37 is formed with a hot water supply port 37a for the molten metal. Further, an injection plunger 38 is provided in the injection sleeve 37 so as to be slidable with respect to the injection sleeve 37. By moving the injection plunger 38 to the left side of FIG. The molten metal supplied into the injection sleeve 37 is injected into the cavity 35.

上記鋳造金型30を用いて衝撃エネルギ吸収部材1を製造するには、先ず、型開き状態で、固定金型32の凹陥部32aに形成された複数の溝に、上記成形した複数の外周側予備成形体15をそれぞれ支持させるとともに、可動金型34の突出部34aに形成された複数の溝に、上記成形した複数の内周側予備成形体16をそれぞれ支持させ、その後、可動金型34を固定金型32側へ移動させて型を閉じる。これにより、外周側及び内周側予備成形15,16が鋳造金型30のキャビティ15内にセットされた状態となる。   In order to manufacture the impact energy absorbing member 1 using the casting mold 30, first, in the mold open state, the plurality of molded outer peripheral sides are formed in the plurality of grooves formed in the recessed portions 32 a of the fixed mold 32. Each of the preforms 15 is supported, and the plurality of molded inner peripheral preforms 16 are supported in a plurality of grooves formed in the protrusions 34a of the movable mold 34, and then the movable mold 34 is supported. Is moved to the fixed mold 32 side to close the mold. As a result, the outer peripheral side and inner peripheral side preforms 15 and 16 are set in the cavity 15 of the casting mold 30.

続いて、射出スリーブ37内に給湯口37aからアルミニウム合金の溶湯(溶湯温度700℃程度)を供給し、この溶湯を射出プランジャ38によりキャビティ35内に射出して供給する。これにより、キャビティ35内における外周側及び内周側予備成形体15,16が存在しない部分では、変形部3並びに第1及び第2固定部7,8が成形されるとともに、外周側及び内周側予備成形体15,16内の空孔に溶湯が充填されて外周側及び内周側予備成形体15,16と溶湯とが複合化され、このことで外周側及び内周側変形制御部5,6が変形部3並びに第1及び第2固定部7,8と一体成形される。そして、キャビティ15内の溶湯が凝固すれば、衝撃エネルギ吸収部材1の鋳造が完了する。   Subsequently, a molten aluminum alloy (a molten metal temperature of about 700 ° C.) is supplied into the injection sleeve 37 from the hot water supply port 37 a, and this molten metal is injected into the cavity 35 by the injection plunger 38 and supplied. As a result, the deformed portion 3 and the first and second fixing portions 7 and 8 are formed at the outer peripheral side and the inner peripheral side preforms 15 and 16 in the cavity 35, and the outer peripheral side and the inner peripheral portion are formed. The holes in the side preforms 15 and 16 are filled with the molten metal, and the outer peripheral side and inner peripheral side preforms 15 and 16 are combined with the molten metal, whereby the outer peripheral side and inner peripheral side deformation control unit 5 is combined. , 6 are integrally formed with the deformable portion 3 and the first and second fixing portions 7,8. When the molten metal in the cavity 15 is solidified, the casting of the impact energy absorbing member 1 is completed.

したがって、本実施形態では、衝撃エネルギ吸収部材1の本体部2が、変形部3と該変形部3の塑性変形の方向を制御する複数の外周側変形制御部5及び複数の内周側変形制御部6とが一体成形されてなり、外周側及び内周側変形制御部5,6が、本体部2の筒軸Z方向において交互に配置されていて、該本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、変形部3の筒軸Z方向への圧縮塑性変形と同時に該変形部3において本体部2外周部に位置する部分を本体部2径方向の外側へ塑性変形させるとともに本体部2内周部に位置する部分を本体部2径方向の内側へ塑性変形させるようにしたので、変形部3は、筒軸Z方向の長さが短くなるとともに本体部2径方向の外側及び内側へバランス良く広がることとなり、これにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。しかも、変形部3は、外周側及び内周側変形制御部5,6と一体成形されたものであるので、外周側及び内周側変形制御部5,6から分離し難く、このことでも、本体部2が筒軸Z方向に安定して変形することになる。この結果、本体部2に対して、筒軸Z方向の圧縮荷重と同時に、本体部2を径方向に倒すような力が入力されたとしても、本体部2は座屈変形し難くて筒軸Z方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、外周側及び内周側変形制御部5,6の数が多くなっても、外周側及び内周側変形制御部5,6を変形部3に対し一体成形により強固にかつ容易に固定することができ、衝撃エネルギ吸収部材1の運搬時や車両等への組付け時における取扱い性を向上させることができる。   Therefore, in the present embodiment, the main body 2 of the impact energy absorbing member 1 includes the deformable portion 3, the plurality of outer peripheral side deformation control units 5 that control the direction of plastic deformation of the deformable portion 3, and the plurality of inner peripheral side deformation controls. The outer peripheral side and inner peripheral side deformation control units 5 and 6 are alternately arranged in the direction of the cylindrical axis Z of the main body 2, and the cylindrical axis Z is relative to the main body 2. When a compressive load of a predetermined value or more is input in the direction, simultaneously with the compressive plastic deformation of the deformable portion 3 in the cylinder axis Z direction, the portion located on the outer peripheral portion of the main body portion 2 in the deformable portion 3 is Since the portion plastically deformed outward and the portion located in the inner peripheral portion of the main body portion 2 is plastically deformed inward in the radial direction of the main body portion 2, the deformable portion 3 has a shorter length in the cylinder axis Z direction and the main body It will spread in a balanced manner to the outside and inside in the radial direction of the part 2. Accordingly, buckling deformation stably deformed in the cylinder axis Z direction without causing the whole main body 2. Moreover, since the deforming part 3 is integrally formed with the outer peripheral side and inner peripheral side deformation control parts 5 and 6, it is difficult to separate from the outer peripheral side and inner peripheral side deformation control parts 5 and 6, The main body 2 is stably deformed in the cylinder axis Z direction. As a result, even if a force is applied to the main body 2 simultaneously with the compressive load in the cylinder axis Z direction and the main body 2 is tilted in the radial direction, the main body 2 is hardly buckled and deformed. It is possible to reliably deform in the Z direction, thereby improving the compression load absorption performance. Further, even if the number of outer peripheral side and inner peripheral side deformation control units 5 and 6 is increased, the outer peripheral side and inner peripheral side deformation control units 5 and 6 are firmly and easily fixed to the deforming unit 3 by integral molding. It is possible to improve handling when the impact energy absorbing member 1 is transported or assembled to a vehicle or the like.

(実施形態2)
図8は、本発明の実施形態2を示し、外周側及び内周側変形制御部5,6の形状を上記実施形態1とは異ならせたものであり、その他の構成や材料等は上記実施形態1と同様である。
(Embodiment 2)
FIG. 8 shows a second embodiment of the present invention, in which the shapes of the outer peripheral side and inner peripheral side deformation control units 5 and 6 are different from those of the first embodiment. This is the same as the first embodiment.

すなわち、本実施形態では、外周側及び内周側変形制御部5,6の断面形状が半円形状をなしており、外周側変形制御部5の内周側及び内周側変形制御部6の外周側がそれぞれ円弧状をなしている。これにより、圧縮加重が変形部3全体に均一に作用して特定部位に集中しないようにすることができ、この結果、変形部3の圧縮塑性変形及び本体部2径方向の外側及び内側への塑性変形が均一に生じ、本体部2の座屈変形が生じ難くなる。このときの本体部2(変形部3)の変形の様子を図9に示す。本実施形態の衝撃エネルギ吸収部材1の製造方法は、上記実施形態1と同様である。   That is, in this embodiment, the cross-sectional shapes of the outer peripheral side and inner peripheral side deformation control units 5 and 6 are semicircular, and the inner peripheral side of the outer peripheral side deformation control unit 5 and the inner peripheral side deformation control unit 6 Each outer peripheral side has an arc shape. Thereby, it is possible to prevent the compressive load from acting uniformly on the entire deformed portion 3 so as not to concentrate on a specific portion. As a result, the compressive plastic deformation of the deformable portion 3 and the outer and inner sides of the main body portion 2 in the radial direction are achieved. Plastic deformation occurs uniformly, and buckling deformation of the main body 2 is less likely to occur. A state of deformation of the main body 2 (deformation portion 3) at this time is shown in FIG. The manufacturing method of the impact energy absorbing member 1 of the present embodiment is the same as that of the first embodiment.

したがって、本実施形態では、上記実施形態1に比べて、本体部2を筒軸Z方向に更に安定させて変形させることができ、圧縮荷重の吸収性能をより一層高めることができる。   Therefore, in this embodiment, compared with the said Embodiment 1, the main-body part 2 can be deform | transformed further stably in the cylinder axis Z direction, and the absorption capability of a compressive load can be improved further.

尚、外周側及び内周側変形制御部5,6の断面形状については、上記実施形態1,2の形状に限らず、台形、三角形、正方形、円形等の種々の断面形状が適応可能である。   In addition, about the cross-sectional shape of the outer peripheral side and the inner peripheral side deformation | transformation control parts 5 and 6, not only the shape of the said Embodiment 1, 2, but various cross-sectional shapes, such as a trapezoid, a triangle, a square, a circle, are applicable. .

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材及びその製造方法に有用であり、特に車両のクラッシュカン(車両前部に配設されるものと後部に配設されるものとを含む)、左右のフロントサイドフレーム及び左右のリヤサイドフレームに適用する場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for an impact energy absorbing member that absorbs a compressive load that is input to a cylindrical main body in the cylinder axis direction, and a method for manufacturing the same. This is useful when applied to left and right front side frames and left and right rear side frames.

本発明の実施形態1に係る衝撃エネルギ吸収部材を示す断面図である。It is sectional drawing which shows the impact energy absorption member which concerns on Embodiment 1 of this invention. 衝撃エネルギ吸収部材が適用されるクラッシュカンを示す車両の前部を破断した側面図である。It is the side view which fractured | ruptured the front part of the vehicle which shows the crash can to which an impact energy absorption member is applied. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に所定以上の圧縮荷重(変形制御部が圧縮塑性変形しない大きさの圧縮荷重)が入力されたときの該本体部の変形状態を示す断面図である。Sectional drawing which shows the deformation | transformation state of this main-body part when a compressive load more than predetermined (compression load of the magnitude | size which a deformation | transformation control part does not compress-plastically deform) is input with respect to the main-body part of an impact energy absorption member in a cylinder axis direction. It is. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に、変形制御部が塑性変形するような大きさの圧縮加重が入力されたときの状態を示す断面図である。It is sectional drawing which shows a state when the compression load of a magnitude | size which a deformation | transformation control part plastically deforms is input with respect to the main-body part of an impact energy absorption member in a cylinder axial direction. スラリー中の液体成分を除去している状態を示す濾過装置の容器の断面図である。It is sectional drawing of the container of the filtration apparatus which shows the state which has removed the liquid component in a slurry. スラリー中の液体成分を除去することにより得られた脱液体部材を圧縮している状態を示す図5相当図である。FIG. 6 is a view corresponding to FIG. 5, illustrating a state where a liquid removal member obtained by removing a liquid component in a slurry is compressed. 鋳造金型を示す断面図である。It is sectional drawing which shows a casting mold. 本発明の実施形態2を示す図1相当図である。FIG. 3 is a view corresponding to FIG. 1 showing Embodiment 2 of the present invention. 実施形態2に係る衝撃エネルギ吸収部材の本体部の図3相当図である。FIG. 6 is a view corresponding to FIG. 3 of a main body portion of an impact energy absorbing member according to Embodiment 2.

符号の説明Explanation of symbols

1 衝撃エネルギ吸収部材
2 本体部
3 変形部
5 外周側変形制御部
6 内周側変形制御部
15 予備成形体
30 鋳造金型
35 キャビティ
91 フロントサイドフレーム
92 クラッシュカン
DESCRIPTION OF SYMBOLS 1 Impact energy absorption member 2 Main body part 3 Deformation part 5 Outer peripheral side deformation control part 6 Inner peripheral side deformation control part 15 Preliminary molded body 30 Casting die 35 Cavity 91 Front side frame 92 Crash can

Claims (7)

筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部の外周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の外周側変形制御部と、該本体部の内周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の内周側変形制御部とが一体成形されてなり、
上記外周側及び内周側変形制御部は、上記本体部の筒軸方向において交互に配置されていて、該本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部の本体部筒軸方向への圧縮塑性変形と同時に該変形部において本体部外周部に位置する部分を本体部径方向の外側へ塑性変形させるとともに本体部内周部に位置する部分を本体部径方向の内側へ塑性変形させるように構成されていることを特徴とする衝撃エネルギ吸収部材。
An impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction,
The main body is made of metal and receives a compressive load of a predetermined value or more, and undergoes compression plastic deformation in the main body cylindrical axis direction, and the main body circumferential direction at a plurality of locations in the cylindrical axis direction on the outer peripheral portion of the main body A plurality of outer peripheral side deformation control units that are arranged annularly along the outer peripheral side to control the direction of plastic deformation of the deformation unit, and along the circumferential direction of the main body at a plurality of locations in the cylindrical axis direction at the inner peripheral portion of the main body A plurality of inner circumferential side deformation control units that are arranged in a ring shape and control the direction of plastic deformation of the deformation unit,
The outer peripheral side and inner peripheral side deformation control units are alternately arranged in the cylinder axis direction of the main body, and when the predetermined or higher compression load is input to the main body, the main body of the deformation unit At the same time as the compressive plastic deformation in the cylinder axis direction, the portion located in the outer peripheral portion of the main body portion is plastically deformed outward in the radial direction of the main body portion and the portion positioned in the inner peripheral portion of the main body portion is inward in the radial direction of the main body portion. An impact energy absorbing member configured to be plastically deformed.
請求項1記載の衝撃エネルギ吸収部材において、
上記変形部は、アルミニウム合金鋳物からなり、
上記外周側及び内周側変形制御部は、強化繊維が含有されたアルミニウム合金鋳物からなることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1,
The deformation part is made of an aluminum alloy casting,
The impact energy absorbing member, wherein the outer peripheral side and inner peripheral side deformation control parts are made of an aluminum alloy casting containing reinforcing fibers.
請求項2記載の衝撃エネルギ吸収部材において、
上記強化繊維は、上記本体部の径方向に延びていることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 2,
The impact energy absorbing member, wherein the reinforcing fiber extends in a radial direction of the main body.
請求項2又は3記載の衝撃エネルギ吸収部材において、
上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 2 or 3,
The impact energy absorbing member, wherein the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.
請求項1〜4のいずれか1つに記載の衝撃エネルギ吸収部材において、
車両のフロントサイドフレーム又はクラッシュカンに用いられることを特徴とする衝撃エネルギ吸収部材。
In the impact energy absorption member according to any one of claims 1 to 4,
An impact energy absorbing member used for a front side frame or a crash can of a vehicle.
筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形する変形部と、該本体部の外周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の外周側変形制御部と、該本体部の内周部における筒軸方向の複数箇所に本体部周方向に沿ってそれぞれ環状に配置され、上記変形部の塑性変形の方向を制御する複数の内周側変形制御部とからなり、
上記外周側及び内周側変形制御部は、上記本体部の筒軸方向において交互に配置されていて、該本体部に上記所定以上の圧縮荷重が入力されたときに、上記変形部の本体部筒軸方向への圧縮塑性変形と同時に該変形部において本体部外周部に位置する部分を本体部径方向の外側へ塑性変形させるとともに本体部内周部に位置する部分を本体部径方向の内側へ塑性変形させるように構成されており、
上記金属の溶湯との複合化により上記複数の外周側変形制御部及び複数の内周側変形制御部をそれぞれ形成することが可能な複数の外周側予備成形体及び複数の内周側予備成形体を成形する工程と、
上記成形した外周側及び内周側予備成形を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、該溶湯と外周側及び内周側予備成形体とを複合化して、上記変形部と外周側及び内周側変形制御部とを一体成形する工程とを含むことを特徴とする衝撃エネルギ吸収部材の製造方法。
A method for manufacturing an impact energy absorbing member that has a cylindrical main body part and absorbs a compressive load input in the cylinder axis direction with respect to the main body part,
The main body is made of metal and receives a compressive load of a predetermined value or more, and undergoes compression plastic deformation in the main body cylindrical axis direction, and the main body circumferential direction at a plurality of locations in the cylindrical axis direction on the outer peripheral portion of the main body A plurality of outer peripheral side deformation control units that are arranged annularly along the outer peripheral side to control the direction of plastic deformation of the deformation unit, and along the circumferential direction of the main body at a plurality of locations in the cylindrical axis direction at the inner peripheral portion of the main body Each comprising a plurality of inner circumferential side deformation control units that control the direction of plastic deformation of the deformation unit,
The outer peripheral side and inner peripheral side deformation control units are alternately arranged in the cylinder axis direction of the main body, and when the predetermined or higher compression load is input to the main body, the main body of the deformation unit At the same time as the compressive plastic deformation in the cylinder axis direction, the portion located in the outer peripheral portion of the main body portion is plastically deformed outward in the radial direction of the main body portion and the portion positioned in the inner peripheral portion of the main body portion is inward in the radial direction of the main body portion. Configured to plastically deform,
A plurality of outer periphery side preforms and a plurality of inner periphery side preforms capable of forming the plurality of outer periphery side deformation control units and the plurality of inner periphery side deformation control units respectively by compounding with the molten metal. Forming the step,
With the molded outer peripheral side and inner peripheral side preforms set in the cavity of the mold, the molten metal is supplied into the cavity, so that the molten metal, the outer peripheral side and the inner peripheral side preform are And a step of integrally forming the deformable portion and the outer peripheral side and inner peripheral side deformation control portion.
請求項6記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記外周側及び内周側予備成形体は、強化繊維成形体からなることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 6,
The metal is an aluminum alloy,
The method for producing an impact energy absorbing member, wherein the outer peripheral side and inner peripheral side preforms are formed of reinforcing fiber moldings.
JP2008205202A 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof Expired - Fee Related JP5071299B2 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2008205202A JP5071299B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof
US12/537,040 US7918493B2 (en) 2008-08-08 2009-08-06 Impact energy absorber and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205202A JP5071299B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof

Publications (2)

Publication Number Publication Date
JP2010038339A JP2010038339A (en) 2010-02-18
JP5071299B2 true JP5071299B2 (en) 2012-11-14

Family

ID=42011101

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205202A Expired - Fee Related JP5071299B2 (en) 2008-08-08 2008-08-08 Impact energy absorbing member and manufacturing method thereof

Country Status (1)

Country Link
JP (1) JP5071299B2 (en)

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2002039245A (en) * 2000-07-31 2002-02-06 Hitachi Metals Ltd Impact absorbing member made of aluminum alloy casting
US7967118B2 (en) * 2004-08-31 2011-06-28 Chen Dai-Heng Impact absorber device
JP4420830B2 (en) * 2005-01-24 2010-02-24 本田技研工業株式会社 Shock absorbing member

Also Published As

Publication number Publication date
JP2010038339A (en) 2010-02-18

Similar Documents

Publication Publication Date Title
US7918493B2 (en) Impact energy absorber and fabrication method thereof
JP5587696B2 (en) Vehicle shock absorber and vehicle bumper device
WO2002076809A1 (en) Automobile strengthening member
EP1293390A2 (en) Taper and flare energy absorption system
RU2421300C2 (en) Formed metal article and method of its production
JP2008512627A5 (en)
TW200838731A (en) Joining and stress transmitting element
EP2664396B1 (en) Arched DISA-K feeder sleeve
JP2007509760A (en) Feeder element for metal casting
JP2001525039A (en) Deformable element, its manufacturing method and application
KR101575314B1 (en) Aluminium wheel for vehicle and the manufacturing method
CN109154347A (en) For the spring element of vehicle shock absorber, vehicle shock absorber and with the vehicle of vehicle shock absorber
JP2002039245A (en) Impact absorbing member made of aluminum alloy casting
US20050134087A1 (en) Auto body or auto body part for a vehicle
US6854356B2 (en) Motor vehicle steering wheel
JP5071299B2 (en) Impact energy absorbing member and manufacturing method thereof
JP5163354B2 (en) Method for manufacturing impact energy absorbing member
US6398241B1 (en) Support arrangement for motor vehicles
JP2012166673A (en) Die cast aluminum alloy-made crash can
JP2003105407A (en) Porous energy-absorbing member, and member for car body frame
JP5067309B2 (en) Impact energy absorbing member and manufacturing method thereof
JP2010038341A (en) Impact energy absorbing member and fabrication method thereof
JP2012166645A (en) Die-cast aluminum alloy crash can
JP2010077986A (en) Impact energy absorbing member
US20030110882A1 (en) Vehicle steering wheel

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110620

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20120301

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120329

TRDD Decision of grant or rejection written
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120719

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20120724

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20120806

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20150831

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees