JP5149488B2 - Pyrolysis gas treatment method - Google Patents

Pyrolysis gas treatment method Download PDF

Info

Publication number
JP5149488B2
JP5149488B2 JP2006046092A JP2006046092A JP5149488B2 JP 5149488 B2 JP5149488 B2 JP 5149488B2 JP 2006046092 A JP2006046092 A JP 2006046092A JP 2006046092 A JP2006046092 A JP 2006046092A JP 5149488 B2 JP5149488 B2 JP 5149488B2
Authority
JP
Japan
Prior art keywords
water
discharged
pyrolysis gas
washing
tower
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2006046092A
Other languages
Japanese (ja)
Other versions
JP2007222766A (en
Inventor
極 松原
純子 志水
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Metawater Co Ltd
Original Assignee
Metawater Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Metawater Co Ltd filed Critical Metawater Co Ltd
Priority to JP2006046092A priority Critical patent/JP5149488B2/en
Publication of JP2007222766A publication Critical patent/JP2007222766A/en
Application granted granted Critical
Publication of JP5149488B2 publication Critical patent/JP5149488B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、下水汚泥などの有機性廃棄物を熱分解した排ガスを処理するための熱分解ガスの処理方法に関するものである。   The present invention relates to a pyrolysis gas treatment method for treating exhaust gas obtained by pyrolyzing organic waste such as sewage sludge.

例えば、下水汚泥などの有機性廃棄物を熱分解した排ガス中には硫黄酸化物、硫化物、シアン、有機物等の有害物質が含まれており、これら有害物質を基準値以下まで下げる必要がある。このような熱分解ガスの処理方法としては、従来から特許文献1に示されるように、湿式洗浄法が古くから用いられている。 For example, exhaust gas obtained by pyrolyzing organic waste such as sewage sludge contains harmful substances such as sulfur oxides, sulfides, cyanide, and organic substances. These harmful substances need to be reduced below the standard value. . As a method for treating such pyrolysis gas, as shown in Patent Document 1, a wet cleaning method has been used for a long time.

しかしながら、従来方法は水あるいはアルカリ剤で排ガス中の還元物質あるいは有害物質を吸収分離するだけの方法であるため、この処理で発生した還元物質あるいは有害物質を含んだ洗浄排水の処分に問題があった。また、下水処理場のように、洗浄排水を返流水として着水井に戻すことも行われているが、洗浄排水中の有害物が下水処理に悪影響を及ぼすという問題点があった。更には、オゾンや次亜塩素酸ナトリウム等の酸化剤を用いて処理するため、薬品費が膨大になり処理コストが高くなるという問題点もあった。
特開2001−45819号公報
However, the conventional method only absorbs and separates the reducing substances or harmful substances in the exhaust gas with water or an alkaline agent, so there is a problem in the disposal of cleaning wastewater containing reducing substances or harmful substances generated by this treatment. It was. In addition, as in sewage treatment plants, washing wastewater is returned to the landing well as return water, but there is a problem that harmful substances in the washing wastewater adversely affect the sewage treatment. Furthermore, since the treatment is performed using an oxidizing agent such as ozone or sodium hypochlorite, there is a problem that the chemical cost becomes enormous and the treatment cost becomes high.
JP 2001-45819 A

本発明は上記のような問題点を解決して、有機性廃棄物を熱分解した排ガス中から硫黄酸化物、硫化物、シアン等の有害物質を薬品費を抑えて安価に、かつ効率よく除去することができ、また処理水を放流水として放流しても問題がなく、更には下水処理における返流水として着水井に返送しても下水の活性汚泥処理に悪影響を及ぼすことのない熱分解ガスの処理方法を提供することを目的として完成されたものである。   The present invention solves the above-mentioned problems and removes harmful substances such as sulfur oxides, sulfides, and cyanide from the exhaust gas obtained by thermally decomposing organic waste at low cost and efficiently. There is no problem even if the treated water is discharged as discharged water, and there is no problem even if it is returned to the receiving well as the returned water in the sewage treatment, and there is no adverse effect on the activated sludge treatment of the sewage It was completed for the purpose of providing the processing method.

上記課題を解決するためになされた本発明の熱分解ガスの処理方法は、有機性廃棄物の熱分解炉から排出される熱分解ガスに400〜600℃の高温のままアルカリ剤スラリーを供給し、得られた生成物をセラミックフィルターで除去した後、該セラミックフィルターより排出された熱分解ガスを洗浄塔へ導入してコバルト化合物を含むアルカリ洗浄水で洗浄し、次いで、この洗浄水を循環槽で曝気しつつ洗浄塔へ循環して、洗浄水に吸収されている硫黄酸化物、硫化物、シアンを酸化して固形物の形で除去し、次いで、循環槽から排出された排出水を酸化塔へ導いて触媒オゾン処理することを特徴とするものである。 In order to solve the above problems, the pyrolysis gas treatment method of the present invention supplies a slurry of an alkaline agent to a pyrolysis gas discharged from a pyrolysis furnace of organic waste at a high temperature of 400 to 600 ° C. After removing the obtained product with a ceramic filter, the pyrolysis gas discharged from the ceramic filter is introduced into a washing tower and washed with an alkaline washing water containing a cobalt compound, and then this washing water is circulated. It is circulated to the washing tower while aerated in the tank, and sulfur oxides, sulfides, and cyan absorbed in the washing water are oxidized and removed in the form of solids, and then the discharged water discharged from the circulation tank is removed. It is characterized by being guided to an oxidation tower and subjected to catalytic ozone treatment.

本発明では、排ガスに安価なアルカリ剤スラリーを供給すること、コバルト化合物を含むアルカリ洗浄水で洗浄処理すること、および洗浄水を循環槽で曝気することで硫黄酸化物、硫化物、シアン等の有害物質を確実に除去し、かつ酸化剤の薬品費を低く抑えることが可能となる。また、触媒オゾン処理をシステムに組み込むことにより、シアン、COD(有機物)も確実に除去して安全な処理水が得られることとなる。   In the present invention, sulfur oxide, sulfide, cyan, etc. are supplied by supplying an inexpensive alkali agent slurry to the exhaust gas, cleaning with an alkaline cleaning water containing a cobalt compound, and aeration of the cleaning water in a circulation tank. It is possible to reliably remove harmful substances and to keep the chemical cost of the oxidizing agent low. In addition, by incorporating the catalytic ozone treatment into the system, cyan and COD (organic substances) can be reliably removed, and safe treated water can be obtained.

以下に、図面を参照しつつ本発明の好ましい実施の形態を示す。
図1は、熱分解炉から排出された熱分解ガスを処理する工程の概略を示すフローチャートであり、図において、1はセラミックフィルター、2は洗浄塔、3は循環槽、4は酸化塔、5はバブリング装置、6はポンプである。
Hereinafter, preferred embodiments of the present invention will be described with reference to the drawings.
FIG. 1 is a flowchart showing an outline of a process for treating pyrolysis gas discharged from a pyrolysis furnace. In the figure, 1 is a ceramic filter , 2 is a washing tower, 3 is a circulation tank, 4 is an oxidation tower, Is a bubbling device, and 6 is a pump.

先ず、熱分解炉から排出された排ガスに、高温のまま水酸化カルシウムや水酸化マグネシウムなどの難溶解性アルカリ剤のスラリーを添加して、下記の[化1]の反応を促進させる。次いで、これにより得られた生成物をセラミックフィルター1で回収するとともにスラリー中の水分は水蒸気に変換する。 First, a slurry of a hardly soluble alkali agent such as calcium hydroxide or magnesium hydroxide is added to the exhaust gas discharged from the pyrolysis furnace at a high temperature to promote the reaction of [Chemical Formula 1] below. Next, the product thus obtained is recovered by the ceramic filter 1 and the water in the slurry is converted into water vapor.

Figure 0005149488
Figure 0005149488

このように、熱分解ガス中には硫黄酸化物、硫化物、シアン等の有害物質が含まれているが、[化1]の反応によって固形物に変換されるので、セラミックフィルター1により確実にろ過されることとなる。
この場合のろ過速度は0.5〜1m/minの範囲とすることが好ましい。0.5m/min未満ではろ過効率に劣り、一方、1m/minを越えてろ過を行うと、ろ過圧力が急激に立ち上がって排ガスファンの動力が嵩むからである(図2を参照)。
また、この段階でのガス温度は通常、400〜600℃であり、水分は水蒸気として排ガス側に移行することとなる。
In this way, the pyrolysis gas contains harmful substances such as sulfur oxides, sulfides, and cyan, but since it is converted into solids by the reaction of [Chemical Formula 1], the ceramic filter 1 is more reliable. It will be filtered.
In this case, the filtration rate is preferably in the range of 0.5 to 1 m / min. If it is less than 0.5 m / min, the filtration efficiency is inferior. On the other hand, if the filtration is performed at a rate exceeding 1 m / min, the filtration pressure rises rapidly and the power of the exhaust gas fan increases (see FIG. 2).
Moreover, the gas temperature in this stage is 400-600 degreeC normally, and a water | moisture content will transfer to the waste gas side as water vapor | steam.

次いで、セラミックフィルター1によってろ過された前記固形物は、ダストとともに逆洗して系外に排出する。逆洗は、通常はパルス洗浄によって行われるが、本発明では通常のろ過速度の5〜20倍程度の洗浄速度で1〜5秒間行うのが好ましい(図3を参照)。また、逆洗間隔は20〜30分で、圧力制御する場合はセラミックフィルター1の圧損が10mmHO以内を維持するように逆洗するのが好ましい。 Next, the solid matter filtered by the ceramic filter 1 is backwashed with dust and discharged out of the system. Back washing is usually performed by pulse washing, but in the present invention, it is preferably carried out at a washing rate of about 5 to 20 times the normal filtration rate for 1 to 5 seconds (see FIG. 3). Further, the backwash interval is 20 to 30 minutes, and when pressure control is performed, backwashing is preferably performed so that the pressure loss of the ceramic filter 1 is maintained within 10 mmH 2 O.

次いで、セラミックフィルター1を出た排ガスを洗浄塔2へ導入する。この洗浄塔2ではコバルト化合物(コバルトとして1mg/L程度)を含むアルカリ洗浄水で洗浄され、セラミックフィルター1で除去できなかった微量の硫黄酸化物、硫化物、シアン等を吸収するとともに、前工程で水蒸気となった水分も加湿冷却により水として除去する。なお、排ガスは処理ガスとして大気放出される。 Next, the exhaust gas discharged from the ceramic filter 1 is introduced into the cleaning tower 2. The washing tower 2 is washed with an alkaline washing water containing a cobalt compound (about 1 mg / L as cobalt) and absorbs a small amount of sulfur oxides, sulfides, cyanide, etc. that could not be removed by the ceramic filter 1. The water that has become water vapor is also removed as water by humidification cooling. The exhaust gas is released into the atmosphere as a processing gas.

一方、洗浄剤のアルカリ剤が水酸化ナトリウムの場合には、前記の物質は下記の[化2]の反応で洗浄水に移行する。   On the other hand, when the alkali agent of the cleaning agent is sodium hydroxide, the substance moves to the cleaning water by the following reaction [Chemical 2].

Figure 0005149488
Figure 0005149488

洗浄水としては、pHを8.5〜9程度に制御するのが好ましい。pH8.5未満では前記反応が不十分になり、pH9を越えると二酸化炭素の吸収によってアルカリ剤が消費されることから薬品費が高くつくからである(図4を参照)。また、洗浄塔2の洗浄条件としては、液/ガス比(L/G)を2〜4L/m程度とするのが好ましい(図5を参照)。 As washing water, it is preferable to control pH to about 8.5-9. If the pH is less than 8.5, the reaction becomes insufficient, and if the pH exceeds 9, the chemical agent is expensive because the alkaline agent is consumed by absorption of carbon dioxide (see FIG. 4). Moreover, as a washing | cleaning condition of the washing tower 2, it is preferable that liquid / gas ratio (L / G) shall be about 2-4L / m < 3 > (refer FIG. 5).

循環槽3では、洗浄水に吸収されている有害物質を酸化して固形物の形で除去する。即ち、コバルトを触媒として前記した酸性亜硫酸ナトリウム(NaHSO)、硫化ナトリウム(NaS)が曝気によって酸化され、固形物である硫酸ナトリウム(NaSO)となり、図示しない排出口より外部へ取出される。反応式を、下記の[化3]に示す。 In the circulation tank 3, the harmful substances absorbed in the washing water are oxidized and removed in the form of solids. That is, the above-described acidic sodium sulfite (NaHSO 3 ) and sodium sulfide (Na 2 S) are oxidized by aeration using cobalt as a catalyst to become solid sodium sulfate (Na 2 SO 4 ), which is discharged from a discharge port (not shown) to the outside. Taken out. The reaction formula is shown in the following [Chemical Formula 3].

Figure 0005149488
Figure 0005149488

この酸化処理を、従来のように、次亜塩素酸ナトリウムなどの酸化剤を使用した場合は薬品費が膨大なものになるが、本発明では曝気による酸化としているので、ブロワ−の電気代だけで済むこととなり処理費を安価におさえることができる。また、洗浄塔2の洗浄水は循環槽3との間で循環使用するため、排水量を極力抑えることができる。
ここで、循環槽3の曝気の条件としては、通常は通気率:0.5〜2m/m.min程度、曝気時間は30分程度で十分である。また、循環水の水温条件としては、40℃以下、好ましくは30℃以下が良い。これは循環水の水温が高いと曝気の際の酸素溶け込み効率が低下して曝気に必要な空気量が増加するためである。また、場合によっては冷却装置を設けるのが良い。さらに、循環槽3の曝気効率を向上させるためには散気装置の水深を極力深くし、槽底の全面に配置するのが効果的である。
ただし、洗浄水に酸性亜硫酸ナトリウムが多量に含まれる等の酸素を多く消費する場合には、循環槽にDO計を設置して通気率によるDO制御をすれば未処理で排出される危険性を排除することができる。また、DO制御によりDOのある状態、例えば1〜2mg/L程度のDOが検出できる状態で洗浄塔2に循環水を循環すれば、酸性亜硫酸ナトリウム(NaHSO)、硫化ナトリウム(NaS)が処理されていることが担保され、これら成分の飽和濃度との関係から吸収のための推進力が向上してガス吸収の効率が高まるので好ましい。
In the case of using an oxidizing agent such as sodium hypochlorite as in the conventional case, this oxidation treatment is enormous in chemical costs. However, in the present invention, since oxidation is performed by aeration, only the electricity cost of the blower is used. Therefore, processing costs can be reduced. Moreover, since the washing water of the washing tower 2 is circulated and used with the circulation tank 3, the amount of drainage can be suppressed as much as possible.
Here, the conditions for aeration of the circulation tank 3 are normally air permeability: 0.5 to 2 m 3 / m 3 . About 30 minutes is sufficient for the min and the aeration time. Moreover, as water temperature conditions of circulating water, 40 degrees C or less, Preferably 30 degrees C or less is good. This is because if the temperature of the circulating water is high, the oxygen melting efficiency during aeration is reduced and the amount of air required for aeration is increased. In some cases, a cooling device may be provided. Furthermore, in order to improve the aeration efficiency of the circulation tank 3, it is effective to increase the water depth of the air diffuser as much as possible and arrange it on the entire surface of the tank bottom.
However, if the wash water consumes a large amount of oxygen such as a large amount of acidic sodium sulfite, install a DO meter in the circulation tank and perform DO control based on the ventilation rate to reduce the risk of being discharged untreated. Can be eliminated. Moreover, if circulating water is circulated to the washing tower 2 in a state where DO is detected by DO control, for example, in a state where DO of about 1-2 mg / L can be detected, acidic sodium sulfite (NaHSO 3 ), sodium sulfide (Na 2 S) Is secured, and the propulsive force for absorption is improved from the relationship with the saturated concentration of these components, so that the efficiency of gas absorption is increased, which is preferable.

循環槽3から排出された洗浄水には循環槽3における曝気では処理できなかったシアン、微量の有機物(COD)が含まれる。従って、これらを酸化塔へ導いて触媒オゾン処理によって除去し、その後に処理水として放流する。
酸化塔3には、触媒として電解二酸化マンガンが充填されており、下記の[化4]の反応によってシアンおよび微量有機物を分解する。
The washing water discharged from the circulation tank 3 contains cyan and a small amount of organic matter (COD) that could not be treated by aeration in the circulation tank 3. Therefore, they are guided to the oxidation tower, removed by catalytic ozone treatment, and then discharged as treated water.
The oxidation tower 3 is filled with electrolytic manganese dioxide as a catalyst, and decomposes cyan and a trace amount of organic matter by the following reaction [Chemical Formula 4].

Figure 0005149488
Figure 0005149488

この酸化塔4における処理条件は、SV:1〜3/Hr、LV:2〜10m/Hrとするのが好ましい。この範囲を越えて運転すると、シアン及び有機物の除去率が低下するようになるからである(図7を参照)。
なお、シアン分解のためのオゾン等量は、240/26=9.23となるが、有機物分解も同時に起こるので、オゾンの添加率はオゾン等量の1.2〜1.5倍が必要になる(図8を参照)。
The treatment conditions in the oxidation tower 4 are preferably SV: 1 to 3 / Hr and LV: 2 to 10 m / Hr. This is because when the operation is performed beyond this range, the removal rate of cyan and organic substances decreases (see FIG. 7).
The ozone equivalent for cyanide decomposition is 240/26 = 9.23, but organic matter decomposition also occurs at the same time, so the ozone addition rate needs to be 1.2 to 1.5 times the ozone equivalent. (See FIG. 8).

以上のようにして熱分解ガスの処理は完結するが、前記の説明からも明らかなように、本発明は以下の利点を有する。
(1)安価なアルカリ剤(消石灰など)を使用することで、薬品処理において酸化剤を多量に消費する成分を除去することとなり、薬品費を低く抑えることができる。
(2)同様に、酸化剤を多量に消費する成分を曝気で除去することにより、薬品費を低く抑えることができる。
(3)シアン、CODを確実に除去できる触媒オゾン処理をシステムに組み込むことにより、安全な処理水が得られ、下水処理における返流水として着水井に返送しても下水の活性汚泥処理に悪影響を及ぼすことがない。
Although the treatment of the pyrolysis gas is completed as described above, as is apparent from the above description, the present invention has the following advantages.
(1) By using an inexpensive alkaline agent (such as slaked lime), components that consume a large amount of oxidizing agent in chemical treatment are removed, and the chemical cost can be kept low.
(2) Similarly, the chemical cost can be kept low by removing a component that consumes a large amount of the oxidizing agent by aeration.
(3) By incorporating into the system a catalytic ozone treatment that can reliably remove cyanide and COD, safe treated water can be obtained, and even if it is returned to the landing well as return water in the sewage treatment, it will adversely affect the activated sludge treatment of the sewage. There is no effect.

熱分解炉から排出された排ガスを表1に示す条件により処理した結果、処理水中の硫黄酸化物、硫化物、シアン等の含有量が十分に低下していることが確認できた。また、CODも十分に除去されており、着水井に返送しても下水の活性汚泥処理に悪影響を及ぼすことがないことも確認できた。なお、アルカリ洗浄とオゾン酸化を組み合わせて処理した場合を従来法とし、得られた結果を表1に示す。   As a result of treating the exhaust gas discharged from the pyrolysis furnace under the conditions shown in Table 1, it was confirmed that the content of sulfur oxides, sulfides, cyanide and the like in the treated water was sufficiently reduced. Moreover, COD was also removed sufficiently, and it was confirmed that even if it was returned to the landing well, it did not adversely affect the activated sludge treatment of sewage. In addition, the case where it processed by combining alkali cleaning and ozone oxidation was made into the conventional method, and the obtained result is shown in Table 1.

Figure 0005149488
Figure 0005149488

本発明の実施の形態を示すフローチャートである。It is a flowchart which shows embodiment of this invention. ろ過速度と初期圧力損失の関係を示すグラフである。It is a graph which shows the relationship between a filtration rate and an initial pressure loss. 逆洗速度と圧力損失の回復性の関係を示すグラフである。It is a graph which shows the relationship between the backwashing speed and the recoverability of pressure loss. 洗浄水pHとSOx除去率の関係を示すグラフである。It is a graph which shows the relationship between washing water pH and SOx removal rate. 液−ガス比とSOx除去率の関係を示すグラフである。It is a graph which shows the relationship between a liquid-gas ratio and a SOx removal rate. 通気率による酸性亜硫酸ナトリウムの変化を示すグラフである。It is a graph which shows the change of acidic sodium sulfite by aeration rate. SV、LVとCN除去率の関係を示すグラフである。It is a graph which shows the relationship between SV, LV, and CN removal rate. オゾン添加倍率とCN除去率の関係を示すグラフである。It is a graph which shows the relationship between ozone addition magnification and CN removal rate.

符号の説明Explanation of symbols

セラミックフィルター
2 洗浄塔
3 循環槽
4 酸化塔
1 Ceramic filter 2 Washing tower 3 Circulating tank 4 Oxidation tower

Claims (2)

有機性廃棄物の熱分解炉から排出される熱分解ガスに400〜600℃の高温のままアルカリ剤スラリーを供給し、得られた生成物をセラミックフィルターで除去した後、該セラミックフィルターより排出された熱分解ガスを洗浄塔へ導入してコバルト化合物を含むアルカリ洗浄水で洗浄し、次いで、この洗浄水を循環槽で曝気しつつ洗浄塔へ循環して、洗浄水に吸収されている硫黄酸化物、硫化物、シアンを酸化して固形物の形で除去し、次いで、循環槽から排出された排出水を酸化塔へ導いて触媒オゾン処理することを特徴とする熱分解ガスの処理方法。 The slurry of the alkali agent is supplied to the pyrolysis gas discharged from the pyrolysis furnace of organic waste at a high temperature of 400 to 600 ° C. , and the product obtained is removed by the ceramic filter and then discharged from the ceramic filter. The introduced pyrolysis gas is introduced into a washing tower and washed with an alkaline washing water containing a cobalt compound. Then, the washing water is circulated to the washing tower while being aerated in a circulation tank, and the sulfur absorbed in the washing water. A method for treating pyrolysis gas, characterized in that oxides, sulfides and cyanide are oxidized and removed in the form of solids, and then the discharged water discharged from the circulation tank is led to an oxidation tower for catalytic ozone treatment. . アルカリ剤が、水酸化カルシウムまたは水酸化マグネシウムであることを特徴とする請求項1に記載の熱分解ガスの処理方法。   The method for treating a pyrolysis gas according to claim 1, wherein the alkali agent is calcium hydroxide or magnesium hydroxide.
JP2006046092A 2006-02-23 2006-02-23 Pyrolysis gas treatment method Expired - Fee Related JP5149488B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006046092A JP5149488B2 (en) 2006-02-23 2006-02-23 Pyrolysis gas treatment method

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006046092A JP5149488B2 (en) 2006-02-23 2006-02-23 Pyrolysis gas treatment method

Publications (2)

Publication Number Publication Date
JP2007222766A JP2007222766A (en) 2007-09-06
JP5149488B2 true JP5149488B2 (en) 2013-02-20

Family

ID=38545067

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006046092A Expired - Fee Related JP5149488B2 (en) 2006-02-23 2006-02-23 Pyrolysis gas treatment method

Country Status (1)

Country Link
JP (1) JP5149488B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN104003578B (en) * 2014-05-28 2016-01-20 中国环境科学研究院 The method of a kind of pair of section ozone-BAF combined treatment trade effluent
EP3031881A1 (en) 2014-12-08 2016-06-15 Innord sp. z o.o. S.K.A. Method of pyrolytic processing of polymer waste from the recycling of food packaging and a system for carrying out such method
CN109529566A (en) * 2018-09-12 2019-03-29 毛丁 Novel fume cleaning method and apparatus
CN112007468A (en) * 2020-09-12 2020-12-01 上海康恒环境股份有限公司 Deacidification and heat energy recovery method for flue gas condensation of waste incineration plant
CN112604474A (en) * 2020-11-27 2021-04-06 重庆立昂工业设备有限公司 Waste gas treatment system

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS5943600B2 (en) * 1976-10-12 1984-10-23 株式会社荏原製作所 Improved methods for chemical recovery in paper mills
JPS55152526A (en) * 1979-05-18 1980-11-27 Toshiba Corp Disposal method for malodorous gas and alkaline wash waste liquor
JP2702662B2 (en) * 1993-09-30 1998-01-21 日本碍子株式会社 Combustion exhaust gas treatment apparatus and treatment method
JP3282783B2 (en) * 1995-03-24 2002-05-20 日本碍子株式会社 Exhaust gas treatment method
JP3791954B2 (en) * 1995-12-26 2006-06-28 日本碍子株式会社 Combustion exhaust gas treatment method
JP2000262848A (en) * 1999-03-18 2000-09-26 Ngk Insulators Ltd Treatment of exhaust gas
JP2001065840A (en) * 1999-08-31 2001-03-16 Mitsubishi Heavy Ind Ltd Combustion gas processing method in refuse incinerator equipment
JP3518857B2 (en) * 2000-03-16 2004-04-12 日本碍子株式会社 Simple method for deodorizing organic sludge concentrated exhaust gas
JP2003200022A (en) * 2002-01-11 2003-07-15 Mitsubishi Heavy Ind Ltd Method for treating hazardous material of exhaust gas and apparatus for the same
JP2005246327A (en) * 2004-03-08 2005-09-15 Ngk Insulators Ltd Wastewater treatment apparatus
JP4355817B2 (en) * 2004-03-11 2009-11-04 株式会社超高温材料研究所 High temperature exhaust gas purification treatment agent and high temperature exhaust gas purification treatment method using the same
JP2005262113A (en) * 2004-03-19 2005-09-29 Ngk Insulators Ltd Ozonation device for organic material-containing water
JP2006043632A (en) * 2004-08-06 2006-02-16 Takuma Co Ltd Method and equipment for treating combustion gas

Also Published As

Publication number Publication date
JP2007222766A (en) 2007-09-06

Similar Documents

Publication Publication Date Title
RU2375312C2 (en) Method of purifying raw water, containing substances which are hard to decompose
EP2559667B1 (en) Method and system for the treatment of wastewater containing persistent substances
JP5637713B2 (en) Wastewater treatment method and treatment apparatus
JP2007181756A (en) Wastewater treatment method for flue gas desulfurization equipment
JP5149488B2 (en) Pyrolysis gas treatment method
JP2007509740A (en) Apparatus and method for purifying aqueous effluents by oxidation and membrane filtration
JP2007021347A (en) Hardly decomposable substance-containing water treatment method
RU2144510C1 (en) Anaerobic removal of sulfur compounds from sewage
WO2004016717A1 (en) Wet gas purification method and system for practicing the same
JP2006102743A (en) Method for black liquor treatment
CN101781064A (en) Process for advanced treatment of gas wastewater
JP3871749B2 (en) Treatment method of flue gas desulfurization waste water
JP3572223B2 (en) Absorbent slurry treatment method and flue gas desulfurization system
JP4987237B2 (en) Combustion waste gas purification method
JP5637797B2 (en) Method and apparatus for treating wastewater containing persistent materials
JPH10109013A (en) Magnesium oxide and regenerated sulfuric acid recovering type flue gas desulfurization apparatus
JP3572233B2 (en) Flue gas desulfurization method and flue gas desulfurization system
JP3681184B2 (en) Seawater-based wet flue gas desulfurization method and apparatus
JP6031376B2 (en) Selenium-containing wastewater treatment system and selenium-containing wastewater treatment method
JP2001348346A (en) Method for purifying methane fermentation gas
JP4269379B2 (en) Wet flue gas desulfurization method and wet flue gas desulfurization apparatus
KR100205443B1 (en) Apparatus for treating waste water using photocatalyst
JPH11165180A (en) Method for treating scrubber drainage
JP4901193B2 (en) Pyrolysis gas purification method and apparatus
JP2000350997A (en) Method and apparatus for treating sewage

Legal Events

Date Code Title Description
A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A712

Effective date: 20080331

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A821

Effective date: 20081205

A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20081205

RD02 Notification of acceptance of power of attorney

Free format text: JAPANESE INTERMEDIATE CODE: A7422

Effective date: 20081205

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20100806

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120203

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120326

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120831

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121010

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121113

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121130

R150 Certificate of patent or registration of utility model

Ref document number: 5149488

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151207

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees