JP5163331B2 - Tire manufacturing process management method - Google Patents

Tire manufacturing process management method Download PDF

Info

Publication number
JP5163331B2
JP5163331B2 JP2008183109A JP2008183109A JP5163331B2 JP 5163331 B2 JP5163331 B2 JP 5163331B2 JP 2008183109 A JP2008183109 A JP 2008183109A JP 2008183109 A JP2008183109 A JP 2008183109A JP 5163331 B2 JP5163331 B2 JP 5163331B2
Authority
JP
Japan
Prior art keywords
tire
size
unevenness
manufacturing process
management method
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008183109A
Other languages
Japanese (ja)
Other versions
JP2010018009A (en
Inventor
健太 松田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yokohama Rubber Co Ltd
Original Assignee
Yokohama Rubber Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yokohama Rubber Co Ltd filed Critical Yokohama Rubber Co Ltd
Priority to JP2008183109A priority Critical patent/JP5163331B2/en
Publication of JP2010018009A publication Critical patent/JP2010018009A/en
Application granted granted Critical
Publication of JP5163331B2 publication Critical patent/JP5163331B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Moulds For Moulding Plastics Or The Like (AREA)
  • Tyre Moulding (AREA)

Description

本発明は、タイヤ金型の断面形状を利用してタイヤ製造工程を管理する方法に関し、更に詳しくは、タイヤ金型の断面形状に基づいて故障原因を効果的に究明し、タイヤ製造故障の発生を未然に防ぐことを可能にしたタイヤ製造工程の管理方法に関する。   The present invention relates to a method for managing a tire manufacturing process using a cross-sectional shape of a tire mold, and more specifically, the cause of a failure is effectively investigated based on the cross-sectional shape of the tire mold, and a tire manufacturing failure occurs. The present invention relates to a method for managing a tire manufacturing process that makes it possible to prevent the problem from occurring.

タイヤの製造故障は、タイヤサイズや補強構造や断面形状によって、その発生部位や頻度が異なっている。そのため、タイヤサイズや補強構造や断面形状が種々異なるタイヤについて、一定の理論に基づいて故障対策を行うことが強く求められている。   The occurrence site and frequency of tire manufacturing failures vary depending on the tire size, reinforcing structure, and cross-sectional shape. For this reason, it is strongly required to take measures against failure based on a certain theory for tires having different tire sizes, reinforcing structures, and cross-sectional shapes.

ところで、タイヤ製造において、タイヤ構成部材の物性条件及び成形条件に基づいてグリーンタイヤの断面形状を予測する技術が提案されている(例えば、特許文献1参照)。この技術においては、カーカスの物性条件及び成形条件に基づいて特定の工程でのカーカスの断面形状を算出し、そのカーカスの断面形状を基準として他の構成部材をカーカスの内外に幾何学的に配置することにより、グリーンタイヤの予測断面形状を求めている。   By the way, in tire manufacture, the technique which estimates the cross-sectional shape of a green tire based on the physical property conditions and molding conditions of a tire structural member is proposed (for example, refer patent document 1). In this technology, the cross-sectional shape of the carcass at a specific process is calculated based on the physical property conditions and molding conditions of the carcass, and other components are geometrically arranged inside and outside the carcass based on the cross-sectional shape of the carcass. By doing so, the predicted cross-sectional shape of the green tire is obtained.

このようにグリーンタイヤの予測断面形状を求めることにより、設計段階で適切なベントホール位置を決定することが可能になり、また、グリーンタイヤの予測断面形状は故障原因の究明にも利用可能である。しかしながら、上記手法ではグリーンタイヤの予測断面形状に依存するため、その故障原因を必ずしも的確に判断することができないという欠点がある。
特開2006−168294号公報
By obtaining the predicted cross-sectional shape of the green tire in this way, it is possible to determine an appropriate vent hole position at the design stage, and the predicted cross-sectional shape of the green tire can also be used for investigating the cause of failure. . However, since the above method depends on the predicted cross-sectional shape of the green tire, there is a drawback that the cause of the failure cannot always be determined accurately.
JP 2006-168294 A

本発明の目的は、タイヤ金型の断面形状に基づいて故障原因を効果的に究明し、タイヤ製造故障の発生を未然に防ぐことを可能にしたタイヤ製造工程の管理方法を提供することにある。   An object of the present invention is to provide a tire manufacturing process management method capable of effectively investigating the cause of a failure based on the cross-sectional shape of a tire mold and preventing the occurrence of a tire manufacturing failure. .

上記目的を達成するための本発明のタイヤ製造工程の管理方法は、タイヤ金型の断面形状からタイヤ成形面の座標点をタイヤ径方向に等間隔で抽出し、隣り合う座標点を直線で結んで輪郭線を描画し、該輪郭線の各線分のタイヤ軸方向に対する傾斜角度を求め、隣り合う線分の傾斜角度の差から各座標点での凹凸の大きさを求め、該凹凸の大きさをタイヤ製造工程における故障原因の指標として用いることを特徴とするものである。   In order to achieve the above object, the tire manufacturing process management method of the present invention extracts the coordinate points of the tire molding surface at equal intervals in the tire radial direction from the cross-sectional shape of the tire mold, and connects adjacent coordinate points with straight lines. The contour line is drawn with, the inclination angle with respect to the tire axial direction of each line segment of the contour line is obtained, the size of the unevenness at each coordinate point is obtained from the difference in the inclination angle of the adjacent line segments, and the size of the unevenness Is used as an index of the cause of failure in the tire manufacturing process.

本発明では、タイヤ金型の断面形状からタイヤ成形面の座標点をタイヤ径方向に等間隔で抽出し、隣り合う座標点を直線で結んで得られる輪郭線の各線分の傾斜角度を求め、隣り合う線分の傾斜角度の差から各座標点での凹凸の大きさを求めることにより、その凹凸の大きさに基づいてタイヤ製造工程における故障原因の予測や特定を視覚的に簡単に行うことができる。   In the present invention, the coordinate points of the tire molding surface are extracted at equal intervals in the tire radial direction from the cross-sectional shape of the tire mold, and the inclination angle of each line segment of the contour line obtained by connecting adjacent coordinate points with a straight line is obtained. By determining the size of the unevenness at each coordinate point from the difference in the inclination angle of adjacent line segments, it is possible to easily predict and identify the cause of failure in the tire manufacturing process based on the size of the unevenness Can do.

本発明において、サイズや断面形状が異なるタイヤも同等に比較するためにタイヤ成形面の座標点を等間隔で抽出することが必要であるが、その精度を高めるためにタイヤ成形面の径方向の全範囲において100点以上の座標点を設定することが好ましい。つまり、より多くの座標点を抽出することにより、凹凸をより正確に検出することができる。凹凸の大きさはサイン成分、コサイン成分又はタンジェント成分からなる無次元量として扱うことができる。   In the present invention, it is necessary to extract the coordinate points of the tire molding surface at equal intervals in order to equally compare tires having different sizes and cross-sectional shapes, but in order to increase the accuracy, It is preferable to set 100 or more coordinate points in the entire range. That is, by extracting more coordinate points, the unevenness can be detected more accurately. The size of the unevenness can be treated as a dimensionless quantity composed of a sine component, a cosine component, or a tangent component.

本発明では、複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型について凹凸の大きさを求める一方で、これら複数種類のタイヤの任意部位の故障率を求め、各座標点における凹凸の大きさと故障率との相関係数を求め、これら凹凸の大きさと故障率との相関性が高い部位を特定することが好ましい。凹凸が大きいと、それが故障原因となる傾向があるが、必ずしも凹凸の大きさと故障率とが比例関係にあるわけではない。そこで、凹凸の大きさと故障率との相関性が高い部位を特定することにより、故障原因の予測や特定を更に効果的に行うことができる。その場合、複数種類のタイヤは、サイズ、断面形状及び補強構造の少なくとも1つが共通するものであることが好ましい。   In the present invention, while determining the size of irregularities for at least one type of tire mold for molding a plurality of types of tires, the failure rate of any part of these types of tires is determined, and the irregularities at each coordinate point are determined. It is preferable to obtain a correlation coefficient between the size and the failure rate, and to specify a portion having a high correlation between the size of the unevenness and the failure rate. If the unevenness is large, it tends to cause a failure, but the unevenness size and the failure rate are not necessarily in a proportional relationship. Therefore, by specifying a portion having a high correlation between the size of the unevenness and the failure rate, the cause of the failure can be predicted and specified more effectively. In that case, it is preferable that the plurality of types of tires have at least one of a size, a cross-sectional shape, and a reinforcing structure in common.

以下、本発明の構成について添付の図面を参照しながら詳細に説明する。図1はタイヤ金型の断面形状を示す図である。図1に示すように、タイヤ金型Mは、トレッド部からビード部にわたって延長するタイヤ成形面1を備えている。タイヤ金型Mは、その具体的な構造が限定されるものではなく、2つ割りタイプ又はセクショナルタイプのいずれであっても良い。   Hereinafter, the configuration of the present invention will be described in detail with reference to the accompanying drawings. FIG. 1 is a view showing a cross-sectional shape of a tire mold. As shown in FIG. 1, the tire mold M includes a tire molding surface 1 that extends from the tread portion to the bead portion. The specific structure of the tire mold M is not limited, and the tire mold M may be either a split type or a sectional type.

図2は図1のタイヤ金型の断面形状から抽出したタイヤ成形面の座標点に基づいて描画された輪郭線を示す図であり、図3は図2のA部の拡大図である。ここで、X軸はタイヤ軸方向の位置を示し、Y軸はタイヤ径方向の位置を示す。上述したタイヤ金型Mの断面形状は多数の座標点の集合体であるが、その断面形状からタイヤ成形面の座標点をタイヤ径方向に等間隔で抽出し、隣り合う座標点を直線で結んで輪郭線Lを描画すると図2のようになる。   2 is a diagram showing a contour line drawn based on the coordinate points of the tire molding surface extracted from the cross-sectional shape of the tire mold in FIG. 1, and FIG. 3 is an enlarged view of a portion A in FIG. Here, the X axis indicates the position in the tire axial direction, and the Y axis indicates the position in the tire radial direction. The cross-sectional shape of the tire mold M described above is an aggregate of a large number of coordinate points. From the cross-sectional shape, the coordinate points of the tire molding surface are extracted at equal intervals in the tire radial direction, and adjacent coordinate points are connected by straight lines. When the contour line L is drawn as shown in FIG.

図3に示すように、輪郭線Lには複数の座標点P(P,Pi+1,Pi+2,Pi+3,Pi+4)及び複数の線分S(S,Si+1,Si+2,Si+3,Si+4)が含まれている。各線分Sはタイヤ軸方向に対して傾斜角度θ(θ,θi+1,θi+2,θi+3,θi+4)をもって傾斜している。隣り合う線分の傾斜角度の差が小さいときタイヤ成形面は平坦であり、隣り合う線分の傾斜角度の差が大きいときタイヤ成形面には凹凸が存在する。例えば、隣り合う線分S,Si+1は直線状に繋がっているため、これら線分S,Si+1の傾斜角度の差(θi+1−θ)は相対的に小さくなる。一方、隣り合う線分Si+2,Si+3は屈曲しながら繋がっているため、これら線分Si+2,Si+3の傾斜角度の差(θi+3−θi+2)は相対的に大きくなる。このようにして隣り合う線分の傾斜角度の差から各座標点での凹凸の大きさを求めることができる。 As shown in FIG. 3, the contour line L includes a plurality of coordinate points P (P i , P i + 1 , P i + 2 , P i + 3 , P i + 4 ) and a plurality of line segments S (S i , S i + 1 , S i + 2 , S i + 3 , S i + 4 ). Each line segment S is inclined at an inclination angle θ (θ i , θ i + 1 , θ i + 2 , θ i + 3 , θ i + 4 ) with respect to the tire axial direction. When the difference between the inclination angles of adjacent line segments is small, the tire molding surface is flat. When the difference between the inclination angles of adjacent line segments is large, the tire molding surface has irregularities. For example, since the adjacent line segments S i and S i + 1 are connected in a straight line, the difference (θ i + 1 −θ i ) between the inclination angles of the line segments S i and S i + 1 is relatively small. On the other hand, since the adjacent line segments S i + 2 and S i + 3 are connected while being bent, the difference in inclination angle (θ i + 3 −θ i + 2 ) between these line segments S i + 2 and S i + 3 becomes relatively large. In this way, the size of the unevenness at each coordinate point can be obtained from the difference in the inclination angle of adjacent line segments.

図2において、各座標点での凹凸の大きさを精度良く検出するために、タイヤ成形面の径方向の全範囲において100点以上、より好ましくは、300点以上の座標点が設定されている。座標点が100点未満であると座標点の間隔が広過ぎるため正確な凹凸情報が得られなくなる場合がある。   In FIG. 2, in order to accurately detect the size of the unevenness at each coordinate point, 100 or more, more preferably 300 or more coordinate points are set in the entire radial range of the tire molding surface. . If the number of coordinate points is less than 100, accurate uneven information may not be obtained because the interval between the coordinate points is too wide.

凹凸の大きさは隣り合う線分の傾斜角度を基準とするが、その傾斜角度から得られるサイン成分(sinθ)、コサイン成分(cosθ)又はタンジェント成分(tanθ)からなる無次元量を用いても良い。各線分について無次元量を求めたとき、隣り合う線分の無次元量の差を各座標点での凹凸の大きさと見做すことができる。   The size of the unevenness is based on the inclination angle of the adjacent line segment, but even if a dimensionless quantity consisting of a sine component (sin θ), cosine component (cos θ) or tangent component (tan θ) obtained from the inclination angle is used. good. When a dimensionless amount is obtained for each line segment, the difference between the dimensionless amounts of adjacent line segments can be regarded as the size of the unevenness at each coordinate point.

図4は他のタイヤ金型の断面形状から抽出したタイヤ成形面の座標点に基づいて描画された輪郭線を示す図であり、図5は図4の輪郭線における凹凸の大きさを示す図である。図5において、凹凸の大きさは隣り合う線分の傾斜角度から得られる無次元量(cosθ)の差にて表されている。また、図5において、縦軸はタイヤ径方向の位置を示し、下側がビード側であり、上側がトレッド側である。図5のB部及びC部には異常なピークが示されているが、このような異常なピークが存在する部位、即ち、図4のB部及びC部には製造故障が発生する傾向がある。従って、このような凹凸の大きさをタイヤ製造工程における故障原因の指標として用いることにより、故障原因の予測や特定を視覚的に簡単に行うことができる。   FIG. 4 is a diagram showing a contour drawn based on the coordinate points of the tire molding surface extracted from the cross-sectional shape of another tire mold, and FIG. 5 is a diagram showing the size of the irregularities in the contour of FIG. It is. In FIG. 5, the size of the unevenness is represented by a difference in dimensionless amount (cos θ) obtained from the inclination angle of adjacent line segments. In FIG. 5, the vertical axis indicates the position in the tire radial direction, the lower side is the bead side, and the upper side is the tread side. Although abnormal peaks are shown in parts B and C in FIG. 5, there is a tendency for manufacturing failures to occur in parts where such abnormal peaks exist, that is, parts B and C in FIG. is there. Therefore, by using the size of such irregularities as an index of the cause of failure in the tire manufacturing process, it is possible to easily and visually predict the cause of the failure.

上述のように凹凸の大きさをタイヤ製造工程における故障原因の指標とするにあたって、凹凸が大きいと、それが故障原因となる傾向があるが、必ずしも凹凸の大きさと故障率とが比例関係にあるわけではない。そこで、共通の構成を有する複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型(好ましくは、複数種類のタイヤ金型)について凹凸の大きさを求める一方で、これら複数種類のタイヤの任意部位の故障率を求め、各座標点における凹凸の大きさと故障率との相関係数を求め、これら凹凸の大きさと故障率との相関性が高い部位を特定することは、故障原因の予測や特定を行うに際して極めて有意義である。   As described above, when the size of the unevenness is used as an index of the cause of failure in the tire manufacturing process, if the unevenness is large, it tends to cause the failure, but the size of the unevenness and the failure rate are necessarily proportional to each other. Do not mean. Therefore, while determining the size of the unevenness of at least one type of tire mold (preferably, a plurality of types of tire molds) for molding a plurality of types of tires having a common configuration, Obtaining the failure rate of an arbitrary part, obtaining the correlation coefficient between the size of the unevenness at each coordinate point and the failure rate, and identifying the part having a high correlation between the size of these unevenness and the failure rate is predicting the cause of the failure And is extremely meaningful when specifying.

図6は複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型の各座標点における凹凸の大きさと故障率との相関係数を示す図である。図6において、縦軸はタイヤ径方向の位置を示し、下側がビード側であり、上側がトレッド側である。図6を得るには、複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型について図5のような凹凸の大きさに関するデータを作成する一方で、これら複数種類のタイヤの任意部位(例えば、サイド部)における故障率を求める。そして、複数種類のタイヤ及びそれに対応するタイヤ金型について各座標点での凹凸の大きさと故障率との相関係数を求める。例えば、複数種類のタイヤ及びそれに対応するタイヤ金型について最もビード側の座標点ので凹凸の大きさと故障率との相関係数を求め、その値を図6の最も下側の位置にプロットする。このような計算を最もビード側の座標点から最もトレッド側の座標点まで個々に行うことにより、図6を描画することができる。   FIG. 6 is a diagram illustrating a correlation coefficient between the size of the unevenness and the failure rate at each coordinate point of at least one type of tire mold for molding a plurality of types of tires. In FIG. 6, the vertical axis indicates the position in the tire radial direction, the lower side is the bead side, and the upper side is the tread side. In order to obtain FIG. 6, data relating to the size of the unevenness as shown in FIG. 5 is created for at least one type of tire mold for molding a plurality of types of tires, while arbitrary portions of these types of tires ( For example, the failure rate in the side portion) is obtained. And the correlation coefficient of the magnitude | size of the unevenness | corrugation in each coordinate point and a failure rate is calculated | required about multiple types of tires and the tire metal mold | die corresponding to it. For example, for a plurality of types of tires and corresponding tire molds, the correlation coefficient between the unevenness size and the failure rate is obtained at the coordinate point on the bead side, and the value is plotted at the lowest position in FIG. By performing such calculation individually from the coordinate point on the most bead side to the coordinate point on the tread side, FIG. 6 can be drawn.

図6において、相関係数が正である場合、凹凸が大きいほどサイド故障率が増加することを意味し、相関係数が負である場合、凹凸が大きいほどサイド故障率が減少することを意味する。特に、統計学的に見て相関係数の絶対値が0.55以上である場合、凹凸の大きさと故障率との相関性が高いと判断することができる。図6においては、タイヤ径方向の中央より下側のフィラートップ付近(D部)において相関係数が正の値で大きくなっており、この付近において凹凸の大きさと故障率との相関性が高くなっているので、それに対応する部位に大きな凹凸が認められる場合、その凹凸が故障原因になり易いと判断することができる。   In FIG. 6, when the correlation coefficient is positive, it means that the side failure rate increases as the unevenness increases, and when the correlation coefficient is negative, it means that the side failure rate decreases as the unevenness increases. To do. Particularly, when the absolute value of the correlation coefficient is 0.55 or more from a statistical viewpoint, it can be determined that the correlation between the size of the unevenness and the failure rate is high. In FIG. 6, the correlation coefficient increases in a positive value in the vicinity of the filler top (part D) below the center in the tire radial direction, and the correlation between the size of the unevenness and the failure rate is high in this vicinity. Therefore, when large unevenness is recognized in the corresponding part, it can be determined that the unevenness is likely to cause a failure.

上述のような判断は共通の構成を有する複数種類のタイヤについて好ましく適用することができる。ここで、共通の構成を有する複数種類のタイヤとは、サイズ、断面形状及び補強構造の少なくとも1つが共通するものである。共通の構成を有するタイヤでは凹凸の大きさと故障率との相関性について同様の傾向が存在する。そのため、過去に製造されたタイヤに関するデータを蓄積することにより、それと共通の構成を有する新規なタイヤの製造故障を予測することが可能になる。   The above determination can be preferably applied to a plurality of types of tires having a common configuration. Here, the plurality of types of tires having a common configuration are those in which at least one of a size, a cross-sectional shape, and a reinforcing structure is common. In the tires having a common configuration, there is a similar tendency regarding the correlation between the size of the unevenness and the failure rate. Therefore, by accumulating data related to tires manufactured in the past, it becomes possible to predict a manufacturing failure of a new tire having a common configuration.

図6のようなデータを作成する場合、10種類以上のタイヤについて、それに対応するタイヤ金型の各座標点における凹凸の大きさと故障率との相関係数を求めることが好ましい。つまり、共通の構成を有する多種類のタイヤについてデータを採取することにより、凹凸の大きさと故障率との相関性が高い部位を精度良く特定することができる。   When creating data as shown in FIG. 6, it is preferable to obtain a correlation coefficient between the size of the unevenness and the failure rate at each coordinate point of the tire mold corresponding to 10 or more types of tires. In other words, by collecting data on many types of tires having a common configuration, it is possible to accurately identify a portion having a high correlation between the size of the unevenness and the failure rate.

上述したタイヤ製造工程の管理方法によれば、タイヤ金型の断面形状から得られる輪郭線における凹凸の大きさに基づいてタイヤ製造工程における故障原因の予測や特定を視覚的に簡単に行うことができる。従って、実際にタイヤを製造する以前のシミュレーションの段階で故障原因を予測し、その故障原因が無くなるようにタイヤ設計を行うことが可能になる。また、実際のタイヤ製造工程において製造故障が発生した場合、その故障原因を速やかに特定し、適切な処置をとることが可能になる。これにより、タイヤの生産効率を大幅に向上することが可能になる。   According to the tire manufacturing process management method described above, it is possible to visually and easily predict and identify the cause of failure in the tire manufacturing process based on the size of the irregularities in the contour line obtained from the cross-sectional shape of the tire mold. it can. Accordingly, it is possible to predict the cause of the failure at the stage of simulation before actually manufacturing the tire and to design the tire so that the cause of the failure is eliminated. Further, when a manufacturing failure occurs in the actual tire manufacturing process, it is possible to quickly identify the cause of the failure and take appropriate measures. As a result, the production efficiency of the tire can be greatly improved.

タイヤ金型の断面形状を示す図である。It is a figure which shows the cross-sectional shape of a tire metal mold | die. 図1のタイヤ金型の断面形状から抽出したタイヤ成形面の座標点に基づいて描画された輪郭線を示す図である。It is a figure which shows the outline drawn based on the coordinate point of the tire molding surface extracted from the cross-sectional shape of the tire metal mold | die of FIG. 図2のA部の拡大図である。It is an enlarged view of the A section of FIG. 他のタイヤ金型の断面形状から抽出したタイヤ成形面の座標点に基づいて描画された輪郭線を示す図である。It is a figure which shows the outline drawn based on the coordinate point of the tire molding surface extracted from the cross-sectional shape of another tire metal mold | die. 図4の輪郭線における凹凸の大きさを示す図である。It is a figure which shows the magnitude | size of the unevenness | corrugation in the outline of FIG. 複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型の各座標点における凹凸の大きさと故障率との相関係数を示す図である。It is a figure which shows the correlation coefficient with the magnitude | size of an unevenness | corrugation in each coordinate point of at least 1 type of tire metal mold | die for shape | molding multiple types of tire, and a failure rate.

符号の説明Explanation of symbols

M タイヤ金型
P 座標点
L 輪郭線
S 線分
θ 傾斜角度
M Tire mold P Coordinate point L Contour line S line segment θ Inclination angle

Claims (5)

タイヤ金型の断面形状からタイヤ成形面の座標点をタイヤ径方向に等間隔で抽出し、隣り合う座標点を直線で結んで輪郭線を描画し、該輪郭線の各線分のタイヤ軸方向に対する傾斜角度を求め、隣り合う線分の傾斜角度の差から各座標点での凹凸の大きさを求め、該凹凸の大きさをタイヤ製造工程における故障原因の指標として用いることを特徴とするタイヤ製造工程の管理方法。   Coordinate points of the tire molding surface are extracted at equal intervals in the tire radial direction from the cross-sectional shape of the tire mold, and adjacent contour points are connected by straight lines to draw contour lines, and the tire lines in the tire axial direction of the contour lines are drawn. A tire manufacturing characterized in that an inclination angle is obtained, a size of unevenness at each coordinate point is obtained from a difference in inclination angles of adjacent line segments, and the size of the unevenness is used as an index of a cause of failure in a tire manufacturing process. Process management method. 前記タイヤ成形面の径方向の全範囲において100点以上の座標点を設定したことを特徴とする請求項1に記載のタイヤ製造工程の管理方法。   The tire manufacturing process management method according to claim 1, wherein 100 or more coordinate points are set in the entire radial range of the tire molding surface. 前記凹凸の大きさをサイン成分、コサイン成分又はタンジェント成分からなる無次元量としたことを特徴とする請求項1又は請求項2に記載のタイヤ製造工程の管理方法。   The tire manufacturing process management method according to claim 1, wherein the size of the unevenness is a dimensionless amount including a sine component, a cosine component, or a tangent component. 複数種類のタイヤを成形するための少なくとも1種類のタイヤ金型について前記凹凸の大きさを求める一方で、これら複数種類のタイヤの任意部位の故障率を求め、各座標点における凹凸の大きさと故障率との相関係数を求め、これら凹凸の大きさと故障率との相関性が高い部位を特定することを特徴とする請求項1〜3のいずれかに記載のタイヤ製造工程の管理方法。   While determining the size of the irregularities for at least one type of tire mold for molding multiple types of tires, the failure rate of any part of these multiple types of tires is determined, and the size of the irregularities and failures at each coordinate point are determined. The tire manufacturing process management method according to any one of claims 1 to 3, wherein a correlation coefficient with the rate is obtained, and a portion having a high correlation between the size of the unevenness and the failure rate is specified. 複数種類のタイヤは、サイズ、断面形状及び補強構造の少なくとも1つが共通するものであることを特徴とする請求項4に記載のタイヤ製造工程の管理方法。   The tire manufacturing process management method according to claim 4, wherein the plurality of types of tires have at least one of a size, a cross-sectional shape, and a reinforcing structure.
JP2008183109A 2008-07-14 2008-07-14 Tire manufacturing process management method Active JP5163331B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008183109A JP5163331B2 (en) 2008-07-14 2008-07-14 Tire manufacturing process management method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008183109A JP5163331B2 (en) 2008-07-14 2008-07-14 Tire manufacturing process management method

Publications (2)

Publication Number Publication Date
JP2010018009A JP2010018009A (en) 2010-01-28
JP5163331B2 true JP5163331B2 (en) 2013-03-13

Family

ID=41703365

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008183109A Active JP5163331B2 (en) 2008-07-14 2008-07-14 Tire manufacturing process management method

Country Status (1)

Country Link
JP (1) JP5163331B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5136254B2 (en) * 2008-07-14 2013-02-06 横浜ゴム株式会社 Tire manufacturing process management method
CN112052541B (en) * 2020-09-25 2022-12-06 中国直升机设计研究所 Parameterization method for section of sheet metal profile in any shape

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH0419130A (en) * 1990-05-15 1992-01-23 S K Y:Kk Method for simulating manufacture of radial tire
JPH10160437A (en) * 1996-12-03 1998-06-19 Bridgestone Corp Method and device for judging external shape of tire
JP2003225952A (en) * 2002-02-04 2003-08-12 Yokohama Rubber Co Ltd:The Method for simulating tire manufacturing process, program for putting this method into practice, method for manufacturing pneumatic tire, and pneumatic tire
JP2003300212A (en) * 2002-04-08 2003-10-21 Yokohama Rubber Co Ltd:The Tire manufacturing method and pneumatic tire
JP2006018422A (en) * 2004-06-30 2006-01-19 Yokohama Rubber Co Ltd:The Tire finite element modelling method
JP5136254B2 (en) * 2008-07-14 2013-02-06 横浜ゴム株式会社 Tire manufacturing process management method

Also Published As

Publication number Publication date
JP2010018009A (en) 2010-01-28

Similar Documents

Publication Publication Date Title
JP5837057B2 (en) Molding element having a plurality of ribs and at least one ribless measurement zone
CN109690237B (en) Method for controlling the contour consistency of curved surfaces of turbine components
JP2012014475A5 (en)
WO2013035135A1 (en) Pneumatic tire
US20110247740A1 (en) Pneumatic tire, tire mold and manufacturing method of pneumatic tire
JP5163331B2 (en) Tire manufacturing process management method
CN116881834B (en) Stage load monitoring and early warning method based on stage deformation analysis
WO2020071249A1 (en) Tire wear estimation method
JP5136254B2 (en) Tire manufacturing process management method
CN110455476B (en) Multi-dimensional dynamic fingerprint damage identification method based on MCD abnormal point detection algorithm
CN117115135B (en) Concrete crack detection system and method based on machine vision
CN116883402B (en) Corrugated paper production quality real-time detection method based on computer vision
CN110348040B (en) Mean square convergence condition-based non-uniform settlement function fitting method
CN110555188B (en) Analysis method for wheel parameter abrasion trend of motor train unit
JP5620055B2 (en) Tire manufacturing process management method
JP5790302B2 (en) Cross sectional shape verification method for tire treads
CN114993288A (en) Semantic inland waterway topographic map generation method
KR20160118916A (en) Metrology targets with filling elements that reduce inaccuracies and maintain contrast
JP5567428B2 (en) Pneumatic tire
JP6985979B2 (en) Tire condition estimation system and tire condition estimation program
JP4708759B2 (en) Simulation method
EP3195075A1 (en) Method and system for determining sampling plan for inspection of composite components
CN112258505B (en) Tunnel crack width calculation method based on digital image
KR101271031B1 (en) A method for calculating the index of tire profile variation quantitatively
CN117056846B (en) Axial flow pump rotor operation stability prediction system and method based on artificial intelligence

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110621

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120831

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121120

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121203

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151228

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5163331

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250