JP5159255B2 - Optical frequency domain reflection measurement method and apparatus - Google Patents
Optical frequency domain reflection measurement method and apparatus Download PDFInfo
- Publication number
- JP5159255B2 JP5159255B2 JP2007286567A JP2007286567A JP5159255B2 JP 5159255 B2 JP5159255 B2 JP 5159255B2 JP 2007286567 A JP2007286567 A JP 2007286567A JP 2007286567 A JP2007286567 A JP 2007286567A JP 5159255 B2 JP5159255 B2 JP 5159255B2
- Authority
- JP
- Japan
- Prior art keywords
- light
- optical
- measured
- modulation
- frequency
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Expired - Fee Related
Links
Images
Landscapes
- Testing Of Optical Devices Or Fibers (AREA)
Description
本発明は、光部品や光伝送路において、反射光や後方散乱光を高空間分解能で測定する光周波数領域反射測定方法とこの方法を用いた測定装置に関する。 The present invention relates to an optical frequency domain reflection measurement method for measuring reflected light and backscattered light with high spatial resolution in an optical component or an optical transmission line, and a measurement apparatus using this method.
高空間分解能にて光部品や光伝送路からの反射光および後方散乱光を測定することが可能な手法として、コヒーレント光を用いた光周波数領域反射測定(C−OFDR)法がある。この光周波数領域反射測定方法は、被測定物に周波数掃引されたコヒーレント光を入射し、被測定物からの反射光および後方散乱光と予め分岐された参照光とを合波(コヒーレント検波)し、これによって得られた干渉ビート信号を周波数解析することで、被測定物内の任意の位置での反射光および後方散乱光強度を得て、被測定物の損失分布や故障点の特定を可能にする技術である。 An optical frequency domain reflection measurement (C-OFDR) method using coherent light is a method capable of measuring reflected light and backscattered light from an optical component or an optical transmission line with high spatial resolution. In this optical frequency domain reflection measurement method, frequency-swept coherent light is incident on the object to be measured, and the reflected light and backscattered light from the object to be measured are combined with the previously branched reference light (coherent detection). By analyzing the frequency of the interference beat signal obtained in this way, it is possible to obtain the reflected light and backscattered light intensity at any position within the measured object, and to specify the loss distribution and failure point of the measured object Technology.
上記C−OFDR法を実現する従来技術として、非特許文献1、特許文献1に、コヒーレント光源の周波数掃引を外部変調器によって生じる1次変調側波帯を用いて行い、その際に生じる高次変調側波帯でのビート信号と1次変調側波帯によるビート信号とを遅延手段の挿入によって周波数軸上で分離する方法が示されている。
As conventional techniques for realizing the C-OFDR method, Non-Patent
しかしながら、C−OFDR法においては、非特許文献2に示されるように、被測定物内にフレネル反射等の強反射点が存在する場合、その強反射点での位相雑音によって反射点近傍の情報が埋もれてしまい、その情報が得られないという問題があった。 However, in the C-OFDR method, as shown in Non-Patent Document 2, when a strong reflection point such as Fresnel reflection exists in the object to be measured, information in the vicinity of the reflection point is caused by phase noise at the strong reflection point. There was a problem that the information was not obtained.
以上述べたように、従来の光周波数領域反射測定方法では、被測定物内にフレネル反射等の強反射点が存在する場合、その強反射点での位相雑音によって反射点近傍の情報が埋もれてしまい、その情報が得られないという問題があった。
本発明は、上記課題を解決するためになされたものであり、測定される任意の位置からの反射光強度を調節することができ、強反射点近傍においても高分解能な測定を行うことのできる光周波数領域反射測定方法および装置を提供することを目的とする。
As described above, in the conventional optical frequency domain reflection measurement method, when a strong reflection point such as Fresnel reflection exists in the object to be measured, information near the reflection point is buried by phase noise at the strong reflection point. Therefore, there was a problem that the information could not be obtained.
The present invention has been made to solve the above problems, and can adjust the intensity of reflected light from an arbitrary position to be measured, and can perform high-resolution measurement even in the vicinity of a strong reflection point. An object of the present invention is to provide an optical frequency domain reflection measurement method and apparatus.
上記目的を達成するために本発明に係る光周波数領域反射測定方法は、以下のように構成される。
(1)コヒーレント光に光変調を施して変調側波帯を発生させ、この変調側波帯を時間に対して線形に周波数掃引した伝送光を2分岐して一方を参照光、他方を信号光とし、前記信号光を被測定物に入射し、当該被測定物内の任意の位置で反射または後方散乱された信号光と前記参照光を合波させて干渉ビート信号を生じさせ、これを受光して周波数解析することで、前記被測定物内の任意の位置における反射率、損失の少なくともいずれかを測定する光周波数領域測定方法において、前記光変調として両側波帯変調を施し、前記信号光及び参照光の少なくともいずれか一方の光路中で遅延時間を調節することを特徴とする。
In order to achieve the above object, an optical frequency domain reflection measurement method according to the present invention is configured as follows.
(1) Optical modulation is performed on the coherent light to generate a modulation sideband, and the transmission light obtained by sweeping the frequency of the modulation sideband linearly with respect to time is branched into two, one for reference light and the other for signal light The signal light is incident on the object to be measured, and the signal light reflected or backscattered at an arbitrary position in the object to be measured and the reference light are combined to generate an interference beat signal, which is received. In the optical frequency domain measurement method for measuring at least one of reflectance and loss at an arbitrary position in the device under test by performing frequency analysis, the signal light is subjected to double sideband modulation as the optical modulation. And a delay time is adjusted in at least one of the optical paths of the reference light.
(2)(1)において、前記遅延時間の調節は、前記両側波帯変調にて生じた+N次と−N次変調側波帯(Nは自然数)のビート信号波形間の重ね合わせ状態を変化させることで、前記被測定物内の任意の位置からの反射光強度を変化させることを特徴とする。 (2) In (1), the adjustment of the delay time changes the superposition state between the beat signal waveforms in the + Nth order and −Nth order modulation sidebands (N is a natural number) generated by the double sideband modulation. By doing so, the reflected light intensity from an arbitrary position in the object to be measured is changed.
また、この発明に係る光周波数領域反射測定装置は、以下のように構成される。
(3)コヒーレント光源と、前記コヒーレント光源から出力されるコヒーレント光を入射してその両側に変調側波帯を発生させる光変調手段と、前記光変調手段に対して前記両側変調側波帯を時間軸上で線形に周波数掃引する周波数掃引手段と、前記光変調手段の出力光を2分岐して一方を参照光、他方を信号光とする光分岐器と、前記信号光を被測定部に入射し当該被測定物の任意の位置で反射または後方散乱された信号光を被測定光として取り出す被測定光抽出手段と、前記被測定光と前記参照光を合波させて干渉ビート信号光を生じさせる光合波器と、前記光合波器で得られる干渉ビート信号光を受光して電気信号として出力する光受信器と、前記光受信器で得られる干渉ビート信号を周波数解析して前記被測定物内の任意の位置における反射率、損失の少なくともいずれかを測定する周波数解析装置と、前記参照光、信号光の少なくともいずれか一方の遅延時間を調整する可変遅延手段とを具備することを特徴とする。
The optical frequency domain reflection measuring apparatus according to the present invention is configured as follows.
(3) a coherent light source, a light modulating unit that receives coherent light output from the coherent light source and generates modulation sidebands on both sides thereof, and sets both side modulation sidebands to the light modulating unit over time. Frequency sweeping means for linearly sweeping the frequency on the axis, an optical splitter that splits the output light of the optical modulation means into two parts, one of which is the reference light, and the other is the signal light, and the signal light is incident on the part to be measured Then, measured light extraction means for extracting signal light reflected or backscattered at an arbitrary position of the measured object as measured light, and combining the measured light and the reference light to generate interference beat signal light An optical multiplexer for receiving, an optical receiver for receiving an interference beat signal light obtained by the optical multiplexer and outputting it as an electrical signal, and a frequency analysis of the interference beat signal obtained by the optical receiver for measuring the object to be measured. In any position within Reflectivity that, characterized by comprising a frequency analyzer for measuring at least one of loss, the reference light, and a variable delay means for adjusting one of the delay time at least one of the signal light.
(4)(3)において、前記可変遅延手段は、前記両側波帯変調にて生じた+N次と−N次変調側波帯(Nは自然数)の前記光合成器における干渉ビート信号波形間の重ね合わせ状態を変化させることで、前記被測定物内の任意の位置からの反射光強度を変化させることを特徴とする。 (4) In (3), the variable delay means overlaps the interference beat signal waveforms in the optical combiner in the + Nth order and −Nth order modulation sidebands (N is a natural number) generated by the double sideband modulation. The reflected light intensity from an arbitrary position in the object to be measured is changed by changing the alignment state.
(5)(3)において、前記光変調手段は、搬送波抑圧型の両側波帯変調器(DSB−SC変調器)であることを特徴とする。
(6)(3)において、前記光変調手段は、前記コヒーレント光に両側波帯変調を施す両側波帯変調器(DSB変調器)と、前記被測定物の直前に配置される遅延ファイバとを備えることを特徴とする。
(5) In (3), the optical modulation means is a carrier wave suppression type double sideband modulator (DSB-SC modulator).
(6) In (3), the optical modulation means includes a double-sideband modulator (DSB modulator) that performs double-sideband modulation on the coherent light, and a delay fiber disposed immediately before the object to be measured. It is characterized by providing.
すなわち、上記構成による光周波数領域反射測定方法及び装置では、コヒーレント光を用いて光周波数領域反射測定(C−OFDR)を行う場合に、搬送波抑圧型両側波帯(DSB−SC)変調器を用いてコヒーレント光源からの出力光の周波数を掃引し、かつ信号光中の参照光の光路中の少なくとも一方に遅延時間を付加し、その遅延時間を調節することで測定される強反射点の反射光強度を減衰させて、位相雑音レベルを低下させ、この状態で再度測定を実施する。 That is, in the optical frequency domain reflection measurement method and apparatus configured as described above, when performing optical frequency domain reflection measurement (C-OFDR) using coherent light, a carrier-suppressed double sideband (DSB-SC) modulator is used. The reflected light of the strong reflection point measured by sweeping the frequency of the output light from the coherent light source and adding a delay time to at least one of the optical paths of the reference light in the signal light and adjusting the delay time The intensity is attenuated to reduce the phase noise level, and the measurement is performed again in this state.
要するに本発明によれば、測定される任意の位置からの反射光強度を調節することができ、強反射点近傍においても高分解能な測定を行うことのできる光周波数領域反射測定方法および装置を提供することができる。 In short, according to the present invention, there is provided an optical frequency domain reflection measurement method and apparatus capable of adjusting the intensity of reflected light from an arbitrary position to be measured and capable of performing high-resolution measurement even in the vicinity of a strong reflection point. can do.
以下、図面を参照して本発明の実施の形態を詳細に説明する。
(第1の実施形態)
図1は、本発明に係る光周波数領域反射測定方法に基づく測定装置の第1の実施形態を示すブロック構成図である。図1において、コヒーレント光源11から出力されるコヒーレント光はDSB−SC(搬送波抑圧型両側波帯)変調器12に入力される。このDSB−SC変調器12は、図2に示すように、駆動回路13から出力されるRF信号によって、コヒーレント光の両側に+N次と−N次変調側波帯(Nは自然数)を生じさせるもので、駆動回路13においてRF信号周波数を掃引することで、DSB−SC変調器12から出力される変調側波帯の光周波数が掃引される。
Hereinafter, embodiments of the present invention will be described in detail with reference to the drawings.
(First embodiment)
FIG. 1 is a block configuration diagram showing a first embodiment of a measuring apparatus based on an optical frequency domain reflection measuring method according to the present invention. In FIG. 1, coherent light output from a
尚、上記DSB−SC変調器12は、N=2以上の側波帯および搬送波を20dB以上抑圧することができるため、ここでは無視することができる。
このDSB−SC変調器12の出力光は第1の光方向性結合器14によって2分岐され、一方は信号光として第2の光方向性結合器15を介して被測定物16に入射され、他方は参照光として出力される。上記被測定物16内で反射または後方散乱された信号光は第2の光方向性結合器15により取り出され、参照光と共にそれぞれ可変遅延器17,18を介して第3の光方向性結合器19に送られ、ここで参照光と合波された後、光受信器20によって受信検波される。
The DSB-
The output light of the DSB-
このように信号光と参照光とを合波すると、その干渉によってビート信号光が発生する。この干渉ビート信号光は光受信器20で受信検波され、その検波出力の干渉ビート信号はローパスフィルタ21で不要な周波数成分が除去された後、周波数解析装置22によって周波数解析され、被測定物16内の各位置からの反射光および後方散乱光強度分布が測定される。
When the signal light and the reference light are combined in this way, beat signal light is generated due to the interference. The interference beat signal light is received and detected by the
この時、図3(a)に示すように、被測定物16内の反射が弱い場合には、反射点からの反射光が信号光として取り出すことができるが、図3(b)に示すように、被測定物16内に強反射点が存在すると、その点の近傍における反射光は、強反射点からの反射光が持つ位相雑音によって覆い隠されてしまう。そこで、測定結果に強反射点が観測された場合は、参照光の光路または信号光の光路中に挿入された可変遅延器17,18によって参照光及び信号光間の遅延時間を調節して、測定される強反射点の反射光強度を減衰させて位相雑音レベルを低下させるようにして、再度測定を実施する。
At this time, as shown in FIG. 3A, when the reflection in the DUT 16 is weak, the reflected light from the reflection point can be taken out as signal light, but as shown in FIG. In addition, when there is a strong reflection point in the DUT 16, the reflected light in the vicinity of the point is obscured by the phase noise of the reflected light from the strong reflection point. Therefore, when a strong reflection point is observed in the measurement result, the delay time between the reference light and the signal light is adjusted by the
ここからは、上記の反射光強度低減の原理について定量的に説明する。
DSB−SC変調後の光源スペクトルを図4に示すようなモデルで考える。図4において、+1次側波帯及び−1次側波帯の周波数f1(t)、f2(t)は以下のように表される。
From here, the principle of the reflected light intensity reduction will be described quantitatively.
A light source spectrum after DSB-SC modulation is considered using a model as shown in FIG. In FIG. 4, the frequencies f 1 (t) and f 2 (t) of the + 1st order sideband and the −1st order sideband are expressed as follows.
(1)式を用いると、+1次および−1次側波帯の電場E1(t)、E2(t)はそれぞれ以下のようになる。
Using equation (1), the electric fields E 1 (t) and E 2 (t) of the + 1st order and −1st order sidebands are as follows.
DSB−SC変調器12を用いたC−OFDR測定では、このように+1次および−1次側波帯に起因した2つの光電流が生じる。これらは同一の時間軸上で測定されるため、この2波の重ねあわせが最終的な出力光電流iとなる。直流成分を無視すると、出力光電流iによって得られるビート信号パワーPは以下のように表される。
In the C-OFDR measurement using the DSB-
一方、参照光の光路中に挿入した可変遅延器17によって新たに付与される遅延時間をτ2とすると、同様にして、振幅項が0となる条件は、
On the other hand, when the delay time newly given by the
信号光の光路及び参照光の光路の両方に挿入した可変遅延器17,18によって新たに付与される遅延時間をそれぞれτ1,τ2とすると、
If the delay times newly given by the
一例として、(5)式の振幅項についてf0=200THzとした場合の計算結果を図5に示す。図5より、時間に依らず遅延時間τが0.25×10-14秒変化する毎に振幅が0となる点が生じることがわかる。これは参照光の光路及び信号光の光路間に0.5μmの光路長差が生じる毎に振幅が0となることを示している。
As an example, FIG. 5 shows a calculation result when f 0 = 200 THz for the amplitude term of the equation (5). From FIG. 5, it can be seen that a point where the amplitude becomes zero occurs every time the delay time τ changes by 0.25 × 10 −14 seconds regardless of the time. This indicates that the amplitude becomes zero every time a 0.5 μm optical path length difference is generated between the optical path of the reference light and the optical path of the signal light.
したがって、被測定物16内に強い反射点が存在する場合、この条件では、意図的に光路長差を最大で0.5μmだけ調整(遅延時間を0.25×10-14秒調整するのと等価)することで、測定される反射光の位置を振幅が弱くなる地点まで移動させ、反射光強度を弱くすることが可能である。これにより位相雑音が低減し、強反射点近傍の情報を得ることができる。 Therefore, when there is a strong reflection point in the DUT 16, under this condition, the optical path length difference is intentionally adjusted by a maximum of 0.5 μm (the delay time is adjusted by 0.25 × 10 −14 seconds). Equivalent), the position of the reflected light to be measured can be moved to a point where the amplitude becomes weak, and the reflected light intensity can be weakened. Thereby, phase noise is reduced, and information in the vicinity of the strong reflection point can be obtained.
尚、遅延時間を調節可能な機構としての可変遅延器17,18には、図6(a)に示すような光ファイバを圧電素子に巻きつける構造や、図6(b)に示すような光ファイバの2点を固定し、片方ないしは両方の固定点を移動させる方法でも実現できる。あるいは、図6(c)に示すように、稼動ミラー構造によって光路長を調整することも可能である。さらに、図6(d)に示すような光位相変調器にて光波の位相を調節することでも同様の効果を得ることができる。尚、遅延時間を調節するための可変遅延器17,18は、参照光の光路中、信号光の光路中のどちらか一方または両方に設置すればよい。
The
上記の実施形態では、+1次および−1次側波帯のみ生じている場合について述べたが、+N次および−N次の側波帯のみ生じている場合においても同様に反射光強度の調整が可能である。
(第2の実施形態)
図7は、本発明に係る光周波数領域反射測定方法に基づく測定装置の第2の実施形態を示すブロック構成図である。但し、図7において、図1と同一部分には同一符号を付して示し、ここでは異なる部分を中心に説明する。
In the above-described embodiment, the case where only the + 1st order and −1st order sidebands are generated is described. Is possible.
(Second Embodiment)
FIG. 7 is a block diagram showing a second embodiment of the measuring apparatus based on the optical frequency domain reflection measuring method according to the present invention. However, in FIG. 7, the same parts as those in FIG. 1 are denoted by the same reference numerals, and different parts will be mainly described here.
図7に測定装置では、外部変調器12としてDSB変調器を用いる場合の構成を示すものである。このような構成であっても第1の実施形態と全く同様の原理で反射光強度の低減が可能である。但し、DSB変調は、図8に示すように搬送波が抑圧されていないため、搬送波同士のビート信号によってDC(直流成分)を中心として光源位相雑音スペクトルが生じる。そこで、被測定物16の直前にダミーファイバ等の遅延素子22を挿入し、位相雑音の影響を受けているDC周辺の周波数領域と被測定対象からのビート信号が占める周波数領域とを分離するようにするとよい。
FIG. 7 shows a configuration in the case where a DSB modulator is used as the
尚、本発明は、上記実施形態そのままに限定されるものではなく、実施段階ではその要旨を逸脱しない範囲で構成要素を変形して具体化できる。また、上記実施形態に開示されている複数の構成要素の適宜な組合せにより種々の発明を形成することができる。例えば、実施形態に示される全構成要素からいくつかの構成要素を削除してもよい。さらに、異なる実施形態例に亘る構成要素を適宜組み合わせてもよい。 Note that the present invention is not limited to the above-described embodiment as it is, and can be embodied by modifying the constituent elements without departing from the scope of the invention in the implementation stage. In addition, various inventions can be formed by appropriately combining a plurality of components disclosed in the embodiment. For example, some components may be deleted from all the components shown in the embodiment. Furthermore, constituent elements over different example embodiments may be combined as appropriate.
11…コヒーレント光源、12…DSB−SC変調器、13…駆動回路、14,15,19…光方向性結合器、16…被測定物、17,18…可変遅延器、20…光受信器、21…ローパスフィルタ、22…周波数解析装置、23…遅延素子。
DESCRIPTION OF
Claims (4)
前記光変調として両側波帯変調を施し、前記信号光及び参照光の少なくともいずれか一方を光路中で遅延して前記両側波帯変調にて生じた+N次と−N次変調側波帯(Nは自然数)のビート信号波形間の重ね合わせ状態を変化させ、前記光路中の遅延時間を調整して、測定される強反射点からの反射光強度を減衰させて、前記反射光による位相雑音レベルを低下させるようにして再度測定を実施することを特徴とする光周波数反射測定方法。 Optical modulation is performed on the coherent light to generate a modulation sideband, and the transmission light obtained by frequency sweeping the modulation sideband linearly with respect to time is split into two, one being a reference light and the other being a signal light, The signal light is incident on the object to be measured, and the signal light reflected or backscattered at an arbitrary position in the object to be measured and the reference light are combined to generate an interference beat signal, which is received and frequency is received. By analyzing, in an optical frequency domain measurement method for measuring at least one of reflectance and loss at an arbitrary position in the object to be measured,
Double-sideband modulation is performed as the optical modulation, and at least one of the signal light and the reference light is delayed in the optical path, and + Nth order and −Nth order modulation sidebands (N Is a natural number) by changing the superposition state between the beat signal waveforms , adjusting the delay time in the optical path, and attenuating the reflected light intensity from the strong reflection point to be measured, and the phase noise level due to the reflected light An optical frequency reflection measurement method, wherein the measurement is performed again so as to reduce the frequency.
前記コヒーレント光源から出力されるコヒーレント光を入射してその両側に変調側波帯を発生させる光変調手段と、
前記光変調手段に対して前記両側変調側波帯を時間軸上で線形に周波数掃引する周波数掃引手段と、
前記光変調手段の出力光を2分岐して一方を参照光、他方を信号光とする光分岐器と、
前記信号光を被測定部に入射し当該被測定物の任意の位置で反射または後方散乱された信号光を被測定光として取り出す被測定光抽出手段と、
前記被測定光と前記参照光を合波させて干渉ビート信号光を生じさせる光合波器と、
前記光合波器で得られる干渉ビート信号光を受光して電気信号として出力する光受信器と、
前記光受信器で得られる干渉ビート信号を周波数解析して前記被測定物内の任意の位置における反射率、損失の少なくともいずれかを測定する周波数解析装置と、
前記参照光、信号光の少なくともいずれか一方を光路中で任意の時間遅延する可変遅延手段と
を具備し、
前記可変遅延手段は、前記光路中の遅延によって前記両側波帯変調にて生じた+N次と−N次変調側波帯(Nは自然数)の前記光合成器における干渉ビート信号波形間の重ね合わせ状態を変化させ、前記光路中の遅延時間の調整を受けて、測定される強反射点からの反射光強度を減衰させ、前記反射光による位相雑音レベルを低下させるようにした測定状態を形成することを特徴とする光周波数反射測定装置。 A coherent light source,
A light modulation means for entering coherent light output from the coherent light source and generating modulation sidebands on both sides thereof; and
Frequency sweeping means for linearly sweeping the both-side modulation sidebands on the time axis with respect to the optical modulation means;
An optical branching device that splits the output light of the light modulating means into two parts, one being a reference light and the other being a signal light;
Measured light extraction means for extracting the signal light that is incident on the measured part and reflected or backscattered at an arbitrary position of the measured object as measured light;
An optical multiplexer that combines the light to be measured and the reference light to generate an interference beat signal light;
An optical receiver that receives the interference beat signal light obtained by the optical multiplexer and outputs it as an electrical signal;
A frequency analysis device that performs frequency analysis of an interference beat signal obtained by the optical receiver and measures at least one of reflectance and loss at an arbitrary position in the object to be measured;
Variable delay means for delaying at least one of the reference light and signal light in an optical path for an arbitrary time ;
The variable delay means is a superposition state between interference beat signal waveforms in the optical combiner in the + Nth order and −Nth order modulation sidebands (N is a natural number) generated in the double sideband modulation due to the delay in the optical path. Is changed, the delay time in the optical path is adjusted, the reflected light intensity from the strong reflection point to be measured is attenuated, and the measurement state in which the phase noise level due to the reflected light is reduced is formed. An optical frequency reflection measuring device characterized by the above.
Priority Applications (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007286567A JP5159255B2 (en) | 2007-11-02 | 2007-11-02 | Optical frequency domain reflection measurement method and apparatus |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2007286567A JP5159255B2 (en) | 2007-11-02 | 2007-11-02 | Optical frequency domain reflection measurement method and apparatus |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2009115509A JP2009115509A (en) | 2009-05-28 |
JP5159255B2 true JP5159255B2 (en) | 2013-03-06 |
Family
ID=40782818
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2007286567A Expired - Fee Related JP5159255B2 (en) | 2007-11-02 | 2007-11-02 | Optical frequency domain reflection measurement method and apparatus |
Country Status (1)
Country | Link |
---|---|
JP (1) | JP5159255B2 (en) |
Families Citing this family (6)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP2011174760A (en) * | 2010-02-23 | 2011-09-08 | Nippon Telegr & Teleph Corp <Ntt> | Method and device of measuring reflection of optical frequency region |
JP5561679B2 (en) * | 2011-06-27 | 2014-07-30 | 日本電信電話株式会社 | Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus |
JP5927079B2 (en) * | 2012-08-13 | 2016-05-25 | 日本電信電話株式会社 | Laser light characteristic measuring method and measuring apparatus |
JP6281864B2 (en) * | 2014-01-14 | 2018-02-21 | 国立研究開発法人情報通信研究機構 | Optical fiber characteristic measuring apparatus and optical fiber characteristic measuring method |
JP6277147B2 (en) * | 2015-03-04 | 2018-02-07 | 日本電信電話株式会社 | Optical fiber vibration measurement method and system |
CN113340571B (en) * | 2021-05-29 | 2023-11-10 | 南京航空航天大学 | Optical time delay measurement method and device based on optical vector analysis |
Family Cites Families (2)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP3243774B2 (en) * | 1994-11-17 | 2002-01-07 | 日本電信電話株式会社 | Optical frequency domain reflection measurement method and measurement circuit |
JP3262311B2 (en) * | 1996-02-09 | 2002-03-04 | 日本電信電話株式会社 | Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit |
-
2007
- 2007-11-02 JP JP2007286567A patent/JP5159255B2/en not_active Expired - Fee Related
Also Published As
Publication number | Publication date |
---|---|
JP2009115509A (en) | 2009-05-28 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
CN110383009B (en) | Optical sensing system and method for detecting stress in optical sensing optical fiber | |
EP3139135B1 (en) | Optical fiber characteristic measuring device | |
JP5948035B2 (en) | Distributed optical fiber acoustic wave detector | |
JP5159255B2 (en) | Optical frequency domain reflection measurement method and apparatus | |
JP6814180B2 (en) | Distributed optical fiber vibration measuring device and distributed optical fiber vibration measuring method | |
JPWO2003005002A1 (en) | Propagation measurement device and propagation measurement method | |
JP2005221500A (en) | Heterodyne optical network analysis using signal modulation | |
JP2016524715A (en) | Optical pulse compression reflector | |
US11385127B2 (en) | Optical frequency multiplexing coherent OTDR, testing method, signal processing device, and program | |
US11467060B2 (en) | Optical pulse reflectometer and optical pulse reflectometry | |
JP2016148661A (en) | Optical fiber characteristic measuring device and optical fiber characteristic measurement method | |
JP2009198300A (en) | Optical fiber characteristic measuring device and method | |
CA3148746A1 (en) | Method and device for reconstructing a backscattered electromagnetic vector wave | |
JP5412209B2 (en) | Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus | |
JP4918323B2 (en) | Optical frequency domain reflection measurement method and apparatus | |
WO2022009727A1 (en) | Optical fiber characteristic measurement device, optical fiber characteristic measurement program, and optical fiber characteristic measurement method | |
JP5849056B2 (en) | Optical pulse test apparatus and optical pulse test method | |
JP5753834B2 (en) | Optical pulse test apparatus and optical pulse test method | |
JP5561679B2 (en) | Optical frequency domain reflection measurement method and optical frequency domain reflection measurement apparatus | |
JP5334619B2 (en) | Optical path length control device | |
JPH09218130A (en) | Method and circuit for detecting frequency sweep error, optical frequency sweep light source, and optical frequency area reflection measuring circuit | |
JP3282135B2 (en) | Optical frequency domain reflectometer | |
JP5641178B2 (en) | Optical reflectometry measuring method and optical reflectometry measuring apparatus | |
US7609385B2 (en) | Method and apparatus for characterization of the response of optical devices | |
JP2014159985A (en) | Optical path characteristic analyzing device and its analyzing method |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A621 | Written request for application examination |
Free format text: JAPANESE INTERMEDIATE CODE: A621 Effective date: 20100226 |
|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120110 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120306 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120427 |
|
A521 | Written amendment |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120501 |
|
RD04 | Notification of resignation of power of attorney |
Free format text: JAPANESE INTERMEDIATE CODE: A7424 Effective date: 20120627 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121204 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121211 |
|
R150 | Certificate of patent or registration of utility model |
Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151221 Year of fee payment: 3 |
|
S531 | Written request for registration of change of domicile |
Free format text: JAPANESE INTERMEDIATE CODE: R313531 |
|
R350 | Written notification of registration of transfer |
Free format text: JAPANESE INTERMEDIATE CODE: R350 |
|
LAPS | Cancellation because of no payment of annual fees |