JP5141968B2 - Manufacturing method of metal parts - Google Patents

Manufacturing method of metal parts Download PDF

Info

Publication number
JP5141968B2
JP5141968B2 JP2008149454A JP2008149454A JP5141968B2 JP 5141968 B2 JP5141968 B2 JP 5141968B2 JP 2008149454 A JP2008149454 A JP 2008149454A JP 2008149454 A JP2008149454 A JP 2008149454A JP 5141968 B2 JP5141968 B2 JP 5141968B2
Authority
JP
Japan
Prior art keywords
current density
anodized film
rear housing
metal part
working chamber
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008149454A
Other languages
Japanese (ja)
Other versions
JP2009293094A (en
JP2009293094A5 (en
Inventor
利幸 齊藤
巧美 三尾
敦 江藤
博之 矢尾
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
JTEKT Corp
Original Assignee
JTEKT Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by JTEKT Corp filed Critical JTEKT Corp
Priority to JP2008149454A priority Critical patent/JP5141968B2/en
Priority to US12/479,272 priority patent/US8172561B2/en
Priority to EP09162010A priority patent/EP2130952B1/en
Publication of JP2009293094A publication Critical patent/JP2009293094A/en
Publication of JP2009293094A5 publication Critical patent/JP2009293094A5/ja
Application granted granted Critical
Publication of JP5141968B2 publication Critical patent/JP5141968B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Description

本発明は、高シリコン−アルミニウム合金からなる基材の少なくとも一部の表面が陽極酸化皮膜によって被覆された金属部品を製造するための製造方法に関するものである。 The present invention relates to a manufacturing method for manufacturing a metal part in which at least a part of the surface of a substrate made of a high silicon-aluminum alloy is coated with an anodized film.

例えば自動車において、オイルをエンジン内や油圧駆動系内等で循環させる動力を発生させるためにオイルポンプが用いられる。前記オイルポンプは、作動室と、前記作動室に連通する吸込通路および吐出通路とを有する形状に複数の分割体によって構成された筐体と、前記作動室内に軸を中心として回転可能に配設され、回転に伴ってオイルを、前記吸込通路を通して吸い込んで吐出通路を通して吐出させるロータとを有している。   For example, in an automobile, an oil pump is used to generate power for circulating oil in an engine or a hydraulic drive system. The oil pump is disposed in a shape having a working chamber, a suction passage and a discharge passage communicating with the working chamber, and a plurality of divided bodies, and is rotatably disposed around the shaft in the working chamber. And a rotor that sucks oil through the suction passage as it rotates and discharges the oil through the discharge passage.

前記筐体を構成する複数の分割体のうち作動室に臨み、ロータの軸端に対向するリヤハウジングを、オイルポンプの軽量化のためにアルミニウム合金によって形成すると共に、前記リヤハウジングのうち少なくともロータの軸端に対向する表面の耐摩耗性を向上させるために、前記表面を陽極酸化皮膜で被覆することが提案されている(特許文献1参照)。
特開2007−132237号公報
A rear housing that faces the working chamber among the plurality of divided bodies constituting the casing and faces the shaft end of the rotor is formed of an aluminum alloy for reducing the weight of the oil pump, and at least the rotor of the rear housing In order to improve the wear resistance of the surface facing the shaft end of the metal, it has been proposed to coat the surface with an anodized film (see Patent Document 1).
JP 2007-132237 A

近時、オイルポンプの高圧化(例えば8MPa→15MPa)に対応してリヤハウジングの歪みを防止するべくその強度を高めるために、前記リヤハウジングを形成するアルミニウム(Al)合金として、例えばシリコン(Si)を1〜25質量%程度の割合で含む高シリコン−アルミニウム合金を使用することが検討されている。しかしその場合、従来の陽極酸化処理では、リヤハウジングの表面に形成される陽極酸化皮膜の表面平滑性が低下して、前記陽極酸化皮膜が、対向するロータの軸端等を摩耗するいわゆる攻撃性を発現しやすいという問題がある。   Recently, as an aluminum (Al) alloy forming the rear housing, for example, silicon (Si) is used to increase the strength of the rear housing in order to prevent the rear housing from being distorted in response to the high pressure of the oil pump (for example, 8 MPa → 15 MPa). ) Is being studied to use a high silicon-aluminum alloy containing 1 to 25% by mass. However, in that case, in the conventional anodizing treatment, the surface smoothness of the anodized film formed on the surface of the rear housing is lowered, and the anodized film wears the opposite end of the shaft of the rotor or the like. There is a problem that it is easy to express.

本発明の目的は、前記のようにシリコンを1〜25質量%の割合で含む高シリコン−アルミニウム合金からなる基材の表面を、表面平滑性に優れるため例えばロータの軸端等の相手部材に対する攻撃性を有しない上、耐摩耗性にも優れた陽極酸化皮膜で被覆して、前記各特性に優れた金属部品を製造するための製造方法を提供することにある。 The object of the present invention is to provide a surface of a base material made of a high silicon-aluminum alloy containing silicon at a ratio of 1 to 25% by mass as described above . An object of the present invention is to provide a manufacturing method for manufacturing a metal part having excellent characteristics by coating with an anodized film having no aggressiveness and excellent wear resistance.

発明者は、前記シリコンを1〜25質量%の割合で含む高シリコン−アルミニウム合金からなる基材の表面に従来の陽極酸化処理によって陽極酸化皮膜を形成した際に、その表面平滑性が低下する原因について検討した結果、以下の事実を見出した。すなわち高シリコン−アルミニウム合金はシリコンの濃度が高いため、冷却時にシリコンの固相分離が進んで、アルミニウム相ないしはアルミニウムとシリコンの共晶相からなる連続相中にシリコン相が析出した結晶構造となり、基材の表面は、前記連続相中にシリコン相が島状に露出した状態を呈する。 When an inventor forms an anodic oxide film by the conventional anodic oxidation process on the surface of the base material which consists of a high silicon-aluminum alloy which contains the said silicon in the ratio of 1-25 mass% , the surface smoothness falls. As a result of examining the cause, the following facts were found. That is, since the high silicon-aluminum alloy has a high silicon concentration, solid phase separation of silicon proceeds during cooling, and a crystalline structure in which a silicon phase is precipitated in an aluminum phase or a continuous phase composed of an eutectic phase of aluminum and silicon, The surface of the substrate exhibits a state in which the silicon phase is exposed in an island shape in the continuous phase.

ところがアルミニウムを含む連続相とシリコン相とでは導電率が異なり、シリコン相を形成するシリコンは、連続相中のアルミニウムを陽極酸化するのに適した条件では殆ど酸化されないか、あるいは酸化されるとしてもその速度が著しく小さいため、陽極酸化皮膜は、特にその形成の初期段階において、前記基材の表面の連続相が露出した領域(「連続相領域」と略記することがある。)において選択的に成長する。   However, the conductivity of the continuous phase containing aluminum is different from that of the silicon phase, and the silicon forming the silicon phase is hardly oxidized under conditions suitable for anodizing aluminum in the continuous phase, even if it is oxidized. Since the rate is remarkably small, the anodized film is selectively used in a region where the continuous phase on the surface of the substrate is exposed, particularly in the initial stage of the formation (sometimes abbreviated as “continuous phase region”). grow up.

成長がある程度進むとシリコン相が露出した領域(「シリコン相領域」と略記することがある)においても陽極酸化皮膜が僅かながら形成される他、連続相領域で成長した陽極酸化皮膜が前記シリコン相領域に回り込んで成長する。そのため陽極酸化皮膜は、最終的にはシリコン相領域に対応した大きな欠陥等のない(周知のようにアルミニウムの陽極酸化皮膜は、基材の表面と接する活性層と、その上の多孔層とからなり、前記多孔層はオングストロームオーダーのごく微細な通孔を有する多孔質構造を有してはいるが)連続した皮膜となる。   When the growth proceeds to some extent, a slight amount of an anodized film is formed even in a region where the silicon phase is exposed (sometimes abbreviated as “silicon phase region”), and the anodized film grown in the continuous phase region is formed in the silicon phase. Grows around the area. Therefore, the anodized film is finally free from large defects corresponding to the silicon phase region (as is well known, the anodized film of aluminum is composed of an active layer in contact with the surface of the substrate and a porous layer thereon. Thus, the porous layer is a continuous film (although it has a porous structure having very fine pores on the order of angstroms).

しかし前記初期段階における成長速度の差に基づいて、陽極酸化皮膜の厚みには両領域間で大きな差を生じるため、結果として表面の平滑性が低下する。
そこで発明者は、基材の表面のうちシリコン相領域への、連続相領域からの陽極酸化皮膜の回り込みを利用して、特に初期段階に前記両領域間で形成される陽極酸化皮膜の厚みの差をできるだけ小さくすることを検討した。その結果、陽極酸化処理を開始してから数分以内の初期段階において前記両極間に与える電流の電流密度を0A/dmから、所定の電流密度に達するまで毎分0.35A/dm以下の割合で徐々に増加させればよいことを見出した。
However, based on the difference in growth rate in the initial stage, the thickness of the anodic oxide film varies greatly between the two regions, resulting in a decrease in surface smoothness.
Therefore, the inventor uses the wrapping of the anodic oxide film from the continuous phase region to the silicon phase region of the surface of the substrate, and particularly the thickness of the anodic oxide film formed between the two regions in the initial stage. We considered making the difference as small as possible. As a result, the current density of the current applied between the two electrodes in the initial stage within a few minutes after the start of the anodic oxidation process is 0.35 A / dm 2 or less per minute until the predetermined current density is reached from 0 A / dm 2. It was found that it should be gradually increased at a rate of.

すなわち電流密度を前記割合で徐々に増加させると、初期段階において、連続相領域での陽極酸化皮膜の急速な成長を抑制しながら、前記陽極酸化皮膜をシリコン相領域にも回り込ませて、前記両領域間で形成される陽極酸化皮膜の厚みの差をこれまでよりも小さくできる。そのためシリコン相の表面が陽極酸化皮膜で覆われた後は通常の定電流制御により一定の電流密度で陽極酸化処理を続けることで、基材の表面の全体を、厚みがほぼ均一で表面平滑性に優れた陽極酸化皮膜によって被覆することが可能となる。   That is, when the current density is gradually increased at the above rate, in the initial stage, while suppressing the rapid growth of the anodic oxide film in the continuous phase region, the anodic oxide film is also circulated into the silicon phase region, thereby The difference in the thickness of the anodized film formed between the regions can be made smaller than before. Therefore, after the surface of the silicon phase is covered with an anodic oxide film, the entire surface of the substrate is almost uniform in thickness and surface smoothness by continuing the anodizing treatment at a constant current density by normal constant current control. It becomes possible to coat with an excellent anodic oxide film.

したがって本発明は、シリコンを1〜25質量%の割合で含む高シリコン−アルミニウム合金からなる基材の少なくとも一部の表面を陽極酸化処理して、前記表面が陽極酸化皮膜で被覆された金属部品を製造するための製造方法であって、前記基材を陽極として、陰極と共に電解液に浸漬した状態で、
(1) 前記両極間に与える電流の電流密度を0A/dmから毎分0.35A/dm以下の割合で増加させる第一工程と、
(2) 電流密度が所定値に達した時点以降、前記所定の電流密度を維持しながら陽極酸化処理を続ける第二工程と、
を経て、前記表面を陽極酸化皮膜で被覆することを特徴とするものである(請求項1)。
Therefore, the present invention provides a metal part in which at least a part of the surface of a base material made of a high silicon-aluminum alloy containing silicon at a ratio of 1 to 25% by mass is anodized and the surface is coated with an anodized film. In the state where the base material is used as an anode and immersed in an electrolytic solution together with a cathode,
(1) a first step of increasing the current density of the current applied between the two electrodes from 0 A / dm 2 at a rate of 0.35 A / dm 2 or less per minute;
(2) a second step of continuing the anodizing process while maintaining the predetermined current density after the current density reaches a predetermined value;
Then, the surface is coated with an anodized film (claim 1).

前記本発明によれば、第一工程において電流密度を増加させる割合を小さくするほど、前記第一および第二工程を経て形成される陽極酸化皮膜の厚みを均一化し、その表面を平滑化できる。ただし第一工程において電流密度を増加させる割合を小さくするほど、所定の厚みを有する陽極酸化皮膜を形成するために長時間の処理が必要となり、前記陽極酸化皮膜を有する金属部品の生産性が低下する傾向がある。   According to the present invention, as the ratio of increasing the current density in the first step is reduced, the thickness of the anodized film formed through the first and second steps can be made uniform and the surface thereof can be smoothed. However, the smaller the rate of increasing the current density in the first step, the longer the treatment required to form the anodic oxide film having a predetermined thickness, and the lower the productivity of metal parts having the anodic oxide film. Tend to.

そのため金属部品の生産性を維持しながら、先に説明した表面平滑性等に優れた陽極酸化皮膜を有する金属部品を製造することを考慮すると、第一工程において電流密度を増加させる割合は、前記範囲内でも毎分0.15A/dm以上であるのが好ましい(請求項2)。
また第二工程においては電流密度を0.8A/dm以上、1.2A/dm以下の所定値に維持するのが好ましい(請求項3)。電流密度が前記範囲未満では、所定の厚みを有する陽極酸化皮膜を形成するために長時間の処理が必要となり、前記陽極酸化皮膜を有する金属部品の生産性が低下するおそれがある。また前記範囲を超える場合には陽極酸化皮膜の表面粗さが大きくなって、耐摩耗性が低下したり、オイルポンプの性能が低下したりするおそれがある。
Therefore, considering the production of a metal part having an anodized film excellent in surface smoothness and the like described above while maintaining the productivity of the metal part, the ratio of increasing the current density in the first step is Even within the range, it is preferably 0.15 A / dm 2 or more per minute (Claim 2).
In the second step a current density of 0.8 A / dm 2 or more, preferably maintained at a predetermined value of 1.2A / dm 2 or less (claim 3). If the current density is less than the above range, it takes a long time to form an anodic oxide film having a predetermined thickness, which may reduce the productivity of metal parts having the anodic oxide film. On the other hand, when the above range is exceeded, the surface roughness of the anodized film becomes large, which may reduce the wear resistance and the performance of the oil pump.

本発明の製造方法において製造する金属部品としては、例えば先に説明したオイルポンプ(2)のリヤハウジング(1)が挙げられ、前記リヤハウジングのうち作動室(6)に臨み、ロータ(3)の軸端に対向する表面(25)が、前記第一および第二工程を経て陽極酸化皮膜によって被覆される(請求項4)。なおカッコ内の英数字は、後述の実施の形態における対応構成要素等を表す。   As a metal part manufactured in the manufacturing method of the present invention, for example, the rear housing (1) of the oil pump (2) described above can be cited, facing the working chamber (6) of the rear housing, and the rotor (3). The surface (25) opposite to the shaft end of the substrate is covered with an anodized film through the first and second steps (claim 4). The alphanumeric characters in parentheses represent corresponding components in the embodiments described later.

図1は、本発明の製造方法によって製造される金属部品の一例としてのリヤハウジング1を含むオイルポンプ2の、ロータ3の軸4の軸線5の方向に沿う断面を示す断面図、図2は、前記オイルポンプ2からリヤハウジング1を外した状態を示す側面図である。
図1を参照して、この例のオイルポンプ2は、作動室6と、前記作動室6に連通するオイルの吸込通路7および吐出通路8とを有する筐体9と、前記作動室6内に軸線5を中心として回転可能に配設され、軸4の回転に伴ってオイルを、吸込通路7を通して吸い込んで吐出通路8を通して吐出させるロータ3とを含んでいる。
FIG. 1 is a cross-sectional view showing a cross section along the direction of the axis 5 of the shaft 4 of a rotor 3 of an oil pump 2 including a rear housing 1 as an example of a metal part manufactured by the manufacturing method of the present invention. FIG. 3 is a side view showing a state where a rear housing 1 is removed from the oil pump 2.
With reference to FIG. 1, an oil pump 2 of this example includes a housing 9 having a working chamber 6, an oil suction passage 7 and a discharge passage 8 communicating with the working chamber 6, and the working chamber 6. A rotor 3 is disposed so as to be rotatable about an axis 5 and sucks oil through the suction passage 7 and discharges it through the discharge passage 8 as the shaft 4 rotates.

筐体9は、前記各部を有する形状に複数の分割体によって構成されている。すなわち筐体9は、分割面10で分割可能なフロントハウジング(分割体)11およびリヤハウジング(分割体)1を有している。フロントハウジング11は、分割面10から凹入させて作動室6を備えている。フロントハウジング11とリヤハウジング1は、分割面10に設けたシール12によってシールされている。フロントハウジング11とリヤハウジング1とは、フロントハウジング11に設けたネジ孔13に、リヤハウジング1に設けた通孔14を通してボルト15をねじ込むことで互いに固定されている。 The housing 9 is constituted by a plurality of divided bodies in a shape having the above-described parts. That is, the housing 9 includes a front housing (divided body) 11 and a rear housing (divided body) 1 that can be divided by the dividing surface 10. The front housing 11 has a working chamber 6 by recessed from split surface 10. The front housing 11 and the rear housing 1 are sealed by a seal 12 provided on the dividing surface 10. The front housing 11 and the rear housing 1 are fixed to each other by screwing a bolt 15 into a screw hole 13 provided in the front housing 11 through a through hole 14 provided in the rear housing 1.

作動室6内には、シール16を介して第一サイドプレート(分割体)17が嵌め合わされている。リヤハウジング1は、前記第一サイドプレート17と共にロータ3を両側から挟む部材としても機能するため第二サイドプレートとも呼ばれている。フロントハウジング11の、作動室6の底の面方向の略中央には、前記底から分割面10と直交する軸線5の方向に軸4を挿通させる貫通孔18が形成されている。   A first side plate (divided body) 17 is fitted into the working chamber 6 via a seal 16. The rear housing 1 also functions as a member that sandwiches the rotor 3 from both sides together with the first side plate 17 and is also called a second side plate. A through-hole 18 through which the shaft 4 is inserted from the bottom in the direction of the axis 5 perpendicular to the dividing surface 10 is formed in the center of the front housing 11 in the surface direction of the bottom of the working chamber 6.

第一サイドプレート17には、作動室6に嵌め合わされた状態で、前記作動室6内に収容されるロータ3に対向する側の面と前記作動室6の底に対抗する側の面との間を貫通させて、前記貫通孔18と連通して軸4を挿通させる貫通孔19が形成されている。また貫通孔19の周囲の2箇所の、軸線5を挟んで対称位置には前記貫通孔19と並行させて、前記両面間を貫通する吐出ポート20が形成されている。   The first side plate 17 includes a surface facing the rotor 3 accommodated in the working chamber 6 and a surface facing the bottom of the working chamber 6 in a state of being fitted in the working chamber 6. A through hole 19 is formed through which the shaft 4 is inserted in communication with the through hole 18. Discharge ports 20 penetrating between the both surfaces are formed in parallel with the through hole 19 at two positions around the through hole 19 and symmetrically across the axis 5.

作動室6の底の貫通孔18の周囲には吐出ポート20と繋がれる環状の吐出凹部21が設けられており、前記吐出ポート20および吐出凹部21と、フロントハウジング11内に形成した通路22とを繋いで吐出通路8が構成されている。貫通孔18内には、軸4を回転可能に支持する筒状のメタル軸受23が配設されている。また貫通孔18の作動室6と反対側の開口には、軸4とフロントハウジング11との間をシールするシール24が配設されている。   An annular discharge recess 21 connected to the discharge port 20 is provided around the through hole 18 at the bottom of the working chamber 6. The discharge port 20 and the discharge recess 21, and a passage 22 formed in the front housing 11 Are connected to form a discharge passage 8. A cylindrical metal bearing 23 that rotatably supports the shaft 4 is disposed in the through hole 18. A seal 24 that seals between the shaft 4 and the front housing 11 is disposed at the opening of the through hole 18 on the opposite side of the working chamber 6.

リヤハウジング1の、ロータ3と対向する対向面25には、軸4の先端が挿入される凹部26が設けられている。凹部26内には、軸4を回転可能に支持する筒状のメタル軸受27が配設されている。リヤハウジング1内には、吸込通路7を構成する通路28(図中に破線で示す)が設けられている。対向面25の、凹部26の周囲の2箇所の、軸線5を挟んで対称位置には前記通路28と作動室6とを繋ぐ吸込ポート29(同じく図中に破線で示す)が設けられている。   A concave surface 26 into which the tip of the shaft 4 is inserted is provided on the facing surface 25 of the rear housing 1 facing the rotor 3. A cylindrical metal bearing 27 that rotatably supports the shaft 4 is disposed in the recess 26. In the rear housing 1, a passage 28 (indicated by a broken line in the drawing) constituting the suction passage 7 is provided. Suction ports 29 (also indicated by broken lines in the figure) for connecting the passage 28 and the working chamber 6 are provided at two symmetrical positions on the opposite surface 25 around the recess 26 with respect to the axis 5. .

フロントハウジング11には、前記通路28および吸込ポート29と共に吸込通路7を構成し、かつ吐出通路8を流れるオイルが過剰であるとき前記オイルの一部を、バイパス通路30を通して吸込通路7に還流する流量制御弁を構成する通路部材31、32が設けられており、前記通路部材32にオイルの入口である吸込筒33が接続されている。
図1、図2を参照して、作動室6内には、第一サイドプレート17とリヤハウジング1とで挟持させて、ロータ3を囲む筒状のカムリング34が嵌め合わされている。カムリング34の筒の内周面は、軸線5の方向と直交する方向の形状が楕円形であるカム面35とされている。
The front housing 11 forms the suction passage 7 together with the passage 28 and the suction port 29, and when the oil flowing through the discharge passage 8 is excessive, part of the oil is returned to the suction passage 7 through the bypass passage 30. Passage members 31 and 32 constituting a flow control valve are provided, and a suction cylinder 33 that is an oil inlet is connected to the passage member 32.
Referring to FIGS. 1 and 2, a cylindrical cam ring 34 surrounding the rotor 3 is fitted in the working chamber 6 so as to be sandwiched between the first side plate 17 and the rear housing 1. The inner peripheral surface of the cylinder of the cam ring 34 is a cam surface 35 whose shape in a direction orthogonal to the direction of the axis 5 is an ellipse.

ロータ3は、軸4に一体的に取り付けられたロータ本体36と、前記ロータ本体36の外周面から軸線5へ向けて放射状に設けられた複数の溝37に嵌め合わされて、前記外周面から外方へ放射状に配設された複数のベーン38とを備えている。各ベーン38は溝37から出し入れ可能に設けられ、ベーンにかかる油圧によって径方向外方へ付勢される。
軸4を回転させると、ベーン38は油圧によって径方向外方へ付勢されて、先端をカムリング34のカム面35に接触させた状態を維持しながらロータ本体36と共に回転する。吸込ポート29は、リヤハウジング1の対向面25のうち図2の状態において隣り合うベーン38によって仕切られた室39、40に対応する2箇所に設けられている。また吐出ポート20は、第一サイドプレート17のうち図2の状態において隣り合うベーン38によって仕切られた室41、42に対応する2箇所に設けられている。
The rotor 3 is fitted into a rotor main body 36 integrally attached to the shaft 4 and a plurality of grooves 37 provided radially from the outer peripheral surface of the rotor main body 36 toward the axis 5 so as to be outside the outer peripheral surface. And a plurality of vanes 38 arranged radially. Each vane 38 is provided so as to be able to be inserted and removed from the groove 37 and is urged radially outward by a hydraulic pressure applied to the vane.
When the shaft 4 is rotated, the vane 38 is urged radially outward by hydraulic pressure, and rotates together with the rotor body 36 while maintaining the state where the tip is in contact with the cam surface 35 of the cam ring 34. The suction ports 29 are provided at two locations corresponding to the chambers 39 and 40 partitioned by the adjacent vanes 38 in the state of FIG. 2 on the facing surface 25 of the rear housing 1. Further, the discharge port 20 is provided at two locations corresponding to the chambers 41 and 42 partitioned by the adjacent vanes 38 in the state of FIG. 2 in the first side plate 17.

軸4を図2中に実線の矢印で示す方向に回転させるとベーン38で仕切られた各室39…それ自体が、吸込ポート29から吐出ポート20の方向へ回転することによって、オイルを、吸込通路7を通して吸い込んで吐出通路8を通して吐出させることができる。またこの際、前記回転に伴って各室39…に下記の吸込力および吐出力が発生することによってオイルの逆流が防止される。   When the shaft 4 is rotated in the direction indicated by the solid arrow in FIG. 2, each chamber 39 partitioned by the vane 38 itself rotates from the suction port 29 toward the discharge port 20, thereby sucking in oil. It can be sucked through the passage 7 and discharged through the discharge passage 8. Further, at this time, the following suction force and discharge force are generated in the respective chambers 39 along with the rotation, thereby preventing the back flow of oil.

吸込力:吸込ポート29から離れようとする室39、40の容積が、カム面35の形状に基づいて増加することで、吸込通路7および吸込ポート29を通して前記室39、40にオイルを吸込む吸込力が発生。
吐出力:吐出ポート20に近づこうとする室41、42の容積が、カム面35の形状に基づいて減少することで、吐出ポート20および吐出通路8を通して前記室41、42からオイルを吐出させる吐出力が発生。
Suction force: the suction of sucking oil into the chambers 39, 40 through the suction passage 7 and the suction port 29 by increasing the volume of the chambers 39, 40 to be separated from the suction port 29 based on the shape of the cam surface 35. Force is generated.
Discharge force: Discharge that causes oil to be discharged from the chambers 41 and 42 through the discharge port 20 and the discharge passage 8 by reducing the volume of the chambers 41 and 42 that approach the discharge port 20 based on the shape of the cam surface 35. Force is generated.

第一サイドプレート17、カムリング34、ロータ本体36、およびベーン38は、例えば鉄−ニッケル−モリブデン−炭素系の焼結合金、中でも鉄−ニッケル−銅−モリブデン−炭素系の焼結体、特にその強度や耐摩耗性を高めるため高密度温間金型潤滑により形成した密度ρ=7.25g/cm以上、特に7.25〜7.5g/cmの高密度の焼結体、さらには前記高密度の焼結体に浸炭焼入れ処理、すなわち真空浸炭処理等とその後の焼入れ処理とを施した焼結体等によって形成される。 The first side plate 17, the cam ring 34, the rotor body 36, and the vane 38 are made of, for example, an iron-nickel-molybdenum-carbon based sintered alloy, particularly an iron-nickel-copper-molybdenum-carbon based sintered body. density was formed by high-density warm die lubrication to increase the strength and wear resistance ρ = 7.25g / cm 3 or more, in particular high-density sintered body of 7.25~7.5g / cm 3, more The high-density sintered body is formed by a sintered body or the like that has been subjected to carburizing and quenching treatment, that is, vacuum carburizing treatment and subsequent quenching treatment.

リヤハウジング1は、本発明の金属部品の製造方法によって製造される。すなわち、リヤハウジング1とフロントハウジング11は、オイルポンプ2を軽量化すると共に、特にオイルポンプの高圧化(例えば8MPa→15MPa)に対応して歪みを防止するべく強度を高めるために、シリコンを1〜25質量%、好ましくは10〜20質量%程度の割合で含む高シリコン−アルミニウム合金によって形成される。またロータ3の軸端、すなわちロータ本体36の側面、およびベーン38の側縁に対向し、前記両部が摺接されるリヤハウジング1の対向面25は、その耐摩耗性を高めるべく図示しない陽極酸化皮膜によって被覆される。 The rear housing 1 is manufactured by the metal component manufacturing method of the present invention. That is, the rear housing 1 and the front housing 11, together with the weight of the oil pump 2, in particular for increasing the strength in order to prevent distortion in response to the high pressure of the oil pump (e.g. 8 MPa → 15 MPa), a divorced It is formed of a high silicon-aluminum alloy containing 1 to 25% by mass, preferably about 10 to 20% by mass. Further, the opposed surface 25 of the rear housing 1 facing the shaft end of the rotor 3, that is, the side surface of the rotor main body 36 and the side edge of the vane 38 and in which the both portions are slidably contacted is not shown in order to improve the wear resistance. It is covered with an anodized film.

しかし前記高シリコン−アルミニウム合金からなるリヤハウジング1を基材として、通常の条件で陽極酸化処理した場合には、先に説明したように陽極酸化皮膜の表面平滑性が低下して、ロータ本体36やベーン38に対する攻撃性を発現するという問題を生じる。
これに対し本発明では、基材としてのリヤハウジング1を陽極として、陰極と共に電解液に浸漬した状態で、
(1) 前記両極間に与える電流の電流密度を0A/dmから毎分0.35A/dm以下の割合で増加させる第一工程と、
(2) 電流密度が所定値に達した時点以降、前記所定の電流密度を維持しながら陽極酸化処理を続ける第二工程と、
を経て、前記対向面25を陽極酸化皮膜で被覆することで、前記陽極酸化皮膜の表面平滑性を高めることができる。
However, when the rear housing 1 made of the high silicon-aluminum alloy is used as a base material and anodized under normal conditions, the surface smoothness of the anodized film is lowered as described above, and the rotor body 36 And the problem of developing aggressiveness against the vane 38 occurs.
On the other hand, in the present invention, the rear housing 1 as a base is used as an anode, and is immersed in an electrolyte together with a cathode.
(1) a first step of increasing the current density of the current applied between the two electrodes from 0 A / dm 2 at a rate of 0.35 A / dm 2 or less per minute;
(2) a second step of continuing the anodizing process while maintaining the predetermined current density after the current density reaches a predetermined value;
Then, the surface smoothness of the anodized film can be improved by coating the facing surface 25 with the anodized film.

そのため本発明によれば、陽極酸化皮膜で被覆された対向面25がロータ本体36やベーン38に対する攻撃性を有しない上、耐摩耗性にも優れたリヤハウジング1を製造することが可能となる。
前記第一工程において電流密度を増加させる割合を小さくするほど、前記第一および第二工程を経て形成される陽極酸化皮膜の厚みを均一化し、その表面を平滑化できる。ただし第一工程において電流密度を増加させる割合を小さくするほど、所定の厚みを有する陽極酸化皮膜を形成するために長時間の処理が必要となり、前記陽極酸化皮膜を有する金属部品の生産性が低下する傾向がある。
Therefore, according to the present invention, it is possible to manufacture the rear housing 1 in which the facing surface 25 covered with the anodized film does not have an aggressiveness against the rotor body 36 and the vane 38 and also has excellent wear resistance. .
The smaller the rate of increasing the current density in the first step, the more uniform the thickness of the anodized film formed through the first and second steps, and the smoother the surface. However, the smaller the rate of increasing the current density in the first step, the longer the treatment required to form the anodic oxide film having a predetermined thickness, and the lower the productivity of metal parts having the anodic oxide film. Tend to.

そのため表面平滑性等に優れた陽極酸化皮膜を有するリヤハウジング1を、良好な生産性を維持しながら製造することを考慮すると、第一工程において電流密度を増加させる割合は、前記範囲内でも毎分0.15A/dm以上、特に毎分0.16〜0.34A/dmであるのが好ましい。また電流密度は0A/dmから所定値まで一方的に増加させてもよいし、段階的に増加させてもよい。 Therefore, considering that the rear housing 1 having an anodized film having excellent surface smoothness and the like is manufactured while maintaining good productivity, the ratio of increasing the current density in the first step is within the above range. It is preferably 0.15 A / dm 2 or more per minute, particularly 0.16 to 0.34 A / dm 2 per minute. The current density may be unilaterally increased from 0 A / dm 2 to a predetermined value, or may be increased stepwise.

第二工程においては電流密度を、定電流制御によって0.8A/dm以上、1.2A/dm以下、特に0.9A/dm以上、1.1A/dm以下の所定値に維持するのが好ましい。電流密度が前記範囲未満では、所定の厚みを有する陽極酸化皮膜を形成するために長時間の処理が必要となり、前記陽極酸化皮膜を有する金属部品の生産性が低下するおそれがある。また前記範囲を超える場合には陽極酸化皮膜の表面粗さが大きくなって、耐摩耗性が低下したり、オイルポンプの性能が低下したりするおそれがある。 Maintaining the current density in the second step, the constant current control by 0.8 A / dm 2 or more, 1.2A / dm 2 or less, in particular 0.9 A / dm 2 or more, the predetermined value of 1.1A / dm 2 or less It is preferable to do this. If the current density is less than the above range, it takes a long time to form an anodic oxide film having a predetermined thickness, which may reduce the productivity of metal parts having the anodic oxide film. On the other hand, when the above range is exceeded, the surface roughness of the anodized film becomes large, which may reduce the wear resistance and the performance of the oil pump.

陽極酸化処理は、電流密度を前記(1)(2)の工程を経て制御すること以外は従来同様に実施できる。例えば基材としてのリヤハウジング1は、電解液に浸漬するに先立って脱脂等の前処理を施しておくのが好ましい。
陽極酸化皮膜は、リヤハウジング1の少なくとも対向面25を被覆していればよく、前記対向面25のみを陽極酸化皮膜で選択的に被覆するためには、リヤハウジング1の他の表面をマスキングすればよい。ただしマスキング等の手間を省くと共にリヤハウジング1の全表面の耐摩耗性を向上することを考慮すると、前記リヤハウジング1の、対向面25を含む全表面を陽極酸化皮膜で被覆するのが好ましい。
The anodizing treatment can be performed in the same manner as in the prior art except that the current density is controlled through the steps (1) and (2). For example, the rear housing 1 as a base material is preferably subjected to pretreatment such as degreasing prior to being immersed in the electrolytic solution.
The anodic oxide coating only needs to cover at least the opposing surface 25 of the rear housing 1. To selectively cover only the opposing surface 25 with the anodic oxide coating, the other surface of the rear housing 1 must be masked. That's fine. However, in consideration of saving troubles such as masking and improving the wear resistance of the entire surface of the rear housing 1, it is preferable to cover the entire surface of the rear housing 1 including the facing surface 25 with an anodized film.

陰極としては鉛(Pb)、カーボン(C)等が用いられる。
電解液としては硫酸浴、しゅう酸浴、クロム酸浴、りん酸浴、アルカリ浴等が挙げられ、特に硫酸浴が好ましい。電解液の液温は、できるだけ硬度が高い緻密な陽極酸化皮膜を形成することや、特に形成の初期段階において陽極酸化皮膜が連続相領域で選択的かつ急速に成長するのを抑制しながら、ある程度の成長速度を確保してリヤハウジング1の生産性を維持すること等を考慮すると10〜40℃、特に10〜20℃であるのが好ましい。
Lead (Pb), carbon (C) or the like is used as the cathode.
Examples of the electrolytic solution include a sulfuric acid bath, an oxalic acid bath, a chromic acid bath, a phosphoric acid bath, an alkaline bath, and the like, and a sulfuric acid bath is particularly preferable. The liquid temperature of the electrolyte solution is controlled to a certain extent while forming a dense anodic oxide film with as high a hardness as possible and suppressing the selective and rapid growth of the anodic oxide film in the continuous phase region, particularly in the initial stage of formation. In consideration of maintaining the growth rate of the rear housing 1 and maintaining the productivity of the rear housing 1, the temperature is preferably 10 to 40 ° C, particularly preferably 10 to 20 ° C.

前記陽極酸化処理によって形成される陽極酸化皮膜は、従来同様に基材の表面、すなわちリヤハウジング1の対向面25等と接する活性層と、その上の多孔層とからなり、前記多孔層はオングストロームオーダーのごく微細な通孔を有する多孔質構造を有している。
そのため、前記多孔層の通孔にオイルを保持させて、ロータ本体36やベーン38に対する良好な潤滑性を付与することが期待される。また、例えばオイルポンプ2を、特に自動車のエンジン周り等の高温環境下で使用する場合は、リヤハウジング1とロータ本体36やベーン38との焼き付きを防止するため、前記通孔に、例えば二硫化モリブデン(MoS)等の固体潤滑剤を含浸させてもよい。
The anodic oxide film formed by the anodic oxidation treatment includes an active layer in contact with the surface of the base material, that is, the facing surface 25 of the rear housing 1 and a porous layer thereon, as in the prior art, and the porous layer is angstrom. It has a porous structure with very fine pores of the order.
For this reason, it is expected that oil is held in the through holes of the porous layer to give good lubricity to the rotor body 36 and the vane 38. For example, when the oil pump 2 is used in a high temperature environment such as around the engine of an automobile, in order to prevent seizure between the rear housing 1 and the rotor main body 36 and the vane 38, the through hole is provided with, for example, disulfide. A solid lubricant such as molybdenum (MoS 2 ) may be impregnated.

形成した陽極酸化皮膜は、その表面平滑性や耐食性等を向上するため、従来同様に水中に浸漬して煮沸する等の封孔処理を施すのが好ましい。
先に説明したように陽極酸化皮膜の表面は、ロータ本体36やベーン38に対する攻撃性を抑えるためにできるだけ平滑であることが求められる。具体的には日本工業規格JIS B0601:2001「製品の幾何特性仕様(GPS)−表面性状:輪郭曲線方式−用語,定義及び表面性状パラメータ」の付属書1で規定された十点平均粗さRZJIS94が1μmに仕上げられた対向面25に前記(1)(2)の工程を経て被覆される陽極酸化皮膜の十点平均粗さRZJIS94が3μm以下であるのが好ましい。十点平均粗さの下限値は0μm、すなわち表面が完全に平滑であることが理想であるが、現実的には2μm程度であるのが好ましい。
In order to improve the surface smoothness, corrosion resistance, etc., the formed anodic oxide film is preferably subjected to sealing treatment such as immersing in water and boiling.
As described above, the surface of the anodized film is required to be as smooth as possible in order to suppress the aggressiveness to the rotor body 36 and the vane 38. Specifically, the ten-point average roughness R defined in Appendix 1 of Japanese Industrial Standard JIS B0601: 2001 “Product Geometrical Specification (GPS) —Surface Properties: Contour Curve Method—Terms, Definitions, and Surface Property Parameters” It is preferable that the ten-point average roughness R ZJIS94 of the anodized film coated on the facing surface 25 finished with ZJIS94 to 1 μm through the steps (1) and (2) is 3 μm or less. The lower limit of the ten-point average roughness is ideally 0 μm, that is, it is ideal that the surface is completely smooth, but practically it is preferably about 2 μm.

陽極酸化皮膜の厚みは、リヤハウジング1の生産性を維持しながら、前記リヤハウジング1の対向面25等に良好な耐摩耗性を付与することを考慮すると6〜15μm、特に8〜10μmであるのが好ましい。
陽極酸化皮膜の硬さは、リヤハウジング1の対向面25に十分な耐摩耗性を付与することを考慮すると、その内部硬さ(表面から深さ1mmでの硬さ)が、日本工業規格JIS Z2244:2003「ビッカース硬さ試験−試験方法」において規定された測定方法によって測定される、試験力0.09807Nでのビッカース硬さHV0.01で表して150である高シリコン−アルミニウムからなる対向面25に前記(1)(2)の工程を経て被覆される陽極酸化皮膜の表面の、同じビッカース硬さHV0.01が200〜300程度であるのが好ましい。
The thickness of the anodized film is 6 to 15 μm, particularly 8 to 10 μm in consideration of imparting good wear resistance to the facing surface 25 of the rear housing 1 while maintaining the productivity of the rear housing 1. Is preferred.
The hardness of the anodic oxide film, considering that sufficient wear resistance is imparted to the facing surface 25 of the rear housing 1, has an internal hardness (hardness at a depth of 1 mm from the surface) of Japanese Industrial Standard JIS. Z2244: 2003 facing surface made of high silicon-aluminum, expressed as Vickers hardness HV0.01 at a test force of 0.09807N, 150, measured by the measurement method defined in “Vickers hardness test—test method” 25, it is preferable that the same Vickers hardness HV0.01 of the surface of the anodized film coated through the steps (1) and (2) is about 200 to 300.

本発明の金属部品の製造方法は、以上で説明した図の例におけるオイルポンプ2のリヤハウジング1の製造には限定されず、シリコンを1〜25質量%の割合で含む高シリコン−アルミニウム合金の少なくとも一部の表面が陽極酸化皮膜で被覆される種々の金属部品の製造方法に適用することができる。その際、陽極酸化皮膜の表面の十点平均粗さや厚み、硬さ等は、その金属部品において求められる好適な範囲に設定することができる。その他、本発明の要旨を逸脱しない範囲で種々の変更を施すことができる。
The method for producing a metal part of the present invention is not limited to the production of the rear housing 1 of the oil pump 2 in the example of the drawings described above, but is a high silicon-aluminum alloy containing silicon in a proportion of 1 to 25% by mass . The present invention can be applied to various metal parts manufacturing methods in which at least a part of the surface is coated with an anodized film. At that time, the ten-point average roughness, thickness, hardness, etc. of the surface of the anodized film can be set within a suitable range required for the metal part. In addition, various changes can be made without departing from the scope of the present invention.

(実施例1)
基材としてシリコンの含有割合が14質量%である高シリコン−アルミニウム合金製の、平板状の板材(縦25mm×横25mm×厚み5mm)を用意した。前記板材を形成する高シリコン−アルミニウム合金の、表面から深さ1mmでのビッカース硬さHV0.01は150であった。板材の表面の十点平均粗さRZJIS94は1μmに仕上げた。
Example 1
A flat plate material (length 25 mm × width 25 mm × thickness 5 mm) made of a high silicon-aluminum alloy having a silicon content of 14% by mass was prepared as a base material. The Vickers hardness HV0.01 at a depth of 1 mm from the surface of the high silicon-aluminum alloy forming the plate material was 150. The ten-point average roughness RZJIS94 of the surface of the plate material was finished to 1 μm.

前記板材をあらかじめ脱脂処理したのち電源装置の陽極に接続し、鉛陰極と共に硫酸浴に浸漬して、まず第一工程において前記両極間に与える電流の電流密度を0A/dmから毎分0.333A/dmの割合で3分間かけて1A/dmまで増加させた。
次いで、電流密度が前記所定値に達した時点以降、定電流制御によって前記電流密度を維持しながらさらに37分間、合計40分間の陽極酸化処理をした後、基材を硫酸浴から取り出し、水洗し、さらに水中で煮沸することで封孔処理をして、表面が陽極酸化皮膜で被覆された金属部品を製造した。
The plate material is degreased in advance and then connected to the anode of the power supply device and immersed in a sulfuric acid bath together with the lead cathode. First, the current density applied between the electrodes in the first step is changed from 0 A / dm 2 to 0. Increased to 1 A / dm 2 over 3 minutes at a rate of 333 A / dm 2 .
Subsequently, after the current density reaches the predetermined value, the anodization treatment is further performed for a further 37 minutes while maintaining the current density by constant current control, and then the substrate is taken out from the sulfuric acid bath and washed with water. Further, a metal part having a surface coated with an anodized film was manufactured by boiling in water and sealing.

(実施例2)
第一工程において両極間に与える電流の電流密度を0A/dmから毎分0.167A/dmの割合で6分間かけて1A/dmまで増加させた後、定電流制御によって前記電流密度を維持しながらさらに34分間、合計40分間の陽極酸化処理をしたこと以外は実施例1と同様にして、表面が陽極酸化皮膜で被覆された金属部品を製造した。
(Example 2)
In the first step, the current density of the current applied between the two electrodes is increased from 0 A / dm 2 to 1 A / dm 2 over 6 minutes at a rate of 0.167 A / dm 2 per minute, and then the current density is controlled by constant current control. A metal part whose surface was coated with an anodized film was produced in the same manner as in Example 1 except that the anodizing treatment was further performed for 34 minutes for a total of 40 minutes while maintaining the above.

(比較例1)
第一工程において両極間に与える電流の電流密度を0A/dmから毎分1A/dmの割合で1分間かけて1A/dmまで増加させた後、定電流制御によって前記電流密度を維持しながらさらに39分間、合計40分間の陽極酸化処理をしたこと以外は実施例1と同様にして、表面が陽極酸化皮膜で被覆された金属部品を製造した。
(Comparative Example 1)
After increasing the current density of the current applied between the electrodes to 1A / dm 2 over a period of 1 minute per minute 1A / dm 2 from 0A / dm 2 in a first step, maintaining the current density by the constant current control However, a metal part having a surface coated with an anodized film was produced in the same manner as in Example 1 except that the anodizing treatment was further performed for 39 minutes for a total of 40 minutes.

(表面粗さ測定)
実施例1、2、比較例1で製造した金属部品の、陽極酸化皮膜の表面の十点平均粗さRZJIS94を、表面粗さ計を用いて測定した。測定の条件は区間数6、カットオフ値λ=0.8mm、λ=0.0025mm、測定速度:0.5mm/secとし、測定結果にガウシアンフィルタを適用して十点平均粗さRZJIS94を求めた。
(Surface roughness measurement)
The ten-point average roughness RZJIS94 of the surface of the anodized film of the metal parts produced in Examples 1 and 2 and Comparative Example 1 was measured using a surface roughness meter. The measurement conditions were 6 sections, cut-off value λ C = 0.8 mm, λ S = 0.0025 mm, measurement speed: 0.5 mm / sec, and a 10-point average roughness R by applying a Gaussian filter to the measurement results. ZJIS94 was determined.

(厚み測定)
実施例1、2、比較例1で製造した金属部品を陽極酸化皮膜の厚み方向にカットし、樹脂埋めしてカット面を研磨したのち400倍の顕微鏡写真を撮影し、写真上の十点で測定した厚みの平均値を求めて陽極酸化皮膜の厚みとした。また前記十点の測定値の最大値と最小値の差を求めて厚みのばらつきを評価した。
(Thickness measurement)
The metal parts manufactured in Examples 1 and 2 and Comparative Example 1 were cut in the thickness direction of the anodic oxide film, and the cut surface was polished by embedding the resin, and then a microphotograph of 400 times was taken. The average value of the measured thickness was determined and used as the thickness of the anodized film. Further, the difference between the maximum value and the minimum value of the ten measured values was determined to evaluate the thickness variation.

(硬さ測定)
実施例1、2、比較例1で製造した金属部品の、陽極酸化皮膜の表面をラップ研磨したのちビッカース硬さHV0.01を測定した。
(ボール・オン・プレート摩擦試験)
直径4.76mmの軸受鋼(SUJ2)製のボールを、実施例1、比較例1で製造した金属部品(プレート)の、陽極酸化皮膜の表面に、球面上の1点で常に当接させた状態で、前記陽極酸化皮膜の厚み方向に10Nの荷重をかけながら直径20mmの円を描くように摺動させた。摺動速度は0.08m/s、摺動距離は432mとした。また摺動は、前記金属部品およびボールをPSオイル(株式会社ジェイテクト製、油温100℃)中に浸漬した状態で実施した。
(Hardness measurement)
After lapping the surface of the anodized film of the metal parts produced in Examples 1 and 2 and Comparative Example 1, the Vickers hardness HV0.01 was measured.
(Ball-on-plate friction test)
A ball made of bearing steel (SUJ2) having a diameter of 4.76 mm was always brought into contact with the surface of the anodized film of the metal part (plate) manufactured in Example 1 and Comparative Example 1 at one point on the spherical surface. In the state, it was slid so as to draw a circle having a diameter of 20 mm while applying a load of 10 N in the thickness direction of the anodized film. The sliding speed was 0.08 m / s and the sliding distance was 432 m. The sliding was performed in a state where the metal parts and the balls were immersed in PS oil (manufactured by JTEKT Corporation, oil temperature 100 ° C.).

摺動後のボールの表面を実体顕微鏡で観察して摩耗痕半径a(mm)を測定し、前記摩耗痕半径aと、ボールの半径r(=2.38mm)とから、式(A):   The surface of the ball after sliding is observed with a stereomicroscope to measure the wear scar radius a (mm). From the wear scar radius a and the ball radius r (= 2.38 mm), the formula (A):

Figure 0005141968
Figure 0005141968

によって摩耗痕深さh(mm)を求めた。
次に前記摩耗痕深さhと摩耗痕半径aとから、式(B):
Was used to determine the wear scar depth h (mm).
Next, from the wear mark depth h and the wear mark radius a, the formula (B):

Figure 0005141968
Figure 0005141968

によって摩耗量(mm)を求め、前記摩耗量と荷重(=10N)と摺動距離(=432m)とから、式(C): The amount of wear (mm 3 ) is obtained by the above equation, and from the amount of wear, the load (= 10 N), and the sliding distance (= 432 m), the formula (C):

Figure 0005141968
Figure 0005141968

によって、相手部材に対する陽極酸化皮膜の攻撃性の指標となるボールの比摩耗量(mm/N・m)を求めた。比摩耗量が小さいほど、陽極酸化皮膜は相手部材に対する攻撃性が小さいことを示している。
また、摺動前後のプレートの表面について、それぞれ表面粗さ計を用いて測定した粗さ曲線を比較して、前記プレートの表面に、ボールの摺動によって形成された摩耗痕の幅b(mm)と深さd(mm)とを求め、前記両数値から、式(D):
Thus, the specific wear amount (mm 3 / N · m) of the ball serving as an index of the aggressiveness of the anodized film against the mating member was determined. It is shown that the smaller the specific wear amount, the smaller the anodic oxide film is attacking the mating member.
Also, the surface of the plate before and after sliding was compared with the roughness curves measured using a surface roughness meter, and the width b (mm) of the wear mark formed by sliding the ball on the surface of the plate. ) And depth d (mm), and from the above two values, formula (D):

Figure 0005141968
Figure 0005141968

によって摩耗痕の断面の仮想半径R(mm)を求め、前記仮想半径Rと摩耗痕の幅bとから、式(E): The virtual radius R (mm) of the cross section of the wear scar is obtained by the above equation, and the formula (E):

Figure 0005141968
Figure 0005141968

によって摩耗痕の仮想扇型の角度φ(°)を求めた。
次に、前記仮想半径R、角度φ、幅b、および深さdから、式(F):
Was used to determine the angle φ (°) of the virtual fan shape of the wear scar.
Next, from the virtual radius R, the angle φ, the width b, and the depth d, the formula (F):

Figure 0005141968
Figure 0005141968

によって摩耗量(mm)を求め、前記摩耗量と荷重(=10N)と摺動距離(=432m)とから、先の式(C)によって、陽極酸化皮膜の耐摩耗性の指標となるプレートの比摩耗量(mm/N・m)を求めた。比摩耗量が小さいほど、陽極酸化皮膜は、それ自体の耐摩耗性に優れることを示している。
以上の結果を表1に示す。
The amount of wear (mm 3 ) is obtained from the above, and from the amount of wear, the load (= 10 N), and the sliding distance (= 432 m), the plate serving as an index of the wear resistance of the anodized film according to the above equation (C) The specific wear amount (mm 3 / N · m) was determined. It shows that the smaller the specific wear amount, the better the anodized film has its own wear resistance.
The results are shown in Table 1.

Figure 0005141968
Figure 0005141968

表より、陽極酸化処理の第一工程において電流密度を毎分0.35A/dm以下の割合で増加させた実施例1、2の金属部品は、電流密度を、前記範囲を超えて増加させた比較例1のものに比べて陽極酸化皮膜の厚みのバラツキが小さく、表面平滑性に優れると共に相手部材に対する攻撃性を有しない上、それ自体の耐摩耗性にも優れることが確認された。また実施例1、2を比較すると、実施例2は実施例1よりも陽極酸化皮膜の厚みが低下する傾向にあることから、前記第一工程において電流密度を0.15A/dm以上の割合で増加させるのが、できるだけ短時間で十分な厚みを有する陽極酸化皮膜を形成して金属部品の生産性を向上できる点で好ましいことが確認された。 From the table, the metal parts of Examples 1 and 2 in which the current density was increased at a rate of 0.35 A / dm 2 or less per minute in the first step of the anodizing treatment increased the current density beyond the above range. It was confirmed that the variation in thickness of the anodized film was smaller than that of Comparative Example 1, the surface smoothness was excellent, the aggression against the mating member was not exhibited, and the wear resistance itself was excellent. Further, when Examples 1 and 2 are compared with each other, Example 2 has a tendency that the thickness of the anodized film is lower than that of Example 1, so that the current density in the first step is a ratio of 0.15 A / dm 2 or more. It has been confirmed that the increase in the thickness is preferable in that the productivity of metal parts can be improved by forming an anodic oxide film having a sufficient thickness in as short a time as possible.

本発明の製造方法によって製造される金属部品の一例としてのリヤハウジングを含むオイルポンプの、ロータの軸の軸線の方向に沿う断面を示す断面図である。It is sectional drawing which shows the cross section along the direction of the axis of the axis | shaft of a rotor of the oil pump containing the rear housing as an example of the metal component manufactured by the manufacturing method of this invention. 図1のオイルポンプからリヤハウジングを外した状態を示す側面図である。It is a side view which shows the state which removed the rear housing from the oil pump of FIG.

符号の説明Explanation of symbols

1:リヤハウジング、2:オイルポンプ、3:ロータ、6:作動室、25:対向面。   1: rear housing, 2: oil pump, 3: rotor, 6: working chamber, 25: facing surface.

Claims (4)

シリコンを1〜25質量%の割合で含む高シリコン−アルミニウム合金からなる基材の少なくとも一部の表面を陽極酸化処理して、前記表面が陽極酸化皮膜で被覆された金属部品を製造するための製造方法であって、前記基材を陽極として、陰極と共に電解液に浸漬した状態で、
(1) 前記両極間に与える電流の電流密度を0A/dmから毎分0.35A/dm以下の割合で増加させる第一工程と、
(2) 電流密度が所定値に達した時点以降、前記所定の電流密度を維持しながら陽極酸化処理を続ける第二工程と、
を経て、前記表面を陽極酸化皮膜で被覆することを特徴とする金属部品の製造方法。
For producing a metal part in which at least a part of the surface of a base material made of a high silicon-aluminum alloy containing silicon in a proportion of 1 to 25% by mass is anodized, and the surface is coated with an anodized film In the production method, the substrate as an anode, immersed in an electrolyte together with a cathode,
(1) a first step of increasing the current density of the current applied between the two electrodes from 0 A / dm 2 at a rate of 0.35 A / dm 2 or less per minute;
(2) a second step of continuing the anodizing process while maintaining the predetermined current density after the current density reaches a predetermined value;
Then, the surface is coated with an anodized film, and the method for producing a metal part is characterized in that:
第一工程において、電流密度を毎分0.15A/dm以上の割合で増加させる請求項1に記載の金属部品の製造方法。 The method of manufacturing a metal part according to claim 1, wherein in the first step, the current density is increased at a rate of 0.15 A / dm 2 or more per minute. 第二工程において、電流密度を0.8A/dm以上、1.2A/dm以下の所定値に維持する請求項1または2に記載の金属部品の製造方法。 In the second step, current density 0.8 A / dm 2 or more, a manufacturing method of a metal part according to claim 1 or 2 is maintained at a predetermined value of 1.2A / dm 2 or less. 金属部品が、作動室と、前記作動室に連通する吸込通路および吐出通路とを有する形状に複数の分割体によって構成された筐体と、前記作動室内に軸を中心として回転可能に配設され、回転に伴ってオイルを、吸込通路を通して吸い込んで吐出通路を通して吐出させるロータとを有するオイルポンプの、前記筐体を構成する分割体のうち作動室に臨み、ロータの軸端に対向するリヤハウジングであり、前記リヤハウジングのうち少なくともロータの軸端に対向する表面を、陽極酸化皮膜によって被覆する請求項1ないし3のいずれかに記載の金属部品の製造方法。   A metal part is disposed in a shape having a working chamber, a suction passage and a discharge passage communicating with the working chamber, and a plurality of divided bodies, and is rotatably disposed around the shaft in the working chamber. The rear housing of the oil pump having a rotor that sucks oil through the suction passage and rotates through the discharge passage as it rotates, facing the working chamber in the divided body constituting the housing and facing the shaft end of the rotor The method of manufacturing a metal part according to any one of claims 1 to 3, wherein at least a surface of the rear housing facing the shaft end of the rotor is covered with an anodized film.
JP2008149454A 2008-06-06 2008-06-06 Manufacturing method of metal parts Expired - Fee Related JP5141968B2 (en)

Priority Applications (3)

Application Number Priority Date Filing Date Title
JP2008149454A JP5141968B2 (en) 2008-06-06 2008-06-06 Manufacturing method of metal parts
US12/479,272 US8172561B2 (en) 2008-06-06 2009-06-05 Metal part and method of manufacturing metal part
EP09162010A EP2130952B1 (en) 2008-06-06 2009-06-05 Metal part and method of manufacturing metal part

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008149454A JP5141968B2 (en) 2008-06-06 2008-06-06 Manufacturing method of metal parts

Publications (3)

Publication Number Publication Date
JP2009293094A JP2009293094A (en) 2009-12-17
JP2009293094A5 JP2009293094A5 (en) 2011-10-27
JP5141968B2 true JP5141968B2 (en) 2013-02-13

Family

ID=41541541

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008149454A Expired - Fee Related JP5141968B2 (en) 2008-06-06 2008-06-06 Manufacturing method of metal parts

Country Status (1)

Country Link
JP (1) JP5141968B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP6472678B2 (en) * 2015-02-19 2019-02-20 日立オートモティブシステムズ株式会社 Electric oil pump
CN114481259A (en) * 2021-12-30 2022-05-13 唐光怀 Alloy housing part anodizing equipment with high sealing performance

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2728313B2 (en) * 1990-11-29 1998-03-18 イズミ工業株式会社 Surface treatment method of aluminum or its alloy
JP3335757B2 (en) * 1994-03-17 2002-10-21 株式会社半導体エネルギー研究所 Anodizing method
JP2678139B2 (en) * 1994-05-23 1997-11-17 株式会社神戸製鋼所 Method of manufacturing photoconductor drum
JP2003328187A (en) * 2002-05-17 2003-11-19 Nippon Light Metal Co Ltd Surface treatment method of aluminum material
JP4821275B2 (en) * 2005-11-09 2011-11-24 株式会社ジェイテクト Oil pump

Also Published As

Publication number Publication date
JP2009293094A (en) 2009-12-17

Similar Documents

Publication Publication Date Title
US7997884B2 (en) Rotary device and oil pump having α-alumina and zirconia coating
KR20110008027A (en) Structured chrome solid particle layer and method for the production thereof
CN106762631B (en) A kind of scroll compressor thermomechanical components and its manufacturing method and scroll compressor
JP7396525B2 (en) Piston for internal combustion engine
JP2016540119A (en) Method for producing a tribological coated surface
JP4650157B2 (en) Plating film for sliding part and method for forming the same
JP5141968B2 (en) Manufacturing method of metal parts
US8172561B2 (en) Metal part and method of manufacturing metal part
JP4821275B2 (en) Oil pump
Hong et al. Self-lubricating PEO coating on an Al alloy produced by vacuum impregnation post-treatment
JP5062487B2 (en) Oil pump
JP3026272B2 (en) Plain bearing
CA2847014A1 (en) Lubricious composite oxide coating and process for making the same
JP4379852B2 (en) Piston for internal combustion engine made of aluminum alloy
CN206503710U (en) A kind of scroll compressor thermomechanical components and scroll compressor
JPH0525696A (en) Al alloy member and production thereof
JP6142862B2 (en) Sliding structure
JPS6050203A (en) Rotor housing for rotary piston engine
JPH0861138A (en) Cylinder for small type two-cycle engine
JP2012002073A (en) Method for manufacturing cylinder of internal combustion engine and the cylinder of internal combustion engine
US6543333B2 (en) Enriched cobalt-tin swashplate coating alloy
EP3978655A2 (en) Method for producing layered film structure and piston for internal combustion engine
JP5302524B2 (en) Rotating equipment and oil pump
EP1223358B1 (en) Bearing manufacturing method for compressor
JP2009293094A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110221

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110901

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110905

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120816

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120925

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121025

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121107

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141968

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees