JP5155380B2 - Method for manufacturing reinforced concrete member - Google Patents

Method for manufacturing reinforced concrete member Download PDF

Info

Publication number
JP5155380B2
JP5155380B2 JP2010276853A JP2010276853A JP5155380B2 JP 5155380 B2 JP5155380 B2 JP 5155380B2 JP 2010276853 A JP2010276853 A JP 2010276853A JP 2010276853 A JP2010276853 A JP 2010276853A JP 5155380 B2 JP5155380 B2 JP 5155380B2
Authority
JP
Japan
Prior art keywords
reinforced concrete
formwork
concrete
cross
section
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2010276853A
Other languages
Japanese (ja)
Other versions
JP2011094476A (en
Inventor
和也 林
勝 寺岡
仁 佐々木
浩和 西田
幸博 佐藤
直樹 高森
哲務 片寄
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Fujita Corp
Original Assignee
Fujita Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Fujita Corp filed Critical Fujita Corp
Priority to JP2010276853A priority Critical patent/JP5155380B2/en
Publication of JP2011094476A publication Critical patent/JP2011094476A/en
Application granted granted Critical
Publication of JP5155380B2 publication Critical patent/JP5155380B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は鉄筋コンクリート部材の製造方法に関し、より詳細には、高強度コンクリートを用いた鉄筋コンクリート部材の製造方法に好適なものである。 Relates to a manufacturing method of the present invention reinforced concrete member, and more particularly, is suitable for the production method of the reinforced concrete member using high-strength concrete.

コンクリートは、図7に示すように、硬化過程で自己収縮を伴う。図7は、コンクリート部材の寸法別のコンクリート硬化時の収縮量の推移を示している。特に、設計基準強度F=100N/mm程度以上の高強度コンクリートでは、自己収縮量が大きく、また、部材の断面の大きさが大きいほど収縮量が大きくなる。
そのため、鉄筋コンクリート部材では、自己収縮により縮もうとするコンクリートを鉄筋が拘束し、コンクリートに引張力が作用する結果、コンクリートにひび割れを生じる可能性が高くなる。
また、コンクリートが硬化する際には、熱を発する。特に、高強度コンクリートは発熱量が大きく、柱部材のような大きな断面サイズの部材内部では100℃近くにまで達する。ところが、部材表面は、外気に放熱するため、温度上昇が少なく、部材断面内で大きな温度勾配を生じ、温度応力を生じる。この結果、更にひび割れが発生しやすくなる。
そして、ひび割れは、意匠を損ない、防水性能や構造性能の機能低下を生じ、建物の価値・性能を低下させてしまう。
このような不具合は、プレキャスト鉄筋コンクリート部材の場合と現場打ちの鉄筋コンクリート部材の場合の双方で生じている。
収縮ひび割れを防止する一般的な方法として、現状では打設コンクリートに、膨張材や収縮低減剤を用いているが、大幅なコストアップとなっている。
As shown in FIG. 7, concrete undergoes self-shrinkage during the curing process. FIG. 7 shows the transition of the amount of shrinkage when the concrete is hardened by the size of the concrete member. In particular, in high-strength concrete having a design reference strength F c of about 100 N / mm 2 or more, the amount of self-shrinkage increases, and the amount of shrinkage increases as the cross-sectional size of the member increases.
Therefore, in a reinforced concrete member, the rebar constrains the concrete to be shrunk by self-shrinkage, and a tensile force acts on the concrete, so that there is a high possibility that the concrete will crack.
Moreover, when concrete hardens, it generates heat. In particular, high-strength concrete generates a large amount of heat and reaches close to 100 ° C. inside a member having a large cross-sectional size such as a column member. However, since the member surface radiates heat to the outside air, the temperature rise is small, a large temperature gradient is generated in the member cross section, and a temperature stress is generated. As a result, cracks are more likely to occur.
And a crack damages a design, produces the functional fall of waterproof performance and structural performance, and reduces the value and performance of a building.
Such inconvenience occurs both in the case of precast reinforced concrete members and in the case of on-site reinforced concrete members.
As a general method for preventing shrinkage cracking, an expanding material and a shrinkage reducing agent are currently used for the cast concrete, but the cost is greatly increased.

鉄筋コンクリート柱を製造するに際して、コンクリートを打設することでその断面の外側部分をまず製造し、つぎに、この外側部分を型枠としてその内部にコンクリートを打設することで断面の内側部分を製造する方法が知られている(非特許文献1)。
しかしながら、この製造方法では、後打ちの内側部分が収縮することで、先打ちの外側部分との間に目開きが生じる可能性が大きくなる。
When manufacturing reinforced concrete columns, the outer part of the cross section is first manufactured by casting concrete, and then the inner part of the cross section is manufactured by placing concrete inside the outer part using the outer part as a mold. The method of doing is known (nonpatent literature 1).
However, in this manufacturing method, the inner portion of the post-cooking contracts, so that there is a greater possibility that an opening will occur between the outer portion of the pre-coating.

日本コンクリート工学協会発行、「コンクリート工学」、vol40、NO10、13頁〜20頁、2002年10月Published by Japan Concrete Institute, “Concrete Engineering”, vol40, NO10, pp. 13-20, October 2002

本発明は前記事情に鑑み案出されたものであって、本発明の目的は、コンクリート収縮時の鉄筋の拘束力を極力低減でき、また、コンクリート硬化時における部材の内部と表面との温度差が極力小さくでき、コストを低減しつつひび割れを防止する上で有利な鉄筋コンクリート部材の製造方法を提供することにある。 The present invention has been devised in view of the above circumstances, and the object of the present invention is to reduce as much as possible the restraining force of the rebar when the concrete shrinks, and the temperature difference between the inside and the surface of the member when the concrete is hardened. there utmost can be reduced is to provide a method for producing a favorable reinforced concrete member in order to prevent cracking while reducing the cost.

前記目的を達成するため本発明は、型枠内に鉄筋を配筋し、設計基準強度Fが100N/mm以上の高強度コンクリートを打設して得られる断面の縦横の寸法よりも大きな寸法の軸方向長さを有する鉄筋コンクリート部材の製造方法であって、前記鉄筋コンクリート部材を、前記断面の中央部を含む内側部分と、前記内側部分を覆う外側部分とに分け、第1の型枠内に鉄筋を配筋し、その後、前記第1の型枠内に前記高強度コンクリートを打設し、養生期間の後、前記第1の型枠を外して前記内側部分を得、次に、第2の型枠内に前記内側部分を収容し、前記第2の型枠内で前記内側部分の周囲に鉄筋を配筋し、その後、前記第2の型枠内で前記内側部分の周囲に前記高強度コンクリートを打設し、養生期間の後、前記第2の型枠を外し、前記内側部分に前記外側部分が一体化された鉄筋コンクリート柱部材を得るようにしたことを特徴とする。 The present invention for achieving the objects, and Haisuji rebar into the mold frame, greater than the height and width of a cross-section design strength F c is obtained by Da設the 100 N / mm 2 or more high-strength concrete A method of manufacturing a reinforced concrete member having an axial length of a dimension, wherein the reinforced concrete member is divided into an inner part including a central part of the cross section and an outer part covering the inner part , After the curing period, the first formwork is removed to obtain the inner part, and then the first part is placed. The inner part is accommodated in a second formwork, a reinforcing bar is arranged around the inner part in the second formwork, and then the inner part is placed around the inner part in the second formwork. Place high-strength concrete and after the curing period, remove the second formwork , Characterized in that to obtain a reinforced concrete column member to which the outer portion is integrated with the inner part.

本発明の鉄筋コンクリート部材の製造方法によれば、ひび割れが防止でき、また、先打ちのコンクリート分との間で目開きがなく、内側部分と外側部分とが強固に一体化された鉄筋コンクリート部材を得る上で有利となる。 According to the manufacturing method of the reinforced concrete member of the present invention, cracks can be prevented, also no mesh between the concrete content of the type-ahead, a reinforced concrete member in which the inner and outer portions are firmly integrated It is advantageous in obtaining.

(A)は鉄筋コンクリート柱部材の斜視図、(B)は同断面図である。(A) is a perspective view of a reinforced concrete column member, (B) is the same sectional view. 内側部材の製造時の型枠と鉄筋との関係を示す斜視図である。It is a perspective view which shows the relationship between the formwork at the time of manufacture of an inner member, and a reinforcing bar. 製造された内側部材の外側に外側部材を製造する際の型枠と鉄筋との関係を示す斜視図である。It is a perspective view which shows the relationship between a formwork at the time of manufacturing an outer member on the outer side of the manufactured inner member, and a reinforcing bar. 内側部材の斜視図である。It is a perspective view of an inner member. 第2の型枠内にコンクリートを打設する際の説明図である。It is explanatory drawing at the time of placing concrete in a 2nd formwork. (A)乃至(E)は鉄筋コンクリート柱部材10の他の例の説明図である。(A) thru | or (E) are explanatory drawings of the other example of the reinforced concrete column member 10. FIG. コンクリート部材の寸法別のコンクリート硬化時の収縮量の推移を示す図である。It is a figure which shows transition of the shrinkage | contraction amount at the time of concrete hardening according to the dimension of a concrete member.

以下、本発明の実施の形態を図面にしたがって説明する。
図1(A)は鉄筋コンクリート柱部材の斜視図、(B)は同断面図である。
本実施の形態では、鉄筋コンクリート部材は、断面の縦横の寸法よりも大きな寸法の軸方向長さを有しコンクリート中Cに多数の鉄筋12が埋設されて製造された断面が矩形の鉄筋コンクリート柱部材10である。
なお、鉄筋コンクリート柱部材10は、現場打ちの鉄筋コンクリート柱部材の場合と、予め工場で製造するプレキャスト鉄筋コンクリート柱部材の場合の双方を含む。
用いるコンクリートCは、設計基準強度F=100N/mm程度以上の高強度コンクリートである。
鉄筋コンクリート柱部材10の断面の中央部を含む内側部分20は、この内側部分20を覆う外側部分30よりも先にコンクリートが打設されて製造されており、内側部分20と外側部分30は一体化されている。
本実施の形態では、鉄筋コンクリート柱部材10は1m角程度の矩形を呈し、内側部分20は30cm角〜40cm角程度の矩形を呈し、外側部分30は厚さが30cm程度の矩形枠状を呈している。
多数の鉄筋12は、鉄筋コンクリート柱部材10の軸方向に延在し軸方向力や曲げモーメントなどを負担する多数の主筋14と、主筋14に連結されて鉄筋コンクリート柱部材10の軸方向と直交する面上を延在しせん断力などを負担する帯筋16などを含んでいる。
多数の主筋14は、鉄筋コンクリート柱部材10の断面の外周部に位置するように配設されている。
Hereinafter, embodiments of the present invention will be described with reference to the drawings.
FIG. 1A is a perspective view of a reinforced concrete column member, and FIG.
In the present embodiment, the reinforced concrete member has a length in the axial direction that is larger than the vertical and horizontal dimensions of the cross section, and the reinforced concrete column member 10 having a rectangular cross section manufactured by embedding a large number of reinforcing bars 12 in the concrete C. It is.
In addition, the reinforced concrete column member 10 includes both a case of a reinforced concrete column member cast on the spot and a case of a precast reinforced concrete column member manufactured in advance in a factory.
The concrete C to be used is high-strength concrete having a design standard strength F c = about 100 N / mm 2 or more.
The inner part 20 including the central part of the cross section of the reinforced concrete column member 10 is manufactured by placing concrete before the outer part 30 covering the inner part 20, and the inner part 20 and the outer part 30 are integrated. Has been.
In the present embodiment, the reinforced concrete column member 10 has a rectangular shape of about 1 m square, the inner portion 20 has a rectangular shape of about 30 cm square to 40 cm square, and the outer portion 30 has a rectangular frame shape with a thickness of about 30 cm. Yes.
A number of reinforcing bars 12 extend in the axial direction of the reinforced concrete column member 10 and have a number of main bars 14 bearing an axial force, a bending moment, and the like, and are connected to the main bars 14 and perpendicular to the axial direction of the reinforced concrete column member 10. A band 16 that extends above and bears a shearing force and the like is included.
A large number of main bars 14 are arranged so as to be located on the outer peripheral portion of the cross section of the reinforced concrete column member 10.

このような構成からなる鉄筋コンクリート柱部材10では、内側部分20が外側部分30よりも先に製造され、内側部分20の断面は、従来の全断面を一度にコンクリート打設する場合に比較して小さい。
そのため、内側部分20は、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での収縮量が小さく、したがって、自己収縮により縮もうとするコンクリートCへの鉄筋12の拘束力が小さく、内側部分20のひび割れを防止する上で有利となる。
また、内側部分20は、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での発生熱量も小さく、また、その外周面から効果的に放熱されるため、内側部分20の断面の温度勾配を小さく抑制でき、内側部分20のひび割れを防止する上で有利となる。
特に、設計基準強度F=100N/mm程度以上の高強度コンクリートCでは自己収縮量が大きく、また、硬化初期における発熱量が大きいので、内側部分20のひび割れを防止する上でより有利となる。
In the reinforced concrete column member 10 having such a configuration, the inner portion 20 is manufactured prior to the outer portion 30, and the cross section of the inner portion 20 is smaller than that in the case of placing the entire entire cross section at once in concrete. .
For this reason, the inner portion 20 has a smaller amount of shrinkage in the hardening process than the conventional case in which the entire cross section is placed at once, and therefore, the binding force of the reinforcing bars 12 to the concrete C to be shrunk by self-shrinkage. Is small, which is advantageous in preventing cracking of the inner portion 20.
In addition, the inner portion 20 generates less heat in the curing process compared to the case where the entire entire cross-section is cast at once, and also effectively dissipates heat from the outer peripheral surface. The temperature gradient of the cross section can be suppressed to be small, which is advantageous in preventing the inner portion 20 from cracking.
In particular, the high strength concrete C having a design standard strength of F c = 100 N / mm 2 or more has a large amount of self-shrinkage and a large calorific value at the initial stage of curing, which is more advantageous in preventing cracking of the inner portion 20. Become.

また、外側部分30の製造時、コンクリートCは、硬化過程で自己収縮するので、外側部分30の内面が内側部分20の外面に密着し、内側部分20と外側部分30とを強固に一体化する上で有利となり、従来のように、先打ちのコンクリート分との間に目開きが生じる不具合もない。
また、外側部分30の断面は、従来の全断面を一度にコンクリート打設する場合に比較して小さい。
そのため、外側部分30も、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での収縮量が小さく、したがって、自己収縮により縮もうとするコンクリートへの鉄筋の拘束力が小さく、外側部分30のひび割れを防止する上で有利となる。
また、外側部分30は、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での発生熱量も小さく、また、その外周面から効果的に放熱されるため、外側部分30の断面の温度勾配を小さく抑制でき、外側部分30のひび割れを防止する上で有利となる。
特に、設計基準強度F=100N/mm程度以上の高強度コンクリートCでは自己収縮量が大きく、また、硬化初期における発熱量が大きいので、外側部分30のひび割れを防止する上でより有利となる。
なお、配筋量が多く 外側部分30に収縮ひび割れを生じる可能性がある場合には、外側部分30のみに膨張材や収縮低減剤を入れたコンクリートを打設すればよく、したがって、コストアップを最低限に抑えることが可能となる。
Further, when the outer portion 30 is manufactured, the concrete C self-shrinks during the curing process, so that the inner surface of the outer portion 30 is in close contact with the outer surface of the inner portion 20 and the inner portion 20 and the outer portion 30 are firmly integrated. It is advantageous in the above, and there is no trouble that an opening is generated between the first concrete portion as in the prior art.
Moreover, the cross section of the outer part 30 is small compared with the case where the concrete all the conventional cross sections are poured at once.
For this reason, the outer portion 30 also has a smaller amount of shrinkage in the curing process than the conventional case where the entire cross section is placed at once, and therefore, the restraining force of the reinforcing bars on the concrete to be shrunk by self-shrinkage is small. This is advantageous in preventing the outer portion 30 from cracking.
In addition, the outer portion 30 generates less heat in the curing process compared to the case where the entire entire cross-section is cast at once, and also effectively dissipates heat from the outer peripheral surface. The temperature gradient of the cross section can be suppressed to be small, which is advantageous in preventing the outer portion 30 from cracking.
In particular, the high strength concrete C having a design standard strength F c = 100 N / mm 2 or more has a large self-shrinkage amount and a large calorific value at the initial stage of curing, which is more advantageous in preventing cracking of the outer portion 30. Become.
If there is a large amount of bar arrangement and there is a possibility of causing shrinkage cracks in the outer part 30, it is only necessary to place concrete containing an expansion material or shrinkage reducing agent only in the outer part 30. It can be minimized.

次に、上述の鉄筋コンクリート柱部材10の製造方法について説明する。
図2は内側部材の製造時の型枠と鉄筋との関係を示す斜視図、図3は製造された内側部材の外側に外側部材を製造する際の型枠と鉄筋との関係を示す斜視図を示す。
なお、製造方法の場合も、現場打ちの鉄筋コンクリート柱部材の場合と、予め工場で製造するプレキャスト鉄筋コンクリート柱部材の場合の双方を含む。
まず、図2に示すように、第1の型枠K1内に、複数の主筋14、帯筋16を含む鉄筋12を配筋する。なお、主筋14の下端には、機械式継手Tを連結しておく。
次に、第1の型枠K1内に高強度コンクリートCを打設する。
そして、所定の養生期間の後、第1の型枠K1を外し、図3に示す内側部分20を得る。
養生は自己収縮の進行が緩やかになるまでおこない、養生期間は標準期で5から7日程
度である。
なお、図4に示すように、内側部分20を外側部分30により強固に一体化させるため、内側部分20の外面に、目荒らし、コッターなどの凹凸部2002を設け、後打ちする外側部分30との付着を高めるようにしてもよい。
Next, the manufacturing method of the above-mentioned reinforced concrete column member 10 is demonstrated.
FIG. 2 is a perspective view showing the relationship between the formwork and the reinforcing bar during manufacturing of the inner member, and FIG. 3 is a perspective view showing the relationship between the formwork and the reinforcing bar when manufacturing the outer member outside the manufactured inner member. Indicates.
In addition, the case of the manufacturing method includes both the case of a reinforced concrete column member cast on the spot and the case of a precast reinforced concrete column member manufactured in advance in a factory.
First, as shown in FIG. 2, reinforcing bars 12 including a plurality of main bars 14 and band bars 16 are arranged in the first formwork K1. A mechanical joint T is connected to the lower end of the main bar 14.
Next, high-strength concrete C is placed in the first mold K1.
Then, after a predetermined curing period, the first formwork K1 is removed to obtain the inner portion 20 shown in FIG.
Curing is carried out until the self-shrinkage progresses slowly, and the curing period is about 5 to 7 days in the standard period.
As shown in FIG. 4, in order to firmly integrate the inner portion 20 with the outer portion 30, the outer surface of the inner portion 20 is provided with uneven portions 2002 such as roughening and cotter, and the outer portion 30 to be struck later. You may make it raise adhesion of.

次に、第2の型枠K2内に、内側部分20を収容し、その周囲に主筋14や帯筋16などを含む鉄筋12を配筋する。なお、主筋14の下端には、機械式継手Tを連結しておく。
次に、図5に示すように、第2の型枠K2内に高強度コンクリートCを打設していく。
そして、所定の養生期間の後、第2の型枠K2を外し、図1に示す内側部分20に外側部分30が一体化された鉄筋コンクリート柱部材10を得る。
養生は自己収縮の進行が緩やかになるまでおこない、養生期間は標準期で5から7日程
度である。
上述の製造方法は、鉄筋コンクリート柱部材10が現場打ちの鉄筋コンクリート柱部材である場合とプレキャスト鉄筋コンクリート柱部材の双方に適用可能であり、プレキャスト工法の場合には、柱全体を横に寝かせた状態で打設することも可能である。
Next, the inner part 20 is accommodated in the second formwork K2, and the reinforcing bars 12 including the main bars 14 and the straps 16 are arranged around it. A mechanical joint T is connected to the lower end of the main bar 14.
Next, as shown in FIG. 5, high-strength concrete C is placed in the second mold K2.
And after a predetermined curing period, the 2nd formwork K2 is removed and the reinforced concrete pillar member 10 by which the outer part 30 was integrated with the inner part 20 shown in FIG. 1 is obtained.
Curing is carried out until the self-shrinkage progresses slowly, and the curing period is about 5 to 7 days in the standard period.
The above-described manufacturing method can be applied to both the case where the reinforced concrete column member 10 is a reinforced concrete column member and a precast reinforced concrete column member. In the case of the precast method, the entire column is laid sideways. It is also possible to set up.

本実施の形態の製造方法によれば、内側部分20の製造時に、内側部分20の断面は、従来の全断面を一度にコンクリート打設する場合に比較して小さい。
そのため、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での収縮量が小さく、したがって、自己収縮により縮もうとするコンクリートへの鉄筋の拘束力が小さく、内側部分20のひび割れを防止する上で有利となる。
また、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での発生熱量も小さく、また、その外周面から効果的に放熱されるため、内側部分20の断面の温度勾配を小さく抑制でき、内側部分20のひび割れを防止する上で有利となる。
特に、設計基準強度F=100N/mm程度以上の高強度コンクリートCでは自己収縮量が大きく、また、硬化初期における発熱量が大きいので、内側部分20のひび割れを防止する上でより有利となる。
According to the manufacturing method of the present embodiment, when the inner portion 20 is manufactured, the cross section of the inner portion 20 is smaller than that in the case of placing all the conventional cross sections at once in concrete.
Therefore, the amount of shrinkage in the curing process is small compared to the case where the entire entire cross section is placed at once, and therefore, the restraining force of the reinforcing bars on the concrete to be shrunk by self-shrinkage is small, and the inner portion 20 This is advantageous in preventing cracks.
In addition, the amount of heat generated in the curing process is small compared to the case where all the conventional cross sections are placed at once, and since the heat is effectively radiated from the outer peripheral surface, the temperature gradient of the cross section of the inner portion 20 is reduced. It can be suppressed to a small size, which is advantageous in preventing cracking of the inner portion 20.
In particular, the high strength concrete C having a design standard strength of F c = 100 N / mm 2 or more has a large amount of self-shrinkage and a large calorific value at the initial stage of curing, which is more advantageous in preventing cracking of the inner portion 20. Become.

また、外側部分30の製造時、コンクリートCは、硬化過程で自己収縮するので、外側部分30の内面が内側部分20の外面に密着し、内側部分20と外側部分30とを強固に一体化する上で有利となり、従来のように、先打ちのコンクリート分との間に目開きが生じる不具合もない。
また、外側部分30の断面は、従来の全断面を一度にコンクリート打設する場合に比較して小さい。
そのため、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での収縮量が小さく、したがって、自己収縮により縮もうとするコンクリートへの鉄筋の拘束力が小さく、外側部分30のひび割れを防止する上で有利となる。
また、従来の全断面を一度にコンクリート打設する場合に比較して硬化過程での発生熱量も小さく、また、その外周面から効果的に放熱されるため、外側部分30の断面の温度勾配を小さく抑制でき、外側部分30のひび割れを防止する上で有利となる。
特に、設計基準強度F=100N/mm程度以上の高強度コンクリートCでは自己収縮量が大きく、また、硬化初期における発熱量が大きいので、外側部分30のひび割れを防止する上でより有利となる。
なお、配筋量が多く 外側部分30に収縮ひび割れを生じる可能性がある場合には、外側部分30のみに膨張材や収縮低減剤を入れたコンクリートを打設すればよく、したがって、膨張材や収縮低減剤の使用量を低減でき、コストアップを最低限に抑えることが可能となる。
Further, when the outer portion 30 is manufactured, the concrete C self-shrinks during the curing process, so that the inner surface of the outer portion 30 is in close contact with the outer surface of the inner portion 20 and the inner portion 20 and the outer portion 30 are firmly integrated. It is advantageous in the above, and there is no trouble that an opening is generated between the first concrete portion as in the prior art.
Moreover, the cross section of the outer part 30 is small compared with the case where the concrete all the conventional cross sections are poured at once.
Therefore, the amount of shrinkage in the curing process is small compared to the case where the entire entire cross section is placed at once, and therefore the restraining force of the reinforcing bars on the concrete to be shrunk by self-shrinkage is small. This is advantageous in preventing cracks.
In addition, the amount of heat generated during the curing process is small compared to the case where all the conventional cross sections are placed at once, and since the heat is effectively radiated from the outer peripheral surface, the temperature gradient of the cross section of the outer portion 30 is reduced. It can be suppressed to a small size, which is advantageous in preventing the outer portion 30 from cracking.
In particular, the high strength concrete C having a design standard strength F c = 100 N / mm 2 or more has a large self-shrinkage amount and a large calorific value at the initial stage of curing, which is more advantageous in preventing cracking of the outer portion 30. Become.
If there is a large amount of bar arrangement and there is a possibility that shrinkage cracks may occur in the outer part 30, it is only necessary to place concrete containing an expanding material or shrinkage reducing agent only in the outer part 30. The use amount of the shrinkage reducing agent can be reduced, and the cost increase can be minimized.

次に本実施の形態の他の例について説明する。
図6(A)乃至(E)は、鉄筋コンクリート柱部材10の他の例の説明図で、それぞれ断面を示している。
図6(A)に示す鉄筋コンクリート柱部材10Aは、内側部材20に鉄筋12が配筋されていない点が実施の形態の鉄筋コンクリート柱10と異なっている。
図6(B)に示す鉄筋コンクリート柱部材10Bは、内側部材20の断面が正八角形である点が実施の形態の鉄筋コンクリート柱10と異なっている。
図6(C)に示す鉄筋コンクリート柱部材10Bは、内側部材20の断面が円形である点が実施の形態の鉄筋コンクリート柱10と異なっている。
図6(D)に示す鉄筋コンクリート柱部材10Dは、帯筋16の形状が実施の形態の鉄筋コンクリート柱10と一部異なっている。
図6(E)に示す鉄筋コンクリート柱部材10Eは、内側部材20の断面が実施の形態の鉄筋コンクリート柱10よりも小さく、かつ、帯筋16の形状が実施の形態の鉄筋コンクリート柱10と一部異なっている。
すなわち、本発明の鉄筋コンクリート柱部材10は、実施の形態の形状に限定されず、従来公知の様々な構造に適用可能である。
Next, another example of the present embodiment will be described.
6 (A) to 6 (E) are explanatory views of other examples of the reinforced concrete column member 10, each showing a cross section.
A reinforced concrete column member 10A shown in FIG. 6A is different from the reinforced concrete column 10 of the embodiment in that the reinforcing member 12 is not arranged on the inner member 20.
A reinforced concrete column member 10B shown in FIG. 6B is different from the reinforced concrete column 10 of the embodiment in that the cross section of the inner member 20 is a regular octagon.
A reinforced concrete column member 10B shown in FIG. 6C is different from the reinforced concrete column 10 of the embodiment in that the cross section of the inner member 20 is circular.
A reinforced concrete column member 10D shown in FIG. 6 (D) is partially different from the reinforced concrete column 10 of the embodiment in the shape of the band 16.
The reinforced concrete column member 10E shown in FIG. 6 (E) has a cross section of the inner member 20 smaller than that of the reinforced concrete column 10 of the embodiment, and the shape of the band 16 is partially different from the reinforced concrete column 10 of the embodiment. Yes.
That is, the reinforced concrete column member 10 of the present invention is not limited to the shape of the embodiment, and can be applied to various conventionally known structures.

なお、本実施の形態では、鉄筋コンクリート部材が鉄筋コンクリート柱である場合について説明したが、本発明における鉄筋コンクリート部材は、鉄筋コンクリート梁などのその他の部材にも無論適用可能である。
また、内側部材には鉄筋(芯鉄筋)に変えて鉄骨(芯鉄骨)が用いられる場合もあり、このような場合にも本発明は無論適用可能であり、したがって、本発明において、内側部材に設けられる鉄筋は鉄骨を含むものである。
In this embodiment, the case where the reinforced concrete member is a reinforced concrete column has been described. However, the reinforced concrete member according to the present invention can of course be applied to other members such as a reinforced concrete beam.
In addition, a steel frame (core steel frame) may be used instead of a reinforcing bar (core steel bar) for the inner member, and in this case, the present invention can of course be applied. Therefore, in the present invention, the inner member is applied to the inner member. The reinforcing bars provided include steel frames.

10……鉄筋コンクリート柱部材、12……鉄筋、14……主筋、16……帯筋、20……内側部材、30……外側部材。   DESCRIPTION OF SYMBOLS 10 ... Reinforced concrete column member, 12 ... Reinforcing bar, 14 ... Main reinforcement, 16 ... Strip reinforcement, 20 ... Inner member, 30 ... Outer member.

Claims (2)

型枠内に鉄筋を配筋し、設計基準強度Fが100N/mm以上の高強度コンクリートを打設して得られる断面の縦横の寸法よりも大きな寸法の軸方向長さを有する鉄筋コンクリート部材の製造方法であって、
前記鉄筋コンクリート部材を、前記断面の中央部を含む内側部分と、前記内側部分を覆う外側部分とに分け、
第1の型枠内に鉄筋を配筋し、その後、前記第1の型枠内に前記高強度コンクリートを打設し、養生期間の後、前記第1の型枠を外して前記内側部分を得、
次に、第2の型枠内に前記内側部分を収容し、前記第2の型枠内で前記内側部分の周囲に鉄筋を配筋し、その後、前記第2の型枠内で前記内側部分の周囲に前記高強度コンクリートを打設し、養生期間の後、前記第2の型枠を外し、前記内側部分に前記外側部分が一体化された鉄筋コンクリート柱部材を得るようにした、
ことを特徴とする鉄筋コンクリート部材の製造方法。
And Haisuji rebar into a mold frame, reinforced concrete member having an axial length larger than the dimensions of the vertical and horizontal cross-section design strength F c is obtained by Da設the 100 N / mm 2 or more high-strength concrete A manufacturing method of
The reinforced concrete member is divided into an inner part including a central part of the cross section and an outer part covering the inner part,
Reinforcing bars in the first formwork, and then placing the high-strength concrete in the first formwork. After the curing period, the first formwork is removed and the inner part is removed. Get
Next, the inner part is accommodated in a second formwork, a reinforcing bar is arranged around the inner part in the second formwork, and then the inner part is placed in the second formwork. The high-strength concrete was cast around the periphery, and after the curing period, the second formwork was removed, and a reinforced concrete column member in which the outer portion was integrated with the inner portion was obtained.
The manufacturing method of the reinforced concrete member characterized by the above-mentioned.
前記内側部分の外側面には、前記外側部分との付着力を高めるための凹凸部が形成されることを特徴とする請求項1記載の鉄筋コンクリート部材の製造方法。   The method for manufacturing a reinforced concrete member according to claim 1, wherein an uneven portion for increasing adhesion to the outer portion is formed on the outer surface of the inner portion.
JP2010276853A 2010-12-13 2010-12-13 Method for manufacturing reinforced concrete member Active JP5155380B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010276853A JP5155380B2 (en) 2010-12-13 2010-12-13 Method for manufacturing reinforced concrete member

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2010276853A JP5155380B2 (en) 2010-12-13 2010-12-13 Method for manufacturing reinforced concrete member

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2006068645A Division JP4666374B2 (en) 2006-03-14 2006-03-14 Reinforced concrete members

Publications (2)

Publication Number Publication Date
JP2011094476A JP2011094476A (en) 2011-05-12
JP5155380B2 true JP5155380B2 (en) 2013-03-06

Family

ID=44111679

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010276853A Active JP5155380B2 (en) 2010-12-13 2010-12-13 Method for manufacturing reinforced concrete member

Country Status (1)

Country Link
JP (1) JP5155380B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6012353B2 (en) * 2012-09-18 2016-10-25 三井住友建設株式会社 Composite column structure and composite column construction method
CN103422620B (en) * 2013-08-27 2016-01-20 陕西建科兴业钢结构有限公司 A kind of prefabricated hollow profile steel concrete column and splicing construction thereof and joining method
JP6422795B2 (en) * 2015-02-27 2018-11-14 三井住友建設株式会社 Composite beam, PCa composite beam member constituting the same, and composite ramen structure
CN107882271A (en) * 2017-10-17 2018-04-06 湖北工程学院 A kind of marine sand concrete superposed column using UHPC outsourcings
CN108952009A (en) * 2018-09-07 2018-12-07 三筑工科技有限公司 Prefabricated superposed column, reinforced column and assembled architecture body
CN114197752A (en) * 2021-12-27 2022-03-18 武汉市华江幸福装配式建筑有限公司 Crust column-concrete prefabricated column and manufacturing method thereof

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2577069B2 (en) * 1988-10-20 1997-01-29 株式会社大林組 How to build reinforced concrete columns
JP3416612B2 (en) * 2000-04-17 2003-06-16 西松建設株式会社 Construction method of reinforced concrete columns
JP2005155036A (en) * 2003-11-20 2005-06-16 Sumitomo Mitsui Construction Co Ltd Column of building and rigid-frame structure using this column

Also Published As

Publication number Publication date
JP2011094476A (en) 2011-05-12

Similar Documents

Publication Publication Date Title
JP5155380B2 (en) Method for manufacturing reinforced concrete member
KR101570484B1 (en) Half-PC Column using lightweight Encased Inner Form And Manufacturing Method Thereof, And Construction Method Using The Same
KR101652943B1 (en) Reinforced concrete column manufacturing method for high building
KR101240409B1 (en) Prestressed precast concrete Composite Beam and manufacture methode for there of and construction methode for there of
KR101328045B1 (en) Reinforced concrete composite columns using precast high-performance fiber-reinforced cement
JP2012057443A (en) Steel pipe reinforced concrete composite pile and manufacturing method for the same
JP4826375B2 (en) Plastic hinge structure of concrete structure and manufacturing method of precast formwork
KR101355926B1 (en) Reusable waffle type slab form assembly
KR101590180B1 (en) Precast concrete slab having lightweight body and ribs provided with wide head and, manufacturing methods of the same
KR101636473B1 (en) Reformed concrete filled tube column structure
KR100757960B1 (en) Two-way hollow core slab and construction method thereof
KR101506620B1 (en) Precast concrete slab and Precast concrete slab assembly
KR20140110491A (en) Half precast concrete column manufacturing method using saddle-type ties and dual hoops and constructing method using the same
JP4666374B2 (en) Reinforced concrete members
JP5261508B2 (en) Method for manufacturing reinforced concrete member
KR101405029B1 (en) An arch type slab and thereof manufacturing method
KR101912422B1 (en) Composite beam fabricating method with pre-load process and composite beam using the same
JP4683426B2 (en) Method for manufacturing reinforced concrete member
JP5702167B2 (en) Method for suppressing cracking of concrete with temperature prestress
KR101094099B1 (en) Constructing method of slab using convex type spacer
JP2010242325A (en) Column structure and method for constructing the same
JP2010112074A (en) Construction method of concrete structure
KR101842038B1 (en) Permanent formwork segment for constructing column having embossed pattern, method for manufacturing the same and method constructing column having embossed pattern
JP6522450B2 (en) SC pile
JP4651025B2 (en) Precast reinforced concrete member and manufacturing method thereof

Legal Events

Date Code Title Description
A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120612

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120809

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121204

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121206

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5155380

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

S531 Written request for registration of change of domicile

Free format text: JAPANESE INTERMEDIATE CODE: R313531

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250