JP5152521B2 - Method for dehydrohalogenating halogenated compounds - Google Patents

Method for dehydrohalogenating halogenated compounds Download PDF

Info

Publication number
JP5152521B2
JP5152521B2 JP2009036790A JP2009036790A JP5152521B2 JP 5152521 B2 JP5152521 B2 JP 5152521B2 JP 2009036790 A JP2009036790 A JP 2009036790A JP 2009036790 A JP2009036790 A JP 2009036790A JP 5152521 B2 JP5152521 B2 JP 5152521B2
Authority
JP
Japan
Prior art keywords
compound
reaction
mol
basic compound
group
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2009036790A
Other languages
Japanese (ja)
Other versions
JP2010189338A (en
Inventor
隆志 堤
直佑 堀田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Zeon Corp
Original Assignee
Zeon Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Zeon Corp filed Critical Zeon Corp
Priority to JP2009036790A priority Critical patent/JP5152521B2/en
Publication of JP2010189338A publication Critical patent/JP2010189338A/en
Application granted granted Critical
Publication of JP5152521B2 publication Critical patent/JP5152521B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明はハロゲン化化合物の新規な脱ハロゲン化水素方法に関し、特に、ジヒドロハロゲン化アルカン化合物、および/またはモノヒドロハロゲン化アルケン化合物を脱ハロゲン化水素してパーフルオロアルキンまたはフルオロアルケンを得る方法に関する。   The present invention relates to a novel dehydrohalogenation method of a halogenated compound, and more particularly, to a method of dehydrohalogenating a dihydrohalogenated alkane compound and / or a monohydrohalogenated alkene compound to obtain a perfluoroalkyne or fluoroalkene. .

従来から、隣接する炭素原子に水素原子とハロゲン原子とを有する含水素ハロゲン化炭化水素に、塩基性化合物を反応させることで脱ハロゲン化反応を起こさせ、アルケン化合物又はアルキン化合物を得る方法が知られている。
例えば、特許文献1(特開2007−320874号公報)においては、ジヒドロハロゲノアルカン化合物および/またはモノヒドロハロゲノアルケン化合物と金属フッ化物とを、気相流通式で500℃以上の条件下で接触させることで脱ハロゲン化反応を進行させ、パーフルオロアルキン化合物を得る方法が提案されている。ここでは、金属フッ化物は担体に担持させられ、これを充填した反応管内に、気化されたヒドロハロゲノアルカン化合物および/またはモノヒドロハロゲノアルケン化合物と流通することにより、脱ハロゲン化反応を進行させている。
特許文献2(特表2005−504097号公報)では、隣接する炭素原子に水素原子とハロゲン原子とを有する含水素ハロゲン化アルカンと、アルカリ金属の水酸化物とを、相転移触媒存在下で接触させることにより、脱ハロゲン化反応を進行させ、ハロゲン化アルケンを収率良く得る方法が提案されている。この反応は、相転移触媒存在下で進行するため、高圧下、液体状態で実施される。
特許文献3(特開2003−146917号公報)では、ジヒドロフルオロアルカン化合物および/またはモノヒドロフルオロアルケン化合物と、塩基性化合物とを接触させることにより、脱ハロゲン化反応を進行させ、パーフルオロアルキン化合物を得る方法が提案されている。ここでは、具体的には塩基性化合物を固体として用い、固液反応により生成物を得た後、液部の蒸留により生成物を単離する方法が提案されている。
更に特許文献4(特開2004−292329号公報)では、特許文献3と同様の反応を、反応管に塩基性化合物を充填した、気固反応により脱ハロゲン化物を生成させている。
Conventionally, a method of obtaining an alkene compound or an alkyne compound by causing a dehalogenation reaction by reacting a hydrogenated halogenated hydrocarbon having a hydrogen atom and a halogen atom on adjacent carbon atoms with a basic compound is known. It has been.
For example, in Patent Document 1 (Japanese Patent Application Laid-Open No. 2007-320874), a dihydrohalogenoalkane compound and / or a monohydrohalogenoalkene compound and a metal fluoride are brought into contact with each other at a temperature of 500 ° C. or higher in a gas-phase flow system. Thus, a method has been proposed in which a dehalogenation reaction is advanced to obtain a perfluoroalkyne compound. Here, the metal fluoride is supported on a carrier, and the dehalogenation reaction is allowed to proceed by circulating the vaporized hydrohalogenoalkane compound and / or monohydrohalogenoalkene compound in a reaction tube filled with the metal fluoride. Yes.
In Patent Document 2 (Japanese Patent Publication No. 2005-504097), a hydrogenated alkane having a hydrogen atom and a halogen atom on adjacent carbon atoms is contacted with an alkali metal hydroxide in the presence of a phase transfer catalyst. Thus, a method has been proposed in which the dehalogenation reaction proceeds to obtain a halogenated alkene in good yield. Since this reaction proceeds in the presence of a phase transfer catalyst, it is carried out in a liquid state under high pressure.
In Patent Document 3 (Japanese Patent Application Laid-Open No. 2003-146717), a dehydrohalogenation reaction is advanced by bringing a dihydrofluoroalkane compound and / or a monohydrofluoroalkene compound into contact with a basic compound, and a perfluoroalkyne compound is obtained. The method of obtaining is proposed. Specifically, a method has been proposed in which a basic compound is used as a solid, a product is obtained by solid-liquid reaction, and then the product is isolated by distillation of the liquid part.
Furthermore, in patent document 4 (Unexamined-Japanese-Patent No. 2004-292329), the dehalogenate is produced | generated by the gas-solid reaction which filled the reaction tube with the basic compound and the reaction similar to patent document 3.

特開2007−320874号公報JP 2007-320874 A 特表2005−504097号公報JP 2005-504097 gazette 特開2003−146917号公報Japanese Patent Laid-Open No. 2003-146917 特開2004−292329号公報JP 2004-292329 A

本発明の目的は、高温や触媒を必要とせず、高回収率であって、工業的に有利な脱ハロゲン化水素の方法を提供することにある。   An object of the present invention is to provide an industrially advantageous dehydrohalogenation method that does not require a high temperature or a catalyst, has a high recovery rate, and is industrially advantageous.

係る従来技術を本発明者らが検討した結果、それぞれ問題を有していることが確認された。特許文献1の方法では、ジヒドロハロゲノアルカン化合物および/またはモノヒドロハロゲノアルケン化合物を気化状態で反応させるため、500℃以上の高温条件を必要とする。そして、このような高温条件を工業的に安全に実施するには特殊設備を要し、大量生産には適さない。特許文献2において好適に用いられる相転移触媒は高価で、これを再利用するためには、反応系から回収する工程を要する問題があった。特許文献3の方法を実際に工業レベルで実施しようとすると、反応後の原料の回収率が低く、生産性の問題があった。特許文献4の方法では、固体表面に原料や中間体が付着し、反応性の低下が生じる問題があった。
本発明者らは、前記課題を解決するために、脱ハロゲン化水素方法について鋭意研究を進めた結果、塩基性化合物の溶液内に、ガス化したハロゲン化化合物をバブリング(気泡流噴射)することで、両者を接触させると、効率よく脱ハロゲン化水素反応が進行することを見出し、この知見に基づいて本発明を完成するに至った。この方法によれば、高い回収率と収率でアルケン、またはアルキンを得ることができ、特にパーフルオロアルキン、またはフルオロアルケンの製造法に適している。
As a result of examination of the related art by the present inventors, it has been confirmed that each has a problem. In the method of Patent Document 1, a dihydrohalogenoalkane compound and / or a monohydrohalogenoalkene compound is reacted in a vaporized state, so that a high temperature condition of 500 ° C. or higher is required. In order to implement such high temperature conditions safely industrially, special equipment is required, which is not suitable for mass production. The phase transfer catalyst suitably used in Patent Document 2 is expensive, and in order to reuse it, there is a problem that a step of recovering from the reaction system is required. When the method of Patent Document 3 was actually carried out at an industrial level, the recovery rate of the raw material after the reaction was low, and there was a problem of productivity. The method of Patent Document 4 has a problem that raw materials and intermediates adhere to the solid surface, resulting in a decrease in reactivity.
In order to solve the above-mentioned problems, the present inventors have conducted extensive research on the dehydrohalogenation method. As a result, the gasified halogenated compound is bubbled into the basic compound solution (bubble flow injection). Thus, when they are brought into contact with each other, it has been found that the dehydrohalogenation reaction proceeds efficiently, and the present invention has been completed based on this finding. According to this method, an alkene or alkyne can be obtained with a high recovery rate and yield, and is particularly suitable for a method for producing perfluoroalkyne or fluoroalkene.

かくして本発明によれば、下記式で表されるハロゲン化化合物をガス化させ、塩基性化合物の溶液にバブリングさせることにより、塩基性化合物と接触させることを特徴とするハロゲン化化合物を脱ハロゲン化水素する方法が提供される。
−CHX−CHY−R (1)
−CH=CX−R (2)
(式(1)中、RおよびRは、それぞれ独立に、炭素数1〜6のパーフルオロアルキル基であり、RとRとは結合して環を形成しても良い。XおよびYは、それぞれ独立に、F、Cl、BrおよびIからなる群より選ばれる1種のハロゲン原子である。
式(2)中、RおよびRは、それぞれ独立に、炭素数1〜6のパーフルオロアルキル基であり、RとRとは結合して環を形成しても良い。XはF、Cl、BrおよびIからなる群より選ばれる1種のハロゲン原子である。)
ここで塩基性化合物の当量が反応させるハロゲン化化合物のモル数に対し、2〜15当量であるのが好ましい。塩基性化合物の溶液の、塩基性化合物の濃度が50〜80重量%であるのが好ましい。塩基性化合物としてアルカリ金属の水酸化物を用いるのが好ましい。
前式(1)のRがパーフルオロメチル基であり、Rがパーフルオロエチル基であるのが好ましい。前式(2)のRまたはRのいずれかがパーフルオロメチル基であり、他方がパーフルオロエチル基であるのが好ましい。
更にハロゲン化化合物を脱ハロゲン化水素して得られる生成物がパーフルオロアルキンであるのが好ましい。パーフルオロアルキン化合物がパーフルオロ−2−ペンチンであるのが好ましい。
上述してきたハロゲン化化合物を脱ハロゲン化水素する方法において、脱ハロゲン化水素された生成物と未反応のハロゲン化化合物とを分離し、未反応のハロゲン化化合物を、再び反応させることが好ましい。
Thus, according to the present invention, a halogenated compound represented by the following formula is gasified and bubbled into a solution of the basic compound, thereby bringing the halogenated compound into contact with the basic compound. A method for hydrogenation is provided.
R 1 —CHX—CHY—R 2 (1)
R 3 —CH═CX—R 4 (2)
(In Formula (1), R 1 and R 2 are each independently a C 1-6 perfluoroalkyl group, and R 1 and R 2 may combine to form a ring. X And Y are each independently one halogen atom selected from the group consisting of F, Cl, Br and I.
In Formula (2), R 3 and R 4 are each independently a C 1-6 perfluoroalkyl group, and R 3 and R 3 may be bonded to form a ring. X is one halogen atom selected from the group consisting of F, Cl, Br and I. )
Here, the equivalent of the basic compound is preferably 2 to 15 equivalents relative to the number of moles of the halogenated compound to be reacted. The concentration of the basic compound in the basic compound solution is preferably 50 to 80% by weight. It is preferable to use an alkali metal hydroxide as the basic compound.
In Formula (1), R 1 is preferably a perfluoromethyl group, and R 2 is preferably a perfluoroethyl group. It is preferable that either R 3 or R 4 in the formula (2) is a perfluoromethyl group and the other is a perfluoroethyl group.
Furthermore, the product obtained by dehydrohalogenating a halogenated compound is preferably perfluoroalkyne. It is preferable that the perfluoroalkyne compound is perfluoro-2-pentyne.
In the above-described method for dehydrohalogenating a halogenated compound, it is preferable to separate a dehydrohalogenated product from an unreacted halogenated compound and react the unreacted halogenated compound again.

本発明はガス化させたハロゲン化化合物を塩基性化合物の溶液にバブリングさせることにより、塩基性化合物と接触させることを特徴とするハロゲン化化合物の脱ハロゲン化水素方法に関するものである。
この方法により脱ハロゲン化水素するのに好適なハロゲン化化合物として、ジヒドロハロゲン化アルカン化合物、および/またはモノヒドロハロゲン化アルケン化合物を用いることができる。
The present invention relates to a method for dehydrohalogenating a halogenated compound, wherein the gasified halogenated compound is brought into contact with the basic compound by bubbling into a solution of the basic compound.
As a halogenated compound suitable for dehydrohalogenation by this method, a dihydrohalogenated alkane compound and / or a monohydrohalogenated alkene compound can be used.

ジヒドロハロゲン化アルカン化合物は、常温、高温、加圧などの条件下で気体となるものであれば特に限定されるものではないが、取り扱いの容易さと気化させやすさから、沸点が常圧で25〜100℃のものが好ましく、前記式(1)で示される化合物が特に好ましい。これらの中でも、式(1)のRがパーフルオロメチル基であり、Rがパーフルオロエチル基であるのが好ましい。このときXやYはF、Cl、Br、Iのいずれでも良いが、沸点が低く、気化させやすいことからFが好ましい。
好適なジヒドロハロゲン化アルカン化合物の具体例としては、1,1,1,2,3,4,4,4−オクタフルオロブタン、1,1,1,2,2,3,4,5,5,5−デカフルオロペンタン、1,1,1,2,3,4,4,5,5,6,6,6−トリデカフルオロヘキサンが挙げられる。
The dihydrohalogenated alkane compound is not particularly limited as long as it becomes a gas under conditions such as normal temperature, high temperature, and pressure, but its boiling point is 25 at normal pressure because of easy handling and easy vaporization. The thing of -100 degreeC is preferable, and the compound shown by the said Formula (1) is especially preferable. Among these, it is preferable that R 1 in the formula (1) is a perfluoromethyl group and R 2 is a perfluoroethyl group. At this time, X and Y may be any of F, Cl, Br, and I, but F is preferable because it has a low boiling point and is easily vaporized.
Specific examples of suitable dihydrohalogenated alkane compounds include 1,1,1,2,3,4,4,4-octafluorobutane, 1,1,1,2,2,3,4,5,5. , 5-decafluoropentane, 1,1,1,2,3,4,4,5,5,6,6,6-tridecafluorohexane.

モノヒドロハロゲン化アルケン化合物は、常温、高温、加圧などの条件下で気体となるものであれば特に限定されるものではないが、取り扱いの容易さと気化させやすさから、沸点が常温常圧で25〜100℃のものが好ましく、式(2)で示される化合物が好ましい。式(2)で表される化合物はシス形、トランス型のいずれでも用いることができる。また、シス形、トランス型の混合物を用いても良い。これらの中でも、式(2)のRまたはRのいずれかがパーフルオロメチル基であり、他方がパーフルオロエチル基であるのが好ましい。このときXはF、Cl、Br、Iのいずれでも良いが、沸点が低く、気化させやすいことからFが好ましい。
好適なモノヒドロハロゲン化アルケン化合物の具体例としては、1,1,1,2,4,4,4−ヘプタフルオロ−2−ブテン、1,1,1,2,4,4,5,5,5−ノナフルオロ−2−ペンテン、1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテン、1,1,1,2,4,4,5,5,6,6,6−ドデカフルオロ−2−ヘキセン、1,1,1,3,4,4,5,5,6,6,6−ドデカフルオロ−2−ヘキセン、1,1,1,2,2,3,5,5,6,6,6−ドデカフルオロ−3−ヘキセンが挙げられる。
The monohydrohalogenated alkene compound is not particularly limited as long as it becomes a gas under conditions of room temperature, high temperature, and pressure, but the boiling point is normal temperature and normal pressure because of ease of handling and ease of vaporization. And those of 25 to 100 ° C. are preferred, and the compound represented by the formula (2) is preferred. The compound represented by the formula (2) can be used in either cis form or trans form. Also, a cis-type or trans-type mixture may be used. Among these, it is preferable that either R 3 or R 4 in the formula (2) is a perfluoromethyl group and the other is a perfluoroethyl group. At this time, X may be any of F, Cl, Br, and I, but F is preferred because it has a low boiling point and is easily vaporized.
Specific examples of suitable monohydrohalogenated alkene compounds include 1,1,1,2,4,4,4-heptafluoro-2-butene, 1,1,1,2,4,4,5,5. , 5-Nonafluoro-2-pentene, 1,1,1,3,4,4,5,5,5-Nonafluoro-2-pentene, 1,1,1,2,4,4,5,5,6 , 6,6-dodecafluoro-2-hexene, 1,1,1,3,4,4,5,5,6,6,6-dodecafluoro-2-hexene, 1,1,1,2,2 3,5,5,6,6,6-dodecafluoro-3-hexene.

本発明に用いる塩基性化合物は特に限定されないが、例えば、水酸化リチウム、水酸化ナトリウム、水酸化カリウム、水酸化ルビジウム、水酸化セシウム、水酸化マグネシウム、水酸化カルシウム、水酸バリウム、のアルカリ金属もしくはアルカリ土類金属の水酸化物、炭酸リチウム、炭酸ナトリウム、炭酸カリウム、炭酸マグネシウム、炭酸カルシウム、炭酸バリウム、炭酸水素リチウム、炭酸水素ナトリウム、炭酸水素カリウム、炭酸水素マグネシウム、炭酸水素カルシウム、炭酸水素バリウム等のアルカリ金属もしくはアルカリ土類金属の炭酸塩;   Although the basic compound used in the present invention is not particularly limited, for example, alkali metal such as lithium hydroxide, sodium hydroxide, potassium hydroxide, rubidium hydroxide, cesium hydroxide, magnesium hydroxide, calcium hydroxide, barium hydroxide Or alkaline earth metal hydroxide, lithium carbonate, sodium carbonate, potassium carbonate, magnesium carbonate, calcium carbonate, barium carbonate, lithium bicarbonate, sodium bicarbonate, potassium bicarbonate, magnesium bicarbonate, calcium bicarbonate, bicarbonate Carbonates of alkali metals or alkaline earth metals such as barium;

メチルリチウム、エチルリチウム、n−ブチルリチウム、s−ブチルリチウム、t−ブチルリチウム、フェニルリチウム、リチウムジイソプロピルアミドなどの有機アルカリ金属化合物;ジメチルマグネシウム、ジエチルマグネシウム、メチルマグネシウムクロライド、メチルマグネシウムブロミド、エチルマグネシウムブロミド、フェニルマグネシウムブロミドなどの有機アルカリ土類金属化合物; Organic alkali metal compounds such as methyl lithium, ethyl lithium, n-butyl lithium, s-butyl lithium, t-butyl lithium, phenyl lithium, lithium diisopropylamide; dimethyl magnesium, diethyl magnesium, methyl magnesium chloride, methyl magnesium bromide, ethyl magnesium Organic alkaline earth metal compounds such as bromide and phenylmagnesium bromide;

ナトリウムメトキシド、ナトリウムエトキシド、ナトリウムプロポキシド、カリウム−t−ブトキシドなどアルコキシド化合物;水素化ナトリウム、水素化カリウム、水素化カルシウム、水素化リチウムアルミニウム、水素化ホウ素ナトリウムなどのハイドライド化合物;テトラメチルアンモニウムヒドロキシド、テトラブチルアンモニウムヒドロキシドなどの四級アンモニウム水酸化物;アンモニア;などが挙げられる。 Alkoxide compounds such as sodium methoxide, sodium ethoxide, sodium propoxide, potassium t-butoxide; hydride compounds such as sodium hydride, potassium hydride, calcium hydride, lithium aluminum hydride, sodium borohydride; tetramethylammonium And quaternary ammonium hydroxides such as hydroxide and tetrabutylammonium hydroxide; ammonia; and the like.

これら塩基性化合物の中でも、アルカリ金属水酸化物、アルカリ土類金属水酸化物、などの無機塩基化合物が好ましく、後述するとおり好適な溶媒である水への溶解性が良好で反応中の析出のおそれがないアルカリ金属水酸化物がより好ましい。水酸化カリウム、水酸化ルビジウム、水酸化セシウムがさらに好ましく、水酸化カリウムが最も好ましい。
塩基性化合物は単独で用いても、または2種以上のものを混合して用いても良い。
Among these basic compounds, inorganic base compounds such as alkali metal hydroxides and alkaline earth metal hydroxides are preferable, and as described later, the solubility in water, which is a suitable solvent, is good, and precipitation during the reaction Alkali metal hydroxides with no fear are more preferable. Potassium hydroxide, rubidium hydroxide, and cesium hydroxide are more preferable, and potassium hydroxide is most preferable.
The basic compounds may be used alone or in combination of two or more.

塩基性化合物を溶解する溶媒としては、原料のハロゲン化化合物および生成物が溶解しない溶媒を選択するのが好ましく、メタノール、エタノール、プロパノール、t−ブタノールなどのアルコール化合物;ポリエチレングリコール、ジグライムなどのグリコール化合物;ジメチルホルムアミド、N−メチルピロリドンなどのアミド化合物;ジメチルスルホキシドなどのスルホキシド化合物;テトラヒドロフランなどのエーテル化合物;水などを用いることができるが、コスト、安全性、環境への負荷の観点から、水を使用するのが特に好ましい。   As the solvent for dissolving the basic compound, it is preferable to select a raw material halogenated compound and a solvent in which the product does not dissolve, and alcohol compounds such as methanol, ethanol, propanol and t-butanol; glycols such as polyethylene glycol and diglyme Compounds; Amide compounds such as dimethylformamide and N-methylpyrrolidone; Sulfoxide compounds such as dimethyl sulfoxide; Ether compounds such as tetrahydrofuran; Water and the like can be used. It is particularly preferred to use

塩基性化合物の使用量はハロゲン化化合物のモル数に対し、2〜15当量、好ましくは4から12当量、さらに好ましくは6から10当量である。塩基性化合物の使用量が少なすぎると、生成物の純度が低下する傾向にあり、逆に多すぎると、廃棄物が増加するためいずれも好ましくない。   The amount of the basic compound used is 2 to 15 equivalents, preferably 4 to 12 equivalents, more preferably 6 to 10 equivalents, relative to the number of moles of the halogenated compound. If the amount of the basic compound used is too small, the purity of the product tends to decrease. On the other hand, if the amount is too large, the amount of waste increases, which is not preferable.

塩基性化合物の溶液濃度は特に限定されないが、副生成物が生じにくいことから、50〜85重量%が好ましく、特に回収率の観点から55〜80重量%が好ましい。   Although the concentration of the basic compound solution is not particularly limited, it is preferably 50 to 85% by weight because it is difficult to produce a by-product, and particularly preferably 55 to 80% by weight from the viewpoint of recovery.

反応温度の上限は塩基性化合物の溶液の沸点であり、好ましくは当該沸点より10℃低い温度である。反応温度の下限は塩基性化合物の溶液の凝固点であるが、未反応原料と生成物の回収効率の観点から、原料化合物の沸点を下限とするのが好ましい。   The upper limit of the reaction temperature is the boiling point of the basic compound solution, and is preferably 10 ° C. lower than the boiling point. The lower limit of the reaction temperature is the freezing point of the solution of the basic compound, but it is preferable to set the boiling point of the raw material compound as the lower limit from the viewpoint of unreacted raw material and product recovery efficiency.

本発明において、原料であるジヒドロハロゲン化アルカン化合物、および/またはモノヒドロハロゲン化アルケン化合物をガス化させる方法は特に限定されず、公知の方法を用いればよい。好適な方法としては、熱交換器に原料を導入し、ガス化させる方法が挙げられる。   In the present invention, the method of gasifying the raw material dihydrohalogenated alkane compound and / or monohydrohalogenated alkene compound is not particularly limited, and a known method may be used. As a suitable method, a method of introducing a raw material into a heat exchanger and gasifying it can be mentioned.

ガス化させたハロゲン化化合物を塩基性化合物の溶液中にバブリングする方法に格別な制限はないが、通常、ガス化させたハロゲン化化合物を加圧し、ノズルを通して溶液中にガスを流通させる方法が採用される。
ノズルは単一の気泡が出る構造でもよいし、シャワーノズル等、公知の技術を用いて複数の泡がでるような構造のものでも良い。また、反応器に取り付けるノズルの数は特に限定されない。
ノズルから出てくるガスの気泡の大きさは、ノズルの径により制御することができる。気泡の大きさが大きすぎると、脱ハロゲン化水素反応の進行が遅くなり(特に炭素−炭素三重結合を有するアルキンの生成効率が低下する)、逆に小さすぎると、反応の副反応が進行しやすくなる傾向にある。
また、ガスの供給量は、ガス化させたハロゲン化化合物への加圧の程度で制御することができる。供給量が多すぎると脱ハロゲン化水素反応の進行が遅くなり(特に炭素−炭素三重結合を有するアルキンの生成効率が低下する)、逆に少なすぎると、反応の副反応が進行しやすくなる傾向にある。
吹き込むガスの線速度は、ノズルの径とガスの供給量で制御することができる。線速度が速すぎると脱ハロゲン化水素反応の進行が遅くなり(特に炭素−炭素三重結合を有するアルキンの生成効率が低下する)、逆に遅すぎると、反応の副反応が進行しやすくなる傾向にある。
There is no particular limitation on the method of bubbling the gasified halogenated compound into the basic compound solution, but there is usually a method in which the gasified halogenated compound is pressurized and the gas is circulated through the solution through the nozzle. Adopted.
The nozzle may have a structure in which a single bubble emerges, or may have a structure in which a plurality of bubbles are generated using a known technique such as a shower nozzle. Further, the number of nozzles attached to the reactor is not particularly limited.
The size of gas bubbles emerging from the nozzle can be controlled by the diameter of the nozzle. If the size of the bubbles is too large, the progress of the dehydrohalogenation reaction will be slow (especially, the production efficiency of alkyne having a carbon-carbon triple bond will be reduced). It tends to be easier.
The gas supply amount can be controlled by the degree of pressurization to the gasified halogenated compound. If the supply amount is too large, the progress of the dehydrohalogenation reaction will be slow (especially, the production efficiency of alkyne having a carbon-carbon triple bond will be reduced). It is in.
The linear velocity of the gas to be blown can be controlled by the nozzle diameter and the gas supply amount. If the linear velocity is too high, the progress of the dehydrohalogenation reaction will be slow (especially, the production efficiency of the alkyne having a carbon-carbon triple bond will be reduced). It is in.

本反応はバッチ式、セミバッチ式、および連続式等、公知の方法を用いることができる。好ましくは、塩基性化合物を反応器に仕込み、原料を連続的に供給しながら生成物を回収するセミバッチ方式である。
本発明では反応装置は特に限定されず、工業的に通常用いられるものを採用すればよい。好ましくは、ステンレス製の反応器が用いられる。
攪拌翼が設置された反応器を用い、塩基性化合物の溶液中にガス化させたハロゲン化化合物をバブリングしている間、溶液を攪拌するのが反応効率の観点から好ましく、攪拌翼の回転速度は、通常0.01×G〜3×G、好ましくは0.1×G〜2×Gである。
For this reaction, a known method such as a batch method, a semi-batch method, or a continuous method can be used. A semibatch system is preferred in which a basic compound is charged into a reactor and the product is recovered while continuously supplying raw materials.
In the present invention, the reaction apparatus is not particularly limited, and those which are usually used industrially may be adopted. Preferably, a stainless steel reactor is used.
From the viewpoint of reaction efficiency, it is preferable to stir the solution while bubbling the gasified halogenated compound into the basic compound solution using a reactor equipped with a stirring blade, and the rotation speed of the stirring blade Is usually 0.01 × G to 3 × G, preferably 0.1 × G to 2 × G.

本発明では脱ハロゲン化水素化された生成物としてアルキンを得る場合、前記式(1)と前記式(2)のいずれの化合物を原料としてもよい。
前記式(1)のアルカンのみを原料とした場合、生成物のアルキンとともに未反応原料のアルカンと反応中間体であるアルケンが回収される。また、前記式(1)のアルカンと、前記式(2)のアルケンとの混合物を原料とした場合、生成物のアルキンとともに未反応原料のアルカンとアルケンが回収される。また、前記式(2)のアルケンのみを原料とした場合、アルキンと未反応のアルケンが回収される。これらの未反応原料および反応中間体は生成物のアルキンと分離して、再び反応に利用することが好ましい。
アルキンと未反応原料および反応中間体の分離方法は特に限定されないが、蒸留で分離するのが簡便で好ましい。
In the present invention, when an alkyne is obtained as a dehydrohalogenated product, any compound of the formula (1) and the formula (2) may be used as a raw material.
When only the alkane of the formula (1) is used as the raw material, the unreacted raw material alkane and the alkene as the reaction intermediate are recovered together with the product alkyne. When a mixture of the alkane of the formula (1) and the alkene of the formula (2) is used as a raw material, the unreacted raw material alkane and alkene are recovered together with the product alkyne. Moreover, when only the alkene of said Formula (2) is used as a raw material, alkyne and unreacted alkene are collect | recovered. These unreacted raw materials and reaction intermediates are preferably separated from the product alkyne and used again for the reaction.
The method for separating the alkyne from the unreacted raw material and the reaction intermediate is not particularly limited, but it is convenient and preferable to separate the alkyne by distillation.

本発明の脱ハロゲン化水素方法は、フルオロアルケン化合物を得るのに好適である。
フルオロアルケン化合物としては、例えば、1,1,1,2,4,4,4−ヘプタフルオロ−2−ブテン、1,1,1,2,2,4,5,5,5−ノナフルオロ−2−ペンテン、1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテン、1,1,1,2,4,4,5,5,6,6,6−ドデカフルオロ−2−ヘキセン、1,1,1,3,4,4,5,5,6,6,6−ドデカフルオロ−2−ヘキセン、1,1,1,2,2,3,5,5,6,6,6−ドデカフルオロ−2−ヘキセンなどが挙げられる。これらの中でも1,1,1,2,2,4,5,5,5−ノナフルオロ−2−ペンテンおよび1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテンがより好ましく製造される。
The dehydrohalogenation method of the present invention is suitable for obtaining a fluoroalkene compound.
Examples of the fluoroalkene compound include 1,1,1,2,4,4,4-heptafluoro-2-butene, 1,1,1,2,2,4,5,5,5-nonafluoro-2. Pentene, 1,1,1,3,4,4,5,5,5-nonafluoro-2-pentene, 1,1,1,2,4,4,5,5,6,6,6-dodeca Fluoro-2-hexene, 1,1,1,3,4,4,5,5,6,6,6-dodecafluoro-2-hexene, 1,1,1,2,2,3,5,5 , 6,6,6-dodecafluoro-2-hexene and the like. Among these, 1,1,1,2,2,4,5,5,5-nonafluoro-2-pentene and 1,1,1,3,4,4,5,5,5-nonafluoro-2-pentene Is more preferably produced.

また、本発明の脱ハロゲン化水素方法はパーフルオロアルキン化合物を得るのに好適である。
パーフルオロアルキン化合物としては、例えば、パーフルオロ−2−ブチン、パ−フルオロ−2−ペンチン、パーフルオロ−2−ヘキシン、パーフルオロ−3−ヘキシン、パーフルオロ−2−ヘプチン、パーフルオロ−3−ヘプチンなどが挙げられる。これらの中でも、パーフルオロ−2−ペンチンがより好ましく製造される。
The dehydrohalogenation method of the present invention is suitable for obtaining a perfluoroalkyne compound.
Examples of the perfluoroalkyne compound include perfluoro-2-butyne, perfluoro-2-pentyne, perfluoro-2-hexyne, perfluoro-3-hexyne, perfluoro-2-heptin, and perfluoro-3- Examples include heptine. Among these, perfluoro-2-pentyne is more preferably produced.

本発明において、塩基性化合物の溶液温度を制御することでパーフルオロアルキンおよびフルオロアルケンを選択的に得ることができる。具体的には、溶液温度が高いとパーフルオロアルキンが得られる傾向にあり、逆に溶液温度が低いとフルオロアルケンが得られる傾向にある。
パーフルオロアルキンおよびフルオロアルケンは、含フッ素モノマーや医農薬の製造原料、エッチング剤、冷媒などとして有用である。特にパ−フルオロ−2−ペンチンの沸点は5℃であり、含フッ素ポリマーや医農薬の製造原料、エッチング剤などとして有用である。
In the present invention, perfluoroalkyne and fluoroalkene can be selectively obtained by controlling the solution temperature of the basic compound. Specifically, when the solution temperature is high, perfluoroalkyne tends to be obtained, and conversely, when the solution temperature is low, fluoroalkene tends to be obtained.
Perfluoroalkynes and fluoroalkenes are useful as fluorine-containing monomers, raw materials for producing pharmaceuticals and agricultural chemicals, etching agents, refrigerants, and the like. In particular, perfluoro-2-pentyne has a boiling point of 5 ° C., and is useful as a raw material for producing fluorine-containing polymers, medical and agricultural chemicals, and an etching agent.

以下に、実施例を挙げてさらに具体的に説明するが、本発明はこれらの実施例に限定されるものではない。反応生成物の分析は、ガスクロマトグラフィー(GC)法(装置:ヒューレットパッカード社製HP6890、カラム:FRONTIER LAB製Ultra ALLOY+−1(s))で行った。   Hereinafter, the present invention will be described in more detail with reference to examples. However, the present invention is not limited to these examples. The analysis of the reaction product was performed by gas chromatography (GC) method (apparatus: HP6890 manufactured by Hewlett-Packard Co., column: Ultra ALLOY + -1 (s) manufactured by Frontier LAB).

(実施例1)
パドル翼、および内径1mmであるインナーノズルを取り付けたオートクレーブ(330ml)に市販の水酸化カリウムペレット(KOH85重量%、水15重量%)276g(4.12モル)と水26.8gとを仕込み、オートクレーブを150℃に加熱して77.5重量%の水酸化カリウム水溶液を調製した。水酸化カリウムが溶解したとき、インナーノズルの先端は液面から33mmだけ、溶液に浸かっている状態となっている。送液ポンプを用い、1.5g/分で1,1,1,2,3,4,4,5,5,5−デカフルオロペンタンを100℃に加熱した熱交換器に供給して気化させ、これを、インナーノズルを用いてオートクレーブへ供給し、バブリングさせた。反応中、オートクレーブ内の水酸化カリウム水溶液は0.25×Gで攪拌し続けた。1,1,1,2,3,4,4,5,5,5−デカフルオロペンタン175.6g(0.70モル)を連続的に供給し、オートクレーブから留出した反応混合物をドライアイス−メタノールトラップで捕集した。捕集物の収量は155gで、回収率は95.6モル%(原料基準)であった。
これをGC分析すると、パーフルオロ−2−ペンチン(アルキン)、1,1,1,2,4,4,5,5,5−ノナフルオロ−2−ペンテン(アルケンA)、1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテン(アルケンB)、および1,1,1,2,3,4,4,5,5,5−デカフルオロペンタン(原料)を含んでいた。仕込んだ原料基準のアルキンの収率は23.9モル%、反応中間体AおよびBの合計収率は28.6モル%であった。
Example 1
An autoclave (330 ml) equipped with a paddle blade and an inner nozzle having an inner diameter of 1 mm was charged with 276 g (4.12 mol) of commercially available potassium hydroxide pellets (KOH 85 wt%, water 15 wt%) and water 26.8 g, The autoclave was heated to 150 ° C. to prepare a 77.5 wt% potassium hydroxide aqueous solution. When potassium hydroxide is dissolved, the tip of the inner nozzle is immersed in the solution by 33 mm from the liquid surface. Using a liquid feed pump, 1,1,1,2,3,4,4,5,5,5-decafluoropentane is supplied to a heat exchanger heated to 100 ° C. and vaporized at 1.5 g / min. This was supplied to an autoclave using an inner nozzle and bubbled. During the reaction, the aqueous potassium hydroxide solution in the autoclave was continuously stirred at 0.25 × G. 1,1,1,2,3,4,4,5,5,5-decafluoropentane (175.6 g, 0.70 mol) was continuously fed, and the reaction mixture distilled from the autoclave was dried ice- Collected with a methanol trap. The yield of the collected product was 155 g, and the recovery rate was 95.6 mol% (raw material basis).
When this was analyzed by GC, perfluoro-2-pentyne (alkyne), 1,1,1,2,4,4,5,5,5-nonafluoro-2-pentene (alkene A), 1,1,1, 3,4,4,5,5,5-nonafluoro-2-pentene (alkene B) and 1,1,1,2,3,4,4,5,5,5-decafluoropentane (raw material) Included. The yield of the alkyne based on the raw material charged was 23.9 mol%, and the total yield of the reaction intermediates A and B was 28.6 mol%.

(実施例2)
水酸化カリウムペレット(KOH85重量%、水15重量%)175g(2.64モル)と水73gとから得られた60重量%の水酸化カリウム水溶液を用い、オートクレーブを110℃にし、1,1,1,2,3,4,4,5,5,5−デカフルオロペンタンの供給量を111g(0.44モル)とした以外は実施例1と同様にして、反応混合物を捕集した。捕集物の収量は105gで、回収率は100モル%(原料基準)であった。仕込んだ原料基準のアルキンの収率は0.6モル%、アルケンAおよびアルケンBの合計収率は57.8モル%であった。
(Example 2)
A 60 wt% aqueous potassium hydroxide solution obtained from 175 g (2.64 mol) of potassium hydroxide pellets (KOH 85 wt%, water 15 wt%) and 73 g of water was used, and the autoclave was brought to 110 ° C., The reaction mixture was collected in the same manner as in Example 1 except that the amount of 1,2,3,4,4,5,5,5-decafluoropentane supplied was 111 g (0.44 mol). The yield of the collected product was 105 g, and the recovery rate was 100 mol% (raw material basis). The yield of the alkyne based on the raw material charged was 0.6 mol%, and the total yield of alkene A and alkene B was 57.8 mol%.

(実施例3)
水酸化カリウムペレット(KOH85重量%、水15重量%)157g(6.01モル)を150℃で溶融して得た85重量%の水酸化カリウム水溶液を用い、オートクレーブ内の水酸化カリウム水溶液の攪拌速度を1.57×Gにした以外は実施例1と同様にして反応混合物を捕集した。捕集物の収量は151gで、回収率は86.6モル%(原料基準)であった。仕込んだ原料基準のアルキンの収率は26.4モル%、アルケンAおよびアルケンBの合計収率は46.1モル%であった。
(Example 3)
Stirring of the aqueous potassium hydroxide solution in the autoclave was carried out using 85% aqueous potassium hydroxide solution obtained by melting 157 g (6.01 mol) of potassium hydroxide pellets (KOH 85% by weight, water 15% by weight) at 150 ° C. The reaction mixture was collected in the same manner as in Example 1 except that the speed was 1.57 × G. The yield of the collected product was 151 g, and the recovery rate was 86.6 mol% (raw material basis). The yield of the alkyne based on the raw material charged was 26.4 mol%, and the total yield of alkene A and alkene B was 46.1 mol%.

(比較例1)
1,1,1,2,3,4,4,5,5,5−デカフルオロペンタン175.6g(0.70モル)を気化することなく、送液ポンプを用いて1.5g/分でオートクレーブへ連続的に供給したこと以外は実施例1と同様に、オートクレーブから留出した反応混合物をドライアイス−メタノールトラップで捕集した。捕集物の収量は168gで、回収率は97.9モル%(原料基準)であった。仕込んだ原料基準のアルキンの収率は1.1モル%、アルケンAおよびアルケンBの合計収率は21.2モル%であった。
(Comparative Example 1)
Without vaporizing 1,1,1,2,3,4,4,5,5,5-decafluoropentane (175.6 g, 0.70 mol) at 1.5 g / min using a liquid feed pump The reaction mixture distilled from the autoclave was collected by a dry ice-methanol trap in the same manner as in Example 1 except that it was continuously supplied to the autoclave. The yield of the collected product was 168 g, and the recovery rate was 97.9 mol% (based on raw materials). The yield of the alkyne based on the raw material charged was 1.1 mol%, and the total yield of alkene A and alkene B was 21.2 mol%.

(比較例2)
マックスブレンド翼および、横型コンデンサーを取り付けたオートクレーブ(100ml)に市販の水酸化カリウムペレット水酸化カリウムペレット(KOH85重量%、水15重量%)157g(6.01モル)を仕込み、150℃で溶融して得た85重量%の水酸化カリウム水溶液に、送液ポンプを用い、1.5g/分で1,1,1,2,3,4,4,5,5,5−デカフルオロペンタン(0.4モル)を滴下した。反応中、オートクレーブ内の水酸化カリウム水溶液は1.75×Gで攪拌し続けた。コンデンサーに流す冷媒の温度は−11℃に設定した。オートクレーブから流出した反応混合物の一部をコンデンサーで液化してオートクレーブに戻し、一部を系外に抜き出しながら反応を行った。系外に抜き出された反応混合物はドライアイス−メタノールトラップで捕集した。捕集物の収量は66gで、回収率は77.4モル%(原料基準)と、低い回収率であった。仕込んだ原料基準のアルキンの収率は30.5モル%、アルケンAおよびアルケンBの合計収率は26.6モル%であった。
(Comparative Example 2)
A commercial blend of potassium hydroxide pellets (85% by weight of KOH, 15% by weight of water) 157 g (6.01 moles) was charged in an autoclave (100 ml) equipped with a Max blend blade and a horizontal condenser, and melted at 150 ° C. 1,1,1,2,3,4,4,5,5,5-decafluoropentane (0) at a rate of 1.5 g / min. 4 mol) was added dropwise. During the reaction, the aqueous potassium hydroxide solution in the autoclave was continuously stirred at 1.75 × G. The temperature of the refrigerant flowing through the condenser was set to -11 ° C. A part of the reaction mixture flowing out from the autoclave was liquefied with a condenser and returned to the autoclave, and the reaction was carried out while extracting a part from the system. The reaction mixture extracted out of the system was collected with a dry ice-methanol trap. The yield of the collected product was 66 g, and the recovery rate was 77.4 mol% (raw material basis), which was a low recovery rate. The yield of the alkyne based on the raw material charged was 30.5 mol%, and the total yield of alkene A and alkene B was 26.6 mol%.

Figure 0005152521
Figure 0005152521

(実施例4)
マックスブレンド翼、および内径7.5mmであるインナーノズルを取り付けたSUS製反応器(15L)に市販の水酸化カリウムペレット(KOH85重量%、水15重量%)8.19kg(124.3モル)と水828.4gとを仕込み、反応器を150℃に加熱して77.5重量%の水酸化カリウム水溶液を調製した。水酸化カリウムが溶解したとき、インナーノズルの先端は液面から56mmだけ、溶液に浸かっている状態となっている。送液ポンプを用い、29.5g/分で1,1,1,2,2,4,5,5,5−ノナフルオロ−2−ペンテン、および1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテンの混合物を100℃に加熱した熱交換器に供給して気化させた。これを、インナーノズルを用いて反応器へ供給し、バブリングさせた。反応中、反応器内の水酸化カリウム水溶液は0.41×Gで攪拌し続けた。1,1,1,2,2,4,5,5,5−ノナフルオロ−2−ペンテン、および1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテンの1:1の混合物4.8kg(20.7モル)を連続的に供給し、反応器から留出した反応混合物をドライアイス−メタノールトラップで捕集した。捕集物の収量は4.3kgで、回収率は92.0モル%(原料基準)であった。
これをGC分析すると、パーフルオロ−2−ペンチン(アルキン)、1,1,1,2,4,4,5,5,5−ノナフルオロ−2−ペンテン(原料)、1,1,1,3,4,4,5,5,5−ノナフルオロ−2−ペンテン(原料)を含んでいた。仕込んだ原料基準のアルキンの収率は27.6モル%であった。
Example 4
Commercially available potassium hydroxide pellets (KOH 85 wt%, water 15 wt%) 8.19 kg (124.3 mol) in a SUS reactor (15 L) equipped with a Max blend blade and an inner nozzle with an inner diameter of 7.5 mm 828.4 g of water was charged, and the reactor was heated to 150 ° C. to prepare a 77.5 wt% aqueous potassium hydroxide solution. When potassium hydroxide is dissolved, the tip of the inner nozzle is immersed in the solution by 56 mm from the liquid surface. 1,1,1,2,2,4,5,5,5-nonafluoro-2-pentene and 1,1,1,3,4,4,5 at 29.5 g / min using a feed pump , 5,5-nonafluoro-2-pentene was supplied to a heat exchanger heated to 100 ° C. and vaporized. This was supplied to the reactor using an inner nozzle and bubbled. During the reaction, the aqueous potassium hydroxide solution in the reactor was continuously stirred at 0.41 × G. 1,1,1,2,2,4,5,5,5-nonafluoro-2-pentene and 1 of 1,1,1,3,4,4,5,5,5-nonafluoro-2-pentene 4.8 kg (20.7 mol) of a 1: mixture was continuously fed, and the reaction mixture distilled from the reactor was collected by a dry ice-methanol trap. The yield of the collected product was 4.3 kg, and the recovery rate was 92.0 mol% (raw material basis).
When this was analyzed by GC, perfluoro-2-pentyne (alkyne), 1,1,1,2,4,4,5,5,5-nonafluoro-2-pentene (raw material), 1,1,1,3 4,4,5,5,5-nonafluoro-2-pentene (raw material). The yield of the alkyne based on the raw material charged was 27.6 mol%.

実施例1で濃度77.5重量%の水酸化カリウム水溶液に原料をバブリングさせた結果、アルキンを収率23.9モル%で得た。また、回収率は95.6モル%と高い値であった。フッ素化された未反応原料や反応中間体は再度反応に利用することが可能であるため、高い回収率は利点となる。実施例2では反応温度を110℃、水酸化カリウム濃度を60重量%に変更したところ、アルキンの収率は0.6%と低下したが、アルケンAおよびアルケンBが合計量で57.8モル%という高い収率で得られた。この結果は反応温度と塩基濃度を変更することでアルキンの生成を抑え、選択的にアルケンが得られることを示唆している。実施例3において、水酸化カリウム水溶液の攪拌速度を上げると、アルケンの生成が増える傾向にあるが、アルケン及びアルキンの収率に大きな差はなかった。
原料を液で滴下し反応させたところ、アルキンの収率は1.1モル%と低いものとなった(比較例1)り、アルキンの収率は30.5モル%と高いものの全体の回収率が77.4モル%と低いものとなった(比較例2)。
実施例4でアルケンを原料として反応を行った結果、アルキンを収率27.6モル%で得た。このときの回収率は92.0モル%と高い値であった。
As a result of bubbling the raw material in an aqueous potassium hydroxide solution having a concentration of 77.5% by weight in Example 1, alkyne was obtained in a yield of 23.9 mol%. The recovery rate was as high as 95.6 mol%. Since the fluorinated unreacted raw materials and reaction intermediates can be used again for the reaction, a high recovery rate is an advantage. In Example 2, when the reaction temperature was changed to 110 ° C. and the potassium hydroxide concentration was changed to 60% by weight, the yield of alkyne decreased to 0.6%, but the total amount of alkene A and alkene B was 57.8 mol. The yield was as high as%. This result suggests that the alkene can be selectively obtained by changing the reaction temperature and the base concentration to suppress the formation of alkyne. In Example 3, when the stirring speed of the potassium hydroxide aqueous solution was increased, the production of alkene tended to increase, but there was no significant difference in the yield of alkene and alkyne.
When the raw material was dropped in the liquid and reacted, the yield of alkyne was as low as 1.1 mol% (Comparative Example 1), and the overall recovery of the alkyne was as high as 30.5 mol%. The rate was as low as 77.4 mol% (Comparative Example 2).
As a result of reaction using alkene as a raw material in Example 4, alkyne was obtained in a yield of 27.6 mol%. The recovery rate at this time was as high as 92.0 mol%.

Claims (9)

下記式で表されるハロゲン化化合物をガス化させ、塩基性化合物の溶液にバブリングさせることにより、塩基性化合物と接触させることを特徴とするハロゲン化化合物を脱ハロゲン化水素する方法。
−CHX−CHY−R (1)
−CH=CX−R (2)
(式(1)中、RおよびRは、それぞれ独立に、炭素数1〜6のパーフルオロアルキル基であり、RとRとは結合して環を形成しても良い。XおよびYは、それぞれ独立に、F、Cl、BrおよびIからなる群より選ばれる1種のハロゲン原子である。
式(2)中、RおよびRは、それぞれ独立に、炭素数1〜6のパーフルオロアルキル基であり、R とは結合して環を形成しても良い。XはF、Cl、BrおよびIからなる群より選ばれる1種のハロゲン原子である。)
A method of dehydrohalogenating a halogenated compound, characterized in that a halogenated compound represented by the following formula is gasified and bubbled into a solution of the basic compound to contact with the basic compound.
R 1 —CHX—CHY—R 2 (1)
R 3 —CH═CX—R 4 (2)
(In Formula (1), R 1 and R 2 are each independently a C 1-6 perfluoroalkyl group, and R 1 and R 2 may combine to form a ring. X And Y are each independently one halogen atom selected from the group consisting of F, Cl, Br and I.
In formula (2), R 3 and R 4 are each independently a C 1-6 perfluoroalkyl group, and R 3 and R 4 may be bonded to form a ring. X is one halogen atom selected from the group consisting of F, Cl, Br and I. )
塩基性化合物の当量が反応させるハロゲン化化合物のモル数に対し、2〜15当量である請求項1記載の方法。 The process according to claim 1, wherein the equivalent amount of the basic compound is 2 to 15 equivalents relative to the number of moles of the halogenated compound to be reacted. 塩基性化合物の溶液の、塩基性化合物の濃度が50〜85重量%である請求項1又は2記載の方法。 The method according to claim 1 or 2, wherein the concentration of the basic compound in the basic compound solution is 50 to 85% by weight. 塩基性化合物としてアルカリ金属の水酸化物を用いる請求項1〜3いずれか記載の方法。 The method according to claim 1, wherein an alkali metal hydroxide is used as the basic compound. 式(1)のRがパーフルオロメチル基であり、Rがパーフルオロエチル基である請求項1記載の方法。 The method according to claim 1, wherein R 1 in the formula (1) is a perfluoromethyl group and R 2 is a perfluoroethyl group. 式(2)のRまたはRのいずれかがパーフルオロメチル基であり、他方がパーフルオロエチル基である請求項1記載の方法。 The method according to claim 1, wherein either R 3 or R 4 in the formula (2) is a perfluoromethyl group, and the other is a perfluoroethyl group. ハロゲン化化合物を脱ハロゲン化水素して得られる生成物が、パーフルオロアルキンである請求項1〜6いずれか記載の方法。 The method according to any one of claims 1 to 6, wherein the product obtained by dehydrohalogenating the halogenated compound is perfluoroalkyne. パーフルオロアルキン化合物がパーフルオロ−2−ペンチンである請求項7記載の方法。 The method according to claim 7, wherein the perfluoroalkyne compound is perfluoro-2-pentyne. 脱ハロゲン化水素された生成物と未反応のハロゲン化化合物とを分離し、未反応のハロゲン化化合物を、再び反応させることを特徴とする請求項1記載の方法。 2. The method according to claim 1, wherein the dehydrohalogenated product and the unreacted halogenated compound are separated, and the unreacted halogenated compound is reacted again.
JP2009036790A 2009-02-19 2009-02-19 Method for dehydrohalogenating halogenated compounds Active JP5152521B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009036790A JP5152521B2 (en) 2009-02-19 2009-02-19 Method for dehydrohalogenating halogenated compounds

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009036790A JP5152521B2 (en) 2009-02-19 2009-02-19 Method for dehydrohalogenating halogenated compounds

Publications (2)

Publication Number Publication Date
JP2010189338A JP2010189338A (en) 2010-09-02
JP5152521B2 true JP5152521B2 (en) 2013-02-27

Family

ID=42815788

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009036790A Active JP5152521B2 (en) 2009-02-19 2009-02-19 Method for dehydrohalogenating halogenated compounds

Country Status (1)

Country Link
JP (1) JP5152521B2 (en)

Families Citing this family (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US8722946B2 (en) * 2011-06-03 2014-05-13 Honeywell International Inc. Method for avoiding the generation of by-products during the production of haloalkane compounds
US8791309B2 (en) * 2012-12-21 2014-07-29 Honeywell International Inc. Synthesis of 3,3,3-trifluoropropyne
JP6708984B2 (en) 2018-04-03 2020-06-10 ダイキン工業株式会社 Method for producing fluoroolefin
JP7173799B2 (en) * 2018-09-11 2022-11-16 キオクシア株式会社 Semiconductor device manufacturing method and etching gas
JP6933239B2 (en) * 2019-02-21 2021-09-08 ダイキン工業株式会社 Method for producing halogenated alkene compound and fluorinated alkyne compound
WO2020171011A1 (en) * 2019-02-21 2020-08-27 ダイキン工業株式会社 Halogenated alkene compound and method for manufacturing fluorinated alkyne compound

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US6124510A (en) * 1998-07-21 2000-09-26 Elf Atochem North America, Inc. 1234ze preparation
US6380446B1 (en) * 2000-08-17 2002-04-30 Dupont Dow Elastomers, L.L.C. Process for dehydrohalogenation of halogenated compounds
JP4867474B2 (en) * 2006-05-31 2012-02-01 日本ゼオン株式会社 Method for producing perfluoroalkyne compound

Also Published As

Publication number Publication date
JP2010189338A (en) 2010-09-02

Similar Documents

Publication Publication Date Title
JP5152521B2 (en) Method for dehydrohalogenating halogenated compounds
JP4864878B2 (en) Synthesis method of 1,3,3,3-tetrafluoropropene
JP6183370B2 (en) Process for producing 1,2-dichloro-3,3,3-trifluoropropene
JP5082520B2 (en) Method for producing fluorine-containing diol compound
JP5946410B2 (en) Process for producing 2-chloro-3,3,3-trifluoropropene
CN107848917A (en) The manufacture method of the trifluoro propene of 1 chlorine 2,3,3
JP2009263338A (en) Novel manufacturing method of epichlorohydrin
CN109503315A (en) The preparation method of tetrafluoropropene
JP4285000B2 (en) Method for producing fluorine-containing ester, fluorine-containing acyl fluoride and fluorine-containing vinyl ether
US8835696B2 (en) Method of preparing fluorine-containing ether
JP2020100595A (en) Production method of cyclobutene
KR101431926B1 (en) Method for producing perfluorosulfonic acid having ether structure and derivative thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivative thereof
JP5599271B2 (en) Method for producing chloropropane
JP5234109B2 (en) Method for producing fluoropropylene carbonate
JP7287391B2 (en) Method for producing fluorine-containing propene
JP2006219419A (en) Method for producing perfluorovinyl ether monomer
KR20120045002A (en) Method for preparing difluoroacetic acid esters
JP4961656B2 (en) Process for producing perfluoroacyl fluorides
US20220017438A1 (en) Production method of 1,2-difluoroethylene
JP5816037B2 (en) Method for producing 3,3,3-trifluoropropanols
JP2010095470A (en) Method for producing fluorine-containing compound having fluorosulfonyl group
JP2012171884A (en) Method of producing hydrogen-containing fluorodiene compound
JP5126936B2 (en) Process for producing fluoro (alkyl vinyl ether) and its derivatives
JP5092192B2 (en) Process for producing perfluoro compounds and derivatives thereof
JP5558067B2 (en) Method for producing perfluorosulfonic acid having an ether structure and derivatives thereof, and surfactant containing fluorine-containing ether sulfonic acid compound and derivatives thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110912

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120906

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120912

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120914

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121107

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121120

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151214

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5152521

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250