JP5149929B2 - Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor - Google Patents

Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor Download PDF

Info

Publication number
JP5149929B2
JP5149929B2 JP2010063611A JP2010063611A JP5149929B2 JP 5149929 B2 JP5149929 B2 JP 5149929B2 JP 2010063611 A JP2010063611 A JP 2010063611A JP 2010063611 A JP2010063611 A JP 2010063611A JP 5149929 B2 JP5149929 B2 JP 5149929B2
Authority
JP
Japan
Prior art keywords
barium titanate
particle size
barium
titanium
less
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2010063611A
Other languages
Japanese (ja)
Other versions
JP2010173932A (en
Inventor
寛久 大元
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Dowa Holdings Co Ltd
Original Assignee
Dowa Holdings Co Ltd
Dowa Mining Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Dowa Holdings Co Ltd, Dowa Mining Co Ltd filed Critical Dowa Holdings Co Ltd
Priority to JP2010063611A priority Critical patent/JP5149929B2/en
Publication of JP2010173932A publication Critical patent/JP2010173932A/en
Application granted granted Critical
Publication of JP5149929B2 publication Critical patent/JP5149929B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Description

本発明は、積層セラミックコンデンサ等に用いられるチタン酸バリウム粒子およびその製造方法並びにセラミックコンデンサに関するものである。   The present invention relates to barium titanate particles used for multilayer ceramic capacitors and the like, a method for producing the same, and a ceramic capacitor.

近年、携帯電話やパソコン及びその周辺機器などの小型化、高性能化の進展が著しい。そこに用いられる電子部品、例えば積層セラミックコンデンサにおいても小型化、大容量化といった観点で開発が進められており、コンデンサ中の誘電体層の薄層化、高積層化が進められている。この誘電体層の原料としては、主に高誘電体材料であるチタン酸バリウムの粒子が用いられている。   In recent years, the progress of miniaturization and high performance of mobile phones, personal computers and peripheral devices has been remarkable. Development of electronic components used therein, for example, multilayer ceramic capacitors, is being promoted from the viewpoint of miniaturization and large capacity, and the dielectric layers in the capacitors are being made thinner and higher in thickness. As a raw material for this dielectric layer, particles of barium titanate, which is a high dielectric material, are mainly used.

一方、チタン酸バリウムの粒子の製造方法としては、固相法、シュウ酸塩法、、ゾルゲル法、水熱合成法が知られている。固相法は、酸化チタンと炭酸バリウムの混合粉末を高温で固相合成してチタン酸バリウムを生成する(例えば、非特許文献1参照)方法である。   On the other hand, as a method for producing particles of barium titanate, a solid phase method, an oxalate method, a sol-gel method, and a hydrothermal synthesis method are known. The solid phase method is a method in which barium titanate is produced by solid phase synthesis of a mixed powder of titanium oxide and barium carbonate at a high temperature (see, for example, Non-Patent Document 1).

シュウ酸塩法は塩化バリウム水溶液と四塩化チタン水用液を混合し、この混合物をシュウ酸水溶液に滴下、攪拌してシュウ酸バリウムチタニルを生成、塩素を洗浄除去後、シュウ酸バリウムチタニルを脱水乾燥し、それを仮焼してチタン酸バリウムを生成する(例え
ば、非特許文献2参照)方法である。
In the oxalate method, an aqueous solution of barium chloride and an aqueous solution of titanium tetrachloride are mixed, and this mixture is dropped into an aqueous oxalic acid solution and stirred to produce barium titanyl oxalate. After removing chlorine by washing, barium titanyl oxalate is dehydrated. It is a method of drying and calcining it to produce barium titanate (see, for example, Non-Patent Document 2).

ゾルゲル法は、チタンアルコキシドと水酸化バリウムとの混合液より複合アルコキシドを生成後、当該複合アルコキシドを仮焼してチタン酸バリウムを生成する方法である。   The sol-gel method is a method in which a composite alkoxide is generated from a mixed liquid of titanium alkoxide and barium hydroxide, and then the composite alkoxide is calcined to generate barium titanate.

水熱合成法は、塩化チタンと塩化バリウムをアルカリ溶液下において水熱処理することによりチタン酸バリウムを生成する(例えば、特許文献1,2、非特許文献3参照)方法である。   The hydrothermal synthesis method is a method of generating barium titanate by hydrothermally treating titanium chloride and barium chloride in an alkaline solution (see, for example, Patent Documents 1 and 2 and Non-Patent Document 3).

工業化学雑誌第70巻第6号(1967)Occupational Chemistry Magazine Volume 70 Issue 6 (1967) 窯業協会誌92(1)1984Journal of the Ceramic Industry Association 92 (1) 1984 工業化学雑誌第59巻第8号(1956)Occupational Chemistry Magazine Vol. 59, No. 8 (1956)

特開昭61-031345号公報JP 61-031345 JP 特開2002-211926号公報Japanese Patent Laid-Open No. 2002-211926

チタン酸バリウムの粒子は、バインダー、溶剤、添加剤と混合してスラリーとなり、シート成形機によりグリーンシート化された後、誘電体層となり、当該誘電体層が積層されて積層セラミックコンデンサとなるが、コンデンサ中の誘電体層の薄層化、高積層化の要求に伴い、チタン酸バリウムの粒子に対しても、薄膜化されたグリーンシート内においても、均一に充填できること、電気容量等の電気的特性のバラツキが低いこと等が要求されている。ところが、従来の技術に係るチタン酸バリウムの粒子では、グリーンシートを薄膜化した際、均一に充填することが困難で、電気的特性のバラツキも大きく、信頼性の低
いものであった。
The barium titanate particles are mixed with a binder, a solvent, and an additive to form a slurry. After being formed into a green sheet by a sheet forming machine, the dielectric layer is formed, and the dielectric layer is laminated to form a multilayer ceramic capacitor. In accordance with the demand for thinner and higher-layer dielectric layers in capacitors, it can be filled uniformly in both the barium titanate particles and in the thinned green sheets. There is a demand for low variation in mechanical characteristics. However, with the barium titanate particles according to the prior art, when the green sheet is thinned, it is difficult to uniformly fill, the electrical characteristics vary greatly, and the reliability is low.

そこで発明が解決しようとする課題は、例えばコンデンサ中の誘電体層の薄層化、高積層化に伴い、チタン酸バリウム粒子が充填されたグリーンシートが薄膜化されても、十分な信頼性、電気的特性を保つことのできるチタン酸バリウム粒子と、その製造方法、並びに当該チタン酸バリウム粒子を用いたセラミックコンデンサを提供することにある。   Therefore, the problem to be solved by the invention is, for example, sufficient reliability even if the green sheet filled with barium titanate particles is made thin, as the dielectric layer in the capacitor is thinned and highly laminated. An object of the present invention is to provide barium titanate particles capable of maintaining electrical characteristics, a method for producing the same, and a ceramic capacitor using the barium titanate particles.

上述の課題を解決するため、本発明者らが研究を行った結果、チタン酸バリウム粒子の電子顕微鏡で測定した平均粒子径、粒子径分布、均斉度、真円度、結晶軸 比c/a、等が所定の条件を満たしていることが肝要であることに想到した。さらに、本発明者らは、当該諸条件を満たすチタン酸バリウム粒子の容易且つ生産コストの安価な製造法に想到した。   As a result of studies conducted by the present inventors in order to solve the above-mentioned problems, the average particle size, particle size distribution, uniformity, roundness, crystal axis ratio c / a measured with an electron microscope of barium titanate particles It has been thought that it is important to satisfy the predetermined conditions. Furthermore, the present inventors have come up with an easy and inexpensive production method of barium titanate particles satisfying the various conditions.

すなわち、上述の課題を解決するための第1の手段は、
電子顕微鏡像から測定した平均粒子径をDTEMとしたとき、DTEMが0.3μm以下、粒子径分布が0.5以下、均斉度が0.90以上、真円度が0.80以上、結晶軸比c/aが1.005以上
、バリウムとチタンとのモル比Ba/Tiが0.99以上、1.01以下、動的光散乱法により測定し
た粒度分布における累積径50%となる値をD50としたとき、D50/DTEMが3.0以
下であることを特徴とする正方晶チタン酸バリウム粒子である。
That is, the first means for solving the above-described problem is:
When the average particle size measured from an electron microscope image was D TEM, D TEM is 0.3μm or less, the particle size distribution is 0.5 or less, uniformity is 0.90 or more, 0.80 or more roundness, crystal axis ratio c / a is D 50 / D TEM when 1.050 or more, and the molar ratio Ba / Ti between barium and titanium is 0.99 or more and 1.01 or less, and the value of 50% of the cumulative diameter in the particle size distribution measured by the dynamic light scattering method is D 50 Is a tetragonal barium titanate particle, characterized in that it is 3.0 or less.

第2の手段は、
水熱合成法によるチタン酸バリウム粒子の製造方法であって、
チタン塩と水酸化バリウム水溶液とを、バリウムとチタンとのモル比Ba/Tiが1.5〜10.0となるよう混合し、
当該混合溶液を150℃以上、250℃以下の温度範囲で、24時間以上、水熱処理することを特徴とする正方晶チタン酸バリウム粒子の製造方法である。
The second means is
A method for producing barium titanate particles by a hydrothermal synthesis method,
Titanium salt and barium hydroxide aqueous solution are mixed so that the molar ratio Ba / Ti of barium and titanium is 1.5 to 10.0,
This is a method for producing tetragonal barium titanate particles, wherein the mixed solution is hydrothermally treated in a temperature range of 150 ° C. or more and 250 ° C. or less for 24 hours or more.

第3の手段は、
第1の手段に記載の正方晶チタン酸バリウム粒子、または、第2の手段に記載の正方晶チタン酸バリウム粒子の製造方法により製造した正方晶チタン酸バリウム粒子を用いたことを特徴とするセラミックコンデンサである。
The third means is
A ceramic comprising the tetragonal barium titanate particles described in the first means or the tetragonal barium titanate particles produced by the method for producing tetragonal barium titanate particles described in the second means. It is a capacitor.

第1の手段に係る正方晶チタン酸バリウム粒子は、電子顕微鏡像から測定した平均粒子径DTEMが0.3μm以下、粒子径分布が0.5以下、均斉度が0.90以上、真円度が0.80以上
、結晶軸比c/aが1.005以上、バリウムとチタンとのモル比Ba/Tiが0.99以上、1.01以下、
動的光散乱法により測定した粒度分布から求めた平均粒子径をD50としたとき、D50/DTEMが3.0以下であるので、グリーンシートが薄膜化されても、十分な信頼性、電
気的特性を保つことができた。
The tetragonal barium titanate particles according to the first means have an average particle diameter DTEM measured from an electron microscope image of 0.3 μm or less, a particle size distribution of 0.5 or less, a uniformity of 0.90 or more, a roundness of 0.80 or more, The crystal axis ratio c / a is 1.005 or more, the molar ratio Ba / Ti of barium and titanium is 0.99 or more, 1.01 or less,
When the average particle diameter obtained from the particle size distribution measured by the dynamic light scattering method is D 50 , D 50 / D TEM is 3.0 or less, so even if the green sheet is thinned, sufficient reliability, It was possible to keep the target characteristics.

第2の手段に係る正方晶チタン酸バリウム粒子の製造方法によれば、電子顕微鏡像から測定した平均粒子径DTEMが0.3μm以下、粒子径分布が0.5以下、均斉度が0.90以上、
真円度が0.80以上、結晶軸比c/aが1.005以上、バリウムとチタンとのモル比Ba/Tiが0.99
以上、1.01以下、動的光散乱法により測定した粒度分布から求めた平均粒子径をD50としたときD50/DTEMが3.0以下である、正方晶チタン酸バリウム粒子を容易且つ安
価な生産コストで製造することができた。
According to the method for producing tetragonal barium titanate particles according to the second means, the average particle diameter DTEM measured from an electron microscope image is 0.3 μm or less, the particle diameter distribution is 0.5 or less, the uniformity is 0.90 or more,
Roundness is 0.80 or more, crystal axis ratio c / a is 1.005 or more, molar ratio of barium to titanium Ba / Ti is 0.99
Above, 1.01 or less, and easy and inexpensive production of tetragonal barium titanate particles having a D 50 / D TEM of 3.0 or less when the average particle size obtained from the particle size distribution measured by the dynamic light scattering method is D 50 It was possible to manufacture at a cost.

第3の手段に係るセラミックコンデンサは、誘電体層であるグリーンシートを薄膜化できるので、薄層化、高積層化に際し電気特性の不安定化、新たな設備投資、生産コストの上昇等を回避できる。   The ceramic capacitor according to the third means can reduce the thickness of the green sheet, which is a dielectric layer, to avoid destabilization of electrical characteristics, new equipment investment, increase in production cost, etc. it can.

実施例3に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)である。4 is a transmission electron micrograph (20,000 magnifications) of barium titanate fine particles according to Example 3. 実施例6に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)である。6 is a transmission electron micrograph (20,000 magnifications) of barium titanate fine particles according to Example 6. FIG. 比較例1に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)である。2 is a transmission electron micrograph (magnification 20,000 times) of barium titanate fine particles according to Comparative Example 1. 実施例3に係るチタン酸バリウム微粒子のX線回折パターンである。4 is an X-ray diffraction pattern of barium titanate fine particles according to Example 3. FIG. 比較例1に係るチタン酸バリウム微粒子のX線回折パターンである。2 is an X-ray diffraction pattern of barium titanate fine particles according to Comparative Example 1. FIG. 実施例1〜7、比較例1〜6の微粒子特性測定結果の一覧表である。It is a table | surface of the fine particle characteristic measurement result of Examples 1-7 and Comparative Examples 1-6.

本発明者らは、所望の粒子特性を有する正方晶チタン酸バリウム粒子を製造するため、水熱合成法を基礎とした製造法を鋭意研究した。その結果、製造原料としてチタン塩と水酸化バリウム水溶液とを選択し、当該チタン塩と水酸化バリウムとの仕込量においてバリウムとチタンとのモル比Ba/Tiが1.5〜10.0 となるよう混合し、当該混合溶液を150℃以上、250℃以下の温度範囲で、24時間以上、水熱処理することで、電子顕微鏡像から測定し
た平均粒子径DTEMが 0.3μm以下、粒子径分布が0.5以下、均斉度が0.90以上、真円度が0.80以上、結晶軸比c/aが1.005以上、バリウムとチタンとのモル比 Ba/Tiが0.99以上、1.01以下、マイクロトラックを用いた動的光散乱法により測定した粒度分布から求めた平均粒子径をD50としたときD50/DTEMが3.0以下である、正方晶チタン酸バリウ
ム粒子を製造することができたものである。
In order to produce tetragonal barium titanate particles having desired particle characteristics, the present inventors have intensively studied a production method based on a hydrothermal synthesis method. As a result, a titanium salt and a barium hydroxide aqueous solution are selected as production raw materials, and mixed so that the molar ratio Ba / Ti of barium and titanium is 1.5 to 10.0 in the charged amount of the titanium salt and barium hydroxide, By subjecting the mixed solution to hydrothermal treatment at a temperature range of 150 ° C. or higher and 250 ° C. or lower for 24 hours or longer, the average particle size D TEM measured from an electron microscope image is 0.3 μm or less, the particle size distribution is 0.5 or less, and homogeneous. 0.90 or more, roundness is 0.80 or more, crystal axis ratio c / a is 1.005 or more, molar ratio of barium and titanium Ba / Ti is 0.99 or more, 1.01 or less, by dynamic light scattering method using microtrack Tetragonal barium titanate particles having a D 50 / D TEM of 3.0 or less when the average particle size obtained from the measured particle size distribution is D 50 can be produced.

以下、まず本発明に係るチタン酸バリウム粒子の製造方法を記載しながら、本発明の実施形態について説明する。
まず、純水へチタン塩として四塩化チタン水溶液を攪拌下で添加した後、アルカリ溶液を添加して四塩化チタンを加水分解し、洗浄・ろ過して水酸化チタンゲルを得る。この水酸化チタンゲルに、窒素雰囲気下において水酸化バリウム水溶液をBa/Tiのモル比で1.5〜10.0となるよう添加し、加水してスラリーを得る。このスラリーを攪拌して40〜100℃で0.5〜5時間熟成した後、オートクレーブに投入し、150〜250℃で24時間以上、好ましくは 48〜100時間水熱合成を行う。反応後、室温まで冷却した後、窒素雰囲気下において生成
物を洗浄・ろ過し、105〜150℃で12時間乾燥して、チタン酸バリウム粒子を得る。
Hereinafter, first, an embodiment of the present invention will be described while describing a method for producing barium titanate particles according to the present invention.
First, after adding a titanium tetrachloride aqueous solution as a titanium salt to pure water with stirring, an alkali solution is added to hydrolyze the titanium tetrachloride, followed by washing and filtration to obtain a titanium hydroxide gel. To this titanium hydroxide gel, an aqueous barium hydroxide solution is added under a nitrogen atmosphere so that the molar ratio of Ba / Ti is 1.5 to 10.0, and water is added to obtain a slurry. The slurry is stirred and aged at 40 to 100 ° C. for 0.5 to 5 hours, then charged into an autoclave and subjected to hydrothermal synthesis at 150 to 250 ° C. for 24 hours or longer, preferably 48 to 100 hours. After the reaction, after cooling to room temperature, the product is washed and filtered under a nitrogen atmosphere and dried at 105 to 150 ° C. for 12 hours to obtain barium titanate particles.

ここで、原料として、水酸化チタンゲルと水酸化バリウム水溶液との替わりに、四塩化チタンと水酸化バリウム水溶液を用いても、本発明に係るチタン酸バリウムを得ることができる。この場合は、窒素雰囲気下で水酸化バリウム水溶液に水酸化ナトリウム、アンモニア水等のアルカリ溶液を添加し、四塩化チタン水溶液をバリウムとチタンとのモル比Ba/Tiで1.5〜10.0となるよう添加し、加水してスラリーを得る。このスラリーを攪拌して40〜100℃で 0.5〜5時間熟成した後、オートクレーブに投入し、150〜250℃で24時間以上、好ましくは48〜100時間水熱合成を行う。反応後、室温まで冷却した後、窒素雰囲気下に
おいて生成物を洗浄・ろ過し、105〜150℃で12時間乾燥して、チタン酸バリウム粒子を得た。
さらに上記のいずれの場合においても、チタン塩として、四塩化チタンを硫酸チタンに代替することもできる。
Here, the barium titanate according to the present invention can be obtained by using titanium tetrachloride and an aqueous barium hydroxide solution instead of the titanium hydroxide gel and the aqueous barium hydroxide solution as raw materials. In this case, an alkaline solution such as sodium hydroxide or ammonia water is added to the barium hydroxide aqueous solution under a nitrogen atmosphere, and the titanium tetrachloride aqueous solution is added so that the molar ratio Ba / Ti of barium and titanium is 1.5 to 10.0. And water to obtain a slurry. The slurry is stirred and aged at 40 to 100 ° C. for 0.5 to 5 hours, then charged into an autoclave and subjected to hydrothermal synthesis at 150 to 250 ° C. for 24 hours or more, preferably 48 to 100 hours. After the reaction, after cooling to room temperature, the product was washed and filtered under a nitrogen atmosphere and dried at 105 to 150 ° C. for 12 hours to obtain barium titanate particles.
Furthermore, in any of the above cases, titanium tetrachloride can be substituted for titanium sulfate as the titanium salt.

次に、チタン酸バリウム粒子の粒子特性の評価方法例について説明する。
平均粒子径、粒子径分布、均斉度、真円度、粒子形状は、電子顕微鏡写真等の電子顕微鏡像(例えば、20,000倍の透過型電子顕微鏡写真)より求めた。まずチタン酸バリウム粒子の電子顕微鏡写真より、重なりのない300個の粒子を選び、当該粒子の長径、短径を測
定し、その長径の平均値を平均粒子径DTEMとして求めた。粒子径分布は、当該粒子の粒度分布の標準偏差を、前記平均粒子径DTEMで除して求めたもので、粒度分布のシャープさの指標である。粒子形状は、前記電子顕微鏡写真等の電子顕微鏡像から判断した。均斉度は、前記測定した長径と短径の比の平均値として求めた。真円度は、前記平均粒子径DTEMを 基に、粒子形状が真球と仮定した場合の比表面積を、BET法により測定した比表面積で除したものである。次に、当該チタン酸バリウム粒子の粒度分布を、マイクロトラックを用いた動的光散乱法により測定した。尚、測定においては、前処理として当該チタン酸バリウム粒子を適宜な分散媒へ十分に分散させ、マイクロトラックにて粒度分布を測定し、当該粒度分布から累積径50%となる値を求め、その値をD50とした。そして、当該D50を前記DTEMで除してD50/DTEMの値を求めた。当該D50/DTEMの値は、粒子の分散性の指標である。
Next, an example of a method for evaluating the particle characteristics of the barium titanate particles will be described.
The average particle size, particle size distribution, uniformity, roundness, and particle shape were determined from an electron microscope image such as an electron micrograph (for example, a 20,000-fold transmission electron micrograph). First, 300 non-overlapping particles were selected from an electron micrograph of barium titanate particles, the major axis and minor axis of the particles were measured, and the average value of the major axis was determined as the average particle diameter DTEM . The particle size distribution is obtained by dividing the standard deviation of the particle size distribution of the particles by the average particle size DTEM , and is an index of the sharpness of the particle size distribution. The particle shape was judged from an electron microscope image such as the electron micrograph. The uniformity was determined as an average value of the ratio of the measured major axis to minor axis. The circularity is the based on the mean particle diameter D TEM, in which the particle shape specific surface area assuming that a sphere, divided by the specific surface area measured by the BET method. Next, the particle size distribution of the barium titanate particles was measured by a dynamic light scattering method using a microtrack. In the measurement, as a pretreatment, the barium titanate particles are sufficiently dispersed in an appropriate dispersion medium, the particle size distribution is measured with a microtrack, and a value that gives a cumulative diameter of 50% is determined from the particle size distribution. the value was defined as D 50. Then, to determine the value of D 50 / D TEM by dividing the D 50 in the D TEM. The value of D 50 / D TEM is an index of particle dispersibility.

チタン酸バリウム粒子の結晶構造、結晶系は、X線回折により測定した回折パターンか
ら判断した。結晶軸比c/aは、X線回折パターンより格子定数を求め、a軸とc軸の格子定数の比より算出した。
The crystal structure and crystal system of the barium titanate particles were judged from the diffraction pattern measured by X-ray diffraction. The crystal axis ratio c / a was calculated from the ratio of the lattice constants of the a axis and the c axis by obtaining the lattice constant from the X-ray diffraction pattern.

次に、チタン酸バリウム粒子の粒子特性の評価結果について説明する。
まず、チタン酸バリウム粒子の平均粒子径が0.3μm以下、さらに好ましくは0.2μm以下、もっとも好ましくは0.1μm以下であり、誘電体層の厚みが 数μm以内となった場合においても誘電体層の充填密度が高まり信頼性が向上する。0.3μmを超えると誘電体層の充填密度が低く信頼性が低下するおそれがある。そして、粒子径分布が0.5以下、さらに好ま
しくは0.3以下であると、チタン酸バリウム粒子間の特性バラツキが抑えられるため、誘
電体層の電気容量のバラツキを低減することができる。均斉度が0.90以上、真円度が0.80以上であると、チタン酸バリウム粒子等をグリーンシートにした際の粒子間の空隙が少なくできるため、充填密度が高まり信頼性が向上する。均斉度は0.90未満、真円度は0.80未満であるとグリーンシートにした際粒子間の空隙が大きくなり充填密度が低く信頼性が低下するおそれがある。チタン酸バリウム粒子のD50/DTEMの値は、当該粒子の分散性を示しており、D50/DTEMの値が3.0以下、好ましくは2.5以下であると、スラリー化に際し、溶剤中に容易に分散することができ、グリーンシートにした際の充填密度が高まり信頼性が向上する。D50/DTEMの値が3.0を超えると溶剤中への分散が困難
で、グリーンシート化した際の充填密度が低く、また凝集粒子の生成により欠陥が生じるなど、信頼性が低下するおそれがある。
また本発明に係るチタン酸バリウム粒子の粒子形状は球状に近く、さらに、熱処理工程を経ていないため、粒子間焼結がなく分散時の粘性が高くならないため、ペースト化の際に固形分割合を高くできるので、チタン酸バリウム粒子自体の充填性とあいまって、高密度のコンデンサを製造することができる。
Next, the evaluation results of the particle characteristics of the barium titanate particles will be described.
First, the average particle diameter of the barium titanate particles is 0.3 μm or less, more preferably 0.2 μm or less, and most preferably 0.1 μm or less. Even when the thickness of the dielectric layer is within several μm, the dielectric layer The packing density is increased and the reliability is improved. If it exceeds 0.3 μm, the packing density of the dielectric layer is low, and the reliability may be lowered. If the particle size distribution is 0.5 or less, more preferably 0.3 or less, the characteristic variation among the barium titanate particles can be suppressed, so that the variation in electric capacity of the dielectric layer can be reduced. When the uniformity is 0.90 or more and the roundness is 0.80 or more, voids between particles when the barium titanate particles or the like are made into a green sheet can be reduced, so that the packing density is increased and the reliability is improved. If the uniformity is less than 0.90 and the roundness is less than 0.80, the gap between the particles becomes large when the green sheet is formed, and the packing density may be low and the reliability may be lowered. The value of D 50 / D TEM of the barium titanate particles indicates the dispersibility of the particles, and when the value of D 50 / D TEM is 3.0 or less, preferably 2.5 or less, It can be easily dispersed, and the packing density when it is made into a green sheet increases and the reliability is improved. If the value of D 50 / D TEM exceeds 3.0, it is difficult to disperse in a solvent, the packing density when it is made into a green sheet is low, and there is a risk that the reliability may be lowered, such as defects caused by the formation of aggregated particles. is there.
In addition, since the particle shape of the barium titanate particles according to the present invention is almost spherical and has not undergone a heat treatment step, there is no interparticle sintering and the viscosity during dispersion does not increase. Since it can be increased, a high-density capacitor can be manufactured in combination with the filling property of the barium titanate particles themselves.

チタン酸バリウム粒子結晶の結晶軸比c/aが1.005以上、好ましくは1.008以上、更に好
ましくは1.009以上であると、強誘電特性を示すチタン 酸バリウム粒子結晶の正方晶割合が高いことから高い誘電特性を示すことができる。結晶軸比c/aが1.005未満であると疑似立方晶の割合が高くなり誘電 特性が低くなる。バリウムとチタンとのモル比Ba/Tiが、0.99〜1.01であると水酸化イオンなどの不純物や格子欠陥が少ないことから強誘電特性を
示す正方晶の割合が高くなる。チタン酸バリウム粒子結晶のBa/Tiが0.99未満であると水
酸化物イオンなどの不純物や格子欠陥が多く存在し、疑似立方晶の割合が高くなり誘電特性が低下するおそれがある。また、Ba/Tiが1.01を超えるとBaの炭酸塩やBaリッチ化合物
などの不純物が存在して誘電特性が低下するおそれがある。
When the crystal axis ratio c / a of the barium titanate particle crystal is 1.005 or more, preferably 1.008 or more, more preferably 1.09 or more, since the tetragonal ratio of the barium titanate particle crystal exhibiting ferroelectric characteristics is high, the dielectric constant is high. Characteristics can be shown. When the crystal axis ratio c / a is less than 1.005, the proportion of pseudo cubic crystals increases and the dielectric properties decrease. When the molar ratio Ba / Ti between barium and titanium is between 0.99 and 1.01, there are few impurities such as hydroxide ions and lattice defects, resulting in ferroelectric properties.
The percentage of tetragonal crystals shown is high. If Ba / Ti of the barium titanate particle crystal is less than 0.99, there are many impurities such as hydroxide ions and lattice defects, and the ratio of pseudo cubic crystals may be increased, leading to a decrease in dielectric properties. On the other hand, when Ba / Ti exceeds 1.01, impurities such as Ba carbonate and Ba-rich compound may be present and the dielectric characteristics may be deteriorated.

上述した本発明に係る製造方法により、平均粒子径が0.3μm以下、粒子径分布が0.5以
下で、均斉度が0.90以上、真円度が0.80以上であり、D50/DTEMの値が3.0以下で
、結晶構造がペロブスカイトで結晶軸比c/aが1.005以上であり、Ba/Tiが0.99〜1.01であ
ることを特徴とする球状の正方晶チタン酸バリウム粒子を直接合成できる理由は明確でないが、過剰量のバリウムイオン、水酸化物イオンが存在する反応環境において150℃以上
で、チタン化合物と反応することにより溶解・再析出が活発になり、且つこの溶解・再析出状態を24時間以上継続することで、不純物である水酸化物イオンや水などを粒内に含有することなく粒成長できたことによると推測される。
By the production method according to the present invention described above, the average particle size is 0.3 μm or less, the particle size distribution is 0.5 or less, the uniformity is 0.90 or more, the roundness is 0.80 or more, and the D 50 / D TEM value is 3.0. Below, it is unclear why spherical tetragonal barium titanate particles can be directly synthesized, characterized in that the crystal structure is perovskite, the crystal axis ratio c / a is 1.005 or more, and Ba / Ti is 0.99 to 1.01. However, in a reaction environment where an excess amount of barium ions and hydroxide ions is present, dissolution / reprecipitation becomes active by reacting with the titanium compound at 150 ° C. or higher, and this dissolution / reprecipitation state is maintained for 24 hours or longer. By continuing, it is presumed that the grains could be grown without containing hydroxide ions or water as impurities.

本発明に係る球状の正方晶チタン酸バリウム粒子は、粒子径が小さく、粒度分布が狭く、均斉度が高く、粒子形状が球状で分散性が高く、誘電特性に関しては、Ba/Tiが組成が
均一で正方晶の割合が高い。この結果、例えば、セラミックコンデンサ中の誘電体層の薄層化、高積層化に伴うグリーンシートの薄膜化に、新たな設備投資や生産コストの上昇なしに対応できる。この結果、生産コストの上昇を招くことなく、小型、高性能のセラミックコンデンサを製造することができる。
The spherical tetragonal barium titanate particles according to the present invention have a small particle size, a narrow particle size distribution, a high degree of uniformity, a spherical particle shape and a high dispersibility, and with respect to dielectric properties, Ba / Ti has a composition. Uniform and highly tetragonal. As a result, for example, it is possible to cope with the reduction in the thickness of the dielectric layer in the ceramic capacitor and the reduction in the thickness of the green sheet accompanying the increase in the number of layers without increasing new capital investment and production cost. As a result, a small and high performance ceramic capacitor can be manufactured without causing an increase in production cost.

以下、実施例により本発明をより具体的に説明する。
(実施例1)
25℃に保持した純水に、Ti当量で0.077molの四塩化チタン水溶液を攪拌下で添加し、概ね5wt%水溶液とした後、5%アンモニア水溶液を 114gゆっくり添加して四塩化チタン
を加水分解し、生成した沈殿を洗浄・ろ過して水酸化チタンゲルを得る。この水酸化チタンゲルに窒素雰囲気下において 水酸化バリウム水溶液をBa当量で0.154mol添加し、加水
してBaTiO3換算で0.3mol/kgのスラリーを得る。このスラリーを60℃で30分間攪拌して熟
成した後、オートクレーブに投入し200℃で96時間水熱合成を行う。反応後、室温まで冷
却した後、窒素雰囲気下において洗浄・ろ過し、105℃で12時間乾燥してチタン酸バリウ
ム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.20μm
、粒子径分布が0.21で、均斉度が0.91、真円度が0.83、D50/DTEMが1.3、結晶構
造がペロブスカイトで結晶軸比c/aが1.008、Ba/Tiが0.99である球状で分散性の高い正方
晶チタン酸バリウム微粒子であった。
尚、D50を求めるための、マイクロトラックを用いた動的光散乱法による測定は、前処理において、当該チタン酸バリウム微粒子の分散媒として純水を用い、超音波ホモジナイザーを用いて超音波出力150Wで3分間の分散処理をおこなった後、日機装(株)社製マ
イクロトラックUPA150にて粒度分布を測定して求めた。そして当該粒度分布から累積径50%となる値を求め、その値をD50とした。以下、実施例2〜7、比較例1〜6においても、同様にしてD50の値を求めた。
Hereinafter, the present invention will be described more specifically with reference to examples.
Example 1
To pure water maintained at 25 ° C, 0.077 mol of titanium tetrachloride aqueous solution with Ti equivalent is added with stirring to make approximately 5 wt% aqueous solution, and then 114 g of 5% aqueous ammonia solution is slowly added to hydrolyze titanium tetrachloride. Then, the produced precipitate is washed and filtered to obtain a titanium hydroxide gel. To this titanium hydroxide gel, 0.154 mol of a barium hydroxide aqueous solution is added in an equivalent amount of Ba in a nitrogen atmosphere, and water is added to obtain a slurry of 0.3 mol / kg in terms of BaTiO3. The slurry is aged by stirring at 60 ° C. for 30 minutes, and then charged in an autoclave and subjected to hydrothermal synthesis at 200 ° C. for 96 hours. After the reaction, the reaction mixture was cooled to room temperature, washed and filtered under a nitrogen atmosphere, and dried at 105 ° C. for 12 hours to obtain barium titanate fine particles.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.20 μm
A spherical shape with a particle size distribution of 0.21, uniformity of 0.91, roundness of 0.83, D 50 / D TEM of 1.3, crystal structure of perovskite, crystal axis ratio c / a of 1.008 and Ba / Ti of 0.99 It was highly dispersible tetragonal barium titanate fine particles.
Incidentally, for obtaining the D 50, determined by dynamic light scattering method using a micro-track, in the preprocessing, using pure water as a dispersion medium for the barium titanate fine particles, ultrasonic output using an ultrasonic homogenizer After carrying out a dispersion treatment at 150 W for 3 minutes, the particle size distribution was measured using a Microtrac UPA150 manufactured by Nikkiso Co., Ltd. And it obtains the granularity value of 50% cumulative diameter of distribution and its value as D 50. Hereinafter, Examples 2-7, in Comparative Examples 1 to 6 were obtained the values of D 50 in the same manner.

(実施例2)
水熱合成を250℃で96時間とした以外は実施例1と同様にして、チタン酸バリウム微粒
子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.23μm
、粒子径分布が0.20で、均斉度が0.92、真円度が0.84、D50/DTEMが1.3、結晶構
造がペロブスカイトで結晶軸比c/aが1.010、Ba/Tiが0.99である球状で分散性の高い正方
晶チタン酸バリウム微粒子であった。
(Example 2)
Barium titanate fine particles were obtained in the same manner as in Example 1 except that hydrothermal synthesis was performed at 250 ° C. for 96 hours.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.23 μm
A spherical shape with a particle size distribution of 0.20, uniformity of 0.92, roundness of 0.84, D 50 / D TEM of 1.3, crystal structure of perovskite, crystal axis ratio c / a of 1.010, and Ba / Ti of 0.99. It was highly dispersible tetragonal barium titanate fine particles.

(実施例3)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.230molとした以外は実施例1と同様にして、チタン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.17μm
、粒子径分布が0.19で、均斉度が0.93、真円度が0.85、D50/DTEMが1.4、結晶構
造がペロブスカイトで結晶軸比c/aが1.010、Ba/Tiが0.99である球状で分散性の高い正方
晶チタン酸バリウム微粒子であった。
尚、本実施例に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)を図1に、X線回折パターンを図4に示す。
(Example 3)
Barium titanate fine particles were obtained in the same manner as in Example 1 except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, and the addition amount of aqueous barium hydroxide solution was 0.230 mol in terms of Ba equivalent.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.17 μm
A spherical shape with a particle size distribution of 0.19, uniformity of 0.93, roundness of 0.85, D 50 / D TEM of 1.4, crystal structure of perovskite, crystal axis ratio c / a of 1.010, and Ba / Ti of 0.99 It was highly dispersible tetragonal barium titanate fine particles.
A transmission electron micrograph (20,000 times) of the barium titanate fine particles according to this example is shown in FIG. 1, and an X-ray diffraction pattern is shown in FIG.

(実施例4)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.230molとし、水熱合成を250℃で96時間とした以外は実施例1と同様にして、チ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.24μm
、粒子径分布が0.18で、均斉度が0.94、真円度が0.86、D50/DTEMが1.3、結晶構
造がペロブスカイトで結晶軸比c/aが1.010、Ba/Tiが1.00である球状で分散性の高い正方
晶チタン酸バリウム微粒子であった。
Example 4
In the same manner as in Example 1 except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, the addition amount of barium hydroxide aqueous solution was 0.230 mol in terms of Ba, and hydrothermal synthesis was conducted at 250 ° C. for 96 hours. Barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.24 μm
A spherical shape with a particle size distribution of 0.18, uniformity of 0.94, roundness of 0.86, D 50 / D TEM of 1.3, crystal structure of perovskite, crystal axis ratio c / a of 1.010, and Ba / Ti of 1.00. It was highly dispersible tetragonal barium titanate fine particles.

(実施例5)
四塩化チタン水溶液から水酸化チタンゲルを得、この水酸化チタンゲルと水酸化バリウム水溶液とを反応させる替わりに、窒素雰囲気下で水酸化バリウム水溶液に水酸化ナトリウム、アンモニア水等のアルカリ溶液を添加し、四塩化チタン水溶液をBa/Tiのモル比で
3となるよう添加し、加水してスラリーを得た以外は、実施例1と同様にして、チタン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.15μm
、粒子径分布が0.22、均斉度が0.91、真円度が0.83、D50/DTEMが1.5、結晶構造
がペロブスカイトで結晶軸比c/aが1.009、Ba/Tiが0.99である球状で分散性の高い正方晶
チタン酸バリウム微粒子であった。
(Example 5)
Obtain titanium hydroxide gel from titanium tetrachloride aqueous solution, and instead of reacting this titanium hydroxide gel and barium hydroxide aqueous solution, an alkaline solution such as sodium hydroxide or ammonia water is added to the barium hydroxide aqueous solution under a nitrogen atmosphere, Barium titanate fine particles were obtained in the same manner as in Example 1 except that a titanium tetrachloride aqueous solution was added so that the molar ratio of Ba / Ti was 3, and the slurry was obtained by adding water.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.15 μm
Dispersion in a spherical shape with a particle size distribution of 0.22, uniformity of 0.91, roundness of 0.83, D 50 / D TEM of 1.5, crystal structure of perovskite, crystal axis ratio c / a of 1.009 and Ba / Ti of 0.99 It was highly tetragonal barium titanate fine particles.

(実施例6)
四塩化チタン水溶液から水酸化チタンゲルを得、この水酸化チタンゲルと水酸化バリウム水溶液とを反応させる替わりに、窒素雰囲気下で水酸化バリウム水溶液に水酸化ナトリウム、アンモニア水等のアルカリ溶液を添加し、四塩化チタン水溶液をBa/Tiのモル比で1.5となるよう添加し、加水してスラリーを得、水熱合成を240℃で24時間とした以外は、
実施例1と同様にして、チタン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.08μm
、粒子径分布が0.18、均斉度が0.92、真円度が0.97、D50/DTEMが2.5、結晶構造
がペロブスカイトで結晶軸比c/aが1.006、Ba/Tiが0.99である球状で分散性の高い正方晶
チタン酸バリウム微粒子であった。
尚、本実施例に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)を図2に示す。
(Example 6)
Obtain titanium hydroxide gel from titanium tetrachloride aqueous solution, and instead of reacting this titanium hydroxide gel and barium hydroxide aqueous solution, an alkaline solution such as sodium hydroxide or ammonia water is added to the barium hydroxide aqueous solution under a nitrogen atmosphere, Titanium tetrachloride aqueous solution was added so that the molar ratio of Ba / Ti was 1.5, water was added to obtain a slurry, and hydrothermal synthesis was performed at 240 ° C. for 24 hours,
In the same manner as in Example 1, barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.08 μm
Spherical dispersion with particle size distribution of 0.18, homogeneity of 0.92, roundness of 0.97, D 50 / D TEM of 2.5, crystal structure of perovskite, crystal axis ratio c / a of 1.006, Ba / Ti of 0.99 It was highly tetragonal barium titanate fine particles.
Incidentally, a transmission electron micrograph (20,000 times) of the barium titanate fine particles according to this example is shown in FIG.

(実施例7)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.116molとし、水熱合成を200℃で24時間とした以外は実施例1と同様にして、チ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.10μm
、粒子径分布が0.14で、均斉度が0.91、真円度が0.92、D50/DTEMが2.1、結晶構
造がペロブスカイトで結晶軸比c/aが1.007、Ba/Tiが0.99である球状で分散性の高い正方
晶チタン酸バリウム微粒子であった。
(Example 7)
In the same manner as in Example 1 except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, the addition amount of barium hydroxide aqueous solution was 0.116 mol in terms of Ba, and hydrothermal synthesis was carried out at 200 ° C. for 24 hours. Barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.10 μm
A spherical shape with a particle size distribution of 0.14, uniformity of 0.91, roundness of 0.92, D 50 / D TEM of 2.1, crystal structure of perovskite, crystal axis ratio c / a of 1.007, and Ba / Ti of 0.99 It was highly dispersible tetragonal barium titanate fine particles.

(比較例1)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.077molとし、水熱合成を150℃で96時間とした以外は実施例1と同様にして、チ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.25μm
、粒子径分布が0.23で、均斉度が0.86、真円度が0.73と低く、D50/DTEMが1.2、
結晶構造がペロブスカイトで結晶軸比c/aが1.000と低く、Ba/Tiが0.92と低い、球状で分
散性の高い疑似立方晶チタン酸バリウム微粒子であった。
尚、本比較例に係るチタン酸バリウム微粒子の透過型電子顕微鏡写真(20,000倍)を図3に、X線回折パターンを図5に示す。
(Comparative Example 1)
In the same manner as in Example 1, except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, the addition amount of barium hydroxide aqueous solution was 0.077 mol in terms of Ba, and hydrothermal synthesis was carried out at 150 ° C. for 96 hours. Barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.25 μm
The particle size distribution is 0.23, the uniformity is 0.86, the roundness is as low as 0.73, D 50 / D TEM is 1.2,
It was a pseudo cubic cubic barium titanate fine particle with a spherical structure and high dispersibility, with a perovskite crystal structure, a crystal axis ratio c / a as low as 1.000 and Ba / Ti as low as 0.92.
A transmission electron micrograph (20,000 times) of the barium titanate fine particles according to this comparative example is shown in FIG. 3, and an X-ray diffraction pattern is shown in FIG.

(比較例2)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.077molとし、水熱合成を300℃で96時間とした以外は実施例1と同様にして、チ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.28μm
、粒子径分布が0.21で、均斉度が0.89と低く、真円度が0.82、D50/DTEMが1.3、
結晶構造がペロブスカイトで結晶軸比c/aが1.000と低く、Ba/Tiが0.95と低い、球状で分
散性の高い疑似立方晶チタン酸バリウム微粒子であった。
(Comparative Example 2)
Except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, the addition amount of aqueous barium hydroxide solution was 0.077 mol in terms of Ba equivalent, and hydrothermal synthesis was performed at 300 ° C. for 96 hours, the same as in Example 1, Barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.28 μm
The particle size distribution is 0.21, the uniformity is as low as 0.89, the roundness is 0.82, the D 50 / D TEM is 1.3,
Pseudocubic barium titanate fine particles with a spherical structure and high dispersibility, with a perovskite crystal structure, a crystal axis ratio c / a as low as 1.000 and Ba / Ti as low as 0.95.

(比較例3)
四塩化チタン水溶液の添加量をTi当量で0.077mol、水酸化バリウム水溶液の添加量をBa当量で0.230molとし、水熱合成を300℃で24時間とした以外は実施例1と同様にして、チ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.34μm
と大きく、粒子径分布が0.21で、均斉度が0.89と低く、真円度が0.86、D50/DTEMが1.2、結晶構造がペロブスカイトで結晶軸比c/aが1.009、Ba/Tiが0.99、球状で分散性の高い正方晶チタン酸バリウム微粒子であった。
(Comparative Example 3)
In the same manner as in Example 1 except that the addition amount of titanium tetrachloride aqueous solution was 0.077 mol in terms of Ti, the addition amount of aqueous barium hydroxide solution was 0.230 mol in terms of Ba, and hydrothermal synthesis was performed at 300 ° C. for 24 hours. Barium titanate fine particles were obtained.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.34 μm
The particle size distribution is 0.21, the uniformity is as low as 0.89, the roundness is 0.86, the D 50 / D TEM is 1.2, the crystal structure is perovskite, the crystal axis ratio c / a is 1.009, and Ba / Ti is 0.99. They were spherical and highly dispersible tetragonal barium titanate fine particles.

(比較例4)
40℃に保った塩化チタン水溶液139.3g(Ti=0.48mol)に水1250mlを加え、ここへ、5.0wt%のアンモニア水483mlを30分間かけて添加し水酸化チタンスラリーを得、水洗ろ別した。窒素雰囲気下にて、当該水酸化チタンへ、水酸化バリウム151.4g(Ba=0.48mol)を加え、加水してBaTiO3換算で0.8mol/kgのスラリーを得る。このスラリーを60℃で30分
間攪拌して熟成した後、オートクレーブに投入し150℃で5時間水熱合成を行う。反応後、室温まで冷却した後、窒素雰囲気下において洗浄・ろ過し、105℃で12時間乾燥してチタ
ン酸バリウム微粒子を 得た。このチタン酸バリウム微粒子を1020℃で3時間仮焼して、仮焼後のチタン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.68μm
と大きく、粒子径分布が0.62と広く、均斉度が0.78と低く、D50/DTEMが7.7と高
く、結晶構造がペロブスカイトで結晶軸比c/aが1.009、Ba/Tiが0.97である多角形状で分
散性の低い正方晶チタン酸バリウム微粒子であった。
(Comparative Example 4)
Add 1250 ml of water to 139.3 g (Ti = 0.48 mol) of titanium chloride aqueous solution kept at 40 ° C., and add 483 ml of 5.0 wt% ammonia water over 30 minutes to obtain a titanium hydroxide slurry, which is separated by washing with water. . Under a nitrogen atmosphere, 151.4 g (Ba = 0.48 mol) of barium hydroxide is added to the titanium hydroxide, and water is added to obtain a 0.8 mol / kg slurry in terms of BaTiO3. The slurry is aged by stirring at 60 ° C. for 30 minutes, and then put into an autoclave and subjected to hydrothermal synthesis at 150 ° C. for 5 hours. After the reaction, the reaction mixture was cooled to room temperature, washed and filtered under a nitrogen atmosphere, and dried at 105 ° C. for 12 hours to obtain barium titanate fine particles. The barium titanate fine particles were calcined at 1020 ° C. for 3 hours to obtain calcined barium titanate fine particles.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.68 μm
With a large particle size distribution of 0.62, a low uniformity of 0.78, a high D 50 / D TEM of 7.7, a crystal structure of perovskite, a crystal axis ratio c / a of 1.009, and Ba / Ti of 0.97 The shape was tetragonal barium titanate fine particles with low dispersibility.

(比較例5)
四塩化チタン水溶液175.2g(Ti当量で0.600mol)を窒素雰囲気下で、純水250mlに加え、ここへプロピオン酸ナトリウム11.6gを含む6.1N水酸化ナトリウム水溶液557mlを添加して四塩化チタンを加水分解し、生成した沈殿を洗浄・ろ過して水酸化チタンコロイドを得る。この水酸化チタンコロイドに窒素雰囲気下において、水酸化バリウム197.1g(Ba当
量で0.606mol)を 含む水酸化バリウム水溶液1000mlを加え、さらに加水して全量を2000mlとしスラリーを得る。このスラリーを70℃で2時間攪拌して熟成した後、オートクレーブ
に投入し150℃で16時間水熱合成を行う。反応後、室温まで冷却した後、窒素雰囲気下に
おいて洗浄・ろ過し、105℃で12時間乾燥してチタン酸バリウム微粒子を得た。このチタ
ン酸バリウム微粒子を1020℃で3時間仮焼して、仮焼後のチタン酸バリウム微粒子を得た

得られた仮焼後のチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が
0.37μmと大きく、粒子径分布が0.58と広く、均斉度が0.90、D50/DTEMが9.5と高く、結晶構造がペロブスカイトで結晶軸比c/aが1.007、Ba/Tiが0.98と小さく、多角形状
で分散性の低い正方晶チタン酸バリウム微粒子であった。
(Comparative Example 5)
In a nitrogen atmosphere, add 175.2 g of titanium tetrachloride aqueous solution (Ti equivalent 0.600 mol) to 250 ml of pure water, and add 557 ml of 6.1 N sodium hydroxide aqueous solution containing 11.6 g of sodium propionate to add titanium tetrachloride to water. The resulting precipitate is washed and filtered to obtain titanium hydroxide colloid. Under a nitrogen atmosphere, 1000 ml of an aqueous barium hydroxide solution containing 197.1 g of barium hydroxide (0.606 mol in terms of Ba) is added to the titanium hydroxide colloid, and the mixture is further added to a total volume of 2000 ml to obtain a slurry. The slurry is aged by stirring at 70 ° C. for 2 hours, and then charged in an autoclave to carry out hydrothermal synthesis at 150 ° C. for 16 hours. After the reaction, the reaction mixture was cooled to room temperature, washed and filtered under a nitrogen atmosphere, and dried at 105 ° C. for 12 hours to obtain barium titanate fine particles. The barium titanate fine particles were calcined at 1020 ° C. for 3 hours to obtain calcined barium titanate fine particles.
As a result of measuring the fine particle characteristics of the obtained calcined barium titanate fine particles, the average particle size was
Large as 0.37 .mu.m, broad particle size distribution 0.58, uniformity is 0.90, D 50 / D TEM is as high as 9.5, the crystal axis ratio c / a crystal structure in perovskite 1.007, Ba / Ti is as small as 0.98, It was a tetragonal barium titanate fine particle with a polygonal shape and low dispersibility.

(比較例6)
25℃に保持した純水に、Ti当量で0.077molのチタンテトライソプロポキシド水溶液を攪拌下で添加し、概ね5wt%水溶液とした後、5%アンモニア水溶液を114gゆっくり添加し
て四塩化チタンを加水分解し、生成した沈殿を洗浄・ろ過して水酸化チタンゲルを得る。この水酸化チタンゲルに窒素雰囲気下において水酸化バリウム水溶液をBa当量で0.154mol添加し、加水してBaTiO3換算で0.3mol/kgのスラリーを得る。このスラリーを 60℃で30分間攪拌して熟成した後、オートクレーブに投入し150℃で16時間水熱合成を行う。反応後
、室温まで冷却した後、窒素雰囲気下において洗浄・ろ過し、105℃で12時間乾燥してチ
タン酸バリウム微粒子を得た。
得られたチタン酸バリウム微粒子の微粒子特性を測定した結果、平均粒子径が0.22μm
、粒子径分布が0.22で、均斉度が0.86と低く、D50/DTEMが1.3、結晶構造がペロ
ブスカイトで結晶軸比c/aが1.009、Ba/Tiが0.98と低い立方体形状で分散性の高い正方晶
チタン酸バリウム微粒子であった。
(Comparative Example 6)
To pure water maintained at 25 ° C, 0.077 mol of titanium tetraisopropoxide aqueous solution with Ti equivalent was added with stirring to make a 5 wt% aqueous solution, then 114 g of 5% ammonia aqueous solution was slowly added to add titanium tetrachloride. Hydrolysis, and the resulting precipitate is washed and filtered to obtain a titanium hydroxide gel. To this titanium hydroxide gel, 0.154 mol of a barium hydroxide aqueous solution is added at a Ba equivalent in a nitrogen atmosphere, and water is added to obtain a slurry of 0.3 mol / kg in terms of BaTiO3. The slurry is aged by stirring at 60 ° C. for 30 minutes, and then charged into an autoclave and hydrothermal synthesis is performed at 150 ° C. for 16 hours. After the reaction, the reaction mixture was cooled to room temperature, washed and filtered under a nitrogen atmosphere, and dried at 105 ° C. for 12 hours to obtain barium titanate fine particles.
As a result of measuring the fine particle characteristics of the obtained barium titanate fine particles, the average particle size was 0.22 μm.
The particle size distribution is 0.22, the homogeneity is as low as 0.86, the D 50 / D TEM is 1.3, the crystal structure is perovskite, the crystal axis ratio c / a is 1.09, and Ba / Ti is 0.98, which is a low cubic shape and dispersible High tetragonal barium titanate fine particles.

(まとめ)
実施例1〜7で得られたチタン酸バリウム微粒子は平均粒子径が0.3μm以下、粒子径分布が0.5以下で、均斉度が0.90以上、真円度が0.80以上であり、D50/DTEMが3.0以下で、結晶構造がペロブスカイトで結晶軸比c/aが1.005以上であり、Ba/Tiが0.99〜1.01
であることを特徴とする球状で分散性の高い正方晶チタン酸バリウム微粒子であった。
一方、比較例1,2ではBa/Tiが1の場合、結晶系は疑似立方晶であった。比較例3では反応温度300℃では微粒子で結晶系は正方晶となったが、粒子径が大きくなった。比較例
4,比較例5とも熱処理により結晶系は正方晶となるが、粒成長により粒子径が大きくなり、粒子間の焼結によりD50/DTEMの値が高かった。また、熱処理温度を下げた場合も、粒成長は抑制できたが粒子間焼結によるD50/DTEMの値の上昇があり、結晶性も低かった。比較例6では微粒子で結晶系は正方晶となったが、粒子形状が球形ではなく立方体形となった。
尚、実施例1〜7、比較例1〜6の微粒子特性測定結果の一覧表を図6に示す。
(Summary)
The barium titanate fine particles obtained in Examples 1 to 7 have an average particle size of 0.3 μm or less, a particle size distribution of 0.5 or less, a uniformity of 0.90 or more, and a roundness of 0.80 or more, and D 50 / D TEM Is 3.0 or less, the crystal structure is perovskite, the crystal axis ratio c / a is 1.005 or more, and Ba / Ti is 0.99 to 1.01.
It was a spherical and highly dispersible tetragonal barium titanate fine particle characterized by
On the other hand, in Comparative Examples 1 and 2, when Ba / Ti was 1, the crystal system was pseudo cubic. In Comparative Example 3, the crystal system was tetragonal with fine particles at a reaction temperature of 300 ° C., but the particle size increased. In both Comparative Example 4 and Comparative Example 5, the crystal system became tetragonal by heat treatment, but the particle size increased due to grain growth, and the D 50 / D TEM value was high due to sintering between the grains. Also, when the heat treatment temperature was lowered, the grain growth could be suppressed, but the D 50 / D TEM value increased due to inter-particle sintering, and the crystallinity was low. In Comparative Example 6, the crystal system was tetragonal with fine particles, but the particle shape was not spherical but cubic.
In addition, the list of the fine particle characteristic measurement results of Examples 1 to 7 and Comparative Examples 1 to 6 is shown in FIG.

Claims (6)

電子顕微鏡像から測定した平均粒子径をDTEMとしたとき、DTEMが0.3μm以下、粒子径分布が0.5以下、均斉度が0.90以上、真円度が0.80以上、結晶軸比c/aが1.009以上
、バリウムとチタンとのモル比Ba/Tiが0.99以上、1.01以下、動的光散乱法により測定し
た粒度分布における累積径50%となる値をD50としたとき、D50/DTEMが3.0以
下であることを特徴とする正方晶チタン酸バリウム粒子。
When the average particle size measured from an electron microscope image was D TEM, D TEM is 0.3μm or less, the particle size distribution is 0.5 or less, uniformity is 0.90 or more, 0.80 or more roundness, crystal axis ratio c / a is D 50 / D TEM when 1.050 or more, the molar ratio Ba / Ti between barium and titanium is 0.99 or more and 1.01 or less, and the value that gives 50% cumulative diameter in the particle size distribution measured by the dynamic light scattering method is D 50 Tetragonal barium titanate particles, wherein the particle size is 3.0 or less.
電子顕微鏡像から測定した平均粒子径をDTEMとしたとき、DTEMが0.1μm以下、粒子径分布が0.5以下、均斉度が0.90以上、真円度が0.80以上、結晶軸比c/aが1.005以上
、バリウムとチタンとのモル比Ba/Tiが0.99以上、1.01以下、動的光散乱法により測定し
た粒度分布における累積径50%となる値をD50としたとき、D50/DTEMが3.0以
下であることを特徴とする正方晶チタン酸バリウム粒子。
When the average particle size measured from an electron microscope image was D TEM, D TEM is 0.1μm or less, the particle size distribution is 0.5 or less, uniformity is 0.90 or more, 0.80 or more roundness, crystal axis ratio c / a is D 50 / D TEM when 1.050 or more, and the molar ratio Ba / Ti between barium and titanium is 0.99 or more and 1.01 or less, and the value of 50% of the cumulative diameter in the particle size distribution measured by the dynamic light scattering method is D 50 Tetragonal barium titanate particles, wherein the particle size is 3.0 or less.
水熱合成法によるチタン酸バリウム粒子の製造方法であって、
水酸化チタンゲルと水酸化バリウム水溶液とを、バリウムとチタンとのモル比Ba/Tiが1.5〜10.0となるよう混合し、当該混合溶液を150℃以上、250℃以下の温度範囲で、24時間以上、水熱処理することを特徴とする、請求項1または2のいずれかに記載の正方晶チタン酸バリウム粒子の製造方法。
A method for producing barium titanate particles by a hydrothermal synthesis method,
Titanium hydroxide gel and barium hydroxide aqueous solution are mixed so that the molar ratio Ba / Ti of barium and titanium is 1.5 to 10.0, and the mixed solution is at a temperature range of 150 ° C or higher and 250 ° C or lower for 24 hours or longer. The method for producing tetragonal barium titanate particles according to claim 1, wherein hydrothermal treatment is performed.
純水へ、四塩化チタン水溶液とアンモニア水溶液とを添加して、四塩化チタンを加水分解し、生成した沈殿を洗浄・ろ過して水酸化チタンゲルを得る工程と、
得られた水酸化チタンゲルへ、窒素雰囲気下において水酸化バリウム水溶液を添加し、加水してスラリーを得る工程と、
得られたスラリーへ水熱合成処理を行った後、窒素雰囲気下において洗浄・ろ過し、乾燥してチタン酸バリウム微粒子を得る工程と、を有することを特徴とする、請求項1に記載の正方晶チタン酸バリウム粒子の製造方法。
Adding titanium tetrachloride aqueous solution and ammonia aqueous solution to pure water, hydrolyzing titanium tetrachloride, washing and filtering the produced precipitate to obtain titanium hydroxide gel;
Adding a barium hydroxide aqueous solution to the obtained titanium hydroxide gel under a nitrogen atmosphere and adding water to obtain a slurry; and
The method according to claim 1, further comprising: subjecting the obtained slurry to hydrothermal synthesis treatment, washing and filtering in a nitrogen atmosphere, and drying to obtain barium titanate fine particles. Method for producing crystal barium titanate particles.
窒素雰囲気下で、水酸化バリウム水溶液へ、アルカリ溶液と四塩化チタン水溶液とを添加し、加水してスラリーを得る工程と、
得られたスラリーへ水熱合成処理を行った後、窒素雰囲気下において洗浄・ろ過し、乾燥してチタン酸バリウム微粒子を得る工程と、を有することを特徴とする、請求項2に記載の正方晶チタン酸バリウム粒子の製造方法。
Under a nitrogen atmosphere, adding an alkali solution and an aqueous titanium tetrachloride solution to an aqueous barium hydroxide solution and adding water to obtain a slurry;
And a step of performing hydrothermal synthesis treatment on the obtained slurry, washing and filtering in a nitrogen atmosphere, and drying to obtain barium titanate fine particles. Method for producing crystal barium titanate particles.
請求項1または2のいずれかに記載の正方晶チタン酸バリウム粒子を用いていることを特徴とするセラミックコンデンサ。   A ceramic capacitor comprising the tetragonal barium titanate particles according to claim 1.
JP2010063611A 2004-02-26 2010-03-19 Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor Expired - Fee Related JP5149929B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2010063611A JP5149929B2 (en) 2004-02-26 2010-03-19 Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2004051993 2004-02-26
JP2004051993 2004-02-26
JP2010063611A JP5149929B2 (en) 2004-02-26 2010-03-19 Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor

Related Parent Applications (1)

Application Number Title Priority Date Filing Date
JP2005043128A Division JP2005272295A (en) 2004-02-26 2005-02-18 Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor

Publications (2)

Publication Number Publication Date
JP2010173932A JP2010173932A (en) 2010-08-12
JP5149929B2 true JP5149929B2 (en) 2013-02-20

Family

ID=42705258

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2010063611A Expired - Fee Related JP5149929B2 (en) 2004-02-26 2010-03-19 Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor

Country Status (1)

Country Link
JP (1) JP5149929B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR20120099979A (en) * 2011-03-02 2012-09-12 삼성전기주식회사 Method of manufacturing ceramic powder having perovskite structure and ceramic powder having perovskite structure manufactured using the same
US9242922B2 (en) 2011-04-01 2016-01-26 M. Technique Co., Ltd. Method for producing barium titanyl salt and barium titanate
CN105329939A (en) * 2015-12-03 2016-02-17 安徽中创电子信息材料有限公司 Preparation method of size-controllable nanoscale cubic-phase super-fine barium titanate powder
CN106430295B (en) * 2016-09-12 2017-12-26 天津城建大学 A kind of micro-nano hierarchy BaTiO3Crystal and preparation method thereof
CN114477273A (en) * 2022-02-17 2022-05-13 重庆新申世纪新材料科技有限公司 Hydrothermal preparation process of tetragonal phase nano barium titanate powder

Family Cites Families (1)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP4240190B2 (en) * 2000-11-13 2009-03-18 戸田工業株式会社 Spherical barium titanate particle powder and production method thereof

Also Published As

Publication number Publication date
JP2010173932A (en) 2010-08-12

Similar Documents

Publication Publication Date Title
JP2005272295A (en) Tetragonal barium titanate particles, method for manufacturing the same and ceramic capacitor
KR100674846B1 (en) Method for manufacturing dielectric ceramic powder, and multilayer ceramic capacitor using the seramic powder
US20070202036A1 (en) Production Of Barium Titanate Compounds
KR102020702B1 (en) Coated barium titanate particulate and production method for same
US6129903A (en) Hydrothermal process for making barium titanate powders
JP5112979B2 (en) Barium titanate fine particles and production method thereof
JP5149929B2 (en) Tetragonal barium titanate particles, method for producing the same, and ceramic capacitor
KR101104627B1 (en) Barium titanate nano powder and method for fabricating the same
JP2012116740A (en) Method of producing barium titanate powder, and barium titanate powder
JP2010064938A (en) Nanoparticle dispersion solution of barium titanate and method for producing the same
WO2006090488A1 (en) Method for producing composition
JP5046044B2 (en) Method for producing magnesium oxide nanoparticles and method for producing magnesium oxide nanoparticles
JP5734741B2 (en) Method for producing crystalline titanate and crystalline titanate
JP2013082600A (en) Perovskite powder, method for producing the same, and laminated ceramic electronic component using the same
JP6324668B2 (en) Dielectric composition and method for producing the same
KR20090118748A (en) A method of preparing highly crystalline barium-titanate fine powder by oxalate process and highly crystalline barium-titanate fine powder prepared by the same
JP2005306691A (en) Barium titanate powder and method of manufacturing the same
JPH07277710A (en) Production of perovskite-type multiple oxide powder
Baek et al. Hydrothermal Synthesis and Dielectric Properties of Ba1− x Sr x TiO3 Nanoparticles with Enhanced Uniformity
JP5925358B2 (en) Method for producing crystalline alkaline earth metal titanate
JP2005289737A (en) Barium titanate minute particle and its manufacturing method
CN115380008B (en) Method for producing perovskite compound, and perovskite compound
WO2023190452A1 (en) Barium titanate particulate powder and production method therefor
GB2535677A (en) Method for producing Barium Titanate powder
JP6394324B2 (en) Barium titanate powder and method for producing the same

Legal Events

Date Code Title Description
A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111024

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121127

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149929

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees