JP2689633B2 - Laser radar device - Google Patents

Laser radar device

Info

Publication number
JP2689633B2
JP2689633B2 JP1212352A JP21235289A JP2689633B2 JP 2689633 B2 JP2689633 B2 JP 2689633B2 JP 1212352 A JP1212352 A JP 1212352A JP 21235289 A JP21235289 A JP 21235289A JP 2689633 B2 JP2689633 B2 JP 2689633B2
Authority
JP
Japan
Prior art keywords
light
signal
angular frequency
target
frequency
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP1212352A
Other languages
Japanese (ja)
Other versions
JPH0375581A (en
Inventor
嘉仁 平野
賢二 辰己
純一郎 山下
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Electric Corp
Original Assignee
Mitsubishi Electric Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Electric Corp filed Critical Mitsubishi Electric Corp
Priority to JP1212352A priority Critical patent/JP2689633B2/en
Publication of JPH0375581A publication Critical patent/JPH0375581A/en
Application granted granted Critical
Publication of JP2689633B2 publication Critical patent/JP2689633B2/en
Anticipated expiration legal-status Critical
Expired - Fee Related legal-status Critical Current

Links

Landscapes

  • Optical Radar Systems And Details Thereof (AREA)

Description

【発明の詳細な説明】 〔産業上の利用分野〕 この発明は目標の距離と速度を測定するレーザレーダ
装置に関する。
The present invention relates to a laser radar device for measuring the distance and speed of a target.

〔従来の技術〕[Conventional technology]

第7図は例えば文献(Optical Engineering,Vol.27,N
o.1,pp.011〜015,1988)に示された従来例のレーザレー
ダ装置の機能ブロツク図である。但し,距離測定機能ブ
ロツクは周知例による。
Fig. 7 shows, for example, the literature (Optical Engineering, Vol.27, N
o.1, pp. 011 to 015, 1988) is a functional block diagram of a conventional laser radar device. However, the block for the distance measurement function is based on a well-known example.

図において(30)は持続発振する炭酸ガスレーザ光
源,(31)はこのレーザ光源からの照射光を2分割する
分配器,(32)はこの分配器からの照射光の一方を入射
し,搬送角周波数ωをオフセツト角周波数ωACで周波
数変換する音響光学素子,(33)はこの音響光学素子か
らの照射光を時間カンウンタ(34)からのパルス信号に
応じて光パルスに変換する光スイツチ,(8)はこの光
スイツチからの照射光の水平直線偏光と1/4波長板
(9)からの反射光の垂直直線偏光とを分離し透過する
偏光子,(9)はこの偏光子からの水平直線偏光の照射
光を円偏光,望遠光学系(10)からの円偏光の反射光を
垂直直線偏光に各々変換する1/4波長板,(10)はこの1
/4波長板からの照射光を目標に照射し目標からの反射光
を受光する望遠光学系,(11)は分配器(31)からの照
射光の他方(参照光)を入射し偏光子(8)を経た目標
からの反射光の偏波方向と一致させる偏波制御器,(1
2)はこの偏波制御器を経た参照光と偏光子(8)を経
た目標からの反射光を入射し合波する合波器,(13)は
この合波器からの出射光を光−電気変換し周波数混合す
る受光素子,(14)はこの受光素子からの検波信号を増
幅する増幅器,(34)はこの増幅器からのパルス信号が
光スイツチ(33)にパルス信号を送つてから再び入力さ
れるまでの時間tを観測し距離信号を算出する時間カウ
ンタ,(35)は増幅器(14)からのパルス信号に含まれ
るドプラ周波数偏移ωDPを観測し速度信号を算出するス
ペトラムアナライザである。
In the figure, (30) is a carbon dioxide laser light source that continuously oscillates, (31) is a distributor that divides the irradiation light from this laser light source into two, and (32) is one of the irradiation light from this distributor, and the carrier angle is An acousto-optic device that converts the frequency ω 0 with an offset angular frequency ω AC , (33) an optical switch that converts the irradiation light from this acousto-optic device into an optical pulse according to the pulse signal from the time counter (34), (8) is a polarizer that separates and transmits the horizontal linearly polarized light of the irradiation light from this optical switch and the vertical linearly polarized light of the reflected light from the quarter-wave plate (9), and (9) is the polarizer from this polarizer. The 1/4 wavelength plate that converts the horizontally linearly polarized irradiation light into circularly polarized light and the circularly polarized reflected light from the telephoto optical system (10) into vertically linearly polarized light, respectively (10)
A telescopic optical system that irradiates the target with the irradiation light from the / 4 wavelength plate and receives the reflected light from the target. (11) makes the other side (reference light) of the irradiation light from the distributor (31) enter the polarizer ( 8) Polarization controller that matches the polarization direction of the reflected light from the target that passed (8)
2) is a multiplexer that combines the reference light that has passed through this polarization controller and the reflected light from the target that has passed through the polarizer (8), and (13) is the light that is emitted from this multiplexer. A light receiving element that performs electrical conversion and frequency mixing, (14) an amplifier that amplifies the detection signal from this light receiving element, and (34) inputs the pulse signal from this amplifier again after sending the pulse signal to the optical switch (33). The time counter for observing the time t until calculating the distance signal, and (35) is the spectrum analyzer for observing the Doppler frequency shift ω DP included in the pulse signal from the amplifier (14) and calculating the velocity signal. is there.

上記従来例のレーザレーダ装置は,レーザ光源(30)
で一定の角周波数ωのレーザ光を持続発振し,分配器
(31)で照射光と参照光に2分割する。照射光を音響光
学素子(32)で角周波数をω+ωACに変換し光スイツ
チ(33)で光パルスに変換して偏光子(8)に入射す
る。偏光子(8)からの水平直線偏光の照射光を1/4波
長板(9)で円偏光に偏光し望遠光学系(10)で目標に
照射する。次に目標の相対速度によりドプラ周波数偏移
ωDPを受けた角周波数ω+ωAC+ωDPの目標からの反
射光を望遠光学系(10)で受光し、1/4波長板(9)で
円偏光の反射光を垂直直線偏光に変換し,偏光子(8)
で照射光の水平直線偏光と分離し透過した反射光の垂直
直線偏光を合波器(12)の一方に入射する。一方参照光
を偏波制御器(11)で偏光子(8)を経た反射光の偏波
方向と一致させて合波器(12)の他方に入射する。更に
合波器(12)で照射光の目標からの反射光と参照光を合
波し,受光素子(13)で光−電気変換し周波数混合す
る。受光素子(13)の検波出力を増幅器(14)で増幅し
たパルス信号を時間カウンタ(34)に入力し、時間カウ
ンタ(34)で光スイツチ(33)にパルス信号を送つてか
ら再び入力されるまでの時間tを観測し目標までの距離
Rを次式から算出する。
The above-mentioned conventional laser radar device includes a laser light source (30)
The laser light with a constant angular frequency ω 0 is continuously oscillated by and is split into two by the distributor (31) into irradiation light and reference light. The irradiation light is converted into an angular frequency ω 0 + ω AC by the acousto-optic element (32), converted into an optical pulse by the optical switch (33), and incident on the polarizer (8). The horizontally linearly polarized irradiation light from the polarizer (8) is polarized into circularly polarized light by the 1/4 wavelength plate (9), and the telescopic optical system (10) irradiates the target. Then receiving the reflected light from the target Doppler frequency shift omega angular frequency received the DP ω 0 + ω AC + ω DP by the relative speed of the target in the telephoto optical system (10), with 1/4-wave plate (9) Converts the circularly polarized reflected light into vertical linearly polarized light and uses it as a polarizer (8).
At 1, the linearly polarized light of the irradiation light is separated from the vertically linearly polarized light of the reflected light which is separated and transmitted, and is incident on one side of the multiplexer (12). On the other hand, the reference light is made incident on the other side of the multiplexer (12) by being aligned with the polarization direction of the reflected light passing through the polarizer (8) by the polarization controller (11). Further, the reflected light from the target of the irradiation light and the reference light are combined by a multiplexer (12), and light-electric conversion is performed by a light receiving element (13) to mix the frequencies. A pulse signal obtained by amplifying the detection output of the light receiving element (13) by the amplifier (14) is input to the time counter (34), and the pulse signal is sent to the optical switch (33) by the time counter (34) and then input again. And the distance R to the target is calculated from the following equation.

ここで,cは光の速度 また受光素子(13)の検波出力を増幅器(14)で増幅
したパルス信号をスペトラムアナライザ(35)に入力
し,スペクトラムアナライザ(35)で電気信号Iを観測
しドプラ周波数偏移ωDPを弁別して目標の相対速度vγ
を次式から算出する。
Here, c is the speed of light, or the pulsed signal obtained by amplifying the detection output of the light receiving element (13) by the amplifier (14) is input to the spectrum analyzer (35), and the electrical signal I is observed by the spectrum analyzer (35). The target relative velocity v γ is determined by discriminating the Doppler frequency shift ω DP.
Is calculated from the following formula.

γ=ωDP・c/ω ここで,cは光の速度 なお上記電気信号Iは次式で示される。v γ = ω DP · c / ω 0 where c is the speed of light The above electric signal I is expressed by the following equation.

ここで,ηは受光素子(13)の感度 I1とφは照射光の目標からの反射光の受光素子(13)
での強度と位相 I2とφは参照光の受光素子(13)での強度と位相 〔発明が解決しようとする課題〕 上記のような従来のレーザレーダ装置では,距離分解
能を向上するためパルス信号を狭くすると速度信号検出
用の平均電力が低下して信号対雑音比(S/N)が劣化し
てしまう。一方速度測定時の掃引時間を短かくして速度
信号の平均電力を上げると距離分解能を犠牲にすること
になる。従つて目標の距離と速度を同時に測定するため
には相反する問題点があつた。
Here, η is the sensitivity I 1 of the light receiving element (13) and φ 1 is the light receiving element (13) of the reflected light from the target of the irradiation light.
Intensity and phase I 2 and φ 2 are intensity and phase at the light receiving element (13) of the reference light [Problems to be solved by the invention] In the conventional laser radar device as described above, in order to improve the distance resolution. When the pulse signal is narrowed, the average power for speed signal detection is lowered and the signal-to-noise ratio (S / N) is deteriorated. On the other hand, if the sweep time during speed measurement is shortened and the average power of the speed signal is increased, the distance resolution is sacrificed. Therefore, there are conflicting problems in simultaneously measuring the target distance and speed.

この発明は距離分解能が高く,かつ速度検出S/Nの良
い目標の距離と速度の測定方式を提供するレーザレーダ
装置を得ることを目的とする。
It is an object of the present invention to obtain a laser radar device that provides a target distance and velocity measuring method with high range resolution and good velocity detection S / N.

〔課題を解決するための手段〕[Means for solving the problem]

この発明のレーザレーダ装置は、周期長2n−1(n:任
意の整数)ビットのM系列2値信号を発生するM系列発
生器と、このM系列発生器からのM系列2値信号に応じ
て第1角周波数ω10と第2角周波数ω11(ω10<ω11
で周波数変調発振をする照射光源と、M系列発生器から
のM系列2値信号をビット単位で遅延するビット遅延手
段と、このビット遅延したM系列2値信号に応じて第3
角周波数ω20と第4角周波数ω21(ω20<ω21)で周波
数変調発振をする参照光源と、照射光源からの照射光の
角周波数偏移ω11−ω10と参照光からの参照光の角周波
数偏移ω21−ω20を一致させ、かつ両者の角周波数間隔
|ω10−ω20|と|ω11−ω21|を所定の中間角周波数ω
IFに一致させるよう参照光源の周波数ω20とω21を制御
する周波数管理手段と、照射光源からの照射光を目標に
照射し、目標からの反射光を入射する送受光学系手段
と、送受光学系手段が入射した目標からの反射光と参照
光源からの参照光を合波して電気信号に変換する合波・
受光手段と、この合波・受光手段からの電気信号のうち
照射光の角周波数ω11とω10の差の角周波数近傍の電気
信号だけ高域通過させる高域通過フィルタと、この高域
通過フィルタの高速通過した電気信号出力を最小にする
ようにビット遅延手段の遅延量を調整し、この遅延量に
基づいて目標の距離信号を算出し出力する遅延量制御手
段と、合波・受光手段からの電気信号のうち中間角周波
数ωIF近傍の信号成分を抽出する帯域通過フィルタと、
この帯域通過フィルタが抽出した信号成分からドップラ
周波数偏移ωDPを弁別し、その結果に基づいて目標の移
動速度信号を算出し出力する周波数弁別手段とを備えた
ものである。
The laser radar device of the present invention uses an M-sequence generator for generating an M-sequence binary signal having a period length of 2 n -1 (n: arbitrary integer) bits, and an M-sequence binary signal from the M-sequence generator. Accordingly, the first angular frequency ω 10 and the second angular frequency ω 111011 )
An irradiation light source that frequency-modulates and oscillates, a bit delay unit that delays the M-sequence binary signal from the M-sequence generator on a bit-by-bit basis, and a third according to the bit-delayed M-sequence binary signal.
Reference light source that performs frequency modulation oscillation at angular frequency ω 20 and fourth angular frequency ω 212021 ), angular frequency deviation ω 11 −ω 10 of irradiation light from the irradiation light source, and reference from reference light The angular frequency deviations ω 21 −ω 20 of the light are matched, and the angular frequency intervals | ω 10 −ω 20 | and | ω 11 −ω 21 |
Frequency management means for controlling the frequencies ω 20 and ω 21 of the reference light source so as to match IF , transmission / reception optical system means for irradiating the target with the irradiation light from the irradiation light source, and entering the reflected light from the target, and the transmission / reception optics A system that combines the reflected light from the target and the reference light from the reference light source that is incident on the system means and converts it into an electrical signal.
The light receiving means, a high-pass filter that passes only the electric signal in the vicinity of the angular frequency of the difference between the angular frequencies ω 11 and ω 10 of the irradiation light among the electrical signals from the multiplexing / light receiving means, and the high-pass filter. A delay amount control means for adjusting the delay amount of the bit delay means so as to minimize the electric signal output that has passed through the filter at a high speed, and calculating and outputting a target distance signal based on this delay amount, and a multiplexing / light receiving means. A bandpass filter for extracting a signal component in the vicinity of the intermediate angular frequency ω IF of the electrical signal from
A frequency discriminating means for discriminating the Doppler frequency shift ω DP from the signal component extracted by the band pass filter, and calculating and outputting a target traveling speed signal based on the result is provided.

〔作用〕[Action]

この発明においては、M系列発生器が周期長2n−1
(n:任意の整数)ビットのM系列2値信号を発生し、照
射光源がこのM系列発生器からのM系列2値信号に応じ
て第1角周波数ω10と第2角周波数ω11(ω10<ω11
で周波数変調発振をする。また、ビット遅延手段がM系
列発生器からのM系列2値信号をビット単位で遅延し、
参照光源がこのビット遅延したM系列2値信号に応じて
第3角周波数ω20と第4角周波数ω21(ω20<ω21)で
周波数変調発振をする。次に、周波数管理手段が照射光
源からの照射光の角周波数偏移ω11−ω10と参照光から
の参照光の角周波数偏移ω21−ω20を一致させ、かつ両
者の角周波数間隔|ω10−ω20|と|ω11−ω21|を所定
の中間角周波数ωIFに一致させるよう参照光源の周波数
ω20とω21を制御する。
In the present invention, the M-sequence generator has a cycle length of 2 n -1.
An (n: arbitrary integer) bit M-sequence binary signal is generated, and the irradiation light source is responsive to the M-sequence binary signal from the M-sequence generator to generate a first angular frequency ω 10 and a second angular frequency ω 11 ( ω 1011 )
Frequency modulation oscillation is performed with. Also, the bit delay means delays the M-sequence binary signal from the M-sequence generator in bit units,
The reference light source performs frequency modulation oscillation at the third angular frequency ω 20 and the fourth angular frequency ω 212021 ) according to the bit-delayed M-sequence binary signal. Next, the frequency management means matches the angular frequency deviation ω 11 −ω 10 of the irradiation light from the irradiation light source with the angular frequency deviation ω 21 −ω 20 of the reference light from the reference light, and the angular frequency interval between the two. The frequencies ω 20 and ω 21 of the reference light source are controlled so that | ω 10 −ω 20 | and | ω 11 −ω 21 | match the predetermined intermediate angular frequency ω IF .

送受光学系手段が照射光源からの照射光を目標に照射
し、目標からの反射光を入射すると、合波・受光手段が
送受光学系手段が入射した目標からの反射光と参照光源
からの参照光を合波して電気信号に変換し、高域通過フ
ィルタがこの合波・受光手段からの電気信号のうち照射
光の角周波数ω11とω10の差の角周波数近傍の電気信号
だけ高域通過させると、遅延量制御手段がこの高域通過
フィルタの高域通過した電気信号出力を最小にするよう
にビット遅延手段の遅延量を調整し、この遅延量に基づ
いて目標の距離信号を算出し出力する。また、帯域通過
フィルタが合波・受光手段からの電気信号のうち中間角
周波数ωIF近傍の信号成分を抽出し、周波数弁別手段が
この帯域通過フィルタが抽出した信号成分からドップラ
周波数偏移ωDPを弁別し、その結果に基づいて目標の移
動速度信号を算出し出力する。
When the transmission / reception optical system unit irradiates the target with the irradiation light from the irradiation light source, and when the reflected light from the target is incident, the combining / light receiving unit causes the transmission / reception optical system unit to reflect the reflected light from the target and the reference from the reference light source. The light is combined and converted into an electrical signal, and the high-pass filter raises only the electrical signal in the vicinity of the angular frequency difference ω 11 and ω 10 of the irradiation light among the electrical signals from the combining / light receiving means. When the signal is passed through the band, the delay amount control means adjusts the delay amount of the bit delay means so as to minimize the electric signal output of the high pass filter of the high pass filter, and based on this delay amount, the target distance signal is adjusted. Calculate and output. The bandpass filter extracts the signal component in the vicinity of the intermediate angular frequency ω IF of the electrical signal from the combining / light receiving means, and the frequency discriminating means extracts the Doppler frequency shift ω DP from the signal component extracted by this bandpass filter. The target moving speed signal is calculated and output based on the result.

〔実施例〕 第1図はこの発明の一実施例を示すレーザレーダ装置
の機能ブロツク図である。
[Embodiment] FIG. 1 is a functional block diagram of a laser radar device showing an embodiment of the present invention.

図において(1)は例えばN段のシフトレジスタとそ
の複数段の論理的結合をシフトレジスタ入力に帰還する
論理回路で構成し,周期長2n−1(n:任意の整数)ビツ
トのM系列(記号系列の一つ)2値信号を発生するM系
列発生器,(2)はこのM系列発生器からのM系列2値
信号に応じて第1角周波数ω10と第2角周波数ω11(ω
10<ω11)で周波数変調パルス発振をする半導体レーザ
照射光源,(3)はM系列発生器(1)からのM系列2
値信号をビツト単位で遅延する遅延器,(4)はこの遅
延器でビツト遅延したM系列2値信号に応じて第3角周
波数ω20と第4角周波数ω21(ω20<ω21)で周波数変
調パルス発振をする半導体レーザ参照光源,(5)は照
射光源(2)からの出射光を2分割する第1分配器,
(6)は参照光源(4)からの出射光を2分割する第2
分配器,(7)は第1と第2分配器(5)(6)からの
照射光と参照光各々の一方を入射し照射光と参照光各々
の角周波数偏移ω11−ω10とω21−ω20を一致させ,か
つ両者の角周波数間隔|ω10−ω20|と|ω11−ω21|を
一定差の中間角周波数ωIFに保持させる周波数管理器,
(8)は第1分配器(5)からの照射光の他方の水平直
線偏光と1/4波長板(9)からの反射光の垂直直線偏光
とを分離し透過する偏光子,(9)はこの偏光子からの
水平直線偏光の照射光を円偏光,望遠光学系(10)から
の円偏光の反射光を垂直直線偏光に各々変換する1/4波
長板,(10)はこの1/4波長板からの照射光を目標に照
射し目標からの反射光を受光する望遠光学系,(11)は
第2分配器(6)からの参照光の他方を入射し,偏光子
(8)を経た目標からの反射光の偏波方向と一致させる
偏波制御器,(12)はこの偏波制御器を経た参照光と偏
光子(8)を経た目標からの反射光を入射し合波する第
1合波器,(13)はこの第1合波器からの出射光を光−
電気変換し周波数混合する第1受光素子,(14)はこの
第1受光素子からの電気信号を増幅する増幅器,(15)
はこの増幅器からの信号のうち照射光と参照光両者の角
周波数間隔に相当する中間角周波数ωIF近傍(ωIF+ω
DP)の信号だけ帯域通過をする第1帯域通過フイルタ,
(16)は増幅器(14)からの信号のうち照射光と参照光
各々の角周波数偏移△ω近傍の信号だけ高域通過をする
高域通過フイルタ,(17)はこの高域通過フイルタから
の出力値を最小にするように遅延器(3)の遅延ビツト
数を変化させ,その遅延ビツト数から距離信号を算出す
る遅延量制御器,(18)は第1帯域通過フイルタ(15)
からの信号のドプラ周波数偏移ωDPを弁別し速度信号を
算出する第1周波数弁別器である。
In the figure, (1) is composed of, for example, an N-stage shift register and a logical circuit that feeds back a logical combination of a plurality of stages to the shift register input, and has a cycle length of 2 n -1 (n: any integer) bit M series. (One of symbol sequences) M sequence generator for generating a binary signal, (2) is a first angular frequency ω 10 and a second angular frequency ω 11 according to the M sequence binary signal from the M sequence generator. (Ω
A semiconductor laser irradiation light source that oscillates a frequency-modulated pulse at 1011 ), (3) is an M-sequence 2 from the M-sequence generator (1)
A delay device for delaying the value signal in bit units, (4) is the third angular frequency ω 20 and the fourth angular frequency ω 212021 ) according to the M-sequence binary signal bit-delayed by this delay device. , A semiconductor laser reference light source that oscillates a frequency-modulated pulse, (5) is a first distributor that divides the light emitted from the irradiation light source (2) into two,
(6) is a second that splits the light emitted from the reference light source (4) into two
The distributor (7) receives one of the irradiation light and the reference light from the first and second distributors (5) and (6), respectively, and receives the angular frequency shifts ω 11 −ω 10 of the irradiation light and the reference light, respectively. A frequency controller that matches ω 21 −ω 20 and holds the angular frequency intervals | ω 10 −ω 20 | and | ω 11 −ω 21 | of the two at an intermediate angular frequency ω IF with a constant difference,
(8) is a polarizer that separates and transmits the other horizontal linearly polarized light of the irradiation light from the first distributor (5) and the vertical linearly polarized light of the reflected light from the quarter-wave plate (9), Is a quarter-wave plate that converts the horizontally linearly polarized light from this polarizer into circularly polarized light, and the circularly polarized reflected light from the telescopic optical system (10) into vertically linearly polarized light. A telescopic optical system that irradiates a target with irradiation light from a four-wave plate and receives reflected light from the target. (11) enters the other reference light from the second distributor (6) and a polarizer (8) A polarization controller (12) that matches the polarization direction of the reflected light from the target that has passed through, and the reference light that has passed through this polarization controller and the reflected light from the target that has passed through the polarizer (8) are incident and combined. A first multiplexer, (13), which outputs the light emitted from the first multiplexer,
A first light-receiving element that electrically converts and mixes frequencies, (14) an amplifier that amplifies an electric signal from the first light-receiving element, (15)
Is an intermediate angular frequency ω IFIF + ω) corresponding to the angular frequency interval between the irradiation light and the reference light in the signal from this amplifier.
A first band-pass filter for band-passing only the DP signal,
(16) is a high-pass filter that passes only the signals in the vicinity of the angular frequency deviation Δω of the irradiation light and the reference light among the signals from the amplifier (14), and (17) is the high-pass filter from this high-pass filter. Delay controller that changes the number of delay bits of the delay device (3) so as to minimize the output value of the delay signal and calculates the distance signal from the number of delay bits (18) is the first bandpass filter (15).
Is a first frequency discriminator that discriminates the Doppler frequency shift ω DP of the signal from and calculates the velocity signal.

第2図は上記実施例を示す第1図の周波数管理器
(7)の機能ブロツク図である。
FIG. 2 is a functional block diagram of the frequency manager (7) of FIG. 1 showing the above embodiment.

図において(20a)と(20b)は第1と第2分配器
(5)(6)からの照射光と参照光を2分割する第3と
第4分配器,(21a)と(21b)はこの第3と第4分配器
からの出射光各々の一方を入射し,例えば2枚の対向半
透明鏡の間隔を電歪素子などで変化させ各々の共振角周
波数を掃引する第1と第2フアブリーペロー型共振器,
(22)はこの第1と第2フアブリーペロー型共振器の各
共振角周波数の間隔を直線的に経時変化させるための一
定周期の3角波信号を発生する駆動器,(23a)と(23
b)は第1と第2フアブリーペロー型共振器(21a)(21
b)からの出射光各々を光−電気変換する第2と第3受
光素子,(24)はこの2と第3受光素子からの照射光と
参照光を電気変換した信号で各々の角周波数偏移ω11
ω10とω21−ω20に対応する時間を一致させるように参
照光源(4)に変位電流設定値を帰還する変位電流制御
器,(25)は第3と第4分配器(20a)(20b)からの出
射光各々の他方を入射し合波する第2合波器,(26)は
この第2合波器からの出射光を光−電気変換する第4受
光素子,(27)はこの第4受光素子からの照射光と参照
光の合波光を電気変換した信号のうち角周波数ωIF近傍
(ωIF′)の信号だけ帯域通過をする第2帯域通過フイ
ルタ,(28)はこの第2帯域通過フイルタからの信号の
角周波数ωIF′を弁別し,照射光と参照光両者の角周波
数間隔|ω10−ω20|と|ω11−ω21|に相当する所望の
中間角周波数ωIFと一致させるように参照光源(4)に
バイアス電流設定値を帰還する第2周波数弁別器であ
る。
In the figure, (20a) and (20b) are third and fourth distributors that divide the irradiation light from the first and second distributors (5) and (6) and the reference light into two, and (21a) and (21b) are One of the first and second ones, which receives one of the light beams emitted from the third and fourth distributors and sweeps the resonance angular frequency of each of them by changing the distance between the two opposing semitransparent mirrors with an electrostrictive element or the like. Fabry-Perot type resonator,
(22) is a driver for generating a triangular wave signal of a constant period for linearly changing the interval between the resonance angular frequencies of the first and second Fabry-Perot resonators with time, (23a) and (23a)
b) is the first and second farbly Perot type resonators (21a) (21a)
The second and third light receiving elements for photoelectrically converting each of the emitted lights from b), and (24) is a signal obtained by electrically converting the irradiation light and the reference light from the second and third light receiving elements, respectively. Transfer ω 11
A displacement current controller that feeds back the displacement current set value to the reference light source (4) so that the times corresponding to ω 10 and ω 21 −ω 20 coincide with each other, and (25) is the third and fourth distributors (20a) ( A second multiplexer for entering and combining the other of the emitted lights from 20b), (26) is a fourth light receiving element for optoelectrically converting the emitted light from the second multiplexer, (27) is The second band-pass filter (28) that band-passes only the signal in the vicinity of the angular frequency ω IFIF ′) among the signals obtained by electrically converting the combined light of the irradiation light from the fourth light receiving element and the reference light is By discriminating the angular frequency ω IF ′ of the signal from the second band-pass filter, the desired intermediate angle corresponding to the angular frequency intervals | ω 10 −ω 20 | and | ω 11 −ω 21 | It is a second frequency discriminator that feeds back the bias current setting value to the reference light source (4) so as to match the frequency ω IF .

上記実施例のレーザレーダ装置は,M系列発生器(1)
でM系列2値信号を2n−1ビツト毎に繰返し発生し,照
射光源(2)で注入電流をM系列2値信号に応じて変調
し,角周波数ω10とω11で周波数変調を受けた照射光を
発振する。同様にして参照光源(4)でM系列2値信号
を遅延器(3)により照射光源(2)に対してビツト単
位で遅延させた信号に応じて変調し,角周波数ω20とω
21で周波数変調を受けた参照光を発振する。第1と第2
分配器(5)(6)で照射光と参照光を各々2分割し,
各々の一方を周波数管理器(7)に入射する。この周波
数管理器(7)の第3と第4分配器(20a)(20b)で照
射光と参照光を各々更に2分割し,各々の一方を入射し
た第1と第2フアブリーペロー型共振器(21a)(21b)
で照射光と参照光の各共振角周波数を駆動器(22)によ
り周期t0で掃引する(第3図(a)参照)。第2と第3
受光素子(23a)(23b)で各共振器(21a)(21b)から
の出射光を光−電気変換し,変位電流制御器(24)で照
射光と参照光各々の角周波数偏移ω11−ω10とω21−ω
20に相当する時間△tと△t′が一致するように(第3
図(b)(c)参照)参照光源(4)に変位電流設定値
を帰還し、ω11−ω10=ω21−ω20=△ωとする。一方
第3と第4分配器(20a)(20b)で2分割した照射光と
参照光各々の他方を入射した第2合波器(25)で合波
し,第4受光素子(26)で光−電気変換し周波数混合し
た信号のうち角周波数ωIF近傍(ωIF′)の信号だけ第
2帯域通過フイルタ(27)で帯域通過をし,第2周波数
弁別器(28)でωIF′を所望の中間角周波数ωIFと一致
させるように参照光源(4)に角周波数ω20またはω21
に相当するバイアス電流設定値を帰還し、|ω10−ω20
|=|ω11−ω21|=ωIFとする。
The laser radar device according to the above embodiment is the M-sequence generator (1).
, An M-sequence binary signal is repeatedly generated every 2 n −1 bits, the injection current is modulated by the irradiation light source (2) according to the M-sequence binary signal, and frequency modulation is performed at angular frequencies ω 10 and ω 11. The emitted light is oscillated. Similarly, the reference light source (4) modulates the M-sequence binary signal by the delay device (3) according to the signal delayed by the bit unit with respect to the irradiation light source (2), and the angular frequencies ω 20 and ω
21 oscillates the reference light subjected to frequency modulation. First and second
The distributor (5) (6) splits the irradiation light and the reference light into two,
One of them is incident on the frequency controller (7). The third and fourth distributors (20a) and (20b) of the frequency controller (7) further divide the irradiation light and the reference light into two parts, and one of the first and second farbly-Perot type resonators ( 21a) (21b)
At, the resonance angular frequencies of the irradiation light and the reference light are swept at a cycle t 0 by the driver (22) (see FIG. 3 (a)). Second and third
Light emitted from each resonator (21a) (21b) is photo-electrically converted by the light receiving elements (23a) (23b), and the angular frequency deviation ω 11 of each of the irradiation light and the reference light is converted by the displacement current controller (24). −ω 10 and ω 21 −ω
Make the time Δt and Δt 'corresponding to 20 match (3rd
(See FIGS. 2B and 2C.) The displacement current setting value is fed back to the reference light source (4) to set ω 11 −ω 10 = ω 21 −ω 20 = Δω. On the other hand, the irradiation light divided into two parts by the third and fourth distributors (20a) (20b) and the other of the reference lights are combined by the second combiner (25) which is incident, and then combined by the fourth light receiving element (26). Of the signals that have undergone opto-electric conversion and frequency mixing, only the signals near the angular frequency ω IFIF ′) are band-passed by the second band pass filter (27) and ω IF ′ by the second frequency discriminator (28). angular frequency omega to the reference light source (4) so as to match the desired intermediate angular frequency omega IF 20 or omega 21
The bias current setting value corresponding to is fed back, and | ω 10 −ω 20
Let | = | ω 11 −ω 21 | = ω IF .

また第1分配器(5)で2分割した照射光の他方を偏
光子(8)に入射し,1/4波長板(9)で偏光子(8)か
らの水平直線偏光の照射光を円偏光に変換し望遠光学系
(10)で目標に照射する。次に目標の相対速度によりド
プラ周波数偏移ωDPを受けた第1と第2角周波数ω10
ωDPとω11+ωDPの目標からの反射光を望遠光学系(1
0)で受光し,1/4波長板(9)で望遠光学系(10)から
の円偏光の反射光を垂直直線偏光に変換し偏光子(8)
で照射光の水平直線偏光と分離し透過した垂直直線偏光
を第1合波器(12)の一方に入射する。
Also, the other of the irradiation light split in two by the first distributor (5) is made incident on the polarizer (8), and the horizontally linearly polarized irradiation light from the polarizer (8) is circularized by the 1/4 wave plate (9). It is converted into polarized light and the target is illuminated by the telescopic optical system (10). Next, the first and second angular frequencies ω 10 + that have received the Doppler frequency shift ω DP due to the target relative velocity
The reflected light from the target of ω DP and ω 11 + ω DP is set to the telephoto optical system (1
(0) receives the light, and the quarter-wave plate (9) converts the circularly polarized reflected light from the telephoto optical system (10) into vertical linearly polarized light, and a polarizer (8)
The vertical linearly polarized light, which is separated from the horizontal linearly polarized light of the illuminating light and transmitted, is incident on one side of the first multiplexer (12).

一方第2分配器(6)で2分割した参照光の他方を偏
波制御器(11)で偏光子(8)を経た目標からの反射光
の偏波方向と一致させて第1合波器(12)の他方に入射
する。更に第1合波器(12)で照射光の目標からの反射
光と参照光を合波して第1受光素子(13)で光−電気変
換し周波数混合して同期検波する。ここで照射光の目標
からの反射光を同期検波する時間T1と参照光をビツト遅
延する時間T2が一致しない場合(T1≠T2時),第1受光
素子(13)での照射光の目標からの反射光と参照光の各
角周波数の経時変化と検波出力信号の角周波数成分は第
4図(a)(b)と(c)に示すとおりで,第1受光素
子(13)の検波出力は3つの角周波数成分を中心角周波
数とする信号スペクトラム(ωIF近傍のスペクトラムと
△ω近傍の2つのスペクトラム)を含む。
On the other hand, the other side of the reference light split into two by the second splitter (6) is made to coincide with the polarization direction of the reflected light from the target that has passed through the polarizer (8) by the polarization controller (11), and the first multiplexer is provided. It is incident on the other side of (12). Further, the reflected light from the target of the irradiation light and the reference light are combined by the first combiner (12), photoelectrically converted by the first light receiving element (13), the frequencies are mixed, and synchronous detection is performed. If the time T 1 for synchronously detecting the reflected light from the target of the irradiation light and the time T 2 for bit-delaying the reference light do not match (when T 1 ≠ T 2 ), irradiation by the first light receiving element (13) is performed. The changes over time of the angular frequencies of the reflected light from the target and the reference light and the angular frequency components of the detection output signal are as shown in FIGS. 4 (a), (b) and (c), and the first light receiving element (13 ) Includes a signal spectrum (a spectrum near ω IF and two spectra near Δω) having three angular frequency components as central angular frequencies.

このとき増幅器(14)で増幅した第1受光素子(13)
からの検波出力信号のうち,例えば100MHz程度のωIF
傍の信号成分(ωIF+ωDP)は第1帯域通過フイルタ
(15)で帯域通過をし,例えば数GHz程度の△ω近傍の
信号成分(△ω±(ωIF+ωDP))は高域通過フイルタ
(16)で高域通過をする。ωIF=100MHz,△ω=数GHzと
すれば,相対速度100Km/hの移動目標からの反射光のド
プラ周波数偏移ωDPは10MHz程度になる。
At this time, the first light receiving element (13) amplified by the amplifier (14)
Of the detection output signal from, for example, the signal component near ω IFIF + ω DP ) of about 100 MHz is band-passed by the first band pass filter (15), and the signal component near Δω of, for example, about several GHz. (Δω ± (ω IF + ω DP )) passes through the high pass filter (16). If ω IF = 100 MHz and Δω = several GHz, the Doppler frequency shift ω DP of the reflected light from the moving target with a relative velocity of 100 Km / h is about 10 MHz.

一方遅延量制御器(17)で遅延器(3)の遅延ビツト
数を制御して,上記T1とT2を一致させる場合(T1=T
2時),第1受光素子(13)での照射光の目標からの反
射光と参照光の各角周波数の経時変化と検波出力信号の
角周波数成分は第5図(a)(b)と(c)に示すとお
りで,第1受光素子(13)の検波出力は1つの角周波数
成分を中心周波数とする信号スペクトラム(ωIF近傍の
スペクトラム)だけしか含まない。
On the other hand, when the delay amount controller (17) controls the number of delay bits of the delay device (3) to make T 1 and T 2 coincident (T 1 = T
2 o'clock), the changes over time in the angular frequencies of the reflected light from the target and the reference light of the irradiation light from the first light receiving element (13) and the angular frequency components of the detection output signal are as shown in FIGS. 5 (a) and (b). As shown in (c), the detection output of the first light receiving element (13) includes only a signal spectrum (a spectrum in the vicinity of ω IF ) having one angular frequency component as the center frequency.

このとき増幅器(14)で増幅した第1受光素子(13)
からの検波出力信号のうち△ω近傍の信号成分は消失し
ているから高域通過フイルタ(16)の出力は第6図に示
すとおり零となり,遅延量制御器(17)で特定の遅延ビ
ツト数Kを検出し目標までの距離Rを次式から算出す
る。
At this time, the first light receiving element (13) amplified by the amplifier (14)
Since the signal component near Δω has disappeared in the detection output signal from the high-pass filter (16), it becomes zero as shown in Fig. 6, and the delay amount controller (17) outputs a specific delay bit. The number K is detected and the distance R to the target is calculated from the following equation.

R=K・△R △R=C/2B ここで,△Rは距離分解能 Cは光の速度 BはM系列2値信号のビツトレート(bps) 例えば,距離分解能△Rを1mとするにはビツトレート
150MbpsのM系列2値信号を使用すればよい。
R = K · ΔR ΔR = C / 2B where ΔR is the distance resolution C is the speed of light B is the bit rate of the M-sequence binary signal (bps) For example, to set the distance resolution ΔR to 1 m, the bit rate is set.
A 150-Mbps M-sequence binary signal may be used.

またこのときの距離算出時と同時の第1帯域通過フイ
ルタ(15)の出力はωIF+ωDPの信号成分に集中して大
きくなるから,第1周波数弁別器(18)で検出するドプ
ラ周波数偏移ωDPの信号成分も大きくなり,しかもM系
列2値信号による周波数変調のスペクトラム拡散の影響
もなくなり,良好なS/Nでドプラ周波数偏移ωDPを弁別
し目標の相対速度vγを次式から算出する。
At this time, the output of the first bandpass filter (15) at the same time when the distance is calculated concentrates on the signal component of ω IF + ω DP and becomes large. Therefore, the Doppler frequency deviation detected by the first frequency discriminator (18) is increased. The signal component of the shift ω DP also becomes large, and the influence of the spread spectrum of the frequency modulation by the M-sequence binary signal is also eliminated, and the Doppler frequency shift ω DP is discriminated with a good S / N, and the target relative velocity v γ is calculated as follows. Calculate from the formula.

γ=ωDP・C/ω ここで,ω=ω10=ω11 〔発明の効果〕 この発明は以上説明したように構成されており,照射
光源と参照光源を直接変調する各M系列2値信号相互の
遅延時間を照射光の目標からの反射光を同期検波する時
間に一致させて,照射光の目標からの反射光と参照光と
の相関を最大とし同期検波出力の高周波成分を消失させ
る特性を利用し,同期検波出力のドプラ周波数偏移成分
が高い信号レベルで検出できると同時に目標までの距離
がM系列2値信号のビツト遅延数で検出できるから,目
標の速度情報を良好なS/Nで,かつ距離情報を高い分解
能で同時測定をすることができる効果がある。
v γ = ω DP · C / ω where ω = ω 10 = ω 11 [Effect of the invention] The present invention is configured as described above, and each M series 2 that directly modulates the irradiation light source and the reference light source is used. Match the delay time between the value signals with the time to synchronously detect the reflected light from the target of the irradiation light, maximize the correlation between the reflected light from the target of the irradiation light and the reference light, and eliminate the high-frequency component of the synchronous detection output. By utilizing the characteristic of the target detection, the Doppler frequency shift component of the synchronous detection output can be detected at a high signal level, and at the same time, the distance to the target can be detected by the number of bit delays of the M-sequence binary signal. The S / N and distance information can be simultaneously measured with high resolution.

【図面の簡単な説明】[Brief description of the drawings]

第1図はこの発明の一実施例を示すレーザレーダ装置の
機能ブロツク図,第2図は第1図に示す周波数管理器の
機能ブロツク図,第3図は第2図に示すフアブリーペロ
ー型共振器と受光素子の各共振角周波数と出力の経時変
化を示す図,第4図と第5図は第1図に示す受光素子の
検波出力のT1≠T2時とT1=T2時の角周波数成分とその経
時変化を示す図,第6図は第1図に示す高域通過フイル
タの出力と遅延ビツト数との関係を示す図,第7図は従
来例を示すレーザレーダ装置の機能ブロツク図である。 図において(1)はM系列発生器,(2)は照射光源,
(3)は遅延器,(4)は参照光源,(5)は第1分配
器,(6)は第2分配器,(7)は周波数管理器,
(8)は偏光子,(9)は1/4波長板,(10)は望遠光
学系,(11)は偏波制御器,(12)は合波器,(13)は
受光素子,(14)は増幅器,(15)は帯域通過フイル
タ,(16)は高域通過フイルタ,(17)は遅延量制御
器,(18)は周波数弁別器。
FIG. 1 is a functional block diagram of a laser radar device showing an embodiment of the present invention, FIG. 2 is a functional block diagram of a frequency controller shown in FIG. 1, and FIG. 3 is a Fabry-Perot type resonator shown in FIG. Fig. 4 shows the resonance angular frequency of the light receiving element and changes over time in the output. Figs. 4 and 5 show the detection output of the light receiving element shown in Fig. 1 when T 1 ≠ T 2 and T 1 = T 2 FIG. 6 is a diagram showing the angular frequency component and its change with time, FIG. 6 is a diagram showing the relationship between the output of the high-pass filter shown in FIG. 1 and the number of delay bits, and FIG. 7 is a function of the laser radar device of the conventional example. It is a block diagram. In the figure, (1) is an M-series generator, (2) is an irradiation light source,
(3) is a delay device, (4) is a reference light source, (5) is a first distributor, (6) is a second distributor, (7) is a frequency controller,
(8) is a polarizer, (9) is a quarter-wave plate, (10) is a telescopic optical system, (11) is a polarization controller, (12) is a multiplexer, (13) is a light receiving element, ( 14) is an amplifier, (15) is a band-pass filter, (16) is a high-pass filter, (17) is a delay controller, and (18) is a frequency discriminator.

───────────────────────────────────────────────────── フロントページの続き (56)参考文献 特開 昭57−168179(JP,A) 特開 昭62−249089(JP,A) 特開 昭57−86071(JP,A) ─────────────────────────────────────────────────── ─── Continuation of the front page (56) Reference JP-A-57-168179 (JP, A) JP-A-62-249089 (JP, A) JP-A-57-86071 (JP, A)

Claims (1)

(57)【特許請求の範囲】(57) [Claims] 【請求項1】照射光の目標からの反射光を参照光と同期
検波して目標の距離と速度を測定するレーザレーダ装置
において、周期長2n−1(n:任意の整数)ビットのM系
列2値信号を発生するM系列発生器、このM系列発生器
からのM系列2値信号に応じて第1角周波数ω10と第2
角周波数ω11(ω10<ω11)で周波数変調発振をする照
射光源、前記M系列発生器からのM系列2値信号をビッ
ト単位で遅延するビット遅延手段、このビット遅延した
M系列2値信号に応じて第3角周波数ω20と第4角周波
数ω21(ω20<ω21)で周波数変調発振をする参照光
源、前記照射光源からの照射光の角周波数偏移ω11−ω
10と前記参照光からの参照光の角周波数偏移ω21−ω20
を一致させ、かつ両者の角周波数間隔|ω10−ω20|と
|ω11−ω21|を所定の中間角周波数ωIFに一致させる
よう前記参照光源の周波数ω20とω21を制御する周波数
管理手段、前記照射光源からの照射光を目標に照射し、
目標からの反射光を入射する送受光学系手段、前記送受
光学系手段が入射した目標からの反射光と前記参照光源
からの参照光を合波して電気信号に変換する合波・受光
手段、この合波・受光手段からの電気信号のうち前記照
射光の角周波数ω11とω10の差の角周波数近傍の電気信
号だけ高域通過させる高域通過フィルタ、この高域通過
フィルタの高域通過した電気信号出力を最小にするよう
に前記ビット遅延手段の遅延量を調整し、この遅延量に
基づいて目標の距離信号を算出し出力する遅延量制御手
段、前記合波・受光手段からの電気信号のうち前記中間
角周波数ωIF近傍の信号成分を抽出する帯域通過フィル
タ、この帯域通過フィルタが抽出した信号成分からドッ
プラ周波数偏移ωDPを弁別し、その結果に基づいて目標
の移動速度信号を算出し出力する周波数弁別手段を備え
たレーザレーダ装置。
1. A laser radar device for measuring the distance and speed of a target by synchronously detecting the reflected light of the irradiation light from the target with a reference light, and an M having a cycle length of 2 n -1 (n: any integer) bits. An M-sequence generator for generating a sequence binary signal, and a first angular frequency ω 10 and a second angular frequency ω 10 according to the M-sequence binary signal from the M-sequence generator.
Irradiation light source that oscillates with frequency modulation at an angular frequency ω 111011 ), bit delay means for delaying the M-sequence binary signal from the M-sequence generator in bit units, and the bit-delayed M-sequence binary A reference light source that frequency-oscillates at a third angular frequency ω 20 and a fourth angular frequency ω 212021 ) according to the signal, and an angular frequency shift ω 11 −ω of the irradiation light from the irradiation light source.
10 and the angular frequency deviation of the reference light from the reference light ω 21 −ω 20
And the angular frequency intervals | ω 10 −ω 20 | and | ω 11 −ω 21 | of both are matched with a predetermined intermediate angular frequency ω IF , and the frequencies ω 20 and ω 21 of the reference light source are controlled. Frequency management means, irradiating the target with irradiation light from the irradiation light source,
Transmitting / receiving optical system means for inputting reflected light from a target, multiplexing / light receiving means for multiplexing reflected light from the target incident on the transmitting / receiving optical system means and reference light from the reference light source to convert into an electric signal, A high-pass filter that passes only an electric signal in the vicinity of the angular frequency of the difference between the angular frequencies ω 11 and ω 10 of the irradiation light among the electric signals from the combining / light-receiving means, and the high-pass of this high-pass filter. The delay amount of the bit delay means is adjusted so as to minimize the output of the passed electric signal, and the delay amount control means for calculating and outputting the target distance signal based on the delay amount, A bandpass filter for extracting a signal component in the vicinity of the intermediate angular frequency ω IF of the electric signal, discriminating the Doppler frequency shift ω DP from the signal component extracted by this bandpass filter, and the target moving speed based on the result. Calculate the signal The laser radar apparatus provided with a frequency discriminating means for outputting.
JP1212352A 1989-08-18 1989-08-18 Laser radar device Expired - Fee Related JP2689633B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP1212352A JP2689633B2 (en) 1989-08-18 1989-08-18 Laser radar device

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP1212352A JP2689633B2 (en) 1989-08-18 1989-08-18 Laser radar device

Publications (2)

Publication Number Publication Date
JPH0375581A JPH0375581A (en) 1991-03-29
JP2689633B2 true JP2689633B2 (en) 1997-12-10

Family

ID=16621123

Family Applications (1)

Application Number Title Priority Date Filing Date
JP1212352A Expired - Fee Related JP2689633B2 (en) 1989-08-18 1989-08-18 Laser radar device

Country Status (1)

Country Link
JP (1) JP2689633B2 (en)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5686342B2 (en) * 2011-01-28 2015-03-18 国立大学法人東北大学 Laser radar device and laser synthetic aperture radar device
EP2730942B1 (en) * 2012-11-13 2015-03-18 Sick Ag Opto-electronic scanner
CN116660856B (en) * 2023-08-02 2023-11-21 南京信息工程大学 5G time slot synchronization-based external radiation source radar signal processing method

Also Published As

Publication number Publication date
JPH0375581A (en) 1991-03-29

Similar Documents

Publication Publication Date Title
US7742152B2 (en) Coherent detection scheme for FM chirped laser radar
US5889490A (en) Method and apparatus for improved ranging
US7027743B1 (en) System and method for optical heterodyne detection of an optical signal including optical pre-selection that is adjusted to accurately track a local oscillator signal
US7573564B2 (en) Systems for doppler tracking using photonic mixing detectors
US6573982B1 (en) Method and arrangement for compensating for frequency jitter in a laser radar system by utilizing double-sideband chirped modulator/demodulator system
KR20180030057A (en) Bit signal bandwidth compression method, apparatus and application
US4812035A (en) AM-FM laser radar
JP2005124192A (en) Method and system for synchronizing operation characteristic of variable wavelength device to wavelength of local oscillator signal
JP3394902B2 (en) Chromatic dispersion measuring device and polarization dispersion measuring device
JPWO2003005002A1 (en) Propagation measurement device and propagation measurement method
CN110412538B (en) Linear frequency-sweeping laser source and laser radar
WO2005080928A1 (en) Laser vibrometer
JP2001356070A (en) Fiber optics distortion measuring apparatus
WO2022095169A1 (en) Frequency modulated continuous wave laser radar
US5390017A (en) Optical network analyzer for measuring the amplitude characteristics and group delay time dispersion characteristics of an optical circuit device
CN109143203A (en) Based on palarization multiplexing optical frequency-doubling microwave photon coherent radar R-T unit and method
JP3307153B2 (en) Laser radar device
US7417744B2 (en) Coherent hybrid electromagnetic field imaging
JP2689633B2 (en) Laser radar device
JP2685107B2 (en) Laser radar device
JPWO2004074867A1 (en) Laser radar equipment
CN116087971A (en) OPA laser radar
JP2000338243A (en) Coherent laser radar device
CN108845333A (en) A kind of FM-CW laser ranging method inhibiting dither effect
Li et al. Dual-chirp waveform generation and its TBWP improvement based on polarization modulation and phase coding

Legal Events

Date Code Title Description
LAPS Cancellation because of no payment of annual fees