JP5162274B2 - エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム - Google Patents

エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム Download PDF

Info

Publication number
JP5162274B2
JP5162274B2 JP2008045158A JP2008045158A JP5162274B2 JP 5162274 B2 JP5162274 B2 JP 5162274B2 JP 2008045158 A JP2008045158 A JP 2008045158A JP 2008045158 A JP2008045158 A JP 2008045158A JP 5162274 B2 JP5162274 B2 JP 5162274B2
Authority
JP
Japan
Prior art keywords
sulfur dioxide
engine oil
concentration
engine
oil consumption
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2008045158A
Other languages
English (en)
Other versions
JP2009203834A (ja
Inventor
淳 田上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Yamaha Motor Co Ltd
Original Assignee
Yamaha Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Yamaha Motor Co Ltd filed Critical Yamaha Motor Co Ltd
Priority to JP2008045158A priority Critical patent/JP5162274B2/ja
Priority to TW97149463A priority patent/TWI386548B/zh
Priority to CN 200910118611 priority patent/CN101519990B/zh
Publication of JP2009203834A publication Critical patent/JP2009203834A/ja
Application granted granted Critical
Publication of JP5162274B2 publication Critical patent/JP5162274B2/ja
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Lubrication Details And Ventilation Of Internal Combustion Engines (AREA)
  • Exhaust Gas After Treatment (AREA)
  • Exhaust Silencers (AREA)
  • Investigating Or Analyzing Materials By The Use Of Ultrasonic Waves (AREA)

Description

本発明は、エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラムに関する。
従来から、エンジンにおけるエンジンオイルの消費量の測定方法として、例えば、重量法や抜き取り法等が知られている。しかしながら、重量法や抜き取り法といった従来のエンジンオイル消費量測定方法には、測定に長時間を要するという問題がある。また、測定中に、燃料や水がエンジンオイルに混入してエンジンオイルが希釈化(ダイリューション)されるため、エンジンオイル消費量が少なく測定され、エンジンオイル消費量を正確に測定することが困難であるといった問題もある。
このような問題に鑑み、短時間で、比較的正確にエンジンオイル消費量を測定可能な方法として、所謂Sトレース法が提案されている(例えば、特許文献1等を参照)。Sトレース法とは、具体的には、エンジンからの排気ガスに含まれる硫黄分の単位時間あたりの量を測定することで、燃料と共に消費されたエンジンオイルの単位時間あたりの量を算出する方法である。
特開平6−93822号公報
通常、エンジンオイルに含まれる硫黄分は、二酸化硫黄(SO)、一酸化硫黄(SO)や硫化水素(HS)など、種々の化合物となって排気ガスに含まれ、排出される。このため、Sトレース法では、炎光光度法(FPD)などにより、硫黄特有の炎光を光学的に測定し、排気ガス中に含まれる硫黄化合物の量を二酸化硫黄濃度として求める必要がある。
このため、Sトレース法を行おうとすると、排気ガス中の硫黄分を発光させるための装置や、その発光を光学的に測定するための測定装置が必要となる。これらの測定装置は、大型の装置で、操作も煩雑であり、高価である。
本発明は、かかる点に鑑みてなされたものであり、その目的とするところは、エンジンオイル消費量を簡易に測定することを可能とすることにある。
本発明に係るエンジンオイル消費量測定方法は、エンジンオイルによって潤滑されたエンジンのエンジンオイル消費量測定方法であって、標準燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定工程と、標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定工程と、下記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する算出工程と、を備えたエンジンオイル消費量測定方法である。
エンジンオイル消費量={(S0−g)/(S1−S0+g)}・G・R ・・・(1)
g=(S1−S0)/(α―1) ・・・(2)
ただし、
G:第2の測定工程において使用された混合燃料の量、
R:混合燃料におけるエンジンオイルの混合率、
S0:第1の測定工程において検出された二酸化硫黄の濃度、
S1:第2の測定工程において検出された二酸化硫黄の濃度、
g:エンジンオイル消費量測定時に前記エンジンに供給された標準燃料が燃焼することによって発生する二酸化硫黄の濃度、
α:(混合燃料が燃焼することによって発生する二酸化硫黄の濃度)/(標準燃料が燃焼することによって発生する二酸化硫黄の濃度)であって、予め与えられる所定値
である。
本発明に係るエンジンオイル消費量測定装置は、二酸化硫黄を検知する二酸化硫黄検知管が配置される検知管フォルダと、前記エンジンと前記二酸化硫黄検知管の一方側とを接続し、前記二酸化硫黄検知管に前記エンジンの排気ガスを導入する排気ガス導入経路と、前記二酸化硫黄検知管を流れる排気ガスの流量を測定する流量測定器と、標準燃料を供給して前記エンジンを駆動し、前記検知管フォルダに配置された二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定と、標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、前記検知管フォルダに配置された他の二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定と、が行われた後に、前記第2の測定工程において使用された混合燃料の量G、混合燃料におけるエンジンオイルの混合率R、前記第1の測定工程において検出された二酸化硫黄の濃度S0、前記第2の測定工程において検出された二酸化硫黄の濃度S1、およびα=(混合燃料が燃焼することによって発生する二酸化硫黄の濃度)/(標準燃料が燃焼することによって発生する二酸化硫黄の濃度)であって予め与えられる所定値、が入力され、前記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する演算装置と、を備えたエンジンオイル消費量測定装置である。
本発明に係るエンジンオイル消費量測定プログラムは、エンジンオイルによって潤滑されたエンジンのエンジンオイル消費量を測定するエンジンオイル消費量測定プログラムであって、コンピュータを、標準燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定が行われた後、当該二酸化硫黄濃度の値S0が入力される第1の入力手段と、標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定が行われた後、当該二酸化硫黄濃度の値S1が入力される第2の入力手段と、前記第2の測定において使用された混合燃料の量Gが入力される混合燃料量入力手段と、混合燃料におけるエンジンオイルの混合率Rが入力される混合率入力手段と、標準燃料が燃焼することによって発生する二酸化硫黄の濃度に対する、混合燃料が燃焼することによって発生する二酸化硫黄の濃度の比率α(このαは予め与えられる所定値である)が入力される濃度比率入力手段と、前記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する算出手段と、として機能させるためのエンジンオイル消費量測定プログラムである。
本発明によれば、エンジンオイル消費量を簡易に測定することが可能となる。
《実施形態1》
(測定装置1の構成)
まず、図1を参照しながら、本発明を実施した一例であるエンジンオイル消費量の測定装置1の構成について説明する。なお、図1では、エンジン2単体を描画しているが、エンジン2は、例えば、自動二輪車などの車両に搭載されていてもよい。また、エンジン2は、据え置き型装置に組み込まれていてもよい。
エンジン2は、どのような燃料を使用するものであってもよいが、例えば、ガソリン等の硫黄成分含有量が比較的少ない燃料を使用するものであることが好ましい。
測定装置1は、検知管フォルダ21と、排気ガス導入経路3と、流量測定器としての流量積算計30を含むポンプユニット27とを備えている。検知管フォルダ21には、二酸化硫黄(SO)を検知する二酸化硫黄検知管22が配置可能となっている。以下、測定装置1の各部の構成について、図1を参照しながら、さらに詳細に説明する。
排気ガス導入経路3は、検知管フォルダ21にセットされた二酸化硫黄検知管22にエンジン2の排気ガスを導入するための経路である。排気ガス導入経路3は、配管10と、フィルタ11と、配管12と、流量変化抑制機構13と、配管17と、サブチャンバ18と、配管19と、絞り機構20とを備えている。
配管10の一端は、エンジン2に接続されている。なお、図1では、配管10がエンジン2に直接接続されている例を描画しているが、例えば、エンジン2にマフラー等が取り付けられている場合は、そのマフラーの先端に配管10を接続してもよい。つまり、配管10は、エンジン2に直接、又はマフラー等を介して間接的に接続されている。
配管10の他端は、フィルタ11を介して配管12に接続されている。このフィルタ11によって、エンジン2の排気ガスに含まれる煤(すす)等が除去される。これにより、フィルタ11よりも下流側において煤等が付着したり堆積したりすることが抑制される。フィルタ11は、配管10および12に対して着脱自在になっている。よって、フィルタ11は、容易に交換可能になっている。後述するチャンバ15や、各配管および各絞り機構なども容易に交換可能となっている。なお、フィルタ11の種類や構成は、特に限定されるものではなく、例えば、排気ガスに対して一般的に使用されるフィルタを使用することができる。
また、フィルタ11は、二酸化硫黄検知管22の妨害ガス(干渉ガスともいう。)を吸収するものであってもよい。例えば、フィルタ11は、妨害ガスと反応して、妨害ガスが二酸化硫黄検知管22に到達することを抑制するものであってもよい。また、フィルタ11は、妨害ガスを吸着して、妨害ガスが二酸化硫黄検知管22に到達することを抑制するものであってもよい。
なお、配管10および12の構成や材料等は、特に限定されるものではない。配管10および12は、例えば熱伝導率の高い材料により形成されていることが好ましい。例えば、配管10および12は、金属製であることが好ましい。なかでも、配管10および12は、銅製であることが好ましい。本実施形態1では、配管10および12が銅製である例について説明する。
配管12には、流量変化抑制機構13が取り付けられている。流量変化抑制機構13は、所謂整流機構の一種である。具体的には、流量変化抑制機構13は、排気ガスの流量変化を抑制するものである。より具体的には、流量変化抑制機構13は、排気ガスの脈動を抑制して、排気ガスの流れを整流させる機構である。本実施形態1では、配管12の途中部に取り付けられた絞り機構14と、配管12の先端に取り付けられたチャンバ15により流量変化抑制機構13が構成されている例について説明する。詳細に、チャンバ15は、内部が観察できる透明チャンバである。チャンバ15には、チャンバ15内の圧力を測定する圧力計16が取り付けられている。
ただし、流量変化抑制機構13は、この構成に限定されない。流量変化抑制機構13は、例えば、絞り機構14のみによって構成されていてもよい。また、流量変化抑制機構13は、チャンバ15のみによって構成されていてもよい。流量変化抑制機構13は、例えば、ラミナフロー形成装置やキャピラリーによって構成されていてもよい。
チャンバ15には、配管17が接続されている。配管17の先端には、サブチャンバ18が接続されており、チャンバ15からの排気ガスは、サブチャンバ18に導かれる。サブチャンバ18には、配管19が接続されている。この配管19は、検知管フォルダ21にセットされた二酸化硫黄検知管22に排気ガスを供給する配管である。配管19の先端部は、二酸化硫黄検知管22の先端部が挿入可能となっている。具体的には、配管19の先端部は、例えば、シリコンチューブなど、可撓性のあるチューブにより構成されている。
配管19の途中部には、絞り機構20が配置されている。この絞り機構20を閉じることで、二酸化硫黄検知管22への排気ガスの供給が規制される。一方、絞り機構20を開けることで、二酸化硫黄検知管22へ排気ガスが供給される。また、絞り機構20によって配管19の流路面積を調節することで、二酸化硫黄検知管22に供給される排気ガスの流量が調整される。
検知管フォルダ21は、本実施形態1では、相互に対向して配置された一対の当接板21aおよび21bにより構成されている。二酸化硫黄検知管22は、これら当接板21aおよび21bによって挟持されることで固定される。ただし、本発明において、検知管フォルダ21は、二酸化硫黄検知管22を固定できるものであれば、特に限定されるものではない。
測定装置1には、検知管フォルダ21に配置された二酸化硫黄検知管22からの排気ガスを排出する排気ガス排出経路4が配置されている。排気ガス排出経路4は、配管24と、ポンプユニット27と、配管31と、排気管25とを備えている。配管24は、検知管フォルダ21に配置された二酸化硫黄検知管22の他端部に接続される。配管24の二酸化硫黄検知管22取り付け側端部も、配管19の先端部と同様に、二酸化硫黄検知管22の先端部が挿入可能となっている。具体的には、配管24の先端部は、例えば、シリコンチューブなど、可撓性のあるチューブにより構成されている。
配管24の途中部には、絞り機構23が配置されている。この絞り機構23を閉じることで二酸化硫黄検知管22への排気ガスの供給が規制される。一方、絞り機構23を開けることで、二酸化硫黄検知管22へ排気ガスが供給される。また、絞り機構23によって配管24の流路面積を調節することで、二酸化硫黄検知管22に供給される排気ガスの流量が調整される。つまり、本実施形態1では、絞り機構20および23により、二酸化硫黄検知管22に供給される排気ガスの流量が調整される。
配管24の下流端はポンプユニット27に接続されている。ポンプユニット27は、流量積算計30と、ポンプ28と、絞り機構29とを備えている。流量積算計30は、配管24に接続されている。流量積算計30は、配管24を流れた排気ガスの流量を積算する。流量積算計30の下流側には、ポンプ28が接続されている。ポンプ28の下流側には、絞り機構29が接続されている。絞り機構29には、配管31が接続されている。この配管31は、サブチャンバ18から延びる排気管25に接続されている。測定装置1に導入された排気ガスは、この排気管25から測定装置1外へ排出される。なお、排気管25の途中部には、絞り機構26が配置されている。この絞り機構26によって、排気管25を流れる排気ガスの流量を調節することができる。
(二酸化硫黄検知管22)
図2は、未使用の二酸化硫黄検知管22の平面図である。図2に示すように、二酸化硫黄検知管22は、両端が溶封されたアンプルである。二酸化硫黄検知管22内には、封入材22dおよび22e間に検知剤22fが封入されている。検知剤22fは、検知しようとするガス(二酸化硫黄)と接触すると、反応して変色する。検知剤22fが封入されている部分には、目盛り22gが印刷されている。
この二酸化硫黄検知管22を使用する際には、まず、両端の溶封部22cをガラスカッターなどを用いて切除する。その後、ガス導入口22aからガスを導入する。導入されたガスに二酸化硫黄が含まれていると、封入された検知剤22fが変色する。検知剤22fの変色は、ガス導入口22a側から始まる。二酸化硫黄検知管22に導入されたガス中の二酸化硫黄の量が少ない場合は、ガス導入口22a寄りの検知剤22fが変色する。二酸化硫黄検知管22に導入されたガス中の二酸化硫黄の量が多いほど、排出口22b寄りの検知剤22fまで変色する。
一般的に、検知管には、測定時に導入するガスの量が予め設定されている。例えば、図2に示す二酸化硫黄検知管22では、測定時に導入するガスの量は100mlと設定されている。検知管に対して設定された導入ガス量のガスを二酸化硫黄検知管22に導入し、その際に変色した検知剤22fの長さを、二酸化硫黄検知管22に印刷された目盛り22gを用いて目視測定することで、二酸化硫黄検知管22に導入されたガス内に含まれる二酸化硫黄の量を判断する。例えば、図2および図3に示す二酸化硫黄検知管22に100mlのガスを導入した場合に、図3に示すように、変色した検知剤22f1が1.8という目盛りが印刷された箇所まで達している場合は、導入されたガスに含まれる二酸化硫黄は1.8ppmであると判断される。
検知剤22fは、検知しようとするガスのみによって変色するものであることが好ましい。しかし、検知剤22fは、検出しようとするガスのみによって変色するものであるとは必ずしも限らない。例えば、検知剤22fは、検知しようとするガス(二酸化硫黄)以外のガスと接触することでも変色する場合がある。この検知しようとするガス以外であって、検知剤22fを変色させるガスを妨害ガス(干渉ガス)という。検知剤22fに妨害ガスがある場合は、妨害ガスが極力少ない環境にて測定を行うことが好ましい。
なお、検知剤22fの種類は特に限定されない。検知剤22fは、ヨウ素デンプン反応を基本反応原理とするものであってもよい。検知剤22fは、例えば、ヨウ素酸カリウムの還元反応、アルカリとの反応又は重クロム酸塩の還元反応を基本反応原理とするものであってもよい。なかでも、検知剤22fは、ヨウ素デンプン反応を基本反応原理とするものであることが好ましい。具体的に、下記反応式(3)を基本反応原理とするものであることが好ましい。以下、ここでは、検知剤22fが、下記反応式(3)を基本反応原理とするものである場合を例に挙げて説明する。
SO+I(青紫色)+2HO → 2HI(白色)+HSO ・・・・・(3)
上記反応式(3)を基本反応原理とする検知剤22fでは、デンプンにより青紫色を呈しているヨウ素が二酸化硫黄によって還元され、白色のヨウ化水素となる。これにより、検知剤22fは、青紫色から白色となる。なお、上記反応式(3)を基本反応原理とする検知剤22fは、二酸化窒素により、青紫色から褐色に変色する。二酸化窒素は、デンプンにより青紫色を呈しているヨウ素を、デンプンから遊離させて褐色とするからである。一方、一酸化窒素では、上記デンプンからのヨウ素の遊離は起こらない。このため、上記反応式(3)を基本反応原理とする検知剤22fは、一酸化窒素によっては変色しない。つまり、上記反応式(3)を基本反応原理とする検知剤22fは、二酸化窒素を妨害ガスとする一方、一酸化窒素を妨害ガスとはしない。
(測定装置1を用いたエンジンオイル消費量の測定方法)
次に、図4を参照しながら、測定装置1を用いたエンジンオイル消費量の測定方法について説明する。
図4に示すように、まず、ステップS1において、エンジン2の準備および測定装置1の準備を行う。エンジン2が車載されたものである場合には、車両のセッティングや運転者の配置も、ステップS1において同時に行う。
測定装置1の準備に関しては、例えば、測定装置1とエンジン2との接続、二酸化硫黄検知管22の準備および配置、絞り機構14、26などの調節による測定装置1内の圧力調整、絞り機構14の調節による流量変化抑制、測定装置1への吸入空気量設定、二酸化硫黄検知管22への吸入流量設定などを行う。なお、排気ガスの流量変化の抑制は、チャンバ15に取り付けられた圧力計16のふれが小さくなるように、絞り機構14を調節することにより行うことができる。吸入空気量の設定は、測定するエンジン回転速度において実測することにより行ってもよい。また、エンジン2が吸入空気量センサを有する場合は、吸入空気量センサをモニタすることで吸入空気量を随時検出するようにしてもよい。
次に、ステップS2において、燃料(以下、「標準燃料」という)を供給することによってエンジン2を運転させ、ステップS3において、当該運転によって排出される排気ガス中の二酸化硫黄の濃度を測定する。以下、この測定を「第1の測定」という。
具体的には、ステップS2およびS3では、エンジン2を所定の回転速度で回転させた状態で、ポンプ28を駆動させると共に、絞り機構20、23および29を開けて二酸化硫黄検知管22への排気ガスの導入を開始する。二酸化硫黄検知管22に吸入された排気ガスの総量は、流量積算計30によりモニタする。流量積算計30により、二酸化硫黄検知管22を流れた排気ガスの量が、二酸化硫黄検知管22に対して予め定められた吸入量に達したときに、絞り機構20等を閉じることで、ステップS3を終了する。
なお、ステップS3におけるエンジン2の回転速度は、特に限定されない。ただし、検知剤22fが、例えばヨウ素デンプン反応を基本反応原理とするものに代表されるように、二酸化窒素を妨害ガスとするものである場合は、ステップS3におけるエンジン2の回転速度は、実質的に最高回転速度であることが好ましい。言い換えれば、エンジン2を実質的に最高速で回転させた状態でステップS3を行うことが好ましい。
なお、二酸化硫黄の濃度データは、測定装置1から二酸化硫黄検知管22を取り外した後、二酸化硫黄検知管22を目視観察することによって採取することができる。
次に、ステップS4において、標準燃料にエンジンオイルを所定の割合で混合させた燃料(以下、「混合燃料」という)を用意し、この混合燃料を供給することによってエンジン2を運転させる。なお、混合燃料におけるエンジンオイルの混合率は特に限定されず、例えば、0.01〜20%程度に設定することができる。本実施形態では、混合燃料におけるエンジンオイルの混合率は1%とする。
次に、ステップS5において、上記運転によって排出される排気ガス中の二酸化硫黄の濃度を測定する。以下、この測定を「第2の測定」という。第2の測定の具体的方法は、第1の測定と同様である。第2の測定においても、第1の測定と同様、エンジンの回転速度は特に限定されないが、実質的に最高回転速度であることが好ましい。第2の測定においても、二酸化硫黄の濃度データは、測定装置1から二酸化硫黄検知管22を取り外した後、二酸化硫黄検知管22を目視観察することによって採取することができる。
次に、ステップS6において、第1および第2の測定の結果に基づいて、エンジンオイル消費量を算出する。詳細は後述するように、エンジンオイル消費量は、以下の算出式(1)および(2)によって算出される。
LOC={(S0−g)/(S1−S0+g)}・G・R ・・・(1)
g=(S1−S0)/(α―1) ・・・(2)
ただし、
LOC:エンジンオイル消費量(g/h)
G:第2の測定工程において使用された混合燃料の量(g/h)、
R:前記混合燃料における前記エンジンオイルの混合率、
S0:第1の測定工程において検出された二酸化硫黄の濃度(ppm)、
S1:第2の測定工程において検出された二酸化硫黄の濃度(ppm)、
g:前記燃料が燃焼することによって発生する二酸化硫黄の濃度(ppm)、
α:(前記混合燃料が燃焼することによって発生する二酸化硫黄の濃度)/(前記燃料が燃焼することによって発生する二酸化硫黄の濃度)、
である。
(エンジンオイル消費量の算出方法)
上述したように、本実施形態に係るエンジンオイル消費量の算出方法においては、標準燃料を使用したときの排気ガス中の二酸化硫黄濃度と、混合燃料を使用したときの排気ガス中の二酸化硫黄濃度とを用いる。その理由は、エンジンオイルだけでなく燃料自体にも硫黄成分が含まれている場合があり、この燃料自体に含まれる硫黄成分に起因する測定誤差を少なくし、測定精度を向上させるためである。
すなわち、図5に示すように、標準燃料を使用したときの排気ガス中の二酸化硫黄の濃度S0[ppm]は、エンジンオイルから生じる二酸化硫黄の濃度A[ppm]と、燃料から生じる二酸化硫黄の濃度g[ppm]とを合計したものとなる。燃料から生じる二酸化硫黄濃度g[ppm]が既知であれば、第1の測定にて測定された二酸化硫黄濃度S0[ppm]のみから、エンジンオイルから生じる二酸化硫黄濃度A[ppm]を精度良く算出することができる(すなわち、A=S0−g)。しかし、燃料に含まれる硫黄成分の量は必ずしも既知とは限らない。そこで、本実施形態では、第1の測定の結果と第2の測定の結果とを用いることにより、燃料から生じる二酸化硫黄濃度g[ppm]を推定し、燃料から生じる二酸化硫黄に起因する測定誤差を低減させることとした。
図5に示すように、混合燃料の二酸化硫黄の濃度S1[ppm]は、エンジン2内のエンジンオイルから生じる二酸化硫黄の濃度A[ppm]と、燃料から生じる二酸化硫黄の濃度g[ppm]と、燃料に混合されたエンジンオイルから生じる二酸化硫黄の濃度B[ppm]とを合計したものとなる。ここで、第2の測定における燃料の流量G[g/h]は既知であるので、エンジンオイルの混合率をRとすると、その燃料に含まれるエンジンオイルの流量はG・R[g/h]となる。そのため、流量がG・R[g/h]のエンジンオイルから、B+g=(S1―S0)+g[ppm]の二酸化硫黄が検出されたこととなる。エンジンオイルの量と検出された二酸化硫黄との比率は、(G・R)/(S1−S0+g)となる。一方、エンジン2に封入されているエンジンオイルの消費量をLOC[g/h]とすると、エンジンオイルの量と検出された二酸化硫黄との比率は、LOC/(S0−g)となる。ここで、上記の両比率は同一であるので、(G・R)/(S1−S0+g)=LOC/(S0−g)であり、結局、前述の算出式(1)の通り、LOC={(S0−g)/(S1−S0+g)}・G・Rと表される。
なお、混合燃料が燃焼することによって発生する二酸化硫黄の濃度と、標準燃料が燃焼することによって発生する二酸化硫黄の濃度との比率をαとすると、α=(S1−S0+g)/gである。よって、前述の算出式(2)の通り、g=(S1−S0)/(α―1)と表される。
標準燃料が燃焼することによって発生する二酸化硫黄の濃度と、混合燃料が燃焼することによって発生する二酸化硫黄の濃度とは、予め分析等することによって求められる。したがって、上記比率αは、予め所定の値として与えられる。
(実施形態の効果)
本実施形態によれば、燃料自体から発生する二酸化硫黄の影響をも考慮するので、エンジンオイル消費量をより高精度に測定することができる。本実施形態によれば、燃料自体から発生する二酸化硫黄の濃度が未知であっても、エンジンオイル消費量を精度良く測定することが可能である。燃料自体から発生する二酸化硫黄の濃度が比較的大きい場合には、本実施形態の効果は特に顕著に発揮されることになる。
さらに、本実施形態によれば、下記のような効果を得ることができる。
すなわち、二酸化硫黄検知管22を用いた測定装置1によれば、二酸化硫黄検知管22を用いることで、簡易にエンジンオイル消費量を測定することができる。特に、測定装置1では、従来のSトレース装置のように、測定前のガス校正などの比較的煩雑な測定準備作業が不要である。測定装置1では、排気ガスの流量を調整するという簡単な測定準備作業のみを行うことで、すぐにエンジンオイル消費量の測定を開始することができる。
また、測定装置1では、エンジンオイル中に含まれる硫黄分を利用してエンジンオイル消費量が測定される。このため、測定装置1を用いてエンジンオイル消費量を測定する場合は、重量法や抜き取り法などのように、水やガソリンによるエンジンオイルのダイリューション(希釈化)の影響を受けない。よって、測定装置1を用いることで比較的正確にエンジンオイルの消費量を測定することができる。
さらに、測定装置1では、重量法や抜き取り法のように、例えば数時間〜数十時間という比較的長い測定時間を要さない。測定装置1では、二酸化硫黄検知管22に所定の排気ガスを吸入させることで、例えば、数分〜数十分という比較的短期間の間にエンジンオイル消費量測定を行うことができる。
測定装置1は、従来のSトレース装置と比較して、構成部材が少なく、小型である。具体的には、測定装置1では、例えば、1m四方以下の大きさにすることができる。このため、従来のSトレース装置では困難であった持ち運びも比較的容易である。よって、測定装置1を用いることで、例えば、据え置き型のエンジンが配置されている現場でのエンジンオイル消費量測定を比較的容易に実施することができる。また、例えば、自動二輪車などの比較的小型な車両においても、測定装置1を車両に搭載して、車両を走行させながらエンジンオイル消費量を測定することも可能となる。
また、測定装置1は、従来のSトレース装置と比較して、比較的安価である。測定装置1では、エンジンオイル消費量測定に、水素ガスなどの測定用ガスを供給するためのガス供給手段も不要となる。かつ、二酸化硫黄検知管22も比較的安価である。このため、測定装置1を用いることで、エンジンオイル消費量測定のための設備投資額を低減することが可能である。かつ、エンジンオイル消費量測定のランニングコストも低減することができる。
さらに、測定装置1では、チャンバ15、18や絞り機構14などの交換を容易に行うことができる。このため、排気ガスにより測定装置1の構成部材が汚れた場合は、容易にチャンバ15などを交換することができる。つまり、測定装置1は、メンテナンス性に優れている。
ところで、測定装置1を用いてエンジンオイル消費量を測定する場合、二酸化硫黄検知管22を流れた排気ガスの量を正確に測定することが重要となる。二酸化硫黄検知管22を流れた排気ガスの量に基づいてエンジンオイル消費量を算出するためである。ここで、エンジン2の排気ガスには、通常、脈動が存在する。つまり、エンジン2から排出される排気ガスの流量は、必ずしも常に一定ではない。このため、エンジン2に二酸化硫黄検知管22を直接つないだのでは、流量積算計30によって、二酸化硫黄検知管22を流れる排気ガスの量を正確に測定することが困難である場合がある。その結果、エンジンオイルの消費量を正確に算出することが困難となる場合がある。
それに対して、測定装置1では、流量変化抑制機構13により、脈動などの排気ガスの流量変化が抑制されている。このため、二酸化硫黄検知管22を流れる排気ガスの量を比較的正確に測定することができる。よって、測定装置1によれば、エンジンオイルの消費量を比較的正確に算出することが可能となる。
なお、流量変化を効果的に抑制する観点からは、流量変化抑制機構13を二酸化硫黄検知管22よりも上流側に配置することが好ましい。ただし、流量変化抑制機構13の配置位置は、特に限定されない。例えば、流量変化抑制機構13を二酸化硫黄検知管22よりも下流側に配置してもよい。
流量変化抑制機構13の構成も特に限定されない。ただし、流量変化抑制機構13は、本実施形態1のように、絞り機構14およびチャンバ15により構成されていることが好ましい。これによれば、流量変化抑制機構13を低コスト化することができる。また、流量変化抑制機構13の交換が容易となるため、メンテナンス性が向上する。
また、測定装置1には、二酸化硫黄検知管22よりも下流側にポンプ28が配置されている。このポンプ28により、二酸化硫黄濃度を測定するステップにおいて、二酸化硫黄検知管22を流れる排気ガスが吸引されている。これにより、二酸化硫黄検知管22を流れる排気ガスの流量がより安定化されている。その結果、二酸化硫黄検知管22を流れる排気ガスの量を比較的正確に測定することが可能となる。よって、測定装置1によれば、エンジンオイルの消費量のより正確な算出が可能となる。
なお、排気ガス中の二酸化硫黄を測定するステップは、エンジン2を実質的に最高速で回転させた状態で行うことが好ましい。そうすることで、エンジン2に供給される混合ガス中の燃料の量を比較的多くすることができる。よって、エンジン2の燃焼室内の酸素濃度を比較的低くすることができる。その結果、ヨウ素デンプン反応を基本反応原理とする二酸化硫黄検知管22の妨害ガスである二酸化窒素(NO)の発生を抑制することができる。従って、排気ガス中の二酸化硫黄の濃度をより正確に測定することが可能となる。
本実施形態では、配管10および12が、比較的熱伝導率の高い材料により形成されている。具体的には、配管10および12は、銅製である。このため、エンジン2からの排気ガスを配管10および12で効果的に冷却させることができる。それにより、排気ガスの水分含有量も抑制することができる。また、結露した水分は、チャンバ15によりトラップされるため、二酸化硫黄検知管22へ水分が侵入することが抑制される。さらに、本実施形態1では、チャンバ15が透明であるため、結露した水分を確認することができる。
本実施形態では、通常の燃料(すなわち標準燃料)を供給したときのエンジン2の運転時の測定と、混合燃料を供給したときのエンジン2の運転時の測定とが比較される。すなわち、2つの運転の比較測定が行われる。このため、エンジンオイル消費量測定に対する外乱の影響が低減される。例えば、図6に示すように、一般に、排気ガス温度が低下すると、排気ガス中の水蒸気が二酸化硫黄と反応し、二酸化硫黄濃度が低下すると言われている。このため、測定装置1の周囲温度が想定していた温度から変化すると、測定誤差が発生しやすい。例えば、夏期に行う試験と冬期に行う試験とにおいて、周囲温度の変化に起因して測定誤差が発生するおそれがある。しかし、本実施形態によれば、標準燃料を供給したときの運転と混合燃料を供給したときの運転とにおける比較測定を行うので、周囲温度の変化に起因する測定誤差を小さく抑えることができる。その結果、エンジンオイル消費量をより正確に測定することが可能となる。
また、本実施形態では、エンジンオイル消費量の測定に先立って、エンジンオイル中の硫黄分含有率などを明確にしておく必要がない。従って、本実施形態に係る測定方法によれば、エンジンオイルの硫黄分含有率が不明である場合でも、エンジンオイル消費量を容易に測定することができる。
《実施形態2》
上記実施形態1では、二酸化硫黄検知管22を一本のみセット可能な測定装置1について説明した。ただし、本発明はこの構成に限定されない。例えば、測定装置は、複数の検知管がセット可能なものであってもよい。具体的には、測定装置は、例えば2本〜5本程度の数の検知管がセット可能なものであってもよい。本実施形態2では、3本の検知管がセット可能な測定装置1aについて、図7を参照しながら詳細に説明する。なお、本実施形態2の説明において、実質的に同じ機能を有する構成要素を実施形態1と共通の参照符号で説明し、説明を省略する。
図7に示すように、本実施形態2に係る測定装置1aには、検知管フォルダ21と共に、検知管フォルダ41および検知管フォルダ61が配置されている。また、サブチャンバ18には、配管19a、19bおよび19cが配置されている。配管19aは、検知管フォルダ21にセットされた検知管に接続される。配管19bは、検知管フォルダ41にセットされた検知管に接続される。配管19cは、検知管フォルダ61にセットされた検知管に接続される。さらに、検知管フォルダ21にセットされた検知管、検知管フォルダ41にセットされた検知管、および検知管フォルダ61にセットされた検知管のそれぞれとポンプユニット27とを接続する配管24a、24bおよび24cが設けられている。配管19a、19b、19c、24a、24bおよび24cのそれぞれには、絞り機構20a、20b、20c、23a、23bおよび23cが配置されている。
例えば、検知管フォルダ21のみに二酸化硫黄検知管22をセットして、上記実施形態1と同様にエンジンオイル消費量測定を行う場合は、絞り機構20b、20c、23bおよび23cを閉じた状態で二酸化硫黄濃度の測定を行うようにすればよい。また、検知管フォルダ21、41、61のすべてに検知管をセットしてエンジンオイル消費量測定を行う場合は、絞り機構20a、20b、20c、23a、23bおよび23cをすべて開いた状態で二酸化硫黄濃度の測定を行うようにすればよい。
検知管フォルダ41、61は、例えば、二酸化硫黄検知管22と共に、二酸化硫黄検知管22の妨害ガスを検知するための妨害ガス検知管42がセット可能なものであってもよい。具体的には、二酸化硫黄検知管22がヨウ素デンプン反応を基本反応原理とするものである場合、検知管フォルダ41、61は、例えば、二酸化窒素を検知する妨害ガス検知管42がセット可能なものであってもよい。以下、本実施形態2では、検知管フォルダ41が、妨害ガス検知管42がセット可能なものである場合を例に挙げて説明する。
(測定装置1aを用いたエンジンオイル消費量の測定方法)
本実施形態においても、実施形態1と略同様にしてエンジンオイル消費量を測定する(図4参照)。ただし、本実施形態では、第1の測定および第2の測定の際に、図8に示すように、妨害ガスの影響を考慮した補正を適宜行う。
本実施形態では、第1の測定および第2の測定の際に、二酸化硫黄濃度および妨害ガス濃度の測定を同時に行う(ステップS20参照)。具体的には、まず、絞り機構20a、20bおよび20c並びに絞り機構23a、23bおよび23cを閉じた状態で、検知管フォルダ21と検知管フォルダ41とに、それぞれ、二酸化硫黄検知管22と妨害ガス検知管42とをセットする。その後、エンジン2を所定の回転速度で運転した状態で、絞り機構20aおよび20b並びに絞り機構23aおよび23bを開け、二酸化硫黄検知管22と妨害ガス検知管42とに排気ガスを導入する。流量積算計30により、二酸化硫黄検知管22および妨害ガス検知管42を流れた排気ガスの量が、それぞれの検知管に対して予め定められた吸入量に達したことが検出されたときに、絞り機構20a、20b等を閉じることで、ステップS20を終了する。
なお、この際に、二酸化硫黄検知管22における排気ガスの流量と、妨害ガス検知管42における排気ガスの流量との比は特に限定されない。例えば、二酸化硫黄検知管22における排気ガスの流量と、妨害ガス検知管42における排気ガスの流量との比は、二酸化硫黄検知管22に対して予め設定された吸入ガス量と、妨害ガス検知管42に対して予め設定された吸入ガス量との比と等しくなるように設定してもよい。そうすることで、流量積算計30により、二酸化硫黄検知管22と妨害ガス検知管42とのそれぞれを流れた排気ガスの積算流量を得ることができる。
なお、本実施形態のように、一度の測定において、複数の検知管をセットするような場合には、各検知管に対して別個の流量積算計を配置してもよい。また、ステップS20において、二酸化硫黄濃度および妨害ガス濃度の測定を順次行ってもよい。具体的には、例えば、絞り機構20aおよび23aのみを開いて二酸化硫黄濃度の測定を行った後に、絞り機構20aおよび23aを閉じると共に、絞り機構20bおよび23bを開いて妨害ガス濃度の測定を行ってもよい。
本実施形態では、図8に示すように、ステップS20に続いてステップS21が行われる。ステップS21では、ステップS20において妨害ガス検知管42により検知された妨害ガス濃度が、所定の濃度以下であるか否かが判断される。詳細には、ステップS21では、ステップS20において妨害ガス検知管42により検知された妨害ガス濃度が、二酸化硫黄検知管22に対して予め設定された妨害ガスの最大濃度以下であるか否かが判断される。言い換えれば、排気ガス中に含まれる妨害ガスの濃度が、二酸化硫黄検知管22が使用可能な範囲内にあるか否かが判断される。
ステップS21において、妨害ガス検知管42により検知された妨害ガス濃度が、二酸化硫黄検知管22に対して予め設定された妨害ガスの最大濃度以下であると判断された場合は、ステップS22に進む。一方、ステップS21において、妨害ガス検知管42により検知された妨害ガス濃度が、二酸化硫黄検知管22に対して予め設定された妨害ガスの最大濃度より高いと判断された場合は、ステップS22を行わずに、試験を終了する。つまり、この場合は、エンジンオイル消費量の算出が中止される。
ステップS22では、ステップS20において測定された妨害ガス濃度に基づいて、測定値の補正が行われる。この補正は、予め与えられた妨害ガスの濃度と補正値との相関関係に基づいて行われる。これにより、妨害ガスの濃度が考慮されたエンジンオイル消費量の算出が可能となる。
なお、妨害ガスの濃度と補正値との相関関係は、例えば、意図的に妨害ガスと検知しようとするガスとを所定の混合比で混合したガスを二酸化硫黄検知管22に流す実験を予め行うことで決定することができる。
(実施形態の効果)
本実施形態2に係る測定装置1aでは、複数の検知管フォルダ21、41、61が設けられている。このため、測定装置1aに対して複数の検知管を一度にセットして、測定を行うことができる。よって、必要に応じて複数種類のガスの濃度を一度に測定することができる。その結果、測定装置1aによれば、エンジンオイル消費量の算出と共に、排気ガスの他の成分測定も同時に行うことができる。例えば、測定装置1aによれば、二酸化硫黄の濃度測定と共に妨害ガスの濃度測定も同時に行うことができる。
また、例えば、二酸化硫黄検知管22を複数本セットして二酸化硫黄濃度の測定をすることもできる。そうすることで、エンジンオイル消費量の算出精度をより向上させることができる。
本実施形態におけるエンジンオイル消費量の測定では、ステップS22において、測定値が、ステップS20で測定された妨害ガス濃度に基づいて補正される。このため、妨害ガスに基づくエンジンオイル消費量の測定精度の低下を抑制することができる。言い換えれば、エンジンオイル消費量をより正確に測定することができる。
また、ステップS21において、排気ガス中に含まれる妨害ガス濃度が所定の濃度より高いと判断された場合は、エンジンオイル消費量の算出が中止される。よって、算出されたエンジンオイル消費量の信頼性を向上させることができる。なお、本実施形態では、ステップS21において、排気ガス中に含まれる妨害ガス濃度が所定の濃度以下である場合は、エンジンオイル消費量の算出を行うようにしたが、より正確なエンジンオイル消費量が求められる場合には、ステップS20において妨害ガスが検知されたときには、エンジンオイル消費量の算出を中止するようにしてもよい。
《実施形態3》
上記実施形態1および2では、測定装置を操作する人が、自ら、又は測定装置とは別の演算装置を用いて、エンジンオイル消費量を算出する例について説明した。ただし、本発明は、これに限定されない。例えば、測定装置は、エンジンオイル消費量の算出を行う演算部(算出部)を有していてもよい。本実施形態では、図9に示すように、演算部50を有する測定装置1bを例に挙げて説明する。なお、本実施形態の説明において、図4および図8を上記実施形態2と共通に参照する。また、本実施形態の説明において、実質的に同じ機能を有する構成要素を実施形態1および2と共通の参照符号で説明し、説明を省略する。
図9に示すように、本実施形態に係る測定装置1bは、演算部50と、ディスプレイ51と、入力部52と、駆動部53とを備えている。演算部50は、流量積算計30と、ディスプレイ51と、入力部52と、駆動部53とに接続されている。入力部52は、演算部50に対して種々のデータの入力を行う。ディスプレイ51は、入力されたデータや演算部50における算出結果などを表示する。駆動部53は、演算部50からの指示に基づいて、絞り機構20a、20bおよび20cのそれぞれを開閉する。つまり、本実施形態4では、絞り機構20a、20bおよび20cは、駆動部53により自動的に開閉される。
本実施形態では、ステップS1(図4参照)において、測定装置1bの操作者は、入力部52を操作することで各種設定を演算部50に対して入力する。具体的には、ステップS20において二酸化硫黄検知管22に吸入させる排気ガスの量(Q)、二酸化硫黄検知管22に吸入させる排気ガスの積算流量、妨害ガスの濃度と補正値との相関関係などを入力する。
次に、ステップS20(図8参照)では、測定装置1bの操作者が入力部52を操作することで、演算部50に、絞り機構開放信号を駆動部53に対して出力させる。これにより、絞り機構20aおよび20bが開けられ、二酸化硫黄濃度の測定が開始される。ステップS20において、演算部50は、流量積算計30をモニタしている。流量積算計30が二酸化硫黄検知管22に吸入させる排気ガスの積算流量を検出すると、演算部50は、駆動部53に対して絞り機構閉鎖信号を出力する。これにより、絞り機構20aおよび20bが閉じられ、二酸化硫黄の濃度測定が終了する。
ステップS20の終了後、測定装置1bの操作者が、二酸化硫黄検知管22および妨害ガス検知管42を目視観察することで、排気ガス中の二酸化硫黄濃度および妨害ガス濃度を得る。操作者は、入力部52を操作することで、得られた二酸化硫黄濃度と妨害ガス濃度とを演算部50に対して入力する。これによりステップS21、ステップS22およびステップS6が演算部50によって自動的に行われる。具体的には、まず、ステップS21において、ステップS20で妨害ガス濃度が所定の濃度以下であるか否かが、演算部50によって判断される。ステップS20で妨害ガス濃度が所定の濃度より高いと判断された場合は、ディスプレイ51にエンジンオイル消費量測定ができない旨(NG)が表示され、測定が中止される。一方、ステップS21において、ステップS20で妨害ガス濃度が所定の濃度以下であると判断された場合は、演算部50によって、予め入力された妨害ガスの濃度と補正値との相関関係に基づいて、測定値の補正が行われる。そして、ステップS6において、演算部50によって、前述の算出式(1)および(2)に基づいてエンジンオイル消費量が算出される。補正後のエンジンオイル消費量は、ディスプレイ51に表示される。
なお、演算部50、ディスプレイ51、入力部52、および駆動部53は、測定装置1b用の専用品であってもよいが、パーソナルコンピュータ等の汎用品であってもよい。例えば、演算部50をパーソナルコンピュータ等のコンピュータで構成し、ディスプレイ51を液晶ディスプレイ等のコンピュータ用の表示装置で構成し、入力部52をキーボードやマウス等のコンピュータ用の入力装置で構成し、駆動部53をコンピュータ用のインターフェースボード等で構成するようにしてもよい。
本発明には、前述の算出式(1)および(2)を用いてエンジンオイル消費量を測定するようにコンピュータを機能させるためのコンピュータプログラムも含まれる。すなわち、コンピュータ100を図10に示す各手段101〜106として機能させるためのコンピュータプログラムも、本発明に含まれる。
具体的には、コンピュータ100は、入力装置200と表示装置300とに接続されている。コンピュータ100は、第1の測定によって測定された二酸化硫黄濃度の値S0が入力される第1の入力手段101と、第2の測定によって測定された二酸化硫黄濃度の値S1が入力される第2の入力手段102と、第2の測定において使用された混合燃料の量Gが入力される混合燃料量入力手段103と、混合燃料におけるエンジンオイルの混合率Rが入力される混合率入力手段104と、標準燃料が燃焼することによって発生する二酸化硫黄の濃度に対する、混合燃料が燃焼することによって発生する二酸化硫黄の濃度の比率αが入力される濃度比率入力手段105と、前述の算出式(1)および(2)に基づいてエンジンオイル消費量LOCを算出する算出手段106と、として機能する。なお、SO、S1、G、R、およびαは、入力装置200から入力される。算出されたエンジンオイル消費量LOCは、表示装置300に表示される。
《その他の変形例》
前記実施形態1では、測定装置1の準備を行った後に、二酸化硫黄検知管22を用いてエンジンオイル消費量の測定をすぐに行う例について説明した。ただし、本発明はこれに限定されない。例えば、測定装置1の準備を行った後に、二酸化窒素を検知する二酸化窒素検知管を用いて二酸化窒素の濃度が所定の濃度以下であることを確認してから、ステップS3およびS5の測定を行うようにしてもよい。
図1では、エンジン2単体を描画しているが、エンジン2は、例えば、自動二輪車などの車両に搭載されていてもよい。また、エンジン2は、据え置き型装置に組み込まれていてもよい。また、図1では、配管10は、エンジン2に直接接続されている例を描画しているが、例えば、エンジン2にマフラー等が取り付けられている場合は、そのマフラーの先端に配管10を接続してもよい。つまり、配管10は、マフラー等を介してエンジン2に間接的に接続されていてもよい。
前記実施形態では、流量変化抑制機構13を絞り機構14とチャンバ15とにより構成する例について説明した。ただし、本発明は、この構成に限定されない。流量変化抑制機構13は、例えば、絞り機構14のみによって構成されていてもよい。また、流量変化抑制機構13は、チャンバ15のみによって構成されていてもよい。流量変化抑制機構13は、例えば、ラミナフロー形成装置やキャピラリーによって構成されていてもよい。
前記実施形態1では、二酸化硫黄検知管22を一本のみセット可能な測定装置1について説明した。ただし、本発明はこの構成に限定されない。例えば、測定装置は、複数の検知管がセット可能なものであってもよい。具体的には、測定装置は、2本〜5本程度の数の検知管がセット可能なものであってもよい。また、検知管フォルダ21は、二酸化硫黄検知管22と共に、二酸化硫黄検知管22とは別の管状体が直列に配置可能なものであってもよい。例えば、検知管フォルダ21は、二酸化硫黄検知管22の妨害ガスを吸着又は吸収して低減する前処理管を二酸化硫黄検知管22よりも上流側に、二酸化硫黄検知管22に対して直列に配置可能なものであってもよい。
前記実施形態2では、二酸化硫黄検知管22の妨害ガスが1種であり、妨害ガス検知管42を1本のみセットする例につい説明した。ただし、セットする妨害ガス検知管42の数量は特に限定されない。例えば、二酸化硫黄検知管22の妨害ガスが複数種類である場合は、複数種類の妨害ガス検知管42をセットしてもよい。
前記実施形態3に係る測定装置1bは、実施形態2の測定装置1bに、エンジンオイル消費量の算出を行う演算部(算出部)を付加したものであった。しかし、本発明に係るエンジンオイル消費量測定装置は、実施形態1の測定装置1に、エンジンオイル消費量の算出を行う演算部(算出部)を付加したものであってもよい。
《本明細書における用語等の定義》
本明細書において、検知管の「妨害ガス」とは、検知管が検知しようとするガスの検知を妨げるガスをいう。言い換えれば、「妨害ガス」とは、そのガスが存在することで、検知管が検知しようとするガスの測定値が不正確となるガスをいう。妨害ガスとしては、例えば、検知管の試薬に反応し、検知管を変色させるガスなどが挙げられる。なお、「妨害ガス」は「干渉ガス」とも呼ばれることがある。
本発明は、エンジンオイル消費量測定に有用である。
実施形態1に係る測定装置の構成を表す概略構成図である。 使用前の検知管の正面図である。 使用後の状態を表す検知管の正面図である。 エンジンオイル消費量測定を表すフローチャートである。 標準燃料使用時の排気ガスと混合燃料使用時の排気ガスとにおける硫黄成分の構成を対比した図である。 排気温度と排気ガス中の二酸化硫黄濃度との関係を示す図である。 実施形態2に係る測定装置の構成を表す概略構成図である。 妨害ガスを考慮した補正処理のフローチャートである。 実施形態3に係る測定装置の構成を表す概略構成図である。 エンジンオイル消費量測定を行う際のコンピュータの機能ブロック図である。
符号の説明
1、1a、1b 測定装置
2 エンジン
3 排気ガス導入経路
4 排気ガス排出経路
13 流量変化抑制機構
14 絞り機構
15 チャンバ
21、41、61 検知管フォルダ(フォルダ部)
22 二酸化硫黄検知管
28 ポンプ
30 流量積算計(流量測定器)
42 妨害ガス検知管
100 コンピュータ
101 第1の入力手段
102 第2の入力手段
103 混合燃料量入力手段
104 混合率入力手段
105 濃度比率入力手段
106 算出手段

Claims (12)

  1. エンジンオイルによって潤滑されたエンジンのエンジンオイル消費量測定方法であって、
    標準燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定工程と、
    標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定工程と、
    下記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する算出工程と、
    を備えたエンジンオイル消費量測定方法。
    エンジンオイル消費量={(S0−g)/(S1−S0+g)}・G・R ・・・(1)
    g=(S1−S0)/(α―1) ・・・(2)
    ただし、
    G:第2の測定工程において使用された混合燃料の量、
    R:混合燃料におけるエンジンオイルの混合率、
    S0:第1の測定工程において検出された二酸化硫黄の濃度、
    S1:第2の測定工程において検出された二酸化硫黄の濃度、
    g:エンジンオイル消費量測定時に前記エンジンに供給された標準燃料が燃焼することによって発生する二酸化硫黄の濃度、
    α:(混合燃料が燃焼することによって発生する二酸化硫黄の濃度)/(標準燃料が燃焼することによって発生する二酸化硫黄の濃度)であって、予め与えられる所定値
    である。
  2. 前記第1および第2の測定工程において、二酸化硫黄の濃度の測定と共に、前記エンジンの排気ガスに含まれる前記二酸化硫黄検知管の妨害ガスの濃度を測定し、
    前記第1および第2の測定工程において測定された二酸化硫黄濃度を前記測定された妨害ガスの濃度に基づいて補正する補正工程をさらに備えた、
    請求項1に記載のエンジンオイル消費量測定方法。
  3. 前記第1および第2の測定工程において、二酸化硫黄の濃度の測定と共に、前記エンジンの排気ガスに含まれる前記二酸化硫黄検知管の妨害ガスの濃度を測定し、
    前記測定された妨害ガス濃度が、予め定められた基準濃度より高いときは、前記算出工程を中止する、
    請求項1に記載のエンジンオイル消費量測定方法。
  4. 前記第1および第2の測定工程の少なくとも一つは、前記エンジンを実質的に最高速で回転させた状態で行う、
    請求項1に記載のエンジンオイル消費量測定方法。
  5. エンジンオイルによって潤滑されたエンジンのエンジンオイル消費量測定装置であって、
    二酸化硫黄を検知する二酸化硫黄検知管が配置される検知管フォルダと、
    前記エンジンと前記二酸化硫黄検知管の一方側とを接続し、前記二酸化硫黄検知管に前記エンジンの排気ガスを導入する排気ガス導入経路と、
    前記二酸化硫黄検知管を流れる排気ガスの流量を測定する流量測定器と、
    標準燃料を供給して前記エンジンを駆動し、前記検知管フォルダに配置された二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定と、標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、前記検知管フォルダに配置された他の二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定と、が行われた後に、前記第2の測定工程において使用された混合燃料の量G、混合燃料におけるエンジンオイルの混合率R、前記第1の測定工程において検出された二酸化硫黄の濃度S0、前記第2の測定工程において検出された二酸化硫黄の濃度S1、およびα=(混合燃料が燃焼することによって発生する二酸化硫黄の濃度)/(標準燃料が燃焼することによって発生する二酸化硫黄の濃度)であって予め与えられる所定値、が入力され、下記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する演算装置と、
    を備えたエンジンオイル消費量測定装置。
    エンジンオイル消費量={(S0−g)/(S1−S0+g)}・G・R ・・・(1)
    エンジンオイル消費量測定時に前記エンジン内で標準燃料が燃焼することによって発生する二酸化硫黄の濃度g=(S1−S0)/(α―1) ・・・(2)
  6. 前記二酸化硫黄検知管を流れる排気ガスの流量変化を抑制する流量変化抑制機構をさらに備えた、
    請求項5に記載のエンジンオイル消費量測定装置。
  7. 前記流量変化抑制機構は、前記排気ガス導入経路に配置されている、
    請求項6に記載のエンジンオイル消費量測定装置。
  8. 前記排気ガス導入経路に配置された絞り機構と、前記排気ガス導入経路に配置されたチャンバとを含む流量変化抑制機構をさらに備えた、
    請求項5に記載のエンジンオイル消費量測定装置。
  9. 前記検知管フォルダは、前記二酸化硫黄検知管を含む複数本の検知管がセット可能な複数のフォルダ部を含み、
    前記排気ガス導入経路は、前記複数のフォルダ部にセットされた複数本の検知管のそれぞれに排気ガスを導入する、
    請求項5に記載のエンジンオイル消費量測定装置。
  10. 前記複数本の検知管は、前記二酸化硫黄検知管の妨害ガスを検知する妨害ガス検知管を含む、
    請求項9に記載のエンジンオイル消費量測定装置。
  11. 前記二酸化硫黄検知管に接続され、前記二酸化硫黄検知管からの排気ガスを排出する排気ガス排出経路と、
    前記排気ガス排出経路に配置され、前記二酸化硫黄検知管からの排気ガスを吸引するポンプと、をさらに備えた、
    請求項5に記載のエンジンオイル消費量測定装置。
  12. エンジンオイルによって潤滑されたエンジンのエンジンオイル消費量を測定するエンジンオイル消費量測定プログラムであって、コンピュータを、
    標準燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第1の測定が行われた後、当該二酸化硫黄濃度の値S0が入力される第1の入力手段と、
    標準燃料にエンジンオイルを混合してなる混合燃料を供給して前記エンジンを駆動し、二酸化硫黄を検知する二酸化硫黄検知管を用いて、前記エンジンの排気ガスに含まれる二酸化硫黄の濃度を測定する第2の測定が行われた後、当該二酸化硫黄濃度の値S1が入力される第2の入力手段と、
    前記第2の測定において使用された混合燃料の量Gが入力される混合燃料量入力手段と、
    混合燃料におけるエンジンオイルの混合率Rが入力される混合率入力手段と、
    標準燃料が燃焼することによって発生する二酸化硫黄の濃度に対する、混合燃料が燃焼することによって発生する二酸化硫黄の濃度の比率α(このαは予め与えられる所定値である)が入力される濃度比率入力手段と、
    下記算出式(1)および(2)に基づいてエンジンオイル消費量を算出する算出手段と、
    として機能させるためのエンジンオイル消費量測定プログラム。
    エンジンオイル消費量={(S0−g)/(S1−S0+g)}・G・R ・・・(1)
    エンジンオイル消費量測定時に前記エンジン内で標準燃料が燃焼することによって発生する二酸化硫黄の濃度g=(S1−S0)/(α―1) ・・・(2)
JP2008045158A 2008-02-26 2008-02-26 エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム Active JP5162274B2 (ja)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008045158A JP5162274B2 (ja) 2008-02-26 2008-02-26 エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム
TW97149463A TWI386548B (zh) 2008-02-26 2008-12-18 引擎機油消耗量測定方法、引擎機油消耗量測定裝置、及引擎機油消耗量測定程式
CN 200910118611 CN101519990B (zh) 2008-02-26 2009-02-26 发动机油耗的测量方法、油耗测量装置以及油耗测量程序

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008045158A JP5162274B2 (ja) 2008-02-26 2008-02-26 エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム

Publications (2)

Publication Number Publication Date
JP2009203834A JP2009203834A (ja) 2009-09-10
JP5162274B2 true JP5162274B2 (ja) 2013-03-13

Family

ID=41080763

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008045158A Active JP5162274B2 (ja) 2008-02-26 2008-02-26 エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム

Country Status (3)

Country Link
JP (1) JP5162274B2 (ja)
CN (1) CN101519990B (ja)
TW (1) TWI386548B (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5605166B2 (ja) * 2010-10-28 2014-10-15 トヨタ自動車株式会社 オイル消費評価解析システム
CN106405056B (zh) * 2015-07-29 2018-06-26 上海汽车集团股份有限公司 发动机燃油稀释的在线测定方法和系统
WO2022105901A1 (zh) * 2020-11-21 2022-05-27 山东鸣川汽车集团有限公司 一种环境监测设备

Family Cites Families (8)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6024285B2 (ja) * 1977-09-09 1985-06-12 日産自動車株式会社 エンジンオイル消費量の計測方法
US4321056A (en) * 1980-12-29 1982-03-23 Cummins Engine Company, Inc. Measurement of engine oil consumption
JPS6081217U (ja) * 1983-11-08 1985-06-05 三菱重工業株式会社 エンジンオイル消費量測定装置
JPS63198852A (ja) * 1987-02-13 1988-08-17 Mazda Motor Corp エンジンオイル消費量の計測装置
JPH01239441A (ja) * 1988-03-19 1989-09-25 Horiba Ltd エンジンオイル消費量測定方法
JPH0693822A (ja) * 1992-09-09 1994-04-05 Horiba Ltd エンジンオイル消費量測定方法
TW417003B (en) * 1999-05-21 2001-01-01 Kwang Yang Motor Co Control method and device for reducing the consumption of the lubricant for a two-cycle jet engine of a bicycle
DE102006036666A1 (de) * 2006-08-03 2008-02-07 Fev Motorentechnik Gmbh Ermittlung des Kraftstoffverbrauchs einer Brennkraftmaschine

Also Published As

Publication number Publication date
TWI386548B (zh) 2013-02-21
JP2009203834A (ja) 2009-09-10
CN101519990B (zh) 2011-12-14
CN101519990A (zh) 2009-09-02
TW200946765A (en) 2009-11-16

Similar Documents

Publication Publication Date Title
EP3327436B1 (en) Methane number calculation method and methane number measurement device
EP3480593B1 (en) Method and system for calibrating a gas analysis apparatus
US7905137B2 (en) Engine oil consumption measurement device and engine oil consumption measurement method
JP6173309B2 (ja) 排ガス希釈装置
US20030149536A1 (en) Engine exhaust emissions measurement correction
US9301709B2 (en) Method for optimizing the gas conversion rate in a respiratory gas analyzer
JP5729285B2 (ja) 燃焼排ガス分析装置
CN108226387B (zh) 车载型排气分析系统及其检查方法、存储介质、检查系统
JP5162274B2 (ja) エンジンオイル消費量測定方法、エンジンオイル消費量測定装置、およびエンジンオイル消費量測定プログラム
JP7267161B2 (ja) 排ガス分析装置、排ガス分析方法、及び補正式作成方法
JP5479392B2 (ja) エンジンオイル消費量測定方法
JP6093607B2 (ja) 排ガス分析装置
US8610072B2 (en) Gas exchange system flow configuration
KR20090095328A (ko) 휴대용 산소통의 공기 분석 장치
JP6826966B2 (ja) 排ガス分析装置、排ガス分析方法及び排ガス分析用プログラム
CN105424619A (zh) 一种测量肺泡气中内源性co浓度的装置及测量值补偿方法
CN113917075A (zh) 含氟混合气体中氟含量测试装置及方法
KR101229087B1 (ko) 탈착식 알코올센서 모듈을 구비한 음주측정기 및 탈착식 알코올센서 모듈
CN219065264U (zh) 一种双光路法测煤层气中硫化氢含量的进样检测装置
JP6342096B1 (ja) 試験体のガス応答性を評価する装置
JP2003014591A (ja) ガス分析計
JP6213191B2 (ja) ガス分析装置
Wallace et al. Combustion Products Monitor: Trade Study Testing
JP2010230582A (ja) 排ガス計測装置
JP2020134278A (ja) ガス分析方法及びガス分析装置

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110118

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120117

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120119

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120308

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120918

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121113

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121211

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121217

R150 Certificate of patent or registration of utility model

Ref document number: 5162274

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151221

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250