JP2010038341A - Impact energy absorbing member and fabrication method thereof - Google Patents

Impact energy absorbing member and fabrication method thereof Download PDF

Info

Publication number
JP2010038341A
JP2010038341A JP2008205205A JP2008205205A JP2010038341A JP 2010038341 A JP2010038341 A JP 2010038341A JP 2008205205 A JP2008205205 A JP 2008205205A JP 2008205205 A JP2008205205 A JP 2008205205A JP 2010038341 A JP2010038341 A JP 2010038341A
Authority
JP
Japan
Prior art keywords
main body
boundary
deformation
impact energy
portions
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP2008205205A
Other languages
Japanese (ja)
Inventor
Katsuya Nishiguchi
勝也 西口
Toshitsugu Kamioka
敏嗣 上岡
Kenichi Yamamoto
研一 山本
Kenji Murase
健二 村▲瀬▼
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mazda Motor Corp
Original Assignee
Mazda Motor Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mazda Motor Corp filed Critical Mazda Motor Corp
Priority to JP2008205205A priority Critical patent/JP2010038341A/en
Publication of JP2010038341A publication Critical patent/JP2010038341A/en
Pending legal-status Critical Current

Links

Images

Landscapes

  • Body Structure For Vehicles (AREA)
  • Vibration Dampers (AREA)

Abstract

<P>PROBLEM TO BE SOLVED: To provide an impact energy absorbing member 1 superior in handling and capable of stably deforming a tublar body 2 in a tube axis Z direction without causing buckling deformation thereof. <P>SOLUTION: The body 2 is formed integrally with split deformable parts 3 and boundary parts 4. Each boundary part 4 is umbrella-shaped to be inclined to one side or the other side in the tube axis Z direction toward the radial outside of the body 2. The two boundary parts 4 adjacent to each other in the tube axis Z direction are inclined to mutually opposite sides toward the radial outside of the body 2. Additionally, each boundary part 4 plastically deforms the two split deformable parts 3 sandwiching the boundary part 4 to mutually opposite sides in the radial direction of the body 2 concurrently with its compression and plastic deformation in the tube axis Z direction while accelerating the shearing deformation of the boundary-side ends of the two split deformable parts 3 sandwiching the boundary part to mutually opposite sides in the radial direction of the body 2 when a certain or greater compressing load is input to the body 2 in the tube axis Z direction. <P>COPYRIGHT: (C)2010,JPO&INPIT

Description

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する、車両のクラッシュカン等に好適な衝撃エネルギ吸収部材及びその製造方法に関する技術分野に属する。   The present invention belongs to a technical field related to an impact energy absorbing member suitable for a crash can of a vehicle and the like and a method for manufacturing the same, which absorbs a compressive load input in a cylindrical axis direction with respect to a cylindrical main body.

従来より、例えば車両のフロントサイドフレームの先端又はリヤサイドフレームの後端に、衝撃エネルギ吸収部材としてクラッシュカンを設けて、このクラッシュカンにより、車両の正面衝突時や後面衝突時の衝撃エネルギ(衝撃圧縮荷重)を吸収するようにすることはよく知られている。   Conventionally, for example, a crash can has been provided as an impact energy absorbing member at the front end of the front side frame or the rear end of the rear side frame of the vehicle. It is well known to absorb (load).

上記クラッシュカン等の衝撃エネルギ吸収部材においては、衝撃エネルギの吸収性能を向上させるべく種々の提案がなされている。例えば特許文献1では、衝撃エネルギ吸収部材の筒状の本体部を、少なくとも1つの短筒形状の第1部分と、この第1部分に対して同心軸状に重ねて配置された少なくとも1つの短筒形状の第2部分とで構成し、上記第1部分と第2部分との接続部分を上記同心軸に対して傾斜する部分を含む構成として、本体部に対して筒軸方向に圧縮荷重が入力されたときに、第1部分を縮径させつつ第2部分を拡径させて、第1部材を第2部材の内側中空部に押し込むようにしている。この構成により、不安定な座屈現象の発生を抑制して変形モードを安定させ、これにより衝撃エネルギの吸収性能を高めるようにしている。
国際公開第2006/025559号パンフレット
In the impact energy absorbing member such as the crash can, various proposals have been made to improve the impact energy absorbing performance. For example, in Patent Document 1, a cylindrical main body portion of an impact energy absorbing member is arranged with at least one short cylindrical first part and at least one short cylinder arranged concentrically with respect to the first part. As a configuration including a cylindrical second portion and a portion where the connection portion between the first portion and the second portion is inclined with respect to the concentric axis, a compressive load is applied to the main body portion in the cylindrical axis direction. When it is input, the first portion is pushed into the inner hollow portion of the second member by reducing the diameter of the first portion and expanding the second portion. With this configuration, the occurrence of an unstable buckling phenomenon is suppressed to stabilize the deformation mode, thereby improving the impact energy absorption performance.
International Publication No. 2006/025559 Pamphlet

しかし、上記特許文献1のものでは、本体部に対して筒軸方向に圧縮荷重が入力されたときにおいて、第1部分と第2部分とを接続部分で分離させて第1部材を第2部材の内側中空部に押し込む際に、第1部材が第2部材の内側中空部にスムーズに押し込まれずに、第1部材又は第2部材が座屈変形する可能性があり、衝撃エネルギ吸収部材を安定して変形させることが困難になる。この座屈変形を確実に防止するためには、第1及び第2部分の長さをかなり短くしておく必要があるが、この場合、車両に生じるような圧縮荷重に対応可能にしようとすると、第1及び第2部分の数がかなり多くなる。また、第1部材を第2部材の内側中空部にスムーズに押し込むためには、第1部分と第2部分とは単に接触しているか、又は固定されていたとしても、その固定力を小さくしておく必要があるが、上記のように第1及び第2部分の数がかなり多くなると、衝撃エネルギ吸収部材の運搬時や車両等への組付け時に第1部分又は第2部分が脱落する可能性があり、取扱い性が悪いという問題がある。   However, in the thing of the said patent document 1, when a compressive load is input with respect to the main-body part in the cylinder axial direction, the 1st part and the 2nd part are separated by the connection part, and the 1st member is made into the 2nd member. When the first member is pushed into the inner hollow portion of the first member, the first member or the second member may be buckled and deformed without being smoothly pushed into the inner hollow portion of the second member, thereby stabilizing the impact energy absorbing member. It becomes difficult to deform. In order to surely prevent this buckling deformation, the lengths of the first and second portions need to be considerably shortened. In this case, if it is attempted to cope with the compressive load generated in the vehicle, , The number of first and second parts is considerably increased. Further, in order to smoothly push the first member into the inner hollow part of the second member, even if the first part and the second part are simply in contact or fixed, the fixing force is reduced. However, if the number of the first and second parts becomes considerably large as described above, the first part or the second part may fall off when the impact energy absorbing member is transported or assembled to a vehicle or the like. There is a problem that it is difficult to handle.

本発明は、斯かる点に鑑みてなされたものであり、その目的とするところは、筒状の本体部を座屈変形させることなく本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を提供しようとすることにある。   The present invention has been made in view of such a point, and an object of the present invention is to stably deform the cylindrical main body portion in the main body cylinder axis direction without causing buckling deformation. Another object of the present invention is to provide an impact energy absorbing member excellent in handleability.

上記の目的を達成するために、請求項1の発明では、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材を対象として、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形するとともに本体部筒軸方向に3つ以上に分割された分割変形部と、該3つ以上の分割変形部間の複数の境界にそれぞれ設けられた複数の境界部とが一体成形されてなり、上記境界部は、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傘状をなし、上記本体部筒軸方向に隣り合う任意の2つの境界部は、本体部径方向の外側に向かって互いに反対側に傾斜し、更に上記境界部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該境界部を挟む2つの分割変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進するものであるとする。   In order to achieve the above object, the invention of claim 1 is directed to an impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction. The main body portion is made of metal and receives a compressive load of a predetermined value or more, and is subjected to compressive plastic deformation in the main body portion cylindrical axis direction, and is divided into three or more divided deformation portions in the main body portion cylindrical axis direction. A plurality of boundary portions respectively provided at a plurality of boundaries between two or more divided deformation portions are integrally formed, and the boundary portion is one side in the main body portion cylindrical axis direction toward the outer side in the main body portion radial direction. Alternatively, an arbitrary two boundary portions adjacent to each other in the main body portion cylindrical axis direction are inclined to opposite sides toward the outer side in the main body portion radial direction, and the boundary portions are When a compressive load greater than or equal to the predetermined value is input to the main body, The two split deformation portions sandwiching the boundary portion are plastically deformed to the opposite sides in the main body radial direction simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction, and the boundary between the two split deformation portions sandwiching the boundary portion It is assumed that the side end portions promote shear deformation to opposite sides of the main body portion in the radial direction.

上記の構成により、本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、分割変形部は、傘状の境界部によって、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の外側又は内側へ塑性変形し、このような分割変形部の塑性変形により圧縮荷重(衝撃エネルギ)を吸収することができる。また、境界部を挟む2つの分割変形部は、本体部筒軸方向の長さが短くなるとともに本体部径方向の互いに反対側に広がるようにそれぞれ塑性変形し、本体部径方向の外側へ塑性変形する分割変形部と、本体部径方向の内側へ塑性変形する分割変形部とが、本体部筒軸方向に交互に並ぶので、本体部全体として座屈変形が生じずに筒軸方向に安定して変形する。しかも、境界部によって、境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形して、分割変形部が本体部径方向の外側又は内側へより一層塑性変形し易くなる。すなわち、本体部に所定以上の圧縮荷重が入力されたときに、境界部ないしその近傍には、該境界部の傾斜によって、分割変形部の境界側端部を境界部に対して本体部径方向の外側又は内側(境界部を挟む2つの分割変形部では互いに逆側になる)へずらすようなせん断力が作用する。そして、境界部を、該せん断力により分割変形部の境界側端部が境界部に対してせん断変形し易くなるような材料で構成しておけば、上記せん断力によって分割変形部の境界側端部が境界部に対してせん断変形して、分割変形部の、本体部径方向の外側又は内側への塑性変形が促進される。   With the above configuration, when a compressive load greater than or equal to a predetermined value is input to the main body portion in the cylinder axis direction, the split deformation portion is simultaneously with the compressive plastic deformation in the main body portion cylinder axis direction by the umbrella-shaped boundary portion. The plastic deformation is performed to the outside or the inside in the main body radial direction, and the compressive load (impact energy) can be absorbed by the plastic deformation of the divided deformation portion. In addition, the two split deformable portions sandwiching the boundary portion are each plastically deformed so that the length in the main body portion cylindrical axis direction is shortened and spreads on the opposite sides of the main body portion radial direction, and plasticity is performed outward in the main body portion radial direction. Since the deformed split deformable part and the split deformable part plastically deformed inward in the main body radial direction are alternately arranged in the main body cylindrical axis direction, the main body part as a whole is stable in the cylindrical axis direction without causing buckling deformation. And deform. In addition, the boundary portion causes the boundary end portions of the two split deformation portions sandwiching the boundary portion to undergo shear deformation to opposite sides of the main body portion radial direction, respectively, so that the split deformation portion is moved outward or inward in the main body radial direction. It becomes easier to plastically deform. That is, when a compressive load greater than a predetermined value is input to the main body, the boundary side end portion of the split deformed portion is inclined relative to the boundary portion at or near the boundary portion due to the inclination of the boundary portion. A shearing force acting on the outer side or the inner side (in the two split deformed portions sandwiching the boundary portion is opposite to each other) acts. If the boundary portion is made of a material that makes the boundary-side end portion of the split deformation portion easily shear-deformed with respect to the boundary portion by the shearing force, the boundary side end of the split deformation portion by the shearing force. The portion undergoes shear deformation with respect to the boundary portion, and plastic deformation of the split deformation portion toward the outside or the inside in the main body portion radial direction is promoted.

したがって、本体部に対して、筒軸方向の圧縮荷重と同時に、本体部を径方向に倒すような力が入力されたとしても、本体部は座屈変形し難くて筒軸方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、分割変形部や境界部の数が多くなっても、分割変形部と境界部とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。   Therefore, even if a force is applied to the main body portion in the cylinder axis direction and a force that tilts the main body portion in the radial direction, the main body portion is unlikely to buckle and deform reliably in the cylinder axis direction. Thus, the compression load absorption performance can be enhanced. In addition, even if the number of split deformation portions and boundary portions increases, the split deformation portions and the boundary portions can be firmly and easily fixed to each other by integral molding. It is possible to improve the handleability when assembling.

請求項2の発明では、請求項1の発明において、上記分割変形部は、アルミニウム合金鋳物からなり、上記境界部は、金属板からなるものとする。   According to a second aspect of the present invention, in the first aspect of the invention, the split deformation portion is made of an aluminum alloy casting, and the boundary portion is made of a metal plate.

このことで、衝撃エネルギ吸収部材の軽量化を図ることができる。また、境界部の傘状の金属板により、境界部を挟む2つの分割変形部を本体部径方向の互いに反対側へそれぞれ塑性変形させることができるとともに、鋳物と金属板という異種のもの同士の接合では、せん断力に対する接合強度が比較的小さくなるので、境界部を挟む2つの分割変形部の境界側端部を本体部径方向の互いに反対側へそれぞれせん断変形させることが可能になる。   This can reduce the weight of the impact energy absorbing member. In addition, with the umbrella-shaped metal plate at the boundary portion, the two split deformation portions sandwiching the boundary portion can be plastically deformed to the opposite sides in the main body radial direction, and different types of castings and metal plates can be used. In the joining, since the joining strength with respect to the shearing force becomes relatively small, the boundary side end portions of the two split deformable portions sandwiching the boundary portion can be shear-deformed to the opposite sides in the main body radial direction.

請求項3の発明では、請求項1の発明において、上記分割変形部は、アルミニウム合金鋳物からなり、上記境界部は、強化繊維が含有されたアルミニウム合金鋳物からなるとする。   According to a third aspect of the present invention, in the first aspect of the present invention, the split deformation portion is made of an aluminum alloy casting, and the boundary portion is made of an aluminum alloy casting containing reinforcing fibers.

このことにより、衝撃エネルギ吸収部材の軽量化を図ることができる。また、境界部に強化繊維が含有されていることで、金属板と同様に、境界部を挟む2つの分割変形部を本体部径方向の互いに反対側へそれぞれ塑性変形させることができるとともに、境界部の強化繊維体積率を適切に設定することによって、境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進することが可能になる。すなわち、境界部では強化繊維の分だけ金属(アルミニウム合金)の含有量が少なく、また、通常、強化繊維は境界部の厚み方向の端面に略沿って延びるように配設されるので、せん断力に対する分割変形部と境界部との接合強度が低くなり、この結果、境界部を挟む2つの分割変形部の境界側端部が境界部に対してそれぞれせん断変形し易くなる。よって、これら2つの分割変形部の境界側端部を本体部径方向の互いに反対側へそれぞれせん断変形させることが可能になる。   This can reduce the weight of the impact energy absorbing member. Further, since the reinforcing fiber is contained in the boundary portion, the two split deformation portions sandwiching the boundary portion can be plastically deformed to the opposite sides of the main body portion in the same manner as the metal plate, and the boundary By appropriately setting the volumetric fiber volume ratio of the part, it is possible to promote the shearing deformation of the boundary side end parts of the two split deformation parts sandwiching the boundary part to the opposite sides of the main body part in the radial direction. Become. That is, the content of metal (aluminum alloy) is small in the boundary portion by the amount of the reinforcing fiber, and the reinforcing fiber is usually disposed so as to extend substantially along the end face in the thickness direction of the boundary portion, so that the shear force As a result, the boundary-side end portions of the two split deformation portions sandwiching the boundary portion are easily shear-deformed with respect to the boundary portion. Therefore, it is possible to shear-deform the boundary side end portions of these two split deformation portions to the opposite sides in the main body radial direction.

請求項4の発明では、請求項2又は3の発明において、上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であるものとする。   In the invention of claim 4, in the invention of claim 2 or 3, the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.

すなわち、Al−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。よって、衝撃エネルギ吸収部材の軽量化を図りつつ、圧縮荷重の吸収性能を高めることができる。   That is, the Al-Mn-Fe-Mg-based alloy can improve both castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with high elongation. Therefore, it is possible to improve the absorption performance of the compressive load while reducing the weight of the impact energy absorbing member.

請求項5の発明では、請求項1〜4のいずれか1つの発明において、衝撃エネルギ吸収部材は、車両のフロントサイドフレーム又はクラッシュカンに用いられるものとする。   According to a fifth aspect of the present invention, in any one of the first to fourth aspects, the impact energy absorbing member is used for a front side frame or a crash can of a vehicle.

このことにより、車両の正面衝突時や後面衝突時の衝撃エネルギを確実に吸収して、車両の安全性を高めることが可能になる。また、分割変形部を、例えばアルミニウム合金鋳物で構成することで、車両の軽量化を図りつつ、安全性の向上化を図ることができる。   This makes it possible to reliably absorb impact energy at the time of a frontal collision or a rearward collision of the vehicle and improve the safety of the vehicle. Further, by configuring the split deformed portion with, for example, an aluminum alloy casting, it is possible to improve safety while reducing the weight of the vehicle.

請求項6の発明は、筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法の発明であり、この発明では、上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形するとともに本体部筒軸方向に3つ以上に分割された分割変形部と、該3つ以上の分割変形部間の複数の境界にそれぞれ設けられた複数の境界部とからなり、上記境界部は、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傘状をなし、上記本体部筒軸方向に隣り合う任意の2つの境界部は、本体部径方向の外側に向かって互いに反対側に傾斜し、更に上記境界部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該境界部を挟む2つの分割変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進するものであり、上記複数の境界部をそれぞれ形成するための複数の境界部形成部材を作製する工程と、上記作製した境界部形成部材を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、上記分割変形部と境界部とを一体成形する工程とを含むものとする。   The invention of claim 6 is an invention of a manufacturing method of an impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load input to the main body portion in the cylinder axial direction. The main body is made of metal and receives a compressive load of a predetermined value or more to undergo plastic plastic deformation in the main body cylinder axis direction, and is divided into three or more divided deformation parts in the main body cylinder axis direction. A plurality of boundary portions respectively provided at a plurality of boundaries between the divided deformation portions, and the boundary portions are inclined toward one side or the other side in the main body portion cylinder axis direction toward the outer side in the main body portion radial direction. The two boundary portions adjacent to each other in the main body portion cylinder axis direction are inclined toward opposite sides toward the outer side in the main body portion radial direction, and the boundary portions are further formed on the main body portion. Two that sandwich the boundary when a compressive load greater than a predetermined value is input The split deformation portion is plastically deformed to the opposite sides of the main body portion radial direction simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction, and the boundary side end portion of the two split deformation portions sandwiching the boundary portion is the main body portion. A step of forming a plurality of boundary portion forming members for forming the plurality of boundary portions, respectively, and a step of forming the boundary portion forming member, which promotes shear deformation to opposite sides in the radial direction. In the state set in the cavity of the mold, the molten metal is supplied into the cavity, thereby integrally forming the split deformed portion and the boundary portion.

この発明により、分割変形部及び境界部を容易に一体成形することができ、本体部筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   According to the present invention, an impact energy absorbing member that can be easily integrally formed with the split deformation portion and the boundary portion, can be stably deformed in the cylinder portion direction of the main body, and is excellent in handleability is easily manufactured. be able to.

請求項7の発明では、請求項6の発明において、上記金属は、アルミニウム合金であり、上記境界部形成部材は、金属板であるものとする。   In the invention of claim 7, in the invention of claim 6, the metal is an aluminum alloy, and the boundary portion forming member is a metal plate.

このことにより、請求項2の発明に係る衝撃エネルギ吸収部材を容易に製造することができる。   Thus, the impact energy absorbing member according to the invention of claim 2 can be easily manufactured.

請求項8の発明では、請求項6の発明において、上記金属は、アルミニウム合金であり、上記境界部形成部材は、強化繊維成形体からなるものとする。   According to an eighth aspect of the present invention, in the sixth aspect of the present invention, the metal is an aluminum alloy, and the boundary portion forming member is made of a reinforcing fiber molded body.

このことにより、請求項3の発明に係る衝撃エネルギ吸収部材を容易に製造することができる。   Thus, the impact energy absorbing member according to the invention of claim 3 can be easily manufactured.

以上説明したように、本発明の衝撃エネルギ吸収部材によると、本体部が、分割変形部と境界部とが一体成形されてなり、この境界部が、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傘状をなし、本体部筒軸方向に隣り合う任意の2つの境界部が、本体部径方向の外側に向かって互いに反対側に傾斜し、更に境界部が、本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときに、該境界部を挟む2つの分割変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進するように構成したことにより、本体部が筒軸方向に安定して変形するようになり、圧縮荷重の吸収性能を高めることができるとともに、衝撃エネルギ吸収部材の運搬時や車両等への組付け時における取扱い性を向上させることができる。   As described above, according to the impact energy absorbing member of the present invention, the main body portion is formed by integrally forming the split deformable portion and the boundary portion, and the boundary portion is directed toward the outer side in the main body portion radial direction. It forms an umbrella shape that is inclined to one side or the other side in the cylinder axis direction, and any two boundary portions adjacent to each other in the main body cylinder axis direction are inclined to opposite sides toward the outer side in the main body radial direction. When the boundary portion receives a compressive load greater than or equal to a predetermined amount in the cylinder axis direction with respect to the main body portion, the two split deformable portions sandwiching the boundary portion are compressed simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction. It is configured to plastically deform to the opposite sides in the radial direction, and to promote the shear deformation of the boundary side ends of the two split deformation portions sandwiching the boundary portion to the opposite sides in the main body radial direction. As a result, the main body is stabilized in the cylinder axis direction. Become deformed, it is possible to increase the absorption performance of the compression load, it is possible to improve the handling property at the time of assembling to the transportation or when the vehicle such as the impact energy absorbing member.

また、本発明の衝撃エネルギ吸収部材の製造方法によると、境界部を形成するための境界部形成部材を作製する工程と、該作製した境界部形成部材を金型のキャビティ内にセットした状態で、金属の溶湯を該キャビティ内に供給することで、分割変形部と境界部とを一体成形する工程とを含むようにしたことにより、本体部を座屈変形させることなく筒軸方向に安定して変形させることが可能でかつ取扱い性に優れた衝撃エネルギ吸収部材を容易に製造することができる。   Further, according to the manufacturing method of the impact energy absorbing member of the present invention, the step of producing the boundary portion forming member for forming the boundary portion, and the state where the produced boundary portion forming member is set in the cavity of the mold By supplying the molten metal into the cavity, the step of integrally forming the split deformation portion and the boundary portion is included, so that the main body portion is stabilized in the cylinder axis direction without causing buckling deformation. Thus, it is possible to easily manufacture an impact energy absorbing member that can be deformed and has excellent handleability.

以下、本発明の実施形態を図面に基づいて詳細に説明する。   Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.

(実施形態1)
図1は、本発明の実施形態1に係る衝撃エネルギ吸収部材1を示し、この衝撃エネルギ吸収部材1は、筒状(本実施形態では円筒状)の本体部2を有していて、該本体部2に対して筒軸Z方向(図1の上下方向)に入力される圧縮荷重を吸収するものである。
(Embodiment 1)
FIG. 1 shows an impact energy absorbing member 1 according to Embodiment 1 of the present invention, and this impact energy absorbing member 1 has a cylindrical (cylindrical in this embodiment) body portion 2, and the body It absorbs a compressive load input to the portion 2 in the cylinder axis Z direction (vertical direction in FIG. 1).

上記衝撃エネルギ吸収部材1は、本実施形態では、図2に示すように、車両100の前部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のフロントサイドフレーム91の前端とフロントバンパー93における車幅方向に延びるバンパーレインフォースメント93aの左右両端部との間にそれぞれ介設されるクラッシュカン92として用いられる。この場合、衝撃エネルギ吸収部材1は、筒軸Z方向が車両100の前後方向に一致するように配設されて、車両100の正面衝突時にバンパーレインフォースメント93aから入力される衝突エネルギ(衝撃圧縮荷重)を吸収する。   In the present embodiment, the impact energy absorbing member 1 includes front ends of left and right front side frames 91 provided to extend in the front-rear direction at both vehicle width direction positions in the front portion of the vehicle 100, as shown in FIG. The front bumper 93 is used as a crash can 92 interposed between left and right ends of a bumper reinforcement 93a extending in the vehicle width direction. In this case, the impact energy absorbing member 1 is disposed such that the direction of the cylinder axis Z coincides with the front-rear direction of the vehicle 100, and the collision energy (impact compression) input from the bumper reinforcement 93a at the time of a frontal collision of the vehicle 100. Absorbs load).

尚、衝撃エネルギ吸収部材1は、上記クラッシュカン92に限らず、上記左右のフロントサイドフレーム91の一部(特に前端部分)、車両100の後部における車幅方向両側位置で前後方向にそれぞれ延びるように設けられる左右のリヤサイドフレーム(図示せず)の一部(特に後端部分)、又は、この各リヤサイドフレームの後端とリヤバンパー94のバンパーレインフォースメント(図示せず)との間に介設されるクラッシュカン(図示せず)に用いてもよい。また、衝撃エネルギ吸収部材1は、車両100において衝撃エネルギを吸収する必要がある部分に広く用いることができるとともに、車両100以外のものに用いることも可能である。   The impact energy absorbing member 1 is not limited to the crash can 92 but extends in the front-rear direction at a part (particularly the front end portion) of the left and right front side frames 91 and at both sides in the vehicle width direction at the rear portion of the vehicle 100. A part of the left and right rear side frames (not shown) (particularly the rear end part) provided between the rear side frame and a bumper reinforcement (not shown) of the rear bumper 94. You may use for the crush can (not shown) provided. Further, the impact energy absorbing member 1 can be widely used in a portion where the impact energy needs to be absorbed in the vehicle 100 and can also be used for other than the vehicle 100.

上記本体部2における筒軸Z方向の両側端には、衝撃エネルギ吸収部材1を上記フロントサイドフレーム91の前端とバンパーレインフォースメント93aとにそれぞれ取付固定するための第1及び第2固定部7,8がそれぞれ設けられている。第1固定部7には、該第1固定部7をフロントサイドフレーム91の前端に締結固定するためのボルトが挿通される複数のボルト挿通孔7aが形成されており、第2固定部8には、該第2固定部8をバンパーレインフォースメント93aに締結固定するためのボルトが挿通される複数のボルト挿通孔8aが形成されている。これら第1及び第2固定部7,8の形状は、衝撃エネルギ吸収部材1の適用箇所によって異なる。   First and second fixing portions 7 for attaching and fixing the impact energy absorbing member 1 to the front end of the front side frame 91 and the bumper reinforcement 93a, respectively, at both ends of the main body portion 2 in the cylinder axis Z direction. , 8 are provided. The first fixing portion 7 has a plurality of bolt insertion holes 7a through which bolts for fastening and fixing the first fixing portion 7 to the front end of the front side frame 91 are formed. Are formed with a plurality of bolt insertion holes 8a through which bolts for fastening and fixing the second fixing portion 8 to the bumper reinforcement 93a are inserted. The shapes of the first and second fixing portions 7 and 8 differ depending on the application location of the impact energy absorbing member 1.

本実施形態のように衝撃エネルギ吸収部材1をクラッシュカン92に用いる場合、本体部2の外径Dは40〜100mmが好ましく、肉厚tは2〜8mmが好ましく、長さLは80〜150mmが好ましい。尚、本体部の外径Dは、図1では、本体部2の筒軸Z方向全体に亘って一定に記載しているが、厳密には一定ではなくて、第2固定部8側に向かって徐々に小さくなっている。これは、衝撃エネルギ吸収部材1を後述の鋳造金型30(図7参照)で鋳造した後に該鋳造金型30からの離型を容易にするためである。   When the impact energy absorbing member 1 is used for the crash can 92 as in this embodiment, the outer diameter D of the main body 2 is preferably 40 to 100 mm, the wall thickness t is preferably 2 to 8 mm, and the length L is 80 to 150 mm. Is preferred. In FIG. 1, the outer diameter D of the main body is constant throughout the cylinder axis Z direction of the main body 2, but is not strictly constant and is directed toward the second fixing portion 8. Gradually getting smaller. This is for facilitating release from the casting mold 30 after casting the impact energy absorbing member 1 with a casting mold 30 (see FIG. 7) described later.

上記本体部2は、該本体部2に対する筒軸Z方向の所定以上の圧縮荷重を受けて筒軸Z方向に圧縮塑性変形するとともに筒軸Z方向に3つ以上(本実施形態では6つ)に分割された分割変形部3と、該3つ以上の分割変形部3間の境界にそれぞれ設けられた複数(分割変形部3よりも1つ少なく、5つとなる)の境界部4とが一体成形されてなる。本体部2の第1固定部7側の端に位置する分割変形部3は、第1固定部7と一体成形されてなり、本体部2の第2固定部8側の端に位置する分割変形部3は、第2固定部8と一体成形されてなる。   The main body 2 receives three or more predetermined compressive loads in the cylinder axis Z direction with respect to the main body 2 and undergoes plastic plastic deformation in the cylinder axis Z direction, and at least three in the cylinder axis Z direction (six in this embodiment). The divisional deformation part 3 divided into three and a plurality of boundary parts 4 (one less than the divisional deformation part 3 and five) provided at the boundary between the three or more divisional deformation parts 3 are integrated. Molded. The split deformation portion 3 positioned at the end of the main body 2 on the first fixing portion 7 side is formed integrally with the first fixing portion 7 and is split at the end of the main body portion 2 on the second fixing portion 8 side. The part 3 is formed integrally with the second fixing part 8.

尚、分割変形部3は3つ以上あればよい(境界部4は2つ以上となる)が、分割変形部3の数は、4〜8程度の偶数であることが好ましい。このように偶数にすると、後述の如く、本体部2径方向の外側へ塑性変形する分割変形部3と本体部2径方向の内側へ塑性変形する分割変形部3との数を同じにすることができる。   In addition, although the division | segmentation deformation | transformation part 3 should just be 3 or more (the boundary part 4 becomes 2 or more), it is preferable that the number of the division | segmentation deformation | transformation parts 3 is an even number of about 4-8. In this way, as will be described later, the number of the split deformation portions 3 that plastically deform outward in the radial direction of the main body portion 2 and the number of split deformation portions 3 that plastically deform inward of the radial direction of the main body portion 2 are the same. Can do.

上記境界部4は、本体部2径方向の外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傘状をなしている。これにより、境界部4は、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、該境界部4を挟む2つの分割変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の互いに反対側へそれぞれ強制的に塑性変形させる。   The boundary portion 4 has an umbrella shape that is inclined toward one side or the other side in the cylinder axis Z direction toward the outer side in the main body portion 2 radial direction. As a result, the boundary portion 4 moves the two split deformation portions 3 sandwiching the boundary portion 4 in the cylinder axis Z direction when a compressive load of a predetermined value or more is input to the main body portion 2 in the cylinder axis Z direction. At the same time as the compressive plastic deformation, the plastic deformation is forcibly plastically deformed to the opposite sides in the main body 2 radial direction.

そして、筒軸Z方向に隣り合う任意の2つの境界部4は、本体部2径方向の外側に向かって互いに反対側に傾斜している。これにより、本体部2径方向の外側へ塑性変形する分割変形部3(本体部2の第2固定部8側の端から数えて奇数番目に位置する3つの分割変形部3)と、本体部2径方向の内側へ塑性変形する分割変形部3(本体部2の第2固定部8側の端から数えて偶数番目に位置する3つの分割変形部3)とが、筒軸Z方向に交互に並ぶことになる。尚、上記奇数番目に位置する分割変形部3は、その筒軸Z方向の長さが本体部2径方向の外側に向かって大きくなる形状をなし、上記偶数番目に位置する分割変形部3は、その筒軸Z方向の長さが本体部2径方向の外側に向かって小さくなる形状をなしている。   And the arbitrary two boundary parts 4 adjacent to the cylinder axis Z direction incline in the mutually opposite side toward the outer side of the main-body part 2 radial direction. As a result, the split deformation part 3 (three split deformation parts 3 positioned at odd numbers from the end of the main body part 2 on the second fixing part 8 side) that plastically deforms outward in the radial direction of the main body part 2 and the main body part Split deformable portions 3 that are plastically deformed inward in the two radial directions (three divided deformable portions 3 that are even-numbered when counted from the end of the main body portion 2 on the second fixing portion 8 side) are alternately arranged in the cylinder axis Z direction. Will be lined up. The odd-numbered divisional deformation portion 3 has a shape in which the length in the cylinder axis Z direction increases toward the outer side in the main body 2 radial direction, and the even-numbered divisional deformation portion 3 is The length in the cylinder axis Z direction is reduced toward the outer side in the radial direction of the main body 2.

また、上記境界部4は、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、該境界部4を挟む2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形するのを促進する役割を果たす。すなわち、本体部2に所定以上の圧縮荷重が入力されたときに、境界部4ないしその近傍には、境界部4の傾斜によって、分割変形部3の境界側端部を境界部4に対して本体部2径方向の外側又は内側(境界部4を挟む2つの分割変形部3では互いに逆側になる)へずらすようなせん断力が作用する。このせん断力によって分割変形部3の境界側端部が境界部4に対してせん断変形して、分割変形部3の、本体部径方向の外側又は内側への塑性変形が促進される。   In addition, the boundary portion 4 is configured such that when a predetermined or more compressive load is input to the main body portion 2 in the cylinder axis Z direction, the boundary side end portions of the two divided deformation portions 3 sandwiching the boundary portion 4 are the main body portions. It plays a role of promoting shear deformation to the opposite sides of the part 2 radial direction. That is, when a predetermined or more compressive load is input to the main body 2, the boundary portion 4 or the vicinity thereof has the boundary side end portion of the split deformation portion 3 with respect to the boundary portion 4 due to the inclination of the boundary portion 4. A shearing force acting to shift to the outer side or the inner side of the main body part 2 in the radial direction (the two split deformation parts 3 sandwiching the boundary part 4 are opposite to each other) acts. Due to this shearing force, the boundary side end portion of the split deformation portion 3 undergoes shear deformation with respect to the boundary portion 4, and plastic deformation of the split deformation portion 3 to the outside or the inside in the main body radial direction is promoted.

上記境界部4の傾斜角度θ(筒軸Z方向に対して垂直な面に対する傾斜角度)は、30°〜60°が好ましく、特に好ましいのは40°〜50°である。本体部2径方向の外側に向かって筒軸Z方向の一方側に傾斜する境界部4の傾斜角度と、他方側に傾斜する境界部4の傾斜角度とは同じであることが好ましいが、互いに異なっていてもよい。   The boundary portion 4 has an inclination angle θ (an inclination angle with respect to a plane perpendicular to the cylinder axis Z direction) of preferably 30 ° to 60 °, and particularly preferably 40 ° to 50 °. The inclination angle of the boundary portion 4 inclined to one side in the cylinder axis Z direction toward the outer side in the radial direction of the main body portion 2 is preferably the same as the inclination angle of the boundary portion 4 inclined to the other side. May be different.

上記分割変形部3の形状及び大きさは全て略同じであることが好ましい。これは、圧縮加重が全ての分割変形部3に均一に作用して特定の分割変形部3に集中しないようにするためである。   It is preferable that all of the shape and size of the split deformation portion 3 are substantially the same. This is to prevent the compression weight from acting uniformly on all of the divisional deformation units 3 and concentrating on the specific divisional deformation unit 3.

本実施形態では、上記分割変形部3はアルミニウム合金鋳物からなり、上記境界部4は、強化繊維が含有されたアルミニウム合金鋳物からなる。これら分割変形部3及び境界部4は、後述の如くアルミニウム合金の溶湯と強化繊維成形体からなる予備成形体15(図4参照)との複合化により一体成形されたものである。   In the present embodiment, the split deformation portion 3 is made of an aluminum alloy casting, and the boundary portion 4 is made of an aluminum alloy casting containing reinforcing fibers. The split deformation portion 3 and the boundary portion 4 are integrally formed by combining a molten aluminum alloy and a preformed body 15 (see FIG. 4) made of a reinforcing fiber molded body, as will be described later.

上記アルミニウム合金として好ましいのは、Al−Mn−Fe−Mg系合金である。このAl−Mn−Fe−Mg系合金は、各成分の含有量を適切に設定することによって、アルミニウム合金の強度を維持しつつ鋳造性及び伸びの両方を同時に向上させて、鋳造のままでも高い伸びを有する高延性のものとすることができる。具体的には、0.5〜2.5%のMn成分と、0.1〜1.5%のFe成分と、0.01〜1.2%のMg成分と、残部が不可避不純物を含むAl成分とからなるアルミニウム合金とする(含有量の数値は質量百分率である)。   The aluminum alloy is preferably an Al—Mn—Fe—Mg alloy. This Al-Mn-Fe-Mg-based alloy is high in casting as it can improve the castability and elongation at the same time while maintaining the strength of the aluminum alloy by appropriately setting the content of each component. It can be of high ductility with elongation. Specifically, 0.5 to 2.5% Mn component, 0.1 to 1.5% Fe component, 0.01 to 1.2% Mg component, and the balance contains inevitable impurities The aluminum alloy is composed of an Al component (the numerical value of the content is a mass percentage).

また、上記各成分含有量を有するAl−Mn−Fe−Mg系合金に、質量百分率で0.1〜0.2%のTi成分、質量百分率で0.01〜0.1%のB成分、及び、質量百分率で0.01〜0.2%のBe成分のうちの少なくとも1つを添加することがより好ましい。すなわち、Ti成分、B成分及びBe成分は、鋳物の結晶粒を微細化することによりその特性を向上させて鋳造割れ性を改善することができるが、含有量が多すぎると、粗大化合物が生成されて伸びが低下する。そこで、Ti成分、B成分及びBe成分の各含有量を上記範囲に設定して、伸びの低下を防ぎつつ、鋳造割れ性をさらに良好にする。   In addition, to the Al-Mn-Fe-Mg based alloy having the above respective component contents, 0.1 to 0.2% Ti component by mass percentage, 0.01 to 0.1% B component by mass percentage, And it is more preferable to add at least one of Be components of 0.01 to 0.2% by mass percentage. That is, the Ti component, the B component and the Be component can improve the casting cracking property by refining the crystal grains of the casting, but if the content is too large, a coarse compound is generated. As a result, the elongation decreases. Then, each content of Ti component, B component, and Be component is set to the said range, and cast cracking property is made further favorable, preventing the fall of elongation.

尚、上記Al−Mn−Fe−Mg系合金に代えて、例えば、Al−Si系合金を用いてもよく(この合金の場合には、高真空ダイカスト法で鋳造する)、Mg系合金やその他の金属を用いてもよい。   In place of the Al—Mn—Fe—Mg alloy, for example, an Al—Si alloy may be used (in the case of this alloy, casting is performed by a high vacuum die casting method). The metal may be used.

上記境界部4の強化繊維としては、アルミナ繊維、シリカ繊維、シリコンカーバイト繊維等が好ましい。アルミナ繊維及びシリカ繊維の場合には、例えば、平均繊維径3μm〜5μm、繊維長さ5mm〜10mmのものを用い、シリコンカーバイト繊維の場合には、例えば、平均繊維径10μm〜15μm、繊維長さ5mm〜10mmのものを用いればよい。   As the reinforcing fiber of the boundary portion 4, alumina fiber, silica fiber, silicon carbide fiber, or the like is preferable. In the case of alumina fibers and silica fibers, for example, those having an average fiber diameter of 3 μm to 5 μm and a fiber length of 5 mm to 10 mm are used. In the case of silicon carbide fibers, for example, the average fiber diameter of 10 μm to 15 μm, the fiber length is used. The thing of 5 mm-10 mm should just be used.

上記境界部4の強化繊維体積率は、通常では5〜10%であるが、本実施形態では、これよりも大きくする。また、後述の製造方法から強化繊維は境界部4の厚み方向の端面に略沿って延びるように配設されており、強化繊維体積率が大きいことと相俟って、上記せん断力に対する分割変形部3と境界部4との接合強度が低くなり、この結果、境界部4を挟む2つの分割変形部3の境界側端部が境界部4に対してそれぞれせん断変形し易くなる。すなわち、これら2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形し易くなる。このせん断変形を促進するために境界部4の強化繊維体積率として好ましい範囲は20〜25%である。これは、20%未満では、上記せん断変形を十分に促進させることができない一方、25%を超えると、予備成形体15内の空孔が小さくなって溶湯の充填性が悪化するからである。   The reinforcing fiber volume ratio of the boundary portion 4 is normally 5 to 10%, but is larger than this in the present embodiment. Further, from the manufacturing method described later, the reinforcing fibers are arranged so as to extend substantially along the end face in the thickness direction of the boundary portion 4, and in combination with the large reinforcing fiber volume ratio, the split deformation with respect to the shearing force is performed. The joint strength between the portion 3 and the boundary portion 4 is lowered, and as a result, the boundary side end portions of the two split deformation portions 3 sandwiching the boundary portion 4 are easily shear-deformed with respect to the boundary portion 4. That is, the boundary side end portions of these two split deformable portions 3 are easily shear-deformed to opposite sides of the main body portion 2 in the radial direction. In order to promote this shear deformation, a preferable range of the reinforcing fiber volume ratio of the boundary portion 4 is 20 to 25%. This is because, if it is less than 20%, the shear deformation cannot be sufficiently promoted, whereas if it exceeds 25%, the pores in the preform 15 are reduced and the filling property of the molten metal is deteriorated.

図3に示すように、分割変形部3は、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、筒軸Z方向に圧縮塑性変形する。また、上記境界部4によって、本体部2の第2固定部8側の端から数えて奇数番目の分割変形部3は、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側へ塑性変形し、本体部2の第2固定部8側の端から数えて偶数番目の分割変形部3は、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の内側へ塑性変形することになる。しかも、境界部4によって、該境界部4を挟む2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形する。すなわち、上記奇数番目の分割変形部3の境界側端部は、境界部4に対して本体部2径方向の外側へせん断変形し、上記偶数番目の分割変形部3は、境界部4に対して本体部2径方向の内側へせん断変形する。これにより、上記奇数番目の分割変形部3は、本体部2径方向の外側へより一層塑性変形し易くなり、上記偶数番目の分割変形部3は、本体部2径方向の内側へより一層塑性変形し易くなる。この分割変形部3の塑性変形によって上記圧縮加重を吸収する。このとき、分割変形部3は、その筒軸Z方向の長さが短くなりながら本体部2径方向の外側又は内側へ広がることにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。尚、分割変形部3は、筒軸Z方向の圧縮塑性変形に伴って、本体部2径方向において境界部4により塑性変形させられる側とは反対側へも少し塑性変形することになるが、その反対側への塑性変形量は、境界部4により強制的に変形させられる側への塑性変形量に比べてかなり小さい。   As shown in FIG. 3, the split deformation portion 3 undergoes compressive plastic deformation in the cylinder axis Z direction when a predetermined or greater compressive load is input to the body portion 2 in the cylinder axis Z direction. Further, due to the boundary portion 4, the odd-numbered divided deformable portions 3 counted from the end of the main body portion 2 on the second fixing portion 8 side are compressed and plastically deformed in the cylinder axis Z direction, and at the same time outside the main body portion 2 in the radial direction. The even-numbered divided deformation portion 3 is plastically deformed inward in the radial direction of the main body portion 2 simultaneously with the compressive plastic deformation in the cylinder axis Z direction. Will do. In addition, the boundary portion 4 shears and deforms the boundary side end portions of the two split deformation portions 3 sandwiching the boundary portion 4 in opposite directions in the main body portion 2 radial direction. That is, the boundary-side end portion of the odd-numbered divided deformation portion 3 is shear-deformed outward in the main body 2 radial direction with respect to the boundary portion 4, and the even-numbered divided deformation portion 3 is deformed relative to the boundary portion 4. Thus, the main body part 2 is sheared inward in the radial direction. As a result, the odd-numbered divided deformation portion 3 is more easily plastically deformed outward in the radial direction of the main body portion 2, and the even-numbered divided deformation portion 3 is further plasticized inward of the main body portion 2 in the radial direction. It becomes easy to deform. The compression load is absorbed by the plastic deformation of the divided deformation portion 3. At this time, the split deformation portion 3 spreads outward or inward in the radial direction of the main body 2 while its length in the cylindrical axis Z direction is shortened, so that the main body 2 as a whole is not buckled and deformed. Deforms stably in the direction. The split deformation portion 3 is slightly plastically deformed to the side opposite to the side that is plastically deformed by the boundary portion 4 in the radial direction of the main body portion 2 along with the compressive plastic deformation in the cylinder axis Z direction. The amount of plastic deformation to the opposite side is considerably smaller than the amount of plastic deformation to the side forcedly deformed by the boundary portion 4.

上記分割変形部3の塑性変形が進行するに連れて、境界部4の傾斜角度θが小さくなるが、境界部4は、その傾斜角度θが0になるまでは、分割変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の外側又は内側へ塑性変形させるとともに、分割変形部3の境界側端部を境界部4に対して本体部2径方向の外側又は内側へせん断変形させる役割を果たす。そして、傾斜角度θが0になったとしても、その時点では既に、分割変形部3の塑性変形量がかなり大きくなっており、この結果、その時点以降も圧縮荷重が作用し続けたとしても、本体部2全体として座屈変形が生じずに筒軸Z方向に変形する。   As the plastic deformation of the split deformation portion 3 proceeds, the inclination angle θ of the boundary portion 4 decreases, but the boundary portion 4 allows the split deformation portion 3 to be connected to the cylinder until the inclination angle θ becomes zero. Simultaneously compressive plastic deformation in the axis Z direction and plastic deformation outward or inward in the main body 2 radial direction, and the boundary side end of the split deformation portion 3 with respect to the boundary portion 4 in the outer or inner side of the main body 2 radial direction Plays a role of shear deformation. And even if the inclination angle θ becomes 0, the plastic deformation amount of the split deformation portion 3 is already considerably large at that time, and as a result, even if the compression load continues to act after that time, The main body 2 as a whole is deformed in the cylinder axis Z direction without causing buckling deformation.

尚、本体部2への上記所定以上の圧縮加重の入力時に、分割変形部3と境界部4との間の界面で破断(せん断破壊)する可能性はあるが、たとえ破断したとしても、分割変形部3は、境界部4によって本体部2径方向の外側又は内側へ塑性変形することに変わりはなく、寧ろ、破断により、本体部2径方向の外側又は内側へ塑性変形し易くなる。   In addition, there is a possibility of breaking (shear failure) at the interface between the split deformable portion 3 and the boundary portion 4 when the compression load greater than the predetermined value is input to the main body portion 2, but even if it breaks, the split portion The deformable portion 3 remains plastically deformed outward or inward in the main body portion 2 radial direction by the boundary portion 4. Rather, the deformable portion 3 is easily plastically deformed outward or inward in the main body portion 2 radial direction by breakage.

また、本実施形態では、境界部4は、分割変形部3の構成材料であるアルミニウム合金と強化繊維との複合化により強化されて、筒軸Z方向の圧縮荷重に対して分割変形部3よりも圧縮塑性変形し難くかつ破壊し難くなっている(つまり上記圧縮荷重に対する強度及び剛性が分割変形部3よりも高い)が、本体部2に対して筒軸Z方向に、境界部4が圧縮塑性変形するような大きさの圧縮加重が入力されたとしても、境界部4の厚みが小さいので、境界部4の圧縮塑性変形による傾斜角度θの変化は小さく、よって、境界部4としての上記役割を果たす。   Moreover, in this embodiment, the boundary part 4 is strengthened by the composite of the aluminum alloy that is the constituent material of the split deformation part 3 and the reinforcing fiber, and the split deformation part 3 is more resistant to the compressive load in the cylinder axis Z direction. However, the boundary portion 4 is compressed in the cylinder axis Z direction with respect to the main body portion 2 although it is difficult to be plastically deformed and hard to break (that is, the strength and rigidity with respect to the compression load are higher than those of the split deformation portion 3). Even if a compressive load having such a magnitude as to cause plastic deformation is inputted, since the thickness of the boundary portion 4 is small, the change in the inclination angle θ due to the compressive plastic deformation of the boundary portion 4 is small. Play a role.

上記衝撃エネルギ吸収部材1を製造するには、先ず、図4に示すように、上記アルミニウム合金の溶湯との複合化により上記複数の境界部4をそれぞれ形成することが可能な複数の予備成形体15(複数の境界部4をそれぞれ形成するための複数の境界部形成部材に相当)を成形する。この各予備成形体15の形状は、境界部4と同じく傘状をなしている。   In order to manufacture the impact energy absorbing member 1, first, as shown in FIG. 4, a plurality of preforms capable of forming the plurality of boundary portions 4 by compounding with the molten aluminum alloy, respectively. 15 (corresponding to a plurality of boundary portion forming members for forming the plurality of boundary portions 4 respectively) is formed. Each of the preforms 15 has an umbrella shape similar to the boundary portion 4.

各予備成形体15は、以下のようにして作製する。すなわち、最初に、不図示の容器内に、上記強化繊維と、水と、添加剤とを入れて撹拌混合してスラリー24(図5参照)を調製する。上記添加剤は、予備成形体15の強度を確保するための強化剤(例えば粒状アルミナゾル)、該強化剤の強化繊維への付着を促進させるための付着促進剤(例えば硫酸アンモン)、及び、強化繊維の分散性を向上させるための分散剤(例えばポリアミド)である。   Each preform 15 is produced as follows. That is, first, the reinforcing fiber, water, and the additive are put in a container (not shown) and mixed by stirring to prepare a slurry 24 (see FIG. 5). The additive includes a reinforcing agent (for example, granular alumina sol) for securing the strength of the preform 15, an adhesion promoter (for example, ammonium sulfate) for promoting adhesion of the reinforcing agent to the reinforcing fibers, and a reinforcing material. It is a dispersing agent (for example, polyamide) for improving the dispersibility of the fiber.

続いて、図5に示すように、濾過装置20により、スラリー24中の水等の液体成分を除去する。この濾過装置20は、内部に多孔性フィルタ22が配設された容器21と、この容器21の底部と接続された吸引装置(図示せず)とを備えている。この多孔性フィルタ22の中央部には、上方に突出する突部22a(フィルタとしての機能はない)が形成され、この突部22aの周囲部分(フィルタとして機能する)は、境界部4の傾斜に対応するべく水平に対して傾斜している。そして、容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に上記スラリー24を投入し、その後、上記吸引装置により、多孔性フィルタ22を介して、スラリー24中の水等の液体成分を除去(吸引脱水)する。   Subsequently, as shown in FIG. 5, the liquid component such as water in the slurry 24 is removed by the filtration device 20. The filtration device 20 includes a container 21 in which a porous filter 22 is disposed, and a suction device (not shown) connected to the bottom of the container 21. A protrusion 22a (not functioning as a filter) projecting upward is formed at the center of the porous filter 22, and the peripheral portion (functioning as a filter) of the protrusion 22a is inclined by the boundary 4 It is inclined with respect to the horizontal to correspond to. Then, the slurry 24 is introduced into the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22, and then the liquid such as water in the slurry 24 is passed through the porous filter 22 by the suction device. Remove components (suction dehydration).

次いで、図6に示すように、スラリー24中の液体成分を除去することにより得られた脱液体部材25を圧縮する。すなわち、上記容器21内において多孔性フィルタ22における突部22aの周囲部分の上側に脱液体部材25を配置したまま、脱液体部材25をその上方からパンチ27により加圧して予備成形体15の形状となるように圧縮成形する。上記パンチ27の下面の中央部には、上記突部22aが嵌合する嵌合孔27aが形成され、この嵌合孔27aの周囲部分は、境界部4の傾斜に対応するべく水平に対して傾斜している。   Next, as shown in FIG. 6, the liquid removal member 25 obtained by removing the liquid component in the slurry 24 is compressed. That is, the shape of the preform 15 is formed by pressurizing the liquid removal member 25 from above with the punch 27 while the liquid removal member 25 is disposed in the container 21 above the peripheral portion of the protrusion 22a of the porous filter 22. Compression molding is performed. A fitting hole 27a into which the protrusion 22a is fitted is formed at the center of the lower surface of the punch 27, and the peripheral portion of the fitting hole 27a is horizontal with respect to the inclination of the boundary portion 4. Inclined.

続いて、上記圧縮成形した脱液体部材25を乾燥させた後に焼結する。この焼結は、例えば、640〜840℃で1.5時間行う。こうして強化繊維成形体からなる予備成形体15が完成する。   Subsequently, the demolded liquid removal member 25 is dried and then sintered. This sintering is performed at 640-840 degreeC for 1.5 hours, for example. In this way, the preform 15 made of the reinforcing fiber molded body is completed.

次に、図7に示すような鋳造金型30を用いて衝撃エネルギ吸収部材1を製造(鋳造)する。この鋳造金型30は、固定金型プレート31に取付固定された固定金型32と、固定金型プレート31に対して図8の左右方向に移動可能に支持された可動金型プレート33に取付固定された可動金型34とを備えている。固定金型32には、可動金型34側に開口する凹陥部32aが形成されている一方、可動金型34には、その凹陥部32a内に入り込む突出部34aが形成され、これら凹陥部32a及び突出部34a間にキャビティ35が形成される。上記突出部34aの外周面には、複数の予備成形体15をそれぞれ支持するための複数の溝(図示せず)が形成されている。また、固定金型32には、第2固定部8の複数のボルト挿通孔8aをそれぞれ形成するための複数のピン32bが設けられており、可動金型34には、第1固定部7の複数のボルト挿通孔7aをそれぞれ形成するための複数のピン34bが設けられている。   Next, the impact energy absorbing member 1 is manufactured (cast) using a casting mold 30 as shown in FIG. The casting mold 30 is attached to a fixed mold 32 attached and fixed to a fixed mold plate 31 and a movable mold plate 33 supported so as to be movable in the left-right direction in FIG. A fixed movable mold 34 is provided. The fixed mold 32 is formed with a recessed portion 32a that opens to the movable mold 34 side, while the movable mold 34 is formed with a projecting portion 34a that enters the recessed portion 32a, and these recessed portions 32a. And a cavity 35 is formed between the protrusions 34a. A plurality of grooves (not shown) for supporting the plurality of preforms 15 are formed on the outer peripheral surface of the protrusion 34a. Further, the fixed mold 32 is provided with a plurality of pins 32 b for forming a plurality of bolt insertion holes 8 a of the second fixed portion 8. The movable mold 34 has the first fixed portion 7. A plurality of pins 34b for forming a plurality of bolt insertion holes 7a are provided.

また、上記鋳造金型30には、上記キャビティ35内にアルミニウム合金の溶湯を供給するための射出スリーブ37が設けられている。この射出スリーブ37には上記溶湯の給湯口37aが形成されている。また、射出スリーブ37内には、射出スリーブ37に対して摺動可能に嵌装された射出プランジャ38が設けられており、この射出プランジャ38を図8の左側へ移動させることで、給湯口37aから射出スリーブ37内に供給された溶湯をキャビティ35内へ射出する。   The casting mold 30 is provided with an injection sleeve 37 for supplying a molten aluminum alloy into the cavity 35. The injection sleeve 37 is formed with a hot water supply port 37a for the molten metal. In addition, an injection plunger 38 slidably fitted to the injection sleeve 37 is provided in the injection sleeve 37. By moving the injection plunger 38 to the left side in FIG. 8, a hot water supply port 37a is provided. The molten metal supplied into the injection sleeve 37 is injected into the cavity 35.

上記鋳造金型30を用いて衝撃エネルギ吸収部材1を製造するには、先ず、型開き状態で、可動金型34の突出部34aに形成された複数の溝に、上記成形した複数の予備成形体15をそれぞれ支持させ、その後、可動金型34を固定金型32側へ移動させて型を閉じる。これにより、複数の予備成形体15が鋳造金型30のキャビティ15内にセットされた状態となる。   In order to manufacture the impact energy absorbing member 1 using the casting mold 30, first, in the mold open state, the plurality of preformed moldings are formed in the plurality of grooves formed in the protrusions 34 a of the movable mold 34. Each of the bodies 15 is supported, and then the movable mold 34 is moved to the fixed mold 32 side to close the mold. As a result, the plurality of preforms 15 are set in the cavity 15 of the casting mold 30.

続いて、射出スリーブ37内に給湯口37aからアルミニウム合金の溶湯(溶湯温度700℃程度)を供給し、この溶湯を射出プランジャ38によりキャビティ35内に射出して供給する。これにより、キャビティ35内における予備成形体15が存在しない部分では、分割変形部3並びに第1及び第2固定部7,8が一体成形されるとともに、各予備成形体15内の空孔に溶湯が充填されて予備成形体15と溶湯とが複合化され、このことで境界部4が分割変形部3と一体成形される。そして、キャビティ15内の溶湯が凝固すれば、衝撃エネルギ吸収部材1の鋳造が完了する。   Subsequently, a molten aluminum alloy (a molten metal temperature of about 700 ° C.) is supplied into the injection sleeve 37 from the hot water supply port 37 a, and this molten metal is injected into the cavity 35 by the injection plunger 38 and supplied. Thereby, in the part in which the preform 15 in the cavity 35 does not exist, the split deformable portion 3 and the first and second fixing portions 7 and 8 are integrally formed, and the molten metal is formed in the holes in each preform 15. Is filled with the preform 15 and the molten metal, whereby the boundary portion 4 is integrally formed with the split deformable portion 3. When the molten metal in the cavity 15 is solidified, the casting of the impact energy absorbing member 1 is completed.

したがって、本実施形態では、衝撃エネルギ吸収部材1の本体部2が、分割変形部3と境界部4とが一体成形されてなり、この境界部4が、本体部2径方向の外側に向かって筒軸Z方向の一方側又は他方側に傾斜する傘状をなし、筒軸Z方向に隣り合う任意の2つの境界部4が、本体部2径方向の外側に向かって互いに反対側に傾斜し、更に境界部4が、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、境界部4を挟む2つの分割変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形するのを促進するように構成されているので、分割変形部3は、その筒軸Z方向の長さが短くなりながら本体部2の径方向外側又は内側へ広がるとともに、本体部2径方向の外側へ塑性変形する分割変形部3と、本体部2径方向の内側へ塑性変形する分割変形部3とが、筒軸Z方向に交互に並ぶことになり、これにより、本体部2全体として座屈変形が生じずに筒軸Z方向に安定して変形する。しかも、境界部4によるせん断変形促進機能によって、分割変形部3が本体部2径方向の外側又は内側へより一層塑性変形し易くなる。この結果、本体部2に対して、筒軸Z方向の圧縮荷重と同時に、本体部2を径方向に倒すような力が入力されたとしても、本体部2は座屈変形し難くて筒軸Z方向に確実に変形し、これにより、圧縮荷重の吸収性能を高めることができる。また、分割変形部3や境界部4の数が多くなっても、分割変形部3と境界部4とを一体成形により互いに強固にかつ容易に固定することができ、衝撃エネルギ吸収部材1の運搬時や車両への組付け時における取扱い性を向上させることができる。   Therefore, in the present embodiment, the main body portion 2 of the impact energy absorbing member 1 is formed by integrally forming the split deformation portion 3 and the boundary portion 4, and this boundary portion 4 is directed outward in the radial direction of the main body portion 2. It forms an umbrella shape that is inclined to one side or the other side in the cylinder axis Z direction, and any two boundary portions 4 adjacent to each other in the cylinder axis Z direction are inclined to opposite sides toward the outer side in the radial direction of the main body portion 2. Further, when the boundary portion 4 receives a compressive load of a predetermined value or more in the cylinder axis Z direction with respect to the main body portion 2, the two divided deformable portions 3 sandwiching the boundary portion 4 are compressed in the cylinder axis Z direction. Simultaneously with plastic deformation, plastic deformation is performed to the opposite sides of the main body portion 2 in the radial direction, and the boundary end portions of the two split deformation portions 3 sandwiching the boundary portion are respectively sheared to opposite sides of the main body portion 2 in the radial direction. Since it is comprised so that it may accelerate | stimulate, the division | segmentation deformation | transformation part 3 is While the length in the cylinder axis Z direction becomes shorter, the split deformation part 3 that spreads outward or inward in the radial direction of the main body 2 and plastically deforms outward in the radial direction of the main body 2, and inward in the radial direction of the main body 2. The split deformation portions 3 that are plastically deformed are alternately arranged in the cylinder axis Z direction, whereby the main body portion 2 as a whole is stably deformed in the cylinder axis Z direction without causing buckling deformation. Moreover, the shear deformation promoting function by the boundary portion 4 makes the split deformation portion 3 more easily plastically deformed outward or inward in the main body portion 2 radial direction. As a result, even if a force is applied to the main body 2 simultaneously with the compressive load in the cylinder axis Z direction and the main body 2 is tilted in the radial direction, the main body 2 is hardly buckled and deformed. It is possible to reliably deform in the Z direction, thereby improving the compression load absorption performance. Further, even if the number of the split deformable portions 3 and the boundary portions 4 increases, the split deformable portions 3 and the boundary portions 4 can be firmly and easily fixed to each other by integral molding, and the impact energy absorbing member 1 can be transported. It is possible to improve handling at the time of installation to a vehicle or a vehicle.

(実施形態2)
本実施形態は、境界部4の材料を上記実施形態1とは異ならせたものである。
(Embodiment 2)
In the present embodiment, the material of the boundary portion 4 is different from that of the first embodiment.

すなわち、本実施形態では、境界部4は、筒軸Z方向の圧縮荷重に対してアルミニウム合金鋳物よりも圧縮塑性変形し難くかつ破壊し難い金属板(本実施形態では、鋼板)からなる。   That is, in the present embodiment, the boundary portion 4 is made of a metal plate (in the present embodiment, a steel plate) that is less likely to be compressively plastically deformed and harder to break than an aluminum alloy casting against a compressive load in the cylinder axis Z direction.

このような鋼板からなる境界部4により、境界部4を挟む2つの分割変形部3を本体部2径方向の互いに反対側へそれぞれ塑性変形させることができる。また、アルミニウム合金鋳物と鋼板という異種のもの同士の接合では、せん断力に対する接合強度が比較的小さくなるので、境界部4を挟む2つの分割変形部3の境界側端部を本体部2径方向の互いに反対側へそれぞれせん断変形させることが可能になる。   With the boundary portion 4 made of such a steel plate, the two split deformation portions 3 sandwiching the boundary portion 4 can be plastically deformed in opposite directions in the radial direction of the main body portion 2. In addition, when joining different types of aluminum alloy castings and steel plates, the joint strength against shearing force is relatively small, so the boundary side end portions of the two split deformable portions 3 sandwiching the boundary portion 4 are in the body portion 2 radial direction. It is possible to cause shear deformation to opposite sides of each other.

本実施形態の衝撃エネルギ吸収部材1を製造するには、先ず、複数の境界部4をそれぞれ形成するための複数の境界部形成部材を作製する。具体的には、鋼板を加工して境界部4の形状と同じになるように仕上げる。そして、この鋼板に対して、厚み方向に貫通する複数の貫通孔を形成する。こうして境界部形成部材が完成する。   In order to manufacture the impact energy absorbing member 1 of the present embodiment, first, a plurality of boundary portion forming members for forming the plurality of boundary portions 4 are prepared. Specifically, the steel plate is processed and finished to have the same shape as the boundary portion 4. And the several through-hole penetrated to the thickness direction with respect to this steel plate is formed. Thus, the boundary portion forming member is completed.

上記貫通孔は、キャビティ15内において上記溶湯が筒軸Z方向に流れるようにしかつ分割変形部3と境界部4とを確実に一体化するために設けるものであるが、その数が多くなりすぎると、境界部4によるせん断変形促進機能が低下するので、それらを考慮して貫通孔の数を設定する。   The through holes are provided in order to allow the molten metal to flow in the direction of the cylinder axis Z in the cavity 15 and to integrate the split deformable portion 3 and the boundary portion 4 together, but the number thereof is too large. And the shear deformation promotion function by the boundary part 4 falls, Therefore The number of through-holes is set in consideration of them.

尚、上記貫通孔は必ずしも形成する必要はない。貫通孔を形成しない場合には、キャビティ15内において上記溶湯が筒軸Z方向に流れるように、固定金型32に、溶湯が流れる流通溝を形成するようにすればよい。この流通溝に対応して成形された突出部は、鋳造後に除去すればよい。   Note that the through hole is not necessarily formed. When the through hole is not formed, a flow groove through which the molten metal flows may be formed in the fixed mold 32 so that the molten metal flows in the direction of the cylinder axis Z in the cavity 15. What is necessary is just to remove the protrusion part shape | molded corresponding to this distribution | circulation groove | channel after casting.

上記作製した境界部形成部材を、上記実施形態1の予備成形体15と同様に、鋳造金型30のキャビティ15内にセットした状態で、アルミニウム合金の溶湯を該キャビティ30内に供給することで、分割変形部3と境界部4(境界部形成部材)と第1及び第2固定部7,8とを一体成形する。このとき、境界部形成部材には貫通孔が形成されているので、キャビティ15内において上記溶湯は貫通孔を通して筒軸Z方向に流れるとともに、貫通孔により分割変形部3と境界部4とが確実に一体化されることになる。   In the state where the produced boundary portion forming member is set in the cavity 15 of the casting mold 30 as in the preform 15 of the first embodiment, the molten aluminum alloy is supplied into the cavity 30. The split deformation portion 3, the boundary portion 4 (boundary portion forming member), and the first and second fixing portions 7 and 8 are integrally formed. At this time, since the through hole is formed in the boundary portion forming member, the molten metal flows in the cavity 15 in the direction of the cylinder axis Z through the through hole, and the divided deformable portion 3 and the boundary portion 4 are surely connected by the through hole. Will be integrated.

したがって、本実施形態においても、上記実施形態1と同様の作用効果が得られ、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、本体部2が筒軸Z方向に確実に変形して、その圧縮荷重の吸収性能を高めることができる。   Therefore, also in the present embodiment, the same effects as those of the first embodiment can be obtained, and when a predetermined or more compressive load is input to the main body 2 in the direction of the cylinder axis Z, the main body 2 is connected to the cylinder shaft. It is possible to reliably deform in the Z direction and enhance the compressive load absorption performance.

尚、上記実施形態2では、境界部4に鋼板を用いたが、その他種々の金属板を用いることができ、例えばアルミニウム板を用いることも可能である。境界部4の材料は、筒軸Z方向の圧縮荷重に対する強度及び剛性が分割変形部3よりも高いことが好ましいが、これには限られず、本体部2に対して筒軸Z方向に所定以上の圧縮荷重が入力されたときに、境界部4を挟む2つの分割変形部3を、筒軸Z方向への圧縮塑性変形と同時に本体部2径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部3の境界側端部が本体部2径方向の互いに反対側へそれぞれせん断変形するのを促進する機能を有するものであれば、どのようなものであってもよい。   In the second embodiment, a steel plate is used for the boundary portion 4. However, other various metal plates can be used, for example, an aluminum plate can be used. The material of the boundary portion 4 is preferably higher in strength and rigidity against the compressive load in the cylinder axis Z direction than the split deformation portion 3, but is not limited thereto, and is not less than a predetermined amount in the cylinder axis Z direction with respect to the main body portion 2. When two compressive loads are input, the two split deformation portions 3 sandwiching the boundary portion 4 are plastically deformed to the opposite sides of the main body portion 2 in the radial direction simultaneously with the compressive plastic deformation in the cylinder axis Z direction. As long as the boundary side end portions of the two split deformation portions 3 sandwiching the boundary portion have a function of promoting shear deformation to opposite sides of the main body portion 2 in the radial direction, any Also good.

本発明は、筒状の本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材及びその製造方法に有用であり、特に車両のクラッシュカン(車両前部に配設されるものと後部に配設されるものとを含む)、左右のフロントサイドフレーム及び左右のリヤサイドフレームに適用する場合に有用である。   INDUSTRIAL APPLICABILITY The present invention is useful for an impact energy absorbing member that absorbs a compressive load that is input to a cylindrical main body in the cylinder axis direction, and a method for manufacturing the same. This is useful when applied to left and right front side frames and left and right rear side frames.

本発明の実施形態1に係る衝撃エネルギ吸収部材を示す断面図である。It is sectional drawing which shows the impact energy absorption member which concerns on Embodiment 1 of this invention. 衝撃エネルギ吸収部材が適用されるクラッシュカンを示す車両の前部を破断した側面図である。It is the side view which fractured | ruptured the front part of the vehicle which shows the crash can to which an impact energy absorption member is applied. 衝撃エネルギ吸収部材の本体部に対して筒軸方向に所定以上の圧縮荷重が入力されたときの該本体部の変形状態を示す断面図である。It is sectional drawing which shows the deformation | transformation state of this main-body part when a predetermined or more compressive load is input with respect to the main-body part of an impact energy absorption member in a cylinder axial direction. 予備成形体を示す断面図である。It is sectional drawing which shows a preforming body. スラリー中の液体成分を除去している状態を示す濾過装置の容器の断面図である。It is sectional drawing of the container of the filtration apparatus which shows the state which has removed the liquid component in a slurry. スラリー中の液体成分を除去することにより得られた脱液体部材を圧縮している状態を示す図5相当図である。FIG. 6 is a view corresponding to FIG. 5, illustrating a state where a liquid removal member obtained by removing a liquid component in a slurry is compressed. 鋳造金型を示す断面図である。It is sectional drawing which shows a casting mold.

符号の説明Explanation of symbols

1 衝撃エネルギ吸収部材
2 本体部
3 分割変形部
4 境界部
15 予備成形体(境界部形成部材)
30 鋳造金型
35 キャビティ
91 フロントサイドフレーム
92 クラッシュカン
DESCRIPTION OF SYMBOLS 1 Impact energy absorption member 2 Main body part 3 Division deformation part 4 Boundary part 15 Preliminary body (boundary part formation member)
30 Casting mold 35 Cavity 91 Front side frame 92 Crash can

Claims (8)

筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形するとともに本体部筒軸方向に3つ以上に分割された分割変形部と、該3つ以上の分割変形部間の複数の境界にそれぞれ設けられた複数の境界部とが一体成形されてなり、
上記境界部は、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傘状をなし、
上記本体部筒軸方向に隣り合う任意の2つの境界部は、本体部径方向の外側に向かって互いに反対側に傾斜し、
更に上記境界部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該境界部を挟む2つの分割変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進するものであることを特徴とする衝撃エネルギ吸収部材。
An impact energy absorbing member that has a cylindrical main body portion and absorbs a compressive load that is input to the main body portion in the cylinder axis direction,
The main body is made of metal and receives a compressive load of a predetermined value or more to undergo plastic plastic deformation in the main body cylinder axis direction, and is divided into three or more divided deformation parts in the main body cylinder axis direction. A plurality of boundary portions respectively provided at a plurality of boundaries between the above-described divided deformation portions are integrally formed,
The boundary portion has an umbrella shape inclined toward one side or the other side in the main body cylinder axis direction toward the outer side in the main body portion radial direction,
Any two boundary portions adjacent to each other in the main body portion cylinder axis direction are inclined to the opposite sides toward the outer side in the main body portion radial direction,
Further, the boundary portion is configured such that, when a compressive load greater than or equal to the predetermined value is input to the main body portion, the two split deformation portions sandwiching the boundary portion are subjected to the main body portion diameter simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction. And plastically deforming in opposite directions to each other and promoting shear deformation of the boundary-side end portions of the two split deformable portions sandwiching the boundary portions in opposite directions in the main body radial direction. A characteristic impact energy absorbing member.
請求項1記載の衝撃エネルギ吸収部材において、
上記分割変形部は、アルミニウム合金鋳物からなり、
上記境界部は、金属板からなることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1,
The split deformation part is made of an aluminum alloy casting,
The said boundary part consists of a metal plate, The impact energy absorption member characterized by the above-mentioned.
請求項1記載の衝撃エネルギ吸収部材において、
上記分割変形部は、アルミニウム合金鋳物からなり、
上記境界部は、強化繊維が含有されたアルミニウム合金鋳物からなることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 1,
The split deformation part is made of an aluminum alloy casting,
The said boundary part consists of an aluminum alloy casting containing the reinforced fiber, The impact energy absorption member characterized by the above-mentioned.
請求項2又は3記載の衝撃エネルギ吸収部材において、
上記アルミニウム合金鋳物は、Al−Mn−Fe−Mg系合金鋳物であることを特徴とする衝撃エネルギ吸収部材。
The impact energy absorbing member according to claim 2 or 3,
The impact energy absorbing member, wherein the aluminum alloy casting is an Al-Mn-Fe-Mg alloy casting.
請求項1〜4のいずれか1つに記載の衝撃エネルギ吸収部材において、
車両のフロントサイドフレーム又はクラッシュカンに用いられることを特徴とする衝撃エネルギ吸収部材。
In the impact energy absorption member according to any one of claims 1 to 4,
An impact energy absorbing member used for a front side frame or a crash can of a vehicle.
筒状の本体部を有し、該本体部に対して筒軸方向に入力される圧縮荷重を吸収する衝撃エネルギ吸収部材の製造方法であって、
上記本体部は、金属からなりかつ所定以上の上記圧縮荷重を受けて本体部筒軸方向に圧縮塑性変形するとともに本体部筒軸方向に3つ以上に分割された分割変形部と、該3つ以上の分割変形部間の複数の境界にそれぞれ設けられた複数の境界部とからなり、
上記境界部は、本体部径方向の外側に向かって本体部筒軸方向の一方側又は他方側に傾斜する傘状をなし、
上記本体部筒軸方向に隣り合う任意の2つの境界部は、本体部径方向の外側に向かって互いに反対側に傾斜し、
更に上記境界部は、上記本体部に上記所定以上の圧縮荷重が入力されたときに、該境界部を挟む2つの分割変形部を、本体部筒軸方向への圧縮塑性変形と同時に本体部径方向の互いに反対側へそれぞれ塑性変形させるとともに、該境界部を挟む2つの分割変形部の境界側端部が本体部径方向の互いに反対側へそれぞれせん断変形するのを促進するものであり、
上記複数の境界部をそれぞれ形成するための複数の境界部形成部材を作製する工程と、
上記作製した境界部形成部材を金型のキャビティ内にセットした状態で、上記金属の溶湯を該キャビティ内に供給することで、上記分割変形部と境界部とを一体成形する工程とを含むことを特徴とする衝撃エネルギ吸収部材の製造方法。
A method for manufacturing an impact energy absorbing member that has a cylindrical main body part and absorbs a compressive load input in the cylinder axis direction with respect to the main body part,
The main body is made of metal and receives a compressive load of a predetermined value or more to undergo plastic plastic deformation in the main body cylinder axis direction, and is divided into three or more divided deformation parts in the main body cylinder axis direction. It consists of a plurality of boundary portions respectively provided at a plurality of boundaries between the above-described divided deformation portions,
The boundary portion has an umbrella shape inclined toward one side or the other side in the main body cylinder axis direction toward the outer side in the main body portion radial direction,
Any two boundary portions adjacent to each other in the main body portion cylinder axis direction are inclined to the opposite sides toward the outer side in the main body portion radial direction,
Further, the boundary portion is configured such that, when a compressive load greater than or equal to the predetermined value is input to the main body portion, the two split deformation portions sandwiching the boundary portion are subjected to the main body portion diameter simultaneously with the compressive plastic deformation in the main body portion cylindrical axis direction. And plastically deforming the opposite sides of each direction, and promoting the boundary side end portions of the two split deformation portions sandwiching the boundary portion to each other opposite to each other in the main body radial direction,
Producing a plurality of boundary portion forming members for forming the plurality of boundary portions, respectively,
Including the step of integrally forming the divided deformable portion and the boundary portion by supplying the molten metal into the cavity in a state where the produced boundary portion forming member is set in the cavity of the mold. A method for producing an impact energy absorbing member.
請求項6記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記境界部形成部材は、金属板であることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 6,
The metal is an aluminum alloy,
The said boundary part formation member is a metal plate, The manufacturing method of the impact energy absorption member characterized by the above-mentioned.
請求項6記載の衝撃エネルギ吸収部材の製造方法において、
上記金属は、アルミニウム合金であり、
上記境界部形成部材は、強化繊維成形体からなることを特徴とする衝撃エネルギ吸収部材の製造方法。
In the manufacturing method of the impact energy absorption member according to claim 6,
The metal is an aluminum alloy,
The said boundary part formation member consists of a reinforced fiber molded object, The manufacturing method of the impact energy absorption member characterized by the above-mentioned.
JP2008205205A 2008-08-08 2008-08-08 Impact energy absorbing member and fabrication method thereof Pending JP2010038341A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008205205A JP2010038341A (en) 2008-08-08 2008-08-08 Impact energy absorbing member and fabrication method thereof

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008205205A JP2010038341A (en) 2008-08-08 2008-08-08 Impact energy absorbing member and fabrication method thereof

Publications (1)

Publication Number Publication Date
JP2010038341A true JP2010038341A (en) 2010-02-18

Family

ID=42011103

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008205205A Pending JP2010038341A (en) 2008-08-08 2008-08-08 Impact energy absorbing member and fabrication method thereof

Country Status (1)

Country Link
JP (1) JP2010038341A (en)

Similar Documents

Publication Publication Date Title
US7918493B2 (en) Impact energy absorber and fabrication method thereof
RU2421300C2 (en) Formed metal article and method of its production
US6874562B2 (en) Process for producing metal/metal foam composite components
WO1997009134A1 (en) Reinforced formed part, process for its production and its use
US9162707B2 (en) Body component
CN104936807B (en) Middle casing, the method and car door for manufacturing middle casing
WO2010026779A1 (en) Method for producing wheel and wheel
Bauer et al. Production and application of metal foams in casting technology
JP2019506577A (en) Energy absorbing member and method of making energy absorbing member
CN116323374A (en) Integrated energy absorbing castings
US20050134087A1 (en) Auto body or auto body part for a vehicle
CN109136693A (en) Lightweight I type distance rod and its casting and molding method
JP2010038341A (en) Impact energy absorbing member and fabrication method thereof
KR101258801B1 (en) Manufacturing method of aluminum bearing insert for lower crank case of engine
JP5067309B2 (en) Impact energy absorbing member and manufacturing method thereof
Banhart Industrialisation of aluminium foam technology
JP5071299B2 (en) Impact energy absorbing member and manufacturing method thereof
JP5163354B2 (en) Method for manufacturing impact energy absorbing member
KR102277049B1 (en) Assembly of a vehicle cradle to a body including a casting
JP2012166645A (en) Die-cast aluminum alloy crash can
JP2003105407A (en) Porous energy-absorbing member, and member for car body frame
JP2010077986A (en) Impact energy absorbing member
CN104260792B (en) Bionic body frame ad manufacturing system and method thereof
US20030110882A1 (en) Vehicle steering wheel
JP2008501855A (en) Recycling method for light metal parts