JPH09218130A - Method and circuit for detecting frequency sweep error, optical frequency sweep light source, and optical frequency area reflection measuring circuit - Google Patents

Method and circuit for detecting frequency sweep error, optical frequency sweep light source, and optical frequency area reflection measuring circuit

Info

Publication number
JPH09218130A
JPH09218130A JP2439296A JP2439296A JPH09218130A JP H09218130 A JPH09218130 A JP H09218130A JP 2439296 A JP2439296 A JP 2439296A JP 2439296 A JP2439296 A JP 2439296A JP H09218130 A JPH09218130 A JP H09218130A
Authority
JP
Japan
Prior art keywords
frequency
optical
light source
frequency sweep
light
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Granted
Application number
JP2439296A
Other languages
Japanese (ja)
Other versions
JP3262311B2 (en
Inventor
Yukitsugu Tsuji
幸嗣 辻
Kaoru Shimizu
薫 清水
Tsuneo Horiguchi
常雄 堀口
Yahei Oyamada
弥平 小山田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nippon Telegraph and Telephone Corp
Original Assignee
Nippon Telegraph and Telephone Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nippon Telegraph and Telephone Corp filed Critical Nippon Telegraph and Telephone Corp
Priority to JP2439296A priority Critical patent/JP3262311B2/en
Publication of JPH09218130A publication Critical patent/JPH09218130A/en
Application granted granted Critical
Publication of JP3262311B2 publication Critical patent/JP3262311B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Abstract

PROBLEM TO BE SOLVED: To detect a precise frequency sweep error and perform an optical frequency sweep with high linearity by inputting an output light to a two-optical path interference system, giving a prescribed frequency shift to the light passing one optical path, and selecting either the bead signals of the upper band waves or the bead signals of the lower band waves. SOLUTION: A frequency shift is imparted to the light passing one optical path of a two-optical path interference system 56', and only the bead signals of the primary modulated side band waves are separated on the frequency axis and selected by a band pass filter. Thus, frequency fluctuation can be precisely measured in a frequency fluctuation measuring means 58, and the frequency sweep error of an optical frequency sweep light source 51 can be precisely detected. The frequency sweep error is fed back to the optical frequency sweep light source 51, whereby the optical frequency sweep with good linearity can be performed.

Description

【発明の詳細な説明】Detailed Description of the Invention

【0001】[0001]

【発明の属する技術分野】本発明は、光源の出力光周波
数を掃引する光周波数掃引光源、その周波数掃引誤差を
検出する周波数掃引誤差検出方法および回路、ならびに
光周波数領域反射測定回路に関する。
BACKGROUND OF THE INVENTION 1. Field of the Invention The present invention relates to an optical frequency sweep light source for sweeping an output optical frequency of a light source, a frequency sweep error detecting method and circuit for detecting a frequency sweep error, and an optical frequency domain reflection measuring circuit.

【0002】[0002]

【従来の技術】光部品や光伝送路の損失を測定する方法
として光周波数領域反射測定法がある。図9は、ヘテロ
ダイン受信方式を用いた光周波数領域反射測定回路(O
FDR)の基本構成を示す。OFDRでは、光周波数掃
引光源51から光周波数を時間に対して直線的に掃引し
た光が出力され、光カプラ52を介して被測定光部品5
3に入力される。光カプラ52では、光周波数掃引光源
51の出力光の一部が参照光として分岐される。被測定
光部品53の端面や内部での反射光の一部は光カプラ5
2で分岐され、参照光とともにヘテロダイン受信器54
に入力される。ヘテロダイン受信器54では反射光と参
照光のビート信号が得られる。このビート信号の周波数
は反射点位置に対応するので、ビート信号を周波数解析
装置55に入力して周波数解析することにより、被測定
光部品53の損失測定や破断点診断などを行うことがで
きる。
2. Description of the Related Art An optical frequency domain reflectometry method is known as a method for measuring the loss of optical components and optical transmission lines. FIG. 9 shows an optical frequency domain reflection measuring circuit (O
The basic configuration of FDR) is shown. In the OFDR, the optical frequency sweep light source 51 outputs light whose optical frequency is swept linearly with time, and the measured optical component 5 is output via the optical coupler 52.
3 is input. In the optical coupler 52, part of the output light of the optical frequency sweep light source 51 is branched as reference light. A part of the reflected light at the end face of the measured optical component 53 and inside is measured by the optical coupler 5.
2 and the heterodyne receiver 54 together with the reference light
Is input to The heterodyne receiver 54 obtains beat signals of reflected light and reference light. Since the frequency of this beat signal corresponds to the reflection point position, by inputting the beat signal to the frequency analysis device 55 and performing frequency analysis, it is possible to perform loss measurement and break point diagnosis of the optical component 53 to be measured.

【0003】このようなOFDRには光周波数掃引光源
51が不可欠である。その出力光周波数を掃引する手段
の1つとして、光源の出力光を変調する変調信号を周波
数掃引する方法がある。光の変調方法には、半導体レー
ザを直接変調する方法や、光変調器を用いてレーザ光源
の出力光を外部変調する方法などがある。図10は、搬
送波光周波数Wの光を変調周波数Wm で変調したときの
変調光スペクトルを示す。変調光スペクトルには、光周
波数Wの搬送波と、搬送波光周波数WとN・Wm だけ隔
てた光周波数を有する変調側帯波が存在する。ただし、
Nは0でない整数であり、Nが正の変調側帯波を上側帯
波、Nが負の変調側帯波を下側帯波という。ここで、変
調周波数を掃引することにより変調側帯波の光周波数が
掃引される。変調周波数を掃引する信号源には電圧制御
発振器(VCO)などが用いられる。VCOの発振周波
数は制御電圧にほぼ比例しているので、VCOへの制御
電圧を時間に対して直線的に変化させることにより、比
較的容易に周波数を掃引することができる。
An optical frequency sweep light source 51 is indispensable for such OFDR. As one of the means for sweeping the output light frequency, there is a method of sweeping the frequency of a modulation signal that modulates the output light of the light source. The light modulation method includes a method of directly modulating the semiconductor laser, a method of externally modulating the output light of the laser light source using an optical modulator, and the like. FIG. 10 shows a modulated light spectrum when light having the carrier light frequency W is modulated at the modulation frequency Wm. In the modulated optical spectrum, there are a carrier having an optical frequency W and a modulated sideband having an optical frequency separated from the carrier optical frequency W by N · Wm. However,
N is an integer that is not 0. N is a positive modulation sideband, and N is a negative modulation sideband is called a lower sideband. Here, the optical frequency of the modulation sideband is swept by sweeping the modulation frequency. A voltage controlled oscillator (VCO) or the like is used as a signal source for sweeping the modulation frequency. Since the oscillation frequency of the VCO is almost proportional to the control voltage, the frequency can be relatively easily swept by changing the control voltage to the VCO linearly with time.

【0004】ところで、光周波数領域反射測定法におい
て高距離分解能を実現するためには、直線性のよい光周
波数掃引が必要とされる。そのためには、掃引周波数の
直線掃引からのずれ(周波数掃引誤差)を検出し、得ら
れた周波数掃引誤差をもとに掃引周波数を制御する方法
が有効である。周波数掃引誤差を検出する手段として
は、図11に示す光路長差をもたせた2光路干渉系56
を利用する方法がある。ここでは、光周波数掃引光源5
1の出力光を2光路干渉系56を介して光受信器57に
入力させる。光受信器57では、2光路間の光路長差に
比例した周波数をもつビート信号が得られる。
By the way, in order to realize a high range resolution in the optical frequency domain reflectometry, an optical frequency sweep with good linearity is required. For that purpose, a method of detecting a deviation of the sweep frequency from a linear sweep (frequency sweep error) and controlling the sweep frequency based on the obtained frequency sweep error is effective. As means for detecting the frequency sweep error, a two-path interference system 56 having an optical path length difference shown in FIG.
There is a way to use. Here, the optical frequency sweep light source 5
The output light of No. 1 is input to the optical receiver 57 via the two-path interference system 56. The optical receiver 57 obtains a beat signal having a frequency proportional to the optical path length difference between the two optical paths.

【0005】いま、光周波数を掃引する手段としてVC
Oによる変調を考える。ビート信号の周波数fb(t)およ
び掃引速度γ(t) を fb(t)=fb0+δfb(t) …(1) γ(t) =γ0 +δγ(t) …(2) とおく。ここで、fb0は光周波数が時間に対して理想的
に直線掃引されるときのビート周波数であり、γ0 はそ
のときの周波数掃引速度であり、δfb(t)およびδγ
(t) はそれぞれ掃引非直線性に起因するビート周波数の
変動および掃引速度の変動を表す。
Now, as a means for sweeping the optical frequency, VC
Consider modulation by O. The frequency f b (t) of the beat signal and the sweep speed γ (t) are expressed as f b (t) = f b0 + δf b (t) (1) γ (t) = γ 0 + δγ (t) (2) deep. Here, f b0 is a beat frequency when the optical frequency is ideally swept linearly with respect to time, γ 0 is a frequency sweep speed at that time, and δf b (t) and δγ
(t) represents the fluctuation of the beat frequency and the fluctuation of the sweep speed due to the sweep nonlinearity, respectively.

【0006】図11において、2光路干渉系56の2光
路間の光路長差をΔL、2光路干渉系56内での光の群
速度をvとすると、N次の変調側帯波に起因するビート
信号の周波数fb(t)は、 fb(t)=Nγ(t)・ΔL/v …(3) で与えられ、周波数変動測定手段58は、このビート信
号の周波数変動δfb(t)を測定し周波数掃引誤差を得
る。さらに、このようにして得られた周波数掃引誤差を
光周波数掃引光源51にフィードバックすれば直線性の
よい光周波数掃引が実現する。これにより、光周波数領
域反射測定法において高い距離分解能を実現することが
できる。
In FIG. 11, assuming that the optical path length difference between the two optical paths of the two optical path interference system 56 is ΔL, and the group velocity of light in the two optical path interference system 56 is v, the beat caused by the Nth-order modulated sideband wave The frequency f b (t) of the signal is given by f b (t) = Nγ (t) · ΔL / v (3), and the frequency fluctuation measuring means 58 causes the frequency fluctuation δf b (t) of this beat signal. To obtain the frequency sweep error. Further, if the frequency sweep error thus obtained is fed back to the optical frequency sweep light source 51, the optical frequency sweep with good linearity is realized. Thereby, a high distance resolution can be realized in the optical frequency domain reflectometry.

【0007】[0007]

【発明が解決しようとする課題】しかし、前記の変調周
波数の掃引により光周波数を掃引する光周波数掃引光源
の場合には、従来の2光路干渉系を利用すると同じ次数
の上側帯波と下側帯波が同じ絶対値のビート周波数を発
生させる。そして、両ビート信号の位相の不一致により
ビート信号の振幅変動が生じるので、周波数掃引誤差を
正しく検出することが困難であった。
However, in the case of the optical frequency swept light source which sweeps the optical frequency by sweeping the modulation frequency, when the conventional two-path interference system is used, the upper sideband and the lower sideband of the same order are used. The waves generate beat frequencies of the same absolute value. Then, the amplitude of the beat signal fluctuates due to the non-coincidence of the phases of the both beat signals, so that it is difficult to correctly detect the frequency sweep error.

【0008】本発明は、正確な周波数掃引誤差の検出に
より直線性のよい光周波数掃引を可能とする周波数掃引
誤差検出方法および回路、光周波数掃引光源、ならびに
高い距離分解能が得られる光周波数領域反射測定回路を
提供することを目的とする。
The present invention is directed to a frequency sweep error detection method and circuit that enables optical frequency sweep with good linearity by detecting an accurate frequency sweep error, an optical frequency sweep light source, and an optical frequency domain reflection capable of obtaining high distance resolution. The purpose is to provide a measuring circuit.

【0009】[0009]

【課題を解決するための手段】本発明の周波数掃引誤差
検出方法および回路は、光周波数掃引光源の出力光を2
光路干渉系に入力し、その一方の光路を通る光に所定の
周波数シフトを与え、N次の上側帯波同士のビート信号
とN次の下側帯波同士のビート信号を周波数軸上で分離
する。この上側帯波同士のビート信号または下側帯波同
士のビート信号の一方をバンドパスフィルタで選択する
ことにより、2つのビート信号間の位相差に起因して発
生する振幅変動が除去される。このビート信号の周波数
変動を測定し、光周波数掃引光源の周波数掃引誤差を検
出する(請求項1,2)。
SUMMARY OF THE INVENTION A frequency sweep error detecting method and circuit according to the present invention uses two outputs of an optical frequency sweep light source.
The light is input to the optical path interference system, a predetermined frequency shift is given to the light passing through one of the optical paths, and the beat signal between the Nth upper sidebands and the beat signal between the Nth lower sidebands are separated on the frequency axis. . By selecting one of the beat signals between the upper sidebands or the beat signal between the lower sidebands by the bandpass filter, the amplitude fluctuation caused by the phase difference between the two beat signals is removed. The frequency fluctuation of the beat signal is measured to detect the frequency sweep error of the optical frequency sweep light source (claims 1 and 2).

【0010】本発明の光周波数掃引光源は、直接変調方
式により周波数掃引発振器の出力信号によって変調され
たレーザ光源の出力光の周波数掃引誤差を検出し、その
周波数掃引誤差に応じた補正信号により周波数掃引発振
器の発振周波数を調整する(請求項3,5)。本発明の
光周波数掃引光源は、外部変調方式により周波数掃引発
振器の出力信号によって変調されたレーザ光源の出力光
の周波数掃引誤差を検出し、その周波数掃引誤差に応じ
た補正信号により周波数掃引発振器の発振周波数を調整
する(請求項4,5)。
The optical frequency sweeping light source of the present invention detects the frequency sweeping error of the output light of the laser light source which is modulated by the output signal of the frequency sweeping oscillator by the direct modulation method, and uses the correction signal corresponding to the frequency sweeping error to correct the frequency. The oscillation frequency of the sweep oscillator is adjusted (claims 3 and 5). The optical frequency sweep light source of the present invention detects the frequency sweep error of the output light of the laser light source that is modulated by the output signal of the frequency sweep oscillator by the external modulation method, and uses the correction signal according to the frequency sweep error to detect the frequency sweep oscillator. The oscillation frequency is adjusted (claims 4 and 5).

【0011】本発明の光周波数掃引光源は、周波数掃引
発振器の出力信号によって変調されたレーザ光源の出力
光を光周波数制御手段を介して出力し、その出力光の周
波数掃引誤差を検出し、その周波数掃引誤差に応じた補
正信号により光周波数制御手段の周波数制御量を調整す
る(請求項6)。以上の構成により、正確に検出される
周波数掃引誤差に基づいて直線性のよい光周波数掃引を
実現することができる。この光周波数掃引光源を用いて
光周波数領域反射測定回路を構成することにより、高い
距離分解能を有する測定が可能となる。
The optical frequency sweeping light source of the present invention outputs the output light of the laser light source modulated by the output signal of the frequency sweeping oscillator through the optical frequency control means, detects the frequency sweeping error of the output light, and detects the error. The frequency control amount of the optical frequency control means is adjusted by the correction signal according to the frequency sweep error (claim 6). With the above configuration, optical frequency sweeping with good linearity can be realized based on the accurately detected frequency sweeping error. By configuring an optical frequency domain reflectometry circuit using this optical frequency sweep light source, measurement with high distance resolution becomes possible.

【0012】また、周波数掃引誤差に基づいて周波数掃
引発振器の発振周波数や光周波数制御手段の周波数シフ
ト量を制御するのではなく、光周波数領域反射測定で得
られるビート信号の周波数を受信系で補正する構成で
も、同様に高い距離分解能を有する測定が可能である
(請求項7)。光周波数領域反射測定において、ある点
の反射ビート信号の周波数fx(t)は、 fx(t)=γ(t)・ΔL/v …(4) で与えられる。ΔLは参照光と反射光の光路長差であ
り、反射点位置に対応している。
Further, instead of controlling the oscillation frequency of the frequency sweep oscillator or the frequency shift amount of the optical frequency control means based on the frequency sweep error, the frequency of the beat signal obtained by the optical frequency domain reflection measurement is corrected by the receiving system. Even with such a configuration, it is possible to perform measurement with a high distance resolution (claim 7). In the optical frequency domain reflection measurement, the frequency f x (t) of the reflected beat signal at a certain point is given by f x (t) = γ (t) · ΔL / v (4) ΔL is the optical path length difference between the reference light and the reflected light, and corresponds to the reflection point position.

【0013】一方、周波数掃引誤差検出回路の参照ビー
ト信号の周波数fb(t)は、 fb(t)=γ(t)τ+fS …(5) である。τは2光路の光路長差に起因する遅延時間、f
S は2光路干渉系に挿入された光周波数シフタによる周
波数シフト量である。簡単のために、fx(t)およびf
b(t)が正の値であるとすると、 fx(t)/(fb(t)−fS)=ΔL/vτ …(6) となる。したがって、周波数解析装置において参照ビー
ト信号の周波数を周波数基準として、反射ビート信号の
周波数を式(6) に示すように補正することにより、光周
波数領域反射測定における距離分解能を改善することが
できる。
On the other hand, the frequency f b (t) of the reference beat signal of the frequency sweep error detection circuit is f b (t) = γ (t) τ + f S (5) τ is the delay time due to the difference in optical path length between the two optical paths, f
S is the frequency shift amount by the optical frequency shifter inserted in the two-path interference system. For simplicity, f x (t) and f
If b (t) is assumed to be a positive value, the f x (t) / (f b (t) -f S) = ΔL / vτ ... (6). Therefore, by correcting the frequency of the reflected beat signal as shown in equation (6) with the frequency of the reference beat signal as the frequency reference in the frequency analysis device, the distance resolution in the optical frequency domain reflection measurement can be improved.

【0014】[0014]

【発明の実施の形態】 (周波数掃引誤差検出回路−請求項2)図1は、本発明
の周波数掃引誤差検出回路の基本構成を示す。光周波数
掃引光源51は、ここではレーザ光源の出力光を変調す
る変調信号をVCOが与えるものとし、このVCOの発
振周波数を掃引することにより出力光の光周波数を掃引
する。出力光の電界e(t) は、複数の高次の変調側帯波
成分を含んでおり、 e(t) ∝ cos[{2πf0+π(Nγ(t))t}t+p(t)] …(7) で与えられる。f0は光の搬送波周波数、γ(t) は周波数
掃引速度、p(t) は光源の位相雑音、tは時間である。
Nは整数であり、N=0は搬送波、N>0は上側帯波、
N<0は下側帯波に対応する。
BEST MODE FOR CARRYING OUT THE INVENTION (Frequency Sweep Error Detection Circuit-Claim 2) FIG. 1 shows a basic configuration of a frequency sweep error detection circuit of the present invention. In the optical frequency sweep light source 51, the VCO gives a modulation signal for modulating the output light of the laser light source, and the optical frequency of the output light is swept by sweeping the oscillation frequency of the VCO. The electric field e (t) of the output light contains a plurality of higher-order modulation sideband components, and e (t) ∝ cos [{2πf 0 + π (Nγ (t)) t} t + p (t)] ( Given in 7). f 0 is the carrier frequency of light, γ (t) is the frequency sweep speed, p (t) is the phase noise of the light source, and t is time.
N is an integer, N = 0 is the carrier, N> 0 is the upper sideband,
N <0 corresponds to the lower sideband.

【0015】光周波数掃引光源51の出力光は、2光路
干渉系56’を介して光受信器57に入力され、2光路
間の光路長差に比例した周波数をもつビート信号が得ら
れる。このとき、光受信器57の出力信号の内、N次の
変調側帯波同士のビート信号i(t) は、 i(t) ∝ cos[2π{Nγ(t)}τt+2πfSt+Δp(t,τ)] …(8) Δp(t,τ)=p(t)−p(t−τ) …(9) で与えられる。なお、定位相項は省略した。周波数掃引
速度が一定であれば、N次の変調側帯波同士のビート信
号の周波数fb(t)の値は一定である。ここで、周波数掃
引速度の一定値をγ0 とすると、ビート信号の周波数の
一定値fb0は、 fb0=|Nγ0τ+fS| …(10) で与えられる。一方、周波数掃引が時間に対して直線的
でないときには、周波数掃引速度γ(t) の変動に伴って
ビート信号の周波数fb(t)が変動する。したがって、こ
のビート信号の周波数変動から周波数掃引の直線性を評
価することができる。
The output light of the optical frequency sweeping light source 51 is input to the optical receiver 57 via the two optical path interference system 56 ', and a beat signal having a frequency proportional to the optical path length difference between the two optical paths is obtained. At this time, of the output signals of the optical receiver 57, the beat signal i (t) between the N-th modulation sidebands is i (t) ∝ cos [2π {Nγ (t)} τt + 2πf S t + Δp (t, τ )] (8) Δp (t, τ) = p (t) −p (t−τ) (9) The constant phase term is omitted. If the frequency sweep speed is constant, the value of the frequency f b (t) of the beat signal between the N-th modulation sideband waves is constant. Here, when the constant value of the frequency sweep speed is γ 0 , the constant value f b0 of the frequency of the beat signal is given by f b0 = | Nγ 0 τ + f S | (10) On the other hand, when the frequency sweep is not linear with time, the frequency f b (t) of the beat signal fluctuates with the fluctuation of the frequency sweep speed γ (t). Therefore, the linearity of the frequency sweep can be evaluated from the frequency fluctuation of the beat signal.

【0016】以下、周波数掃引の直線性を評価するため
に、1次の上側帯波同士のビート信号を測定する場合に
ついて考える。図1において、2光路干渉系56’に光
周波数シフタ1を挿入しない場合(従来構成)には、1
次の上側帯波同士のビート信号と、1次の下側帯波同士
のビート信号は互いに絶対値の等しい周波数fb(t) =
|γ(t)|を有する。このままの状態で、光受信器57
の出力に接続されるバンドパスフィルタ(BPF)2の
中心周波数をfC =|γ0 τ|に設定すると、その出力
i'(t)は、 i'(t)∝ cos[Δp(t,τ)] cos[2πγ(t)τt] …(11) となる。ただし、バンドパスフィルタ2の帯域幅はビー
ト信号の周波数の変動幅よりも広く設定する。ここで、
光源位相雑音項を含む右辺の振幅項cos[Δp(t,τ)]は
時間とともにランダムに変動し、Mを整数として、Δp
(t,τ) =π/2+Mπのときにはその振幅は0とな
り、ビート信号を検出することができない。したがっ
て、2光路干渉系56’の一方の光路に光周波数シフタ
1を挿入しない場合には、ビート信号の周波数変動を正
しく検出することができない。
In the following, in order to evaluate the linearity of the frequency sweep, consider the case where the beat signal between the primary upper sidebands is measured. In FIG. 1, when the optical frequency shifter 1 is not inserted in the two-path interference system 56 '(conventional configuration), 1
The beat signal between the next upper sidebands and the beat signal between the first lower sidebands have a frequency f b (t) = having the same absolute value.
Has | γ (t) |. In this state, the optical receiver 57
When the center frequency of the band-pass filter (BPF) 2 connected to the output of is set to f C = | γ 0 τ |, its output i ′ (t) is i ′ (t) ∝ cos [Δp (t, τ)] cos [2πγ (t) τt] (11) However, the bandwidth of the bandpass filter 2 is set wider than the fluctuation width of the frequency of the beat signal. here,
The amplitude term cos [Δp (t, τ)] on the right side including the light source phase noise term fluctuates randomly with time, and Δp
When (t, τ) = π / 2 + Mπ, the amplitude becomes 0, and the beat signal cannot be detected. Therefore, if the optical frequency shifter 1 is not inserted in one optical path of the two-optical path interference system 56 ', the frequency fluctuation of the beat signal cannot be correctly detected.

【0017】これに対して、本実施形態のように光周波
数シフタ1を用いれば、1次の上側帯波同士のビート信
号の周波数は|γ(t)τ+fS|となり、1次の下側帯波
同士のビート信号の周波数は|−γ(t)τ+fS|とな
り、fS ≠0として、それぞれのビート信号の周波数は
異なることになる。すなわち、1次の上側帯波同士のビ
ート信号と1次の下側帯波同士のビート信号を周波数軸
上で分離することができる。ここで、1次の上側帯波同
士のビート信号を取り出すためには、バンドパスフィル
タ2の中心周波数をfC =|γ0τ+fS|に設定する
と、その出力i"(t)は、 i"(t)∝ cos[2π{γ(t)τ+fS}t+Δp(t,τ)] …(12) となる。これにより、1次の上側帯波同士のビート信号
には光源位相雑音に起因した振幅変動が生じないので、
周波数変動測定手段58ではそのビート信号の周波数変
動を正しく検出することができる。
On the other hand, if the optical frequency shifter 1 is used as in this embodiment, the frequency of the beat signal between the primary upper sidebands becomes | γ (t) τ + f S | The frequency of the beat signal between the waves is | −γ (t) τ + f S |, and assuming that f S ≠ 0, the frequencies of the beat signals are different. That is, the beat signal between the primary upper sideband waves and the beat signal between the primary lower sideband waves can be separated on the frequency axis. Here, in order to extract the beat signal between the first-order upper sidebands, when the center frequency of the bandpass filter 2 is set to f C = | γ 0 τ + f S |, its output i ″ (t) is i "(t) α cos [2π {γ (t) τ + f S} t + Δp (t, τ)] ... a (12). As a result, the beat signal between the first-order upper sidebands does not have the amplitude fluctuation caused by the light source phase noise.
The frequency fluctuation measuring means 58 can correctly detect the frequency fluctuation of the beat signal.

【0018】なお、(1) Lを0および+1でない整数と
して、L次の変調側帯波同士のビート信号、(2) 搬送波
同士のビート信号、(3) 次数の異なる変調側帯波同士の
ビート信号、(4) 搬送波と変調側帯波のビート信号、の
4つのビート信号が参照ビート信号以外に存在する。こ
れらのビート信号の周波数が参照ビート信号の周波数と
等しければ、そのクロストークによって参照ビート信号
の周波数変動を正しく検出することができない。したが
って、光周波数シフタ1の周波数シフト量fSは、上記
のクロストークが発生しないような値に設定する必要が
ある。
Note that (1) L is an integer other than 0 and +1 and a beat signal between L-th modulation sidebands, (2) a beat signal between carrier waves, and (3) a beat signal between modulation-side band waves with different orders. , (4) There are four beat signals other than the reference beat signal: the carrier wave and the beat signal of the modulation sideband. If the frequency of these beat signals is equal to the frequency of the reference beat signal, the crosstalk cannot correctly detect the frequency fluctuation of the reference beat signal. Therefore, the frequency shift amount f S of the optical frequency shifter 1 needs to be set to a value that does not cause the above crosstalk.

【0019】以上のように、2光路干渉系56’の一方
の光路を通る光に一定量の周波数シフトを与え、1次の
変調側帯波同士のビート信号だけを周波数軸上で分離す
ることにより、周波数変動測定手段58ではビート信号
の周波数変動を正しく測定することができる。また、一
般にある次数の変調側帯波同士のビート信号の周波数変
動を測定する場合も同様である。これにより、光周波数
掃引光源51の周波数掃引誤差を正しく検出することが
できる。この周波数掃引誤差を光周波数掃引光源51に
フィードバックすれば直線性のよい光周波数掃引が実現
する。この光周波数掃引光源の実施形態を以下に示す。
As described above, by giving a certain amount of frequency shift to the light passing through one optical path of the two-optical path interference system 56 ', only the beat signals of the primary modulation sidebands are separated on the frequency axis. The frequency fluctuation measuring means 58 can correctly measure the frequency fluctuation of the beat signal. This is also the case when measuring the frequency fluctuation of the beat signal between the modulation sidebands of a certain order. Thereby, the frequency sweep error of the optical frequency sweep light source 51 can be correctly detected. By feeding back this frequency sweep error to the optical frequency sweep light source 51, an optical frequency sweep with good linearity is realized. An embodiment of this optical frequency swept light source is shown below.

【0020】(光周波数掃引光源−請求項3)図2は、
本発明の光周波数掃引光源の第1の実施形態を示す。図
において、半導体レーザ光源(LD)12は、周波数掃
引発振器11の出力信号によって直接変調され、その出
力光の一部が光カプラ24を介して2光路干渉系56’
に入力される。周波数掃引発振器11は、外部から周波
数制御端子に入力される補正信号により発振周波数が制
御される構成である。ただし、補正信号が与えられない
ときは、その出力信号は掃引速度γ= 100GHz/sで周
波数掃引されているものとする。以下、周波数掃引誤差
検出回路を構成する2光路干渉系56’、光受信器5
7、バンドパスフィルタ(BPF)2によってビート信
号が検出される。2光路干渉系56’の光周波数シフタ
1としては音響光学変調器を用いることができる。
(Optical Frequency Sweep Light Source-Claim 3) FIG.
1 illustrates a first embodiment of an optical frequency swept light source of the present invention. In the figure, the semiconductor laser light source (LD) 12 is directly modulated by the output signal of the frequency sweep oscillator 11, and a part of the output light thereof is transmitted through the optical coupler 24 to the two-path interference system 56 ′.
Is input to The frequency sweep oscillator 11 has a configuration in which the oscillation frequency is controlled by a correction signal externally input to the frequency control terminal. However, when the correction signal is not given, it is assumed that the output signal is frequency-swept at the sweep speed γ = 100 GHz / s. Hereinafter, the two optical path interference system 56 'and the optical receiver 5 which constitute the frequency sweep error detection circuit
7. The beat signal is detected by the bandpass filter (BPF) 2. An acousto-optic modulator can be used as the optical frequency shifter 1 of the two-optical path interference system 56 '.

【0021】ここで、掃引速度γが 100GHz/s、2光
路干渉系56’の遅延光ファイバ長が1km、光周波数
シフタ1の周波数シフト量fS が80MHz、光ファイバ中
での光の群速度vが約2×108 m/sとすると、光受信
器57で受信されるビート信号の内、1次の上側帯波同
士のビート信号の周波数と下側帯波同士のビート信号の
周波数はそれぞれ80.5MHzおよび79.5MHzとなり、周波
数軸上で分離することができる。なお、搬送波同士、2
次の上側帯波同士、2次の下側帯波同士の各ビート信号
の周波数は、それぞれ80.0MHz、81.0MHz、79.0MHzと
なり、これらも周波数軸上で分離される。また、高次の
変調側帯波同士のビート信号の強度は十分に小さいので
無視する。また、周波数掃引範囲を2GHzから4GHzと
すると、搬送波と1次の変調側帯波のビート信号の周波
数は約2GHz以上であり、これらも周波数軸上で分離さ
れる。その他、次数の異なる変調側帯波同士のビート信
号の周波数も約2GHz以上となる。
Here, the sweep speed γ is 100 GHz / s, the delay optical fiber length of the optical path interference system 56 'is 1 km, the frequency shift amount f S of the optical frequency shifter 1 is 80 MHz, and the group velocity of light in the optical fiber. Assuming that v is approximately 2 × 10 8 m / s, the frequency of the beat signal between the primary upper sidebands and the frequency of the beat signal between the lower sidebands of the beat signals received by the optical receiver 57 are respectively It becomes 80.5MHz and 79.5MHz and can be separated on the frequency axis. It should be noted that carrier waves are 2
The frequencies of the beat signals of the next upper sideband and the second lower sideband are 80.0 MHz, 81.0 MHz and 79.0 MHz, respectively, and these are also separated on the frequency axis. Further, the strength of the beat signal between the higher-order modulated sidebands is sufficiently small and is ignored. Further, when the frequency sweep range is set from 2 GHz to 4 GHz, the frequency of the carrier and the beat signal of the primary modulation sideband is about 2 GHz or more, and these are also separated on the frequency axis. In addition, the frequency of the beat signal between the modulated sidebands having different orders is about 2 GHz or higher.

【0022】したがって、バンドパスフィルタ2の中心
周波数fC を例えば80.5MHzに設定し、かつビート信号
のある程度の周波数変動を考慮して帯域幅Δfを 100k
Hzに設定すると、1次の上側帯波同士のビート信号のみ
がバンドパスフィルタ2の出力信号として得られる。こ
れにより、他のビート信号に起因した振幅変動やクロス
トークの影響が除去されるので、1次の上側帯波同士の
ビート信号の周波数変動を正しく測定することができ
る。
Therefore, the center frequency f C of the bandpass filter 2 is set to, for example, 80.5 MHz, and the bandwidth Δf is set to 100 k in consideration of a certain frequency fluctuation of the beat signal.
When set to Hz, only the beat signal between the first upper sidebands is obtained as the output signal of the bandpass filter 2. As a result, the effects of amplitude fluctuations and crosstalk caused by other beat signals are removed, so that the frequency fluctuations of the beat signals between the primary upper sidebands can be accurately measured.

【0023】ビート信号の周波数変動を測定し周波数掃
引誤差を検出する手段は、ここでは周波数弁別器21お
よび積分器(ローパスフィルタ)22により構成され
る。周波数弁別器21は、バンドパスフィルタ2から出
力されるビート信号の周波数変動を電圧変動に変換す
る。その電圧変動は掃引速度の変動に比例する。ここ
で、掃引速度の変動の時間積分が周波数掃引誤差に対応
するので、ローパスフィルタなどによる積分器22の出
力信号の変動から周波数掃引誤差を得ることができる。
補正信号生成回路23は、この周波数掃引誤差に応じた
補正信号を生成し、周波数掃引発振器11の発振周波数
を制御する。これにより、周波数掃引の直線性を改善す
ることができ、掃引直線性の良好な光周波数掃引光源が
実現される。
The means for measuring the frequency fluctuation of the beat signal and detecting the frequency sweep error is composed of a frequency discriminator 21 and an integrator (low-pass filter) 22 here. The frequency discriminator 21 converts frequency fluctuations of the beat signal output from the bandpass filter 2 into voltage fluctuations. The voltage fluctuation is proportional to the fluctuation of the sweep speed. Here, since the time integration of the fluctuation of the sweep speed corresponds to the frequency sweep error, the frequency sweep error can be obtained from the fluctuation of the output signal of the integrator 22 due to the low-pass filter or the like.
The correction signal generation circuit 23 generates a correction signal according to this frequency sweep error and controls the oscillation frequency of the frequency sweep oscillator 11. Thereby, the linearity of the frequency sweep can be improved, and an optical frequency swept light source with good sweep linearity can be realized.

【0024】(光周波数掃引光源−請求項4)図3は、
本発明の光周波数掃引光源の第2の実施形態を示す。本
実施形態の特徴は、半導体レーザ光源(LD)13の出
力光を外部変調するところにある。光変調器14は例え
ば電気光学変調器を用い、周波数掃引発振器11の出力
信号によって半導体レーザ光源13の出力光を変調す
る。周波数掃引発振器11は、図2に示す第1の実施形
態と同様に周波数掃引の直線性が改善され、掃引直線性
の良好な光周波数掃引光源が実現される。
(Optical Frequency Sweep Light Source-Claim 4) FIG.
2 shows a second embodiment of the optical frequency swept light source of the present invention. The feature of this embodiment is that the output light of the semiconductor laser light source (LD) 13 is externally modulated. The optical modulator 14 uses, for example, an electro-optical modulator, and modulates the output light of the semiconductor laser light source 13 by the output signal of the frequency sweep oscillator 11. The frequency sweep oscillator 11 has improved frequency sweep linearity as in the first embodiment shown in FIG. 2, and realizes an optical frequency swept light source having good sweep linearity.

【0025】(光周波数掃引光源−請求項5)図4は、
本発明の光周波数掃引光源の第3の実施形態を示す。本
実施形態の特徴は、図2に示す第1の実施形態の構成に
おいて、周波数掃引発振器11の出力信号によって出力
光が変調される半導体レーザ光源(LD)12,15を
備え、半導体レーザ光源12を周波数掃引誤差検出に使
用し、半導体レーザ光源15の出力光を光周波数掃引光
源の出力光とするところにある。すなわち、図2に示す
光周波数掃引光源は、半導体レーザ光源15に対する周
波数掃引信号源とみることができる。周波数掃引発振器
11の出力信号の周波数は上述の構成により直線性よく
掃引されるので、半導体レーザ光源15の出力光に含ま
れる変調側帯波の光周波数も直線性よく掃引される。
(Optical Frequency Sweep Light Source-Claim 5) FIG.
3 shows a third embodiment of an optical frequency swept light source of the present invention. The feature of this embodiment is that the semiconductor laser light source (LD) 12, 15 whose output light is modulated by the output signal of the frequency sweep oscillator 11 is provided in the configuration of the first embodiment shown in FIG. Is used for frequency sweep error detection, and the output light of the semiconductor laser light source 15 is used as the output light of the optical frequency sweep light source. That is, the optical frequency swept light source shown in FIG. 2 can be regarded as a frequency swept signal source for the semiconductor laser light source 15. Since the frequency of the output signal of the frequency sweep oscillator 11 is swept with good linearity by the above configuration, the optical frequency of the modulation sideband wave included in the output light of the semiconductor laser light source 15 is also swept with good linearity.

【0026】このような構成では、光周波数掃引光源と
して、波長やコヒーレンスなど目的に応じた特性を有す
る光源を任意に選択し、また容易に変更することが可能
である。なお、図3に示す第2の実施形態の外部変調方
式による構成にも同様に適用できる。また、第2の半導
体レーザ光源15の出力光を外部変調する構成でもよ
い。
In such a configuration, as the optical frequency sweep light source, a light source having characteristics such as wavelength and coherence according to the purpose can be arbitrarily selected and easily changed. Note that the same can be applied to the configuration of the second embodiment shown in FIG. 3 according to the external modulation method. Alternatively, the output light of the second semiconductor laser light source 15 may be externally modulated.

【0027】(光周波数掃引光源−請求項6)図5は、
本発明の光周波数掃引光源の第4の実施形態を示す。図
において、半導体レーザ光源(LD)12は、周波数掃
引発振器16の出力信号によって直接変調され、その出
力光が光周波数シフタ17に入力される。光周波数シフ
タ17は例えば音響光学変調器が用いられ、電圧制御発
振器(VCO)18の出力信号によって周波数シフト量
(例えば80MHz)が設定される。電圧制御発振器18
は、補正信号生成回路23から周波数制御端子に入力さ
れる補正信号により発振周波数が制御される構成であ
る。本構成によっても半導体レーザ光源12の光周波数
掃引の直線性が改善され、掃引直線性の良好な光周波数
掃引光源が実現される。なお、半導体レーザ光源12の
出力光を外部変調する構成でも同様である。
(Optical Frequency Sweep Light Source-Claim 6) FIG.
4 shows a fourth embodiment of an optical frequency swept light source of the present invention. In the figure, a semiconductor laser light source (LD) 12 is directly modulated by an output signal of a frequency sweep oscillator 16, and its output light is input to an optical frequency shifter 17. As the optical frequency shifter 17, for example, an acousto-optic modulator is used, and the frequency shift amount (for example, 80 MHz) is set by the output signal of the voltage controlled oscillator (VCO) 18. Voltage controlled oscillator 18
Is a configuration in which the oscillation frequency is controlled by a correction signal input from the correction signal generation circuit 23 to the frequency control terminal. Also with this configuration, the linearity of the optical frequency sweep of the semiconductor laser light source 12 is improved, and an optical frequency sweep light source with good sweep linearity is realized. The same applies to the configuration in which the output light of the semiconductor laser light source 12 is externally modulated.

【0028】以上、光周波数掃引光源として第1ないし
第4の実施形態を示したが、このような光周波数掃引光
源を用いて光周波数領域反射測定回路を構成することに
より、高い距離分解能を有する測定が可能となる。以
下、本発明の光周波数掃引光源を用いた光周波数領域反
射測定回路の実施形態を示す。 (光周波数領域反射測定回路)図6は、本発明の光周波
数掃引光源を用いた光周波数領域反射測定回路の第1の
実施形態を示す。
As described above, the first to fourth embodiments have been shown as the optical frequency sweep light source. However, by constructing the optical frequency domain reflection measuring circuit using such an optical frequency sweep light source, a high distance resolution can be obtained. It becomes possible to measure. An embodiment of an optical frequency domain reflectometry circuit using the optical frequency sweep light source of the present invention will be described below. (Optical Frequency Domain Reflectance Measuring Circuit) FIG. 6 shows a first embodiment of an optical frequency domain reflectance measuring circuit using the optical frequency swept light source of the present invention.

【0029】図において、本発明の光周波数掃引光源1
0としては、図2〜図4に示す光周波数掃引光源のいず
れのものでもよいが、周波数掃引発振器11の出力信号
を外部に取り出す必要がある。光周波数掃引光源10か
ら光周波数を時間に対して直線的に掃引した光が出力さ
れ、光カプラ52を介して被測定光部品53に入力され
る。被測定光部品53の端面や内部での反射光の一部は
光カプラ52で分岐されて光受信器31に入力される。
ミキサ32は、周波数掃引発振器11の出力信号と光受
信器31の出力信号とを合成してビート信号を出力す
る。このビート信号の周波数は、被測定光部品53内の
反射点位置に対応している。周波数解析装置55は、こ
のビート信号を周波数解析することにより、被測定光部
品53の損失測定や破断点診断などを行うことができ
る。なお、周波数掃引発振器11の出力信号および光周
波数掃引光源10の出力光はともに直線性よく掃引され
ているので、高い距離分解能を実現することができる。
In the figure, an optical frequency sweep light source 1 of the present invention is shown.
0 may be any of the optical frequency sweep light sources shown in FIGS. 2 to 4, but it is necessary to take out the output signal of the frequency sweep oscillator 11 to the outside. Light whose frequency is swept linearly with respect to time is output from the optical frequency sweep light source 10, and is input to the measured optical component 53 via the optical coupler 52. A part of the reflected light at the end face of the measured optical component 53 and inside is branched by the optical coupler 52 and input to the optical receiver 31.
The mixer 32 synthesizes the output signal of the frequency sweep oscillator 11 and the output signal of the optical receiver 31 and outputs a beat signal. The frequency of this beat signal corresponds to the position of the reflection point in the measured optical component 53. The frequency analyzer 55 frequency-analyzes the beat signal, thereby making it possible to measure the loss of the optical component 53 to be measured, diagnose the breaking point, and the like. Since both the output signal of the frequency sweep oscillator 11 and the output light of the optical frequency sweep light source 10 are swept with good linearity, a high distance resolution can be realized.

【0030】(光周波数領域反射測定回路)図7は、本
発明の光周波数掃引光源を用いた光周波数領域反射測定
回路の第2の実施形態を示す。図において、本発明の光
周波数掃引光源10としては、図2〜図5に示す光周波
数掃引光源のいずれのものでもよい。光周波数掃引光源
10の出力光は、光カプラ52−1,52−2を介して
被測定光部品53に入力される。光カプラ52−1は、
光周波数掃引光源10の出力光の一部を参照光として分
岐してヘテロダイン受信器54に入力する。光カプラ5
2−2は、被測定光部品53の端面や内部での反射光の
一部を分岐してヘテロダイン受信器54に入力する。ヘ
テロダイン受信器54では反射光と参照光のビート信号
が得られる。このビート信号の周波数は反射点位置に対
応するので、ビート信号を周波数解析装置55に入力し
て周波数解析することにより、被測定光部品53の損失
測定や破断点診断などを行うことができる。なお、光周
波数掃引光源10の出力光は直線性よく掃引されている
ので、高い距離分解能を実現することができる。
(Optical Frequency Domain Reflectance Measuring Circuit) FIG. 7 shows a second embodiment of an optical frequency domain reflectance measuring circuit using the optical frequency swept light source of the present invention. In the figure, the optical frequency sweeping light source 10 of the present invention may be any of the optical frequency sweeping light sources shown in FIGS. The output light of the optical frequency sweep light source 10 is input to the measured optical component 53 via the optical couplers 52-1 and 52-2. The optical coupler 52-1 is
A part of the output light of the optical frequency sweep light source 10 is branched as reference light and input to the heterodyne receiver 54. Optical coupler 5
2-2 branches a part of the reflected light on the end face of the measured optical component 53 or inside and inputs the branched light to the heterodyne receiver 54. The heterodyne receiver 54 obtains beat signals of reflected light and reference light. Since the frequency of this beat signal corresponds to the reflection point position, by inputting the beat signal to the frequency analysis device 55 and performing frequency analysis, it is possible to perform loss measurement and break point diagnosis of the optical component 53 to be measured. Since the output light of the optical frequency sweep light source 10 is swept with good linearity, a high distance resolution can be realized.

【0031】(光周波数領域反射測定回路−請求項7)
図8は、本発明の周波数掃引誤差検出回路を用いた光周
波数領域反射測定回路の実施形態を示す。図において、
本発明の周波数掃引誤差検出回路20は、図1に示す2
光路干渉系56’、光受信器57、バンドパスフィルタ
(BPF)2により構成される。光周波数掃引光源51
の出力光は、光カプラ52−1,52−2を介して被測
定光部品53に入力される。光カプラ52−1は、光周
波数掃引光源51の出力光の一部を分岐して周波数掃引
誤差検出回路20に入力する。周波数掃引誤差検出回路
20は、所定の変調側帯波同士のビート信号を出力す
る。光カプラ52−2では、光周波数掃引光源51の出
力光の一部が参照光として分岐される。被測定光部品5
3の端面や内部での反射光の一部は光カプラ52−2で
分岐され、参照光とともにヘテロダイン受信器54に入
力される。ヘテロダイン受信器54では反射光と参照光
のビート信号が得られる。このビート信号の周波数は反
射点位置に対応する。ここで、周波数解析装置55は周
波数掃引誤差検出回路20から出力されるビート信号の
周波数を周波数基準として、ヘテロダイン受信器54か
らのビート信号の周波数解析を行う。本構成により、光
源の掃引速度の変動に起因するビート信号の周波数変動
は相殺されるので、高い距離分解能で被測定光部品53
の損失測定や破断点診断などを行うことができる。
(Optical frequency domain reflectometry circuit-claim 7)
FIG. 8 shows an embodiment of an optical frequency domain reflectometry circuit using the frequency sweep error detection circuit of the present invention. In the figure,
The frequency sweep error detection circuit 20 of the present invention is the same as the frequency sweep error detection circuit 20 shown in FIG.
The optical path interference system 56 ', the optical receiver 57, and the bandpass filter (BPF) 2 are used. Optical frequency sweep light source 51
Output light is input to the measured optical component 53 via the optical couplers 52-1 and 52-2. The optical coupler 52-1 branches a part of the output light of the optical frequency sweep light source 51 and inputs it to the frequency sweep error detection circuit 20. The frequency sweep error detection circuit 20 outputs a beat signal of predetermined modulation sidebands. In the optical coupler 52-2, part of the output light of the optical frequency sweep light source 51 is branched as reference light. Optical component under test 5
A part of the reflected light on the end face of 3 and inside is branched by the optical coupler 52-2 and input to the heterodyne receiver 54 together with the reference light. The heterodyne receiver 54 obtains beat signals of reflected light and reference light. The frequency of this beat signal corresponds to the position of the reflection point. Here, the frequency analysis device 55 performs frequency analysis of the beat signal from the heterodyne receiver 54 with the frequency of the beat signal output from the frequency sweep error detection circuit 20 as a frequency reference. With this configuration, the fluctuations in the frequency of the beat signal due to the fluctuations in the sweep speed of the light source are canceled out, so that the measured optical component 53 with a high distance resolution.
It is possible to perform the loss measurement and the fracture point diagnosis.

【0032】[0032]

【発明の効果】以上説明したように、本発明の周波数掃
引誤差検出方法および回路は、光周波数掃引の直線性を
正しく評価することができる。また、本発明の周波数掃
引誤差検出回路を用いることにより、直線性のよい周波
数掃引信号源または直線性のよい光周波数掃引光源を実
現することができる。また、本発明の光周波数掃引光源
を用いることにより、非常に高い距離分解能を有する光
周波数領域反射測定回路を実現することができる。
As described above, the frequency sweep error detecting method and circuit of the present invention can correctly evaluate the linearity of optical frequency sweep. Further, by using the frequency sweep error detection circuit of the present invention, it is possible to realize a frequency sweep signal source having good linearity or an optical frequency sweep light source having good linearity. Further, by using the optical frequency sweep light source of the present invention, an optical frequency domain reflectometry circuit having a very high distance resolution can be realized.

【図面の簡単な説明】[Brief description of drawings]

【図1】本発明の周波数掃引誤差検出回路の基本構成を
示す図。
FIG. 1 is a diagram showing a basic configuration of a frequency sweep error detection circuit of the present invention.

【図2】本発明の光周波数掃引光源の第1の実施形態を
示す図。
FIG. 2 is a diagram showing a first embodiment of an optical frequency sweep light source of the present invention.

【図3】本発明の光周波数掃引光源の第2の実施形態を
示す図。
FIG. 3 is a diagram showing a second embodiment of an optical frequency sweep light source of the present invention.

【図4】本発明の光周波数掃引光源の第3の実施形態を
示す図。
FIG. 4 is a diagram showing a third embodiment of an optical frequency sweep light source of the present invention.

【図5】本発明の光周波数掃引光源の第4の実施形態を
示す図。
FIG. 5 is a diagram showing a fourth embodiment of an optical frequency sweep light source of the present invention.

【図6】本発明の光周波数掃引光源を用いた光周波数領
域反射測定回路の第1の実施形態を示す図。
FIG. 6 is a diagram showing a first embodiment of an optical frequency domain reflectometry circuit using the optical frequency sweep light source of the present invention.

【図7】本発明の光周波数掃引光源を用いた光周波数領
域反射測定回路の第2の実施形態を示す図。
FIG. 7 is a diagram showing a second embodiment of an optical frequency domain reflectometry circuit using the optical frequency swept light source of the present invention.

【図8】本発明の周波数掃引誤差検出回路を用いた光周
波数領域反射測定回路の実施形態を示す図。
FIG. 8 is a diagram showing an embodiment of an optical frequency domain reflectometry circuit using the frequency sweep error detection circuit of the present invention.

【図9】従来の光周波数領域反射測定回路の構成例を示
す図。
FIG. 9 is a diagram showing a configuration example of a conventional optical frequency domain reflectometry circuit.

【図10】変調光スペクトルを示す図。FIG. 10 is a diagram showing a modulated light spectrum.

【図11】従来の周波数掃引誤差検出回路の構成例を示
す図。
FIG. 11 is a diagram showing a configuration example of a conventional frequency sweep error detection circuit.

【符号の説明】 1 光周波数シフタ 2 バンドパスフィルタ(BPF) 10 本発明の光周波数掃引光源 11,16 周波数掃引発振器 12,13,15 半導体レーザ光源(LD) 14 光変調器 17 光周波数シフタ 18 電圧制御発振器(VCO) 20 本発明の周波数掃引誤差検出回路 21 周波数弁別器 22 積分器(LPF) 23 補正信号生成回路 24 光カプラ 31 光受信器 32 ミキサ 51 光周波数掃引光源 52 光カプラ 53 被測定光部品 54 ヘテロダイン受信器 55 周波数解析装置 56 2光路干渉系 57 光受信器 58 周波数変動測定手段[Description of Reference Signs] 1 optical frequency shifter 2 bandpass filter (BPF) 10 optical frequency swept light source of the present invention 11, 16 frequency swept oscillator 12, 13, 15 semiconductor laser light source (LD) 14 optical modulator 17 optical frequency shifter 18 Voltage controlled oscillator (VCO) 20 Frequency sweep error detection circuit of the present invention 21 Frequency discriminator 22 Integrator (LPF) 23 Correction signal generation circuit 24 Optical coupler 31 Optical receiver 32 Mixer 51 Optical frequency sweep light source 52 Optical coupler 53 Measured Optical component 54 Heterodyne receiver 55 Frequency analysis device 56 2 Optical path interference system 57 Optical receiver 58 Frequency fluctuation measuring means

フロントページの続き (72)発明者 小山田 弥平 東京都新宿区西新宿三丁目19番2号 日本 電信電話株式会社内Front Page Continuation (72) Inventor Yahei Oyamada 3-19-2 Nishishinjuku, Shinjuku-ku, Tokyo Inside Nippon Telegraph and Telephone Corporation

Claims (7)

【特許請求の範囲】[Claims] 【請求項1】 光周波数掃引光源の出力光を2光路干渉
系を介して光受信器で受信し、得られたビート信号の周
波数変動から光周波数掃引光源の周波数掃引誤差を検出
する周波数掃引誤差検出方法において、 前記2光路干渉系の一方の光路を通る光に所定の周波数
シフトを与え、N次(Nは0でない整数)の上側帯波同
士のビート信号とN次の下側帯波同士のビート信号を周
波数軸上で分離し、 前記上側帯波同士のビート信号または前記下側帯波同士
のビート信号の一方を選択してその周波数変動を測定
し、前記光周波数掃引光源の周波数掃引誤差を検出する
ことを特徴とする周波数掃引誤差検出方法。
1. A frequency sweep error in which output light of an optical frequency sweep light source is received by an optical receiver via a two-path interference system, and a frequency sweep error of the optical frequency sweep light source is detected from the obtained frequency fluctuation of a beat signal. In the detection method, a predetermined frequency shift is applied to the light passing through one optical path of the two-path interference system, and a beat signal between N-th order (N is an integer other than 0) upper sideband waves and an Nth-order lower sideband wave The beat signal is separated on the frequency axis, and one of the beat signals between the upper sidebands or the beat signal between the lower sidebands is selected and its frequency fluctuation is measured, and the frequency sweep error of the optical frequency sweep light source is measured. A method for detecting a frequency sweep error characterized by detecting.
【請求項2】 光周波数掃引光源の出力光を2光路に分
岐し、その一方の光に所定の遅延を与えて他方の光と合
波し、そのビート信号光を出力する2光路干渉系と、 前記ビート信号光を受信する光受信器と、 前記光受信器から出力されるビート信号の周波数変動を
測定する周波数変動測定手段とを備え、前記ビート信号
の周波数変動から前記光周波数掃引光源の周波数掃引誤
差を検出する周波数掃引誤差検出回路において、 前記2光路干渉系の一方の光路に挿入され、通過する光
に所定の周波数シフトを与える光周波数シフタと、 前記光受信器から出力されるビート信号を入力し、N次
(Nは0でない整数)の上側帯波同士のビート信号また
はN次の下側帯波同士のビート信号の一方を選択して前
記周波数変動測定手段に送出するバンドパスフィルタと
を備えたことを特徴とする周波数掃引誤差検出回路。
2. A two-optical-path interference system that splits the output light of an optical frequency sweep light source into two optical paths, adds a predetermined delay to one of the lights, combines the other light, and outputs the beat signal light. An optical receiver for receiving the beat signal light, and a frequency fluctuation measuring means for measuring the frequency fluctuation of the beat signal output from the optical receiver, and the optical frequency sweep light source of the optical frequency sweep light source from the frequency fluctuation of the beat signal. In a frequency sweep error detection circuit for detecting a frequency sweep error, an optical frequency shifter which is inserted into one optical path of the two optical path interference system and gives a predetermined frequency shift to passing light, and a beat output from the optical receiver A band pass for inputting a signal, selecting one of N-th order (N is an integer other than 0) upper side band wave beat signal or N-th order lower side band wave beat signal, and transmitting the selected signal to the frequency fluctuation measuring means. Frequency sweep error detection circuit, characterized in that a filter.
【請求項3】 発振周波数が時間に対して直線的に掃引
されるとともに、外部から周波数制御端子に入力される
補正信号に応じて発振周波数が調整される周波数掃引発
振器と、 前記周波数掃引発振器の出力信号によって出力光が変調
されるレーザ光源と、 前記レーザ光源の出力光の周波数掃引誤差を検出する請
求項2に記載の周波数掃引誤差検出回路と、 前記周波数掃引誤差に応じた補正信号を生成し、前記周
波数掃引発振器の周波数制御端子に送出する補正信号生
成手段とを備え、前記レーザ光源の出力光を分岐して外
部に出力することを特徴とする光周波数掃引光源。
3. A frequency sweep oscillator in which the oscillation frequency is swept linearly with respect to time, and the oscillation frequency is adjusted according to a correction signal externally input to a frequency control terminal; A laser light source whose output light is modulated by an output signal, a frequency sweep error detection circuit according to claim 2 which detects a frequency sweep error of the output light of the laser light source, and a correction signal according to the frequency sweep error. An optical frequency swept light source, comprising: a correction signal generating means for sending to a frequency control terminal of the frequency swept oscillator; and splitting the output light of the laser light source and outputting the split light to the outside.
【請求項4】 レーザ光源と、 発振周波数が時間に対して直線的に掃引されるととも
に、外部から周波数制御端子に入力される補正信号に応
じて発振周波数が調整される周波数掃引発振器と、 前記周波数掃引発振器の出力信号によって前記レーザ光
源の出力光を変調する光変調器と、 前記光変調器の出力光の周波数掃引誤差を検出する請求
項2に記載の周波数掃引誤差検出回路と、 前記周波数掃引誤差に応じた補正信号を生成し、前記周
波数掃引発振器の周波数制御端子に送出する補正信号生
成手段とを備え、前記光変調器の出力光を分岐して外部
に出力することを特徴とする光周波数掃引光源。
4. A laser light source, a frequency sweep oscillator whose oscillation frequency is swept linearly with respect to time, and whose oscillation frequency is adjusted according to a correction signal inputted from the outside to a frequency control terminal, An optical modulator that modulates output light of the laser light source according to an output signal of a frequency sweep oscillator; a frequency sweep error detection circuit according to claim 2 that detects a frequency sweep error of output light of the optical modulator; Correction signal generating means for generating a correction signal according to a sweep error and sending it to the frequency control terminal of the frequency sweep oscillator, and branching the output light of the optical modulator and outputting it to the outside. Optical frequency sweep light source.
【請求項5】 請求項3または請求項4に記載の光周波
数掃引光源において、 周波数掃引発振器の出力信号によって出力光が直接変調
または外部変調される第2のレーザ光源を備え、第2の
レーザ光源の出力光を外部に出力することを特徴とする
光周波数掃引光源。
5. The optical frequency swept light source according to claim 3 or 4, further comprising a second laser light source whose output light is directly or externally modulated by an output signal of a frequency swept oscillator. An optical frequency sweep light source characterized by outputting the output light of the light source to the outside.
【請求項6】 発振周波数が時間に対して直線的に掃引
される周波数掃引発振器と、 前記周波数掃引発振器の出力信号によって出力光が直接
変調または外部変調されるレーザ光源と、 外部から周波数制御端子に入力される補正信号に応じ
て、前記レーザ光源の出力光周波数を調整する光周波数
制御手段と、 前記光周波数制御手段の出力光の周波数掃引誤差を検出
する請求項2に記載の周波数掃引誤差検出回路と、 前記周波数掃引誤差に応じた補正信号を生成し、前記光
周波数制御手段の周波数制御端子に送出する補正信号生
成手段とを備え、前記光周波数制御手段の出力光を分岐
して外部に出力することを特徴とする光周波数掃引光
源。
6. A frequency sweeping oscillator whose oscillation frequency is swept linearly with respect to time, a laser light source whose output light is directly modulated or externally modulated by an output signal of the frequency sweeping oscillator, and a frequency control terminal from the outside. The frequency sweep error according to claim 2, wherein an optical frequency control unit that adjusts an output optical frequency of the laser light source according to a correction signal input to the optical frequency control unit, and a frequency sweep error of the output light of the optical frequency control unit is detected. A detection circuit; and a correction signal generation means for generating a correction signal according to the frequency sweep error and sending it to the frequency control terminal of the optical frequency control means, and branching the output light of the optical frequency control means to the outside. An optical frequency sweep light source characterized by outputting to.
【請求項7】 光周波数掃引光源と、 前記光周波数掃引光源の出力光を2分岐し、その一方の
光を測定光として被測定光回路に入力する光カプラと、 前記光カプラで分岐された他方の光の周波数掃引誤差を
検出する請求項2に記載の周波数掃引誤差検出回路と、 前記測定光と前記被測定光回路からの反射光のビート信
号について、前記周波数掃引誤差検出回路の出力信号を
周波数基準として周波数解析を行う周波数解析手段とを
備えたことを特徴とする光周波数領域反射測定回路。
7. An optical frequency sweeping light source, an optical coupler that splits the output light of the optical frequency sweeping light source into two, and inputs one of the lights as measurement light to an optical circuit under test, and the optical coupler The frequency sweep error detection circuit according to claim 2, which detects a frequency sweep error of the other light, and an output signal of the frequency sweep error detection circuit for the beat signal of the reflected light from the measurement light and the measured optical circuit. An optical frequency domain reflectometry circuit comprising: a frequency analysis means for performing a frequency analysis with the frequency reference as a frequency reference.
JP2439296A 1996-02-09 1996-02-09 Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit Expired - Fee Related JP3262311B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2439296A JP3262311B2 (en) 1996-02-09 1996-02-09 Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2439296A JP3262311B2 (en) 1996-02-09 1996-02-09 Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit

Publications (2)

Publication Number Publication Date
JPH09218130A true JPH09218130A (en) 1997-08-19
JP3262311B2 JP3262311B2 (en) 2002-03-04

Family

ID=12136901

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2439296A Expired - Fee Related JP3262311B2 (en) 1996-02-09 1996-02-09 Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit

Country Status (1)

Country Link
JP (1) JP3262311B2 (en)

Cited By (11)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256788A2 (en) * 2001-05-11 2002-11-13 Agilent Technologies, Inc. (a Delaware corporation) Method and system for optical spectrum analysis with non-uniform sweep rate correction
WO2008105322A1 (en) * 2007-02-28 2008-09-04 Nippon Telegraph And Telephone Corporation Optical refractometry measuring method and device
JP2008304410A (en) * 2007-06-11 2008-12-18 Yokogawa Electric Corp Light measuring device and light measuring method
JP2009115509A (en) * 2007-11-02 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> Optical frequency domain reflection measuring method and device
JP2011007806A (en) * 2004-12-14 2011-01-13 Luna Innovations Inc Compensation method for time-varying phase in interferometric measurement
JP2011196771A (en) * 2010-03-18 2011-10-06 Canon Inc Optical coherence tomographic imaging system
CN103674082A (en) * 2013-12-06 2014-03-26 何祖源 High-spatial-resolution optical frequency domain reflectometer system based on four-wave mixing process
JP2015514306A (en) * 2012-03-14 2015-05-18 アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc Integrated light reflectometer
JP2015230992A (en) * 2014-06-05 2015-12-21 日本電信電話株式会社 High-accuracy optical frequency stabilization method and high-accuracy optical frequency stabilization device
US9557243B2 (en) 2012-03-14 2017-01-31 Axonoptics Llc Integrated optics reflectometer
CN115235367A (en) * 2022-07-26 2022-10-25 北京理工大学 High-precision dual-frequency optical frequency domain reflectometer with large strain measurement range

Cited By (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
EP1256788A2 (en) * 2001-05-11 2002-11-13 Agilent Technologies, Inc. (a Delaware corporation) Method and system for optical spectrum analysis with non-uniform sweep rate correction
JP2011007806A (en) * 2004-12-14 2011-01-13 Luna Innovations Inc Compensation method for time-varying phase in interferometric measurement
US8149419B2 (en) 2007-02-28 2012-04-03 Nippon Telegraph And Telephone Corporation Optical reflectometry and optical reflectometer
WO2008105322A1 (en) * 2007-02-28 2008-09-04 Nippon Telegraph And Telephone Corporation Optical refractometry measuring method and device
JP4917640B2 (en) * 2007-02-28 2012-04-18 日本電信電話株式会社 Optical reflectometry measuring method and apparatus
JP2008304410A (en) * 2007-06-11 2008-12-18 Yokogawa Electric Corp Light measuring device and light measuring method
JP2009115509A (en) * 2007-11-02 2009-05-28 Nippon Telegr & Teleph Corp <Ntt> Optical frequency domain reflection measuring method and device
JP2011196771A (en) * 2010-03-18 2011-10-06 Canon Inc Optical coherence tomographic imaging system
JP2015514306A (en) * 2012-03-14 2015-05-18 アクソンオプティクス・リミテッド・ライアビリティ・カンパニーAxonoptics,Llc Integrated light reflectometer
US9557243B2 (en) 2012-03-14 2017-01-31 Axonoptics Llc Integrated optics reflectometer
CN103674082A (en) * 2013-12-06 2014-03-26 何祖源 High-spatial-resolution optical frequency domain reflectometer system based on four-wave mixing process
JP2015230992A (en) * 2014-06-05 2015-12-21 日本電信電話株式会社 High-accuracy optical frequency stabilization method and high-accuracy optical frequency stabilization device
CN115235367A (en) * 2022-07-26 2022-10-25 北京理工大学 High-precision dual-frequency optical frequency domain reflectometer with large strain measurement range

Also Published As

Publication number Publication date
JP3262311B2 (en) 2002-03-04

Similar Documents

Publication Publication Date Title
JPH01291141A (en) System of measuring dispersion characteristic of optical fiber
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
JP2005221500A (en) Heterodyne optical network analysis using signal modulation
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
US6313934B1 (en) Chromatic dispersion measurement scheme for optical systems having remote access points
JP3262311B2 (en) Frequency sweep error detection method and circuit, optical frequency sweep light source, and optical frequency domain reflection measurement circuit
JP2001051044A (en) Distance measuring apparatus
JPS6235051B2 (en)
EP1669730A2 (en) Heterodyne-based optical spectrum analysis using data clock sampling
JP4107603B2 (en) Laser radar equipment
JP2009115509A (en) Optical frequency domain reflection measuring method and device
JP6947294B2 (en) Distance measuring device and control method
US8270844B2 (en) Low jitter RF distribution system
JP3152314B2 (en) Method and apparatus for measuring backscattered light
JP3243774B2 (en) Optical frequency domain reflection measurement method and measurement circuit
JPH05322699A (en) High distance-resolution optical transmission line measuring device
JPS62159928A (en) Frequency response measuring instrument for optical reception system
JP3436335B2 (en) Optical frequency sweep device
Chen et al. Simplified Doppler frequency shift measurement enabled by Serrodyne optical frequency translation
JPH0854586A (en) Light source for optical frequency sweeping
JP2003139651A (en) Method and apparatus for detection of light signal
JP2689633B2 (en) Laser radar device
JP2617599B2 (en) Optical fiber dispersion characteristics measurement method
JP3473814B2 (en) Transceiver
JPH05273077A (en) Measuring device of light phase modulation characteristics

Legal Events

Date Code Title Description
FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20071221

Year of fee payment: 6

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20081221

Year of fee payment: 7

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20091221

Year of fee payment: 8

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20101221

Year of fee payment: 9

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20111221

Year of fee payment: 10

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20121221

Year of fee payment: 11

FPAY Renewal fee payment (prs date is renewal date of database)

Free format text: PAYMENT UNTIL: 20131221

Year of fee payment: 12

LAPS Cancellation because of no payment of annual fees