JP2006219419A - Method for producing perfluorovinyl ether monomer - Google Patents

Method for producing perfluorovinyl ether monomer Download PDF

Info

Publication number
JP2006219419A
JP2006219419A JP2005034249A JP2005034249A JP2006219419A JP 2006219419 A JP2006219419 A JP 2006219419A JP 2005034249 A JP2005034249 A JP 2005034249A JP 2005034249 A JP2005034249 A JP 2005034249A JP 2006219419 A JP2006219419 A JP 2006219419A
Authority
JP
Japan
Prior art keywords
general formula
compound
reaction
compound represented
ether monomer
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Withdrawn
Application number
JP2005034249A
Other languages
Japanese (ja)
Inventor
Nobuhito Hoshi
星  信人
Masanori Ikeda
池田  正紀
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Asahi Kasei Corp
Original Assignee
Asahi Kasei Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Asahi Kasei Corp filed Critical Asahi Kasei Corp
Priority to JP2005034249A priority Critical patent/JP2006219419A/en
Publication of JP2006219419A publication Critical patent/JP2006219419A/en
Withdrawn legal-status Critical Current

Links

Abstract

<P>PROBLEM TO BE SOLVED: To produce a perfluorovinyl ether monomer being a raw material for a heat-resistant and oxidation-resistant perfluorosulfonic acid polymer by a reduced number of processes in a high yield. <P>SOLUTION: The method for producing a perfluorovinyl ether monomer comprises a process (a) for isomerizing a compound represented by general formula (1) to give a compound represented by general formula (3) FCO(CF<SB>2</SB>)<SB>n-1</SB>SO<SB>2</SB>F (3) (n is an integer of 3-8), a process (b) for adding a hexafluoropropylene oxide (HFPO) to the compound represented by general formula (3) to give a compound represented by general formula (4) CF<SB>3</SB>CF(COF)O(CF<SB>2</SB>)<SB>n</SB>SO<SB>2</SB>F and a process (c) for decarboxylating the compound represented by general formula (4) to give a perfluorovinyl ether monomer represented by general formula (2) CF<SB>2</SB>=CFO(CF<SB>2</SB>)<SB>n</SB>SO<SB>2</SB>F. <P>COPYRIGHT: (C)2006,JPO&NCIPI

Description

本発明は、耐熱性や化学的安定性に優れたパーフルオロスルホン酸ポリマーの原料であるパーフルオロビニルエーテルモノマーの製造法に関する。詳しくは、燃料電池用途に適した高耐久性のパーフルオロスルホン酸ポリマーの原料であるパーフルオロビニルエーテルモノマーの製造法に関する。   The present invention relates to a method for producing a perfluorovinyl ether monomer which is a raw material for a perfluorosulfonic acid polymer having excellent heat resistance and chemical stability. Specifically, the present invention relates to a method for producing a perfluorovinyl ether monomer, which is a raw material for a highly durable perfluorosulfonic acid polymer suitable for fuel cell applications.

現在、クロロアルカリや燃料電池分野では、下記一般式(6)   Currently, in the field of chloroalkali and fuel cells, the following general formula (6)

Figure 2006219419
Figure 2006219419

(式中、k/l=3〜10)
においてm’=1、n’=2のパーフルオロスルホン酸ポリマーが主に採用されている。
このポリマーは、下記一般式(7)
(Where k / l = 3-10)
Perfluorosulfonic acid polymers having m ′ = 1 and n ′ = 2 are mainly employed.
This polymer has the following general formula (7)

Figure 2006219419
Figure 2006219419

においてm’=1、n’=2のパーフルオロビニルエーテルモノマーと、テトラフルオロエチレン(TFE)との共重合体を製膜した後、加水分解反応を施すことによって得られる。
しかし、燃料電池分野では、特に車載用で高温運転への対応が求められており、よりガラス転移温度が高い、一般式(6)においてm’=0のポリマーのほうが高温運転に適していることがわかっている。
そして、m’=0のポリマーの中でも、本発明者らの検討により、一般式(6)で表されるパーフルオロスルホン酸ポリマーにおいてm’=0でかつn’が3〜8、好ましくは4〜6の場合に、特に優れた耐熱性および耐酸化性が発現することが見出されている。したがってその原料である、一般式(7)においてm’=0、n’=3〜8であるパーフルオロビニルエーテルモノマー、すなわち一般式(2)のモノマーは極めて有用なものである。
In this method, a copolymer of perfluorovinyl ether monomer having m ′ = 1 and n ′ = 2 and tetrafluoroethylene (TFE) is formed into a film and then subjected to a hydrolysis reaction.
However, in the fuel cell field, there is a demand for high-temperature operation particularly for in-vehicle use, and a polymer having a higher glass transition temperature and m ′ = 0 in general formula (6) is more suitable for high-temperature operation. I know.
Among the polymers having m ′ = 0, the inventors have studied, and in the perfluorosulfonic acid polymer represented by the general formula (6), m ′ = 0 and n ′ is 3 to 8, preferably 4. In the case of ˜6, it has been found that particularly excellent heat resistance and oxidation resistance are expressed. Therefore, the perfluorovinyl ether monomer which is m ′ = 0 and n ′ = 3 to 8 in the general formula (7), that is, the monomer of the general formula (2), which is the raw material, is extremely useful.

本発明のパーフルオロビニルエーテルモノマーに関する公知の技術としては、該モノマー(一般式(2))を製造する方法として、これまで数件の報告しかされておらず、そのいずれもが工業生産上有利な方法ではない。
例えば、特許文献1にはテトラフルオロエチレンとジメチルカーボネートとナトリウムエチルメルカプチドを出発原料とした該モノマー(一般式(2))の製造方法が開示されているが、反応工程が7工程と長く全収率8%と低収率な上、n=3に限定された製造法である。
As a known technique relating to the perfluorovinyl ether monomer of the present invention, there have been only a few reports so far on the production method of the monomer (general formula (2)), all of which are advantageous in industrial production. Not the way.
For example, Patent Document 1 discloses a method for producing the monomer (general formula (2)) using tetrafluoroethylene, dimethyl carbonate, and sodium ethyl mercaptide as starting materials. In addition to the low yield of 8%, the production method is limited to n = 3.

また特許文献2には、RfCHOCO(CHSOF(式中、Rfはエーテル基を含むパーフルオロアルキル基)を元素状フッ素で直接フッ素化してRfCFOCO(CFSOFとした後、KFで処理して、一般式(3)においてn=4の化合物を製造し、さらに2工程を経て一般式(2)で表されるモノマーを製造する方法が開示されている。しかしこの方法は、出発原料であるRfCHOCO(CHSOFの合成が繁雑で多段階の工程を経るものであり、公知化合物から出発原料を得るまでの工程も含めると一般式(2)のモノマーを得るまで全体で7工程必要となる。さらに加えて,全収率が16%と低いという問題もある。 Patent Document 2 discloses that RfCH 2 OCO (CH 2 ) 3 SO 2 F (wherein Rf is a perfluoroalkyl group containing an ether group) is directly fluorinated with elemental fluorine to obtain RfCF 2 OCO (CF 2 ) 3. Disclosed is a method of producing a monomer represented by the general formula (2) through two steps after preparing SO 2 F and treating with KF to produce a compound of n = 4 in the general formula (3). ing. However, in this method, the synthesis of RfCH 2 OCO (CH 2 ) 3 SO 2 F, which is a starting material, is complicated and involves a multi-step process, and the general formula includes a process for obtaining a starting material from a known compound. A total of 7 steps are required until the monomer (2) is obtained. In addition, there is a problem that the total yield is as low as 16%.

一方、入手容易な工業製品であるスルトン化合物(一般式(5))を出発原料とする方法もある(特許文献3、4)。
しかしながら、特許文献3,4に開示されたスルトン化合物を出発物質とする方法は、スルトン化合物(一般式(5)においてn=3,4)を無水フッ酸中で電解フッ素化して、酸フルオリド化合物(一般式(3)においてn=3,4)を製造する方法を開示したものであり、この方法は、わずか3工程で目的のパーフルオロビニルエーテルモノマーを製造できる点では優れているが、電解フッ素化反応であるため副反応が多く、収率が低い上に多量の副生物の廃棄処理を行う必要があるという問題があった。
On the other hand, there is a method using a sultone compound (general formula (5)), which is an easily available industrial product, as a starting material (Patent Documents 3 and 4).
However, the method using a sultone compound disclosed in Patent Documents 3 and 4 as a starting material is an acid fluoride compound obtained by electrolytic fluorination of a sultone compound (n = 3,4 in the general formula (5)) in anhydrous hydrofluoric acid. (N = 3,4 in the general formula (3) is disclosed. This method is excellent in that the desired perfluorovinyl ether monomer can be produced in only 3 steps. There are many side reactions due to the chemical conversion reaction, resulting in low yields and a need to dispose of a large amount of by-products.

このように、これまで、耐熱性や化学的安定性に優れたパーフルオロスルホン酸ポリマーの原料である一般式(2)で表されるパーフルオロビニルエーテルモノマーを製造する、実用的な方法は知られておらず、効率的製造法の開発が待たれていた。
特開昭56−90054号公報 国際公開第WO04/094365号明細書 特開昭57−164991号公報 米国特許第6624328号明細書
Thus, a practical method for producing a perfluorovinyl ether monomer represented by the general formula (2), which is a raw material of a perfluorosulfonic acid polymer excellent in heat resistance and chemical stability, has been known so far. The development of an efficient manufacturing method was awaited.
JP-A-56-90054 International Publication No. WO04 / 094365 Specification JP 57-164991 A US Pat. No. 6,624,328

本発明は、耐熱性や化学的安定性に優れたパーフルオロスルホン酸ポリマーの原料であるパーフルオロビニルエーテルモノマーを、少ない工程数で収率よく製造する方法を提供するものである。具体的には入手が容易な公知化合物(フッ素化スルトン化合物(一般式(1))から3工程、スルトン化合物(一般式(5))からでも4工程で収率よく製造する方法を提供するものである。   The present invention provides a method for producing a perfluorovinyl ether monomer, which is a raw material for a perfluorosulfonic acid polymer excellent in heat resistance and chemical stability, with a small number of steps and in a high yield. Specifically, it provides a method for producing a well-known compound (a fluorinated sultone compound (general formula (1)) in 3 steps and a sultone compound (general formula (5)) in 4 steps with a high yield. It is.

本発明者らは、鋭意検討した結果、パーフルオロビニルエーテルモノマー(一般式(2))を、入手が容易なフッ素化スルトン化合物(一般式(1))を出発原料として、特定の工程を経ることで、わずか3工程、スルトン化合物(一般式(5))からでも4工程で収率よく製造する方法を見出し本発明を成すに至った。
すなわち、本発明は以下の通りである。
1、下記一般式(1)
As a result of intensive studies, the present inventors have passed a specific process using a perfluorovinyl ether monomer (general formula (2)) as a starting material and an easily available fluorinated sultone compound (general formula (1)). Thus, the present invention was accomplished by finding a method of producing the sultone compound (general formula (5)) with a high yield in 4 steps even with only 3 steps.
That is, the present invention is as follows.
1. The following general formula (1)

Figure 2006219419
Figure 2006219419

(式中、nは3〜8の整数である。)
で表される化合物を出発原料として、下記工程(a)〜(c)の操作により、下記一般式(2)
CF=CFO(CFSOF (2)
(nは一般式(1)と同じ。)
で表されるパーフルオロビニルエーテルモノマーを製造する方法。
(In the formula, n is an integer of 3 to 8.)
As a starting material, the following general formula (2) is obtained by the operations of the following steps (a) to (c).
CF 2 = CFO (CF 2) n SO 2 F (2)
(N is the same as in general formula (1).)
A process for producing a perfluorovinyl ether monomer represented by the formula:

工程(a)
一般式(1)の化合物を異性化させ、下記一般式(3)
FCO(CFn−1SOF (3)
(nは一般式(1)と同じ。)
で表される化合物とする工程。
Step (a)
The compound of the general formula (1) is isomerized to give the following general formula (3)
FCO (CF 2 ) n-1 SO 2 F (3)
(N is the same as in general formula (1).)
The process made into the compound represented by these.

工程(b)
一般式(3)の化合物にヘキサフルオロプロピレンオキシド(HFPO)を付加させ、下記一般式(4)
CFCF(COF)O(CFSOF (4)
(nは一般式(1)と同じ。)
で表される化合物とする工程。
Step (b)
Hexafluoropropylene oxide (HFPO) is added to the compound of the general formula (3), and the following general formula (4)
CF 3 CF (COF) O (CF 2 ) n SO 2 F (4)
(N is the same as in general formula (1).)
The process made into the compound represented by these.

工程(c)
一般式(4)の化合物を脱炭酸して、一般式(2)のパーフルオロビニルエーテルモノマーとする工程。
2、一般式(1)で表される化合物が、下記一般式(5)
Step (c)
A step of decarboxylating the compound of the general formula (4) to obtain a perfluorovinyl ether monomer of the general formula (2).
2, the compound represented by the general formula (1) is represented by the following general formula (5)

Figure 2006219419
Figure 2006219419

(nは一般式(1)と同じ。)
で表される化合物をフッ素化剤で直接フッ素化することで製造されることを特徴とする、1、に記載の製造法。
3、一般式(5)で表される化合物の直接フッ素化が、20℃において一般式(5)で表される化合物を1質量%以上溶解することができる不活性媒体存在下で行われることを特徴とする、2、に記載の製造法に関する。
(N is the same as in general formula (1).)
The production method according to 1, wherein the compound represented by the formula is produced by directly fluorinating with a fluorinating agent.
3. Direct fluorination of the compound represented by the general formula (5) is performed in the presence of an inert medium capable of dissolving 1% by mass or more of the compound represented by the general formula (5) at 20 ° C. 2. The production method according to 2, characterized by the above.

本発明の方法により、耐熱性や化学的安定性に優れたパーフルオロスルホン酸ポリマーの原料であるパーフルオロビニルエーテルモノマー(一般式(2))を少ない工程数で収率よく製造することができる。   By the method of the present invention, a perfluorovinyl ether monomer (general formula (2)), which is a raw material for a perfluorosulfonic acid polymer excellent in heat resistance and chemical stability, can be produced with a small number of steps and in a high yield.

以下、本発明について詳細に説明する。
先ず、本発明の第一の製法である、一般式(1)で表されるフッ素化スルトン化合物から3工程を経て一般式(2)で表されるパーフルオロビニルエーテルモノマーを製造する方法、について以下に説明する。
本発明者らは、先ず、一般式(3)で表される化合物(以下、酸フルオリド化合物(3)と称する)が、本発明の出発原料である一般式(1)で表される化合物(以下、フッ素化スルトン化合物(1)と称する)の異性化により、一段階で合成できることを見出した(工程(a))。すなわち、フッ素化スルトン化合物(1)は特定の条件で処理するだけで容易に異性化し、一般式(3)の酸フルオリド化合物(3)を収率よく生成することが分かった。
Hereinafter, the present invention will be described in detail.
First, the method for producing the perfluorovinyl ether monomer represented by the general formula (2) through the three steps from the fluorinated sultone compound represented by the general formula (1), which is the first production method of the present invention, is described below. Explained.
The inventors first prepared a compound represented by the general formula (1) in which a compound represented by the general formula (3) (hereinafter referred to as an acid fluoride compound (3)) is a starting material of the present invention ( Hereinafter, it was found that the compound could be synthesized in one step by isomerization of the fluorinated sultone compound (1) (step (a)). That is, it was found that the fluorinated sultone compound (1) was easily isomerized only by treatment under specific conditions, and the acid fluoride compound (3) of the general formula (3) was produced with good yield.

一般式(3)の酸フルオリド化合物(3)からは、下記する2工程(工程(b)、工程(c))を経て一般式(2)で表されるパーフルオロビニルエーテルモノマー(以下、パーフルオロビニルエーテルモノマー(2)と称する)を製造することができる。
したがって、上記の方法により、一般式(1)で表されるフッ素化スルトン化合物(1)からわずか3工程で一般式(2)で表されるパーフルオロビニルエーテルモノマー(2)を製造することが可能となった。
From the acid fluoride compound (3) of the general formula (3), the perfluorovinyl ether monomer represented by the general formula (2) (hereinafter referred to as perfluoro) is passed through the following two steps (step (b) and step (c)). Vinyl ether monomer (2)) can be produced.
Therefore, the perfluorovinyl ether monomer (2) represented by the general formula (2) can be produced from the fluorinated sultone compound (1) represented by the general formula (1) by only 3 steps by the above method. It became.

Figure 2006219419
Figure 2006219419

尚、上記の製造方法で得られるパーフルオロビニルエーテルモノマー(2)中、目的のパーフルオロスルホン酸ポリマーにしたときの耐酸化性が優れること、工程(c)の操作、すなわち脱炭酸によるビニル化において環化反応の副反応がほとんどなく収率が高いことから、nが4以上の場合に本発明の効果がより顕著になる。一方、nが大きくなりすぎると最終目的のポリマーとしたときのガラス転移温度が低くなるのでnは6以下が好ましく、4以下がより好ましい。また、原料入手の容易さからはnは3または4が好ましく、いずれの条件も満たすことからn=4が最も好ましい。   In the perfluorovinyl ether monomer (2) obtained by the above production method, the oxidation resistance when the target perfluorosulfonic acid polymer is obtained is excellent, and in the operation of step (c), that is, vinylation by decarboxylation. Since there is almost no side reaction of the cyclization reaction and the yield is high, the effect of the present invention becomes more remarkable when n is 4 or more. On the other hand, if n is too large, the glass transition temperature when the final polymer is obtained will be low, so n is preferably 6 or less, and more preferably 4 or less. Further, n is preferably 3 or 4 from the viewpoint of easy availability of raw materials, and n = 4 is most preferable since both conditions are satisfied.

以上、本発明の第一の製法の特徴について説明したが、より具体的に以下に説明する。
先ず、異性化を行う工程(a)について説明する。
一般式(1)で表されるフッ素化スルトン化合物(1)は、特定の範囲の各種の条件下で一般式(3)の酸フルオリド化合物(3)へ異性化させることが可能であり、本発明の方法においては、どの異性化条件を採用しても良い。
The characteristics of the first production method of the present invention have been described above, but more specifically will be described below.
First, the isomerization step (a) will be described.
The fluorinated sultone compound (1) represented by the general formula (1) can be isomerized to the acid fluoride compound (3) of the general formula (3) under various conditions within a specific range. Any isomerization conditions may be employed in the method of the invention.

当該異性化条件の例としては、例えば、下記のような各種の異性化触媒存在下での処理が挙げられる。異性化触媒の例としては、例えば、RN(Rは炭化水素基、以下同様)型の3級アミン化合物や窒素原子等のヘテロ原子を含有する複素環化合物等の各種のルイス塩基化合物、KF、CsF、NaF、RNF、RPF、RSiF等のフッ化物イオン含有化合物、各種の無機酸化物、無機塩等が挙げられる。中でも、ルイス塩基化合物やフッ化物イオン含有化合物が好ましく、特にフッ化物イオン含有化合物が好ましい。 Examples of the isomerization conditions include, for example, treatment in the presence of various isomerization catalysts as described below. Examples of the isomerization catalyst include various Lewis base compounds such as R 3 N (R is a hydrocarbon group, hereinafter the same) type tertiary amine compound and heterocyclic compounds containing a hetero atom such as a nitrogen atom, Examples include fluoride ion-containing compounds such as KF, CsF, NaF, R 4 NF, R 4 PF, and R 3 SiF, various inorganic oxides, and inorganic salts. Of these, Lewis base compounds and fluoride ion-containing compounds are preferred, and fluoride ion-containing compounds are particularly preferred.

異性化処理する条件としては、通常は無水条件下、無溶媒または非プロトン性溶媒中で行なわれる。異性化触媒の量は、当量以上の過剰量を用いてもよいが、触媒量で行ってもよい。触媒量で行う場合、触媒の使用量はフッ素化スルトン化合物(1)に対して0.1〜100モル%が好ましく、1〜50モル%がより好ましい。反応温度は−30℃〜200℃が好ましく、20℃〜180℃がより好ましい。
溶媒を用いる場合、溶媒としてはスルホラン、アセトニトリル、グライム類等の多様な非プロトン性溶媒を用いることができる。得られた一般式(3)の酸フルオリド化合物(3)は、蒸留精製して次の工程に使用しても良いし、一般式(3)の酸フルオリド化合物(3)を含有する反応溶液を次の工程に使用しても良い。
The conditions for the isomerization treatment are usually carried out under anhydrous conditions in a solvent-free or aprotic solvent. The amount of the isomerization catalyst may be an excess amount equal to or more than the equivalent amount, but may be performed in a catalytic amount. When the catalyst is used in a catalytic amount, the amount of the catalyst used is preferably from 0.1 to 100 mol%, more preferably from 1 to 50 mol%, based on the fluorinated sultone compound (1). The reaction temperature is preferably −30 ° C. to 200 ° C., more preferably 20 ° C. to 180 ° C.
When a solvent is used, various aprotic solvents such as sulfolane, acetonitrile, and glymes can be used as the solvent. The obtained acid fluoride compound (3) of the general formula (3) may be purified by distillation and used in the next step, or a reaction solution containing the acid fluoride compound (3) of the general formula (3) may be used. It may be used in the next step.

次にHFPOを付加する工程(b)について説明する。
上記のように製造された一般式(3)の酸フルオリド化合物(3)は、ヘキサフルオロプロピレンオキシド(HFPO)と反応させることにより一般式(4)で表される酸フルオリドのHFPO付加化合物(4)を製造することができる。
工程(b)は、ジグライムやテトラグライム等のエーテル系溶媒、アジポニトリル等のニトリル系溶媒等の各種極性溶媒存在下で実施するのが好ましい。これらの溶媒は、単独でも混合溶媒として用いてもよい。
Next, the step (b) for adding HFPO will be described.
The acid fluoride compound (3) of the general formula (3) produced as described above is reacted with hexafluoropropylene oxide (HFPO) to give an HFPO addition compound (4) of the acid fluoride represented by the general formula (4). ) Can be manufactured.
The step (b) is preferably carried out in the presence of various polar solvents such as ether solvents such as diglyme and tetraglyme, and nitrile solvents such as adiponitrile. These solvents may be used alone or as a mixed solvent.

反応には通常、アルカリ金属フルオリドや4級アンモニウムフルオリド等の各種のフッ化物イオン含有化合物が触媒として用いられ、中でもNaF、KFやCsFが好ましい。触媒の使用量は酸フルオリド化合物(3)に対して0.1〜100モル%が好ましく、1〜50モル%がより好ましい。   In the reaction, various fluoride ion-containing compounds such as alkali metal fluoride and quaternary ammonium fluoride are usually used as a catalyst, and among these, NaF, KF and CsF are preferable. The amount of the catalyst used is preferably from 0.1 to 100 mol%, more preferably from 1 to 50 mol%, based on the acid fluoride compound (3).

HFPOの使用量は酸フルオリド化合物(3)1モルに対して0.1〜3モルが好ましく、0.5〜2モルがより好ましく、0.9〜1.1モルが特に好ましい。反応温度は−30℃から50℃の範囲が好ましく、−20℃から30℃の範囲がより好ましい。
尚、工程(a)と工程(b)とで同一触媒を用いる場合には、同一の反応器で連続して行ってもよい。
The amount of HFPO used is preferably from 0.1 to 3 mol, more preferably from 0.5 to 2 mol, particularly preferably from 0.9 to 1.1 mol, based on 1 mol of the acid fluoride compound (3). The reaction temperature is preferably in the range of -30 ° C to 50 ° C, more preferably in the range of -20 ° C to 30 ° C.
In addition, when using the same catalyst by a process (a) and a process (b), you may carry out continuously by the same reactor.

次に脱炭酸を行う工程(c)について説明する。
酸フルオリドのHFPO付加化合物(4)からパーフルオロビニルエーテルモノマー(2)を製造する方法としては、該酸フルオリドのHFPO付加化合物(4)から直接に塩基性化合物や無機酸化物存在下で熱分解合成する方法、あるいは該酸フルオリドのHFPO付加化合物(4)から誘導されるアルカリ金属塩、アルカリ土類金属塩、アルキルエステルあるいはシリルエステル等の各種誘導体を経た後、脱炭酸する方法等が採用可能であるが、これらのいずれの方法を用いてもよい。中でも、簡便で高収率にパーフルオロビニルエーテルモノマー(2)が得られることから、アルカリ金属塩を経由する方法が特に好ましい。
Next, the step (c) for decarboxylation will be described.
As a method of producing perfluorovinyl ether monomer (2) from HFPO addition compound (4) of acid fluoride, thermal decomposition synthesis is carried out directly from HFPO addition compound (4) of acid fluoride in the presence of a basic compound or inorganic oxide. Or a method of decarboxylation after passing through various derivatives such as alkali metal salts, alkaline earth metal salts, alkyl esters or silyl esters derived from the HFPO addition compound (4) of the acid fluoride. However, any of these methods may be used. Among these, a method via an alkali metal salt is particularly preferable because the perfluorovinyl ether monomer (2) can be obtained simply and with high yield.

アルカリ金属塩を経由する方法としては、酸フルオリドのHFPO付加化合物(4)を溶媒中または無溶媒でアルカリ金属の炭酸塩と反応させてアルカリ金属塩とした後、加熱脱炭酸反応を行ってもよいし、酸フルオリドのHFPO付加化合物(4)を高温でアルカリ金属の炭酸塩と接触させて、中和反応と脱炭酸反応を同時に行ってもよい。アルカリ金属の炭酸塩としては炭酸ナトリウム、炭酸カリウムが好ましく、炭酸カリウムがより好ましい。   As a method of passing through an alkali metal salt, an acid fluoride HFPO addition compound (4) may be reacted with an alkali metal carbonate in a solvent or without a solvent to form an alkali metal salt, followed by a heat decarboxylation reaction. Alternatively, the HFPO addition compound (4) of acid fluoride may be contacted with an alkali metal carbonate at a high temperature to carry out the neutralization reaction and the decarboxylation reaction simultaneously. As the alkali metal carbonate, sodium carbonate and potassium carbonate are preferable, and potassium carbonate is more preferable.

中和反応を行った後に加熱脱炭酸反応を行う場合は、使用されるアルカリ金属の炭酸塩の量は0.8〜1.5当量(0.4〜0.75モル倍)が好ましく、0.9〜1.2当量がより好ましい。また溶媒を用いて中和反応を行う場合は、各種の非プロトン性極性溶媒が採用可能であるが、その中でも、操作性や収率が良好な点から、アセトニトリル等のニトリル系の溶媒や、ジメトキシエタン、ジグライム等のエーテル系溶媒が好ましい。中和する温度は0〜80℃が好ましく、脱炭酸反応は溶媒をなるべく除去してから行うことが好ましく、脱炭酸反応は150〜250℃で行うことが好ましい。
中和反応と脱炭酸反応を同時に行う場合は、使用されるアルカリ金属の炭酸塩の量は1〜3当量(0.5〜1.5モル倍)が好ましく、1〜2.5当量がより好ましい。反応温度は200〜300℃が好ましい。
When the heat decarboxylation reaction is performed after the neutralization reaction, the amount of the alkali metal carbonate used is preferably 0.8 to 1.5 equivalents (0.4 to 0.75 mol times), and 0 .9 to 1.2 equivalents are more preferred. In addition, when a neutralization reaction is performed using a solvent, various aprotic polar solvents can be employed, among them, from the viewpoint of good operability and yield, nitrile solvents such as acetonitrile, Ether solvents such as dimethoxyethane and diglyme are preferred. The neutralization temperature is preferably 0 to 80 ° C., the decarboxylation reaction is preferably performed after removing the solvent as much as possible, and the decarboxylation reaction is preferably performed at 150 to 250 ° C.
When the neutralization reaction and the decarboxylation reaction are performed simultaneously, the amount of the alkali metal carbonate used is preferably 1 to 3 equivalents (0.5 to 1.5 moles), more preferably 1 to 2.5 equivalents. preferable. The reaction temperature is preferably 200 to 300 ° C.

以上、本発明の第一の製法について説明をした。次に、本発明の第二の製法の特徴とその詳細について説明する。
本発明の第二の製法はパーフルオロビニルエーテルモノマー(2)の出発原料である一般式(1)で表されるフッ素化スルトン化合物(1)をスルトン化合物(5)から製造する方法である。
The first production method of the present invention has been described above. Next, the features and details of the second production method of the present invention will be described.
The second production method of the present invention is a method for producing the fluorinated sultone compound (1) represented by the general formula (1), which is a starting material for the perfluorovinyl ether monomer (2), from the sultone compound (5).

一般式(1)で表されるフッ素化スルトン化合物(1)は、非特許文献1(R. J. Lagow ら、Inorganic Chemistry, 30(1991),789)が開示するように一般式(5)(以下、スルトン化合物(5)と称する)の化合物を元素状フッ素で直接フッ素化し、一般式(1)のフッ素化スルトン化合物(1)とするような一般的な方法を利用することができる(非特許文献1ではフッ素化スルトン化合物(5)でn=4の製法のみ開示)。   The fluorinated sultone compound (1) represented by the general formula (1) is represented by the general formula (5) (hereinafter referred to as Non-Patent Document 1 (RJ Lagow et al., Inorganic Chemistry, 30 (1991), 789)). A general method of directly fluorinating a compound of a sultone compound (5) with elemental fluorine to obtain a fluorinated sultone compound (1) of the general formula (1) can be used (non-patent document) 1 discloses only the production method of fluorinated sultone compound (5) where n = 4).

具体的には、直接フッ素化反応に使用されるフッ素化剤として、元素状フッ素を始め、SFやXeF等の各種の公知フッ素化剤、あるいはこれらの混合物を用いるものであるが、元素状フッ素が好ましい。尚、フッ素化の際、光照射を行ってもよく、触媒を用いてもよい。元素状フッ素による直接フッ素化は、気相または液相でフッ素ガスと反応させればよい。用いるフッ素ガスは単独でもよいが、窒素、ヘリウム、アルゴン等のガスで希釈したものを用いてもよい。希釈する場合、フッ素ガス濃度は1容量%以上が好ましく、10容量%以上がより好ましく、20容量%以上がさらに好ましい。 Specifically, as the fluorinating agent used in the direct fluorination reaction, various known fluorinating agents such as elemental fluorine, SF 4 and XeF 2 or a mixture thereof are used. Fluorine is preferred. In addition, in fluorination, light irradiation may be performed and a catalyst may be used. Direct fluorination with elemental fluorine may be performed by reacting with fluorine gas in a gas phase or a liquid phase. The fluorine gas to be used may be used alone, or a gas diluted with a gas such as nitrogen, helium, or argon may be used. When diluting, the fluorine gas concentration is preferably 1% by volume or more, more preferably 10% by volume or more, and further preferably 20% by volume or more.

フッ素の圧力は、常圧〜2MPaが好ましい。またフッ素化の温度は−100〜120℃の範囲が好ましく、−80〜80℃がより好ましく、−60〜50℃が特に好ましい。反応によって生成するHFを除去するために、NaF等のHF補足剤を共存させておくこともできる。フッ素化は、バッチ式、流通式のいずれの方法も採用することができる。またフッ素化の条件は、反応初期にはなるべく低温で、低濃度のフッ素ガスを用い、反応の進行とともに温度や濃度条件を高めるほうが好ましい。   The pressure of fluorine is preferably normal pressure to 2 MPa. The fluorination temperature is preferably in the range of -100 to 120 ° C, more preferably -80 to 80 ° C, and particularly preferably -60 to 50 ° C. In order to remove HF produced by the reaction, an HF supplement such as NaF may be allowed to coexist. For the fluorination, either a batch method or a flow method can be employed. The fluorination conditions are preferably as low as possible at the beginning of the reaction, using a low concentration of fluorine gas, and increasing the temperature and concentration conditions as the reaction proceeds.

また、上記のフッ素化反応では、一般に発熱が激しいので、フッ素化装置は除熱が効率的に行われる構造にしておくことが好ましい。一般に、反応熱が大きな反応においては、反応熱を効果的に除去して安定条件で目的反応を実施するためには、基質を溶媒に溶解・希釈して反応を実施するのが好ましい。ところが、スルトン化合物(5)のフッ素化反応においては、スルトン化合物(5)を溶解する炭化水素系溶媒は、反応中に溶媒自身のフッ素化反応が起きてしまうので当該フッ素化反応の溶媒には使用できない。一方、当該フッ素化反応条件下で安定なパーフルオロ炭化水素等の化合物を溶媒に使用しようとしても、パーフルオロ炭化水素等の溶媒はスルトン化合物(5)をほとんど溶解しないので、スルトン化合物(5)の溶解・希釈による除熱効果を得ることができないのである。   In the above fluorination reaction, since heat generation is generally intense, it is preferable that the fluorination apparatus has a structure that efficiently removes heat. In general, in a reaction with a large reaction heat, in order to effectively remove the heat of reaction and perform the target reaction under stable conditions, it is preferable to perform the reaction by dissolving and diluting the substrate in a solvent. However, in the fluorination reaction of the sultone compound (5), the hydrocarbon solvent that dissolves the sultone compound (5) causes a fluorination reaction of the solvent itself during the reaction. I can not use it. On the other hand, even if an attempt is made to use a compound such as perfluorohydrocarbon which is stable under the fluorination reaction conditions, the solvent such as perfluorohydrocarbon hardly dissolves the sultone compound (5), so that the sultone compound (5) It is not possible to obtain a heat removal effect due to dissolution / dilution of the solution.

非特許文献1が開示するフッ素化スルトン化合物(1)の製造方法は、原料をフッ化ナトリウム粉末に分散させ、−78℃の低温で、かつ1週間以上かけてゆっくり行っているにもかかわらず固体に分散させただけでは除熱効果が不十分なため収率が低かったと推定できる。
そこで、本発明者らは、当該フッ素化反応を高選択率で進行させる条件について鋭意検討した結果、以下に示す媒体が当該フッ素化反応条件下において不活性でありながらスルトン化合物(5)を溶解する媒体であり、このような媒体中で当該フッ素化反応を実施すると反応の選択性が飛躍的に向上するという特徴を有することを見出した。
Non-Patent Document 1 discloses a method for producing a fluorinated sultone compound (1), in which the raw material is dispersed in sodium fluoride powder, and the method is performed slowly at a low temperature of −78 ° C. over one week or more. It can be presumed that the yield was low because the heat removal effect was insufficient only by dispersing in a solid.
Accordingly, as a result of intensive studies on the conditions for allowing the fluorination reaction to proceed at a high selectivity, the present inventors have dissolved the sultone compound (5) while the following medium is inactive under the fluorination reaction conditions. It has been found that when the fluorination reaction is carried out in such a medium, the selectivity of the reaction is remarkably improved.

すなわち、該媒体は、当該フッ素化反応条件下において不活性であって、20℃においてスルトン化合物(5)を1質量%以上溶解するものであればどんなものでもよく、5質量%以上溶解することがより好ましく、10質量%以上溶解することがさらに好ましい。ここで、上記の「当該フッ素化反応条件下において不活性」とは、当該フッ素化条件下で、該媒体中のC−H結合からC−F結合への変換反応が起こらないことを意味する。
該媒体は、フッ素化の条件で液体であることが好ましく、融点が0℃以下であることが好ましく、−30℃以下であることがより好ましく、−50℃以下であることがさらに好ましい。
That is, the medium may be any medium as long as it is inert under the fluorination reaction conditions and can dissolve 1% by mass or more of the sultone compound (5) at 20 ° C. Is more preferable, and it is more preferable to dissolve 10% by mass or more. Here, the above “inactive under the fluorination reaction conditions” means that a conversion reaction from C—H bonds to C—F bonds in the medium does not occur under the fluorination conditions. .
The medium is preferably a liquid under fluorination conditions, preferably has a melting point of 0 ° C. or lower, more preferably −30 ° C. or lower, and further preferably −50 ° C. or lower.

このような媒体としては、例えば、無水トリフルオロ酢酸、無水ペンタフルオロプロピオン酸、無水ヘプタフルオロ酪酸等のパーフルオロカルボン酸の無水物、無水トリフルオロメタンスルホン酸、無水ペンタフルオロエタンスルホン酸等のパーフルオロスルホン酸の無水物、ビストリフルオロメタンスルホニルイミド等のビスパーフルオロアルキルスルホニルイミド化合物、トリフルオロメタンスルホンアミド等のパーフルオロアルキル酸アミド化合物、あるいはこれらの化合物の混合物、さらには、これらの化合物とパーフルオロ炭化水素等の溶媒(酸素、窒素等のヘテロ原子を含んでいてもよい)の混合物を例示することができる。これらの媒体化合物中の炭素原子数は、15以下が好ましく、12以下がより好ましく、8以下がさらに好ましく、5以下が特に好ましい。また、これらの媒体化合物のパーフルオロアルキル部にエーテル結合が含まれていても良い。   Examples of such a medium include perfluorocarboxylic acid anhydrides such as trifluoroacetic anhydride, pentafluoropropionic anhydride, and heptafluorobutyric anhydride, and perfluorocarbons such as trifluoromethanesulfonic anhydride and pentafluoroethanesulfonic anhydride. Sulfonic anhydrides, bisperfluoroalkylsulfonylimide compounds such as bistrifluoromethanesulfonylimide, perfluoroalkylamide compounds such as trifluoromethanesulfonamide, or mixtures of these compounds, and these compounds and perfluoro A mixture of solvents such as hydrocarbons (which may contain heteroatoms such as oxygen and nitrogen) can be exemplified. The number of carbon atoms in these medium compounds is preferably 15 or less, more preferably 12 or less, further preferably 8 or less, and particularly preferably 5 or less. In addition, an ether bond may be included in the perfluoroalkyl part of these medium compounds.

該媒体を用いる場合、媒体の量は、スルトン化合物(5)に対して1〜300質量倍が好ましく、5〜200質量倍がより好ましく、10〜100質量倍が特に好ましい。
尚、スルトン化合物(5)からフッ素化スルトン化合物(1)へのフッ素化反応は、収率向上と反応熱希釈という観点からスルトン化合物(5)の部分フッ素化物存在下で実施してもよいし、生成物の抽出分離という観点からパーフルオロ炭化水素等の溶媒(酸素、窒素等のヘテロ原子を含んでいてもよい)存在下で実施しても良い。
以上、本発明の第二の製法であるフッ素化スルトン化合物(1)をスルトン化合物(5)から製造する方法について説明した。
When the medium is used, the amount of the medium is preferably 1 to 300 times by mass, more preferably 5 to 200 times by mass, and particularly preferably 10 to 100 times by mass with respect to the sultone compound (5).
The fluorination reaction from the sultone compound (5) to the fluorinated sultone compound (1) may be carried out in the presence of a partially fluorinated product of the sultone compound (5) from the viewpoint of yield improvement and reaction thermal dilution. From the viewpoint of extracting and separating the product, the reaction may be carried out in the presence of a solvent such as perfluorohydrocarbon (which may contain a hetero atom such as oxygen or nitrogen).
The method for producing the fluorinated sultone compound (1) from the sultone compound (5), which is the second production method of the present invention, has been described above.

以下、本発明を実施例に基づいて具体的に説明する。
[実施例1]
非特許文献1記載の方法に従い、1,4−ブタンスルトン(一般式(5)においてn=4の化合物)を無水フッ化ナトリウムに分散させた状態で、非特許文献1およびその引用文献に記載の装置内の反応ゾーンに仕込み、直接フッ素化による反応を行った。その結果、単離収率25%でパーフルオロ−1,4−ブタンスルトン(一般式(1)においてn=4)を得た。
Hereinafter, the present invention will be specifically described based on examples.
[Example 1]
According to the method described in Non-Patent Document 1, 1,4-butane sultone (a compound having n = 4 in the general formula (5)) is dispersed in anhydrous sodium fluoride and described in Non-Patent Document 1 and the cited document. The reaction zone in the apparatus was charged and the reaction was carried out by direct fluorination. As a result, perfluoro-1,4-butane sultone (n = 4 in the general formula (1)) was obtained with an isolation yield of 25%.

次に、50mlの3つ口フラスコに窒素気流中、5gのパーフルオロ−1,4−ブタンスルトン、1.4gのKF、20mlのスルホランを仕込み、100℃で12時間攪拌した。減圧下で低沸点成分を留出させ、4.1gの液体を得た(収率82%)。
この液体は19F―NMRによりFOC(CFSOFであることが確認された。
19F−NMR δ(CFCl基準):44.3ppm(1F)、22.5ppm(1F)、−109.8ppm(2F)、−119.5ppm(2F)、−122.4ppm(2F)
Next, 5 g of perfluoro-1,4-butane sultone, 1.4 g of KF, and 20 ml of sulfolane were charged in a 50 ml three-necked flask in a nitrogen stream and stirred at 100 ° C. for 12 hours. The low-boiling components were distilled off under reduced pressure to obtain 4.1 g of liquid (yield 82%).
This liquid was confirmed to be FOC (CF 2 ) 3 SO 2 F by 19 F-NMR.
19 F-NMR δ (CFCl 3 standard): 44.3 ppm (1F), 22.5 ppm (1F), −109.8 ppm (2F), −119.5 ppm (2F), −122.4 ppm (2F)

上記の方法を繰り返して得たFOC(CFSOF22.1gを、テトラグライム1mL、アジポニトリル10mL、フッ化カリウム0.6gとともに100mLのオートクレーブに入れ、0℃で攪拌しながら、ヘキサフルオロプロピレンオキシド(HFPO)13gを導入した。導入開始から3時間後、ゲージ圧が0MPaになった時点で反応混合物を静置すると2層に分離した。下層を分液後、減圧蒸留(沸点91℃/23kPa)により、CFCF(COF)O(CFSOFが29g得られた(収率82%)。 FOC (CF 2 ) 3 SO 2 F22.1 g obtained by repeating the above method was placed in a 100 mL autoclave together with 1 g of tetraglyme, 10 mL of adiponitrile and 0.6 g of potassium fluoride, and stirred at 0 ° C. 13 g of propylene oxide (HFPO) was introduced. Three hours after the start of introduction, when the gauge pressure reached 0 MPa, the reaction mixture was allowed to stand to separate into two layers. After liquid separation of the lower layer, 29 g of CF 3 CF (COF) O (CF 2 ) 4 SO 2 F was obtained by distillation under reduced pressure (boiling point 91 ° C./23 kPa) (yield 82%).

次に、窒素気流下、滴下ロート、リービッヒ冷却管、捕集フラスコを備えた100mLの4つ口フラスコにあらかじめ乾燥させた炭酸カリウム5.6gと、無水1,2−ジメトキシエタン10mLを入れ、40℃のオイルバスで加熱しながら、上記CFCF(COF)O(CFSOF15gをゆっくり滴下した。発泡が止まってからさらに50℃で1.5時間攪拌後、19F−NMRにより完全に原料が中和され、CFCF(COK)O(CFSOFに変換したことを確認した。この反応混合物から1,2−ジメトキシエタンを減圧留去し、さらに残渣を140℃に加熱して減圧下で乾燥させた。 Next, 5.6 g of potassium carbonate previously dried and 10 mL of anhydrous 1,2-dimethoxyethane were placed in a 100 mL four-necked flask equipped with a dropping funnel, a Liebig condenser, and a collection flask under a nitrogen stream. While heating in an oil bath at 0 ° C., 15 g of CF 3 CF (COF) O (CF 2 ) 4 SO 2 F was slowly added dropwise. After the foaming stopped, the mixture was further stirred at 50 ° C. for 1.5 hours, and the raw material was completely neutralized by 19 F-NMR and converted to CF 3 CF (CO 2 K) O (CF 2 ) 4 SO 2 F. It was confirmed. 1,2-Dimethoxyethane was distilled off from the reaction mixture under reduced pressure, and the residue was further heated to 140 ° C. and dried under reduced pressure.

乾燥させたCFCF(COK)O(CFSOFを含む残渣を減圧(12kPa)下、170℃に加熱すると脱炭酸反応が起こり、液体が留出し始めた。さらに徐々に温度を上げていき、最終的には185℃まで上昇させた。得られた液体は蒸留精製(沸点57℃/13.3kPa)により、CF=CFO(CFSOFが10g得られた(収率80%)。
19F−NMR δ(CFCl基準):43.8ppm(1F)、−87.0ppm(2F)、−110.0ppm(2F)、−116.9ppm(1F)、−122.2ppm(2F)、−124.4ppm(1F)、−127.0ppm(2F)、−138.4ppm(1F)
When the residue containing dried CF 3 CF (CO 2 K) O (CF 2 ) 4 SO 2 F was heated to 170 ° C. under reduced pressure (12 kPa), decarboxylation reaction occurred, and liquid began to distill. Further, the temperature was gradually raised and finally increased to 185 ° C. The obtained liquid was purified by distillation (boiling point 57 ° C./13.3 kPa) to obtain 10 g of CF 2 ═CFO (CF 2 ) 4 SO 2 F (yield 80%).
19 F-NMR δ (CFCl 3 standard): 43.8 ppm (1F), −87.0 ppm (2F), −110.0 ppm (2F), −116.9 ppm (1F), −122.2 ppm (2F), -124.4 ppm (1F), -127.0 ppm (2F), -138.4 ppm (1F)

[実施例2]
実施例1と同様に1,4−ブタンスルトンを無水フッ化ナトリウムに分散させた状態で仕込み、次に1,4−ブタンスルトンの15質量倍の無水トリフルオロ酢酸を、装置内の同じ反応ゾーンに凝集させた。その状態で実施例1と同様に直接フッ素化を行って収率50%でパーフルオロ−1,4−ブタンスルトンを得た。
尚、1,4−ブタンスルトン1gと無水トリフルオロ酢酸1gとを20℃で混合したところ、均一に溶解しあった。
[Example 2]
In the same manner as in Example 1, 1,4-butane sultone was charged in an anhydrous sodium fluoride state, and then 15 mass times of 1,4-butane sultone trifluoroacetic anhydride was aggregated in the same reaction zone in the apparatus. I let you. In that state, direct fluorination was carried out in the same manner as in Example 1 to obtain perfluoro-1,4-butane sultone with a yield of 50%.
When 1 g of 1,4-butane sultone and 1 g of trifluoroacetic anhydride were mixed at 20 ° C., they were uniformly dissolved.

耐熱性、耐酸化性パーフルオロスルホン酸ポリマーの原料として有用な、一般式(2)で表されるパーフルオロビニルエーテルモノマーを、少ない工程数で収率よく製造することができる。

The perfluorovinyl ether monomer represented by the general formula (2), which is useful as a raw material for heat-resistant and oxidation-resistant perfluorosulfonic acid polymers, can be produced with a small number of steps and with a high yield.

Claims (3)

下記一般式(1)
Figure 2006219419
(式中、nは3〜8の整数である。)
で表される化合物を出発原料として、下記工程(a)〜(c)の操作により、下記一般式(2)
CF=CFO(CFSOF (2)
(nは一般式(1)と同じ。)
で表されるパーフルオロビニルエーテルモノマーを製造する方法。
工程(a)
一般式(1)の化合物を異性化させ、下記一般式(3)
FCO(CFn−1SOF (3)
(nは一般式(1)と同じ。)
で表される化合物とする工程。
工程(b)
一般式(3)の化合物にヘキサフルオロプロピレンオキシド(HFPO)を付加させ、下記一般式(4)
CFCF(COF)O(CFSOF (4)
(nは一般式(1)と同じ。)
で表される化合物とする工程。
工程(c)
一般式(4)の化合物を脱炭酸して、一般式(2)のパーフルオロビニルエーテルモノマーとする工程。
The following general formula (1)
Figure 2006219419
(In the formula, n is an integer of 3 to 8.)
As a starting material, the following general formula (2) is obtained by the operations of the following steps (a) to (c).
CF 2 = CFO (CF 2) n SO 2 F (2)
(N is the same as in general formula (1).)
A process for producing a perfluorovinyl ether monomer represented by the formula:
Step (a)
The compound of the general formula (1) is isomerized to give the following general formula (3)
FCO (CF 2 ) n-1 SO 2 F (3)
(N is the same as in general formula (1).)
The process made into the compound represented by these.
Step (b)
Hexafluoropropylene oxide (HFPO) is added to the compound of the general formula (3), and the following general formula (4)
CF 3 CF (COF) O (CF 2 ) n SO 2 F (4)
(N is the same as in general formula (1).)
The process made into the compound represented by these.
Step (c)
A step of decarboxylating the compound of the general formula (4) to obtain a perfluorovinyl ether monomer of the general formula (2).
一般式(1)で表される化合物が、下記一般式(5)
Figure 2006219419
(nは一般式(1)と同じ。)
で表される化合物をフッ素化剤で直接フッ素化することで製造されることを特徴とする、請求項1に記載の製造法。
The compound represented by the general formula (1) is represented by the following general formula (5)
Figure 2006219419
(N is the same as in general formula (1).)
The production method according to claim 1, wherein the compound represented by the formula is produced by directly fluorinating with a fluorinating agent.
一般式(5)で表される化合物の直接フッ素化が、20℃において一般式(5)で表される化合物を1質量%以上溶解することができる不活性媒体存在下で行われることを特徴とする、請求項2に記載の製造法。   The direct fluorination of the compound represented by the general formula (5) is performed in the presence of an inert medium capable of dissolving 1% by mass or more of the compound represented by the general formula (5) at 20 ° C. The production method according to claim 2.
JP2005034249A 2005-02-10 2005-02-10 Method for producing perfluorovinyl ether monomer Withdrawn JP2006219419A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2005034249A JP2006219419A (en) 2005-02-10 2005-02-10 Method for producing perfluorovinyl ether monomer

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2005034249A JP2006219419A (en) 2005-02-10 2005-02-10 Method for producing perfluorovinyl ether monomer

Publications (1)

Publication Number Publication Date
JP2006219419A true JP2006219419A (en) 2006-08-24

Family

ID=36981964

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2005034249A Withdrawn JP2006219419A (en) 2005-02-10 2005-02-10 Method for producing perfluorovinyl ether monomer

Country Status (1)

Country Link
JP (1) JP2006219419A (en)

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203172A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Method for producing perfluoro multifunctional vinyl ether compound
CN102675159A (en) * 2010-12-31 2012-09-19 罗门哈斯电子材料有限公司 Photoacid generating monomer and precursor thereof
US8900792B2 (en) 2010-12-31 2014-12-02 Rohm And Haas Electronic Materials Llc Polymerizable photoacid generators
US8907122B2 (en) 2010-12-31 2014-12-09 Rohm And Haas Electronic Material Llc Method of preparing photoacid generating monomer
CN107298647A (en) * 2017-06-22 2017-10-27 山东华夏神舟新材料有限公司 End group is the preparation method of the straight chain perfluoroalkyl vinyl ether of sulfonyl fluoride group

Cited By (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2009203172A (en) * 2008-02-26 2009-09-10 Fujifilm Corp Method for producing perfluoro multifunctional vinyl ether compound
CN102675159A (en) * 2010-12-31 2012-09-19 罗门哈斯电子材料有限公司 Photoacid generating monomer and precursor thereof
US8716518B2 (en) 2010-12-31 2014-05-06 Rohm And Haas Electronic Materials Llc Photoacid generating monomer and precursor thereof
US8900792B2 (en) 2010-12-31 2014-12-02 Rohm And Haas Electronic Materials Llc Polymerizable photoacid generators
US8907122B2 (en) 2010-12-31 2014-12-09 Rohm And Haas Electronic Material Llc Method of preparing photoacid generating monomer
CN105693563A (en) * 2010-12-31 2016-06-22 罗门哈斯电子材料有限公司 Photoacid generating monomer and precursor thereof
CN107298647A (en) * 2017-06-22 2017-10-27 山东华夏神舟新材料有限公司 End group is the preparation method of the straight chain perfluoroalkyl vinyl ether of sulfonyl fluoride group

Similar Documents

Publication Publication Date Title
KR20050085696A (en) Preparation of perfluorinated vinyl ethers having a sulfonyl fluoride end-group
JP2006206566A (en) Method and apparatus for producing 4-fluoroethylene carbonate (eec)
JP2004345967A (en) Method for producing fluorine-containing ether compound
JP2006219419A (en) Method for producing perfluorovinyl ether monomer
JP5790851B2 (en) Method for producing fluorinated methane
JP4431212B2 (en) Method for producing fluorine-containing cyclic carbonate
JP4744356B2 (en) Electrolytic fluorination method
EP2221292A1 (en) Processes for production of fluorine-containing compounds
JP4961656B2 (en) Process for producing perfluoroacyl fluorides
JP2012532163A (en) Process for producing perfluorinated organic compounds
JP4993462B2 (en) Method for producing fluorine compound
JPWO2010001673A1 (en) Method for producing fluoropropylene carbonate
JP5126936B2 (en) Process for producing fluoro (alkyl vinyl ether) and its derivatives
JP2006335699A (en) Method for producing monomer intermediate
JPWO2005003082A1 (en) Method for producing fluorine-containing sulfonyl fluoride
KR20210142667A (en) Process for the production of fluorinated alcohols
JP2006232704A (en) New fluorosulfonyl group-containing compound
JP5158073B2 (en) Method for producing difluoromethane bis (sulfonyl fluoride)
JP2004269535A (en) Method for producing (per)fluorohalogenoether
CN1680241A (en) Process for preparing fluorohalogenethers
JP4864226B2 (en) Method for producing fluorine-containing compound
JP5267632B2 (en) Method for producing fluorinated (poly) ether-containing carbonyl fluoride
JPWO2002026682A1 (en) Method for producing fluorine-containing vinyl ether compound
EP1325906B1 (en) Alkyl esters of 2-(2-fluorosulphonyl)-perfluoroethylenoxy-3-halogen-propionic acid
WO2004094365A1 (en) Method for producing fluorine-containing sulfonyl fluoride compound

Legal Events

Date Code Title Description
A300 Withdrawal of application because of no request for examination

Free format text: JAPANESE INTERMEDIATE CODE: A300

Effective date: 20080513