JP5141732B2 - Ion source electrode cleaning method - Google Patents
Ion source electrode cleaning method Download PDFInfo
- Publication number
- JP5141732B2 JP5141732B2 JP2010179909A JP2010179909A JP5141732B2 JP 5141732 B2 JP5141732 B2 JP 5141732B2 JP 2010179909 A JP2010179909 A JP 2010179909A JP 2010179909 A JP2010179909 A JP 2010179909A JP 5141732 B2 JP5141732 B2 JP 5141732B2
- Authority
- JP
- Japan
- Prior art keywords
- electrode
- cleaning
- glow discharge
- gas
- plasma
- Prior art date
- Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
- Active
Links
- 238000004140 cleaning Methods 0.000 title claims description 74
- 238000000034 method Methods 0.000 title claims description 31
- 238000000605 extraction Methods 0.000 claims description 52
- 238000010884 ion-beam technique Methods 0.000 claims description 45
- 230000005684 electric field Effects 0.000 claims description 3
- 239000000284 extract Substances 0.000 claims description 3
- 239000007789 gas Substances 0.000 description 67
- 150000002500 ions Chemical class 0.000 description 51
- 230000002159 abnormal effect Effects 0.000 description 6
- 239000001257 hydrogen Substances 0.000 description 5
- 229910052739 hydrogen Inorganic materials 0.000 description 5
- 230000001629 suppression Effects 0.000 description 4
- UFHFLCQGNIYNRP-UHFFFAOYSA-N Hydrogen Chemical compound [H][H] UFHFLCQGNIYNRP-UHFFFAOYSA-N 0.000 description 3
- 150000002431 hydrogen Chemical class 0.000 description 3
- 239000012212 insulator Substances 0.000 description 3
- 239000002245 particle Substances 0.000 description 3
- 238000004544 sputter deposition Methods 0.000 description 3
- XKRFYHLGVUSROY-UHFFFAOYSA-N Argon Chemical compound [Ar] XKRFYHLGVUSROY-UHFFFAOYSA-N 0.000 description 2
- XYFCBTPGUUZFHI-UHFFFAOYSA-N Phosphine Chemical compound P XYFCBTPGUUZFHI-UHFFFAOYSA-N 0.000 description 2
- 230000001133 acceleration Effects 0.000 description 2
- 238000006243 chemical reaction Methods 0.000 description 2
- 238000010891 electric arc Methods 0.000 description 2
- 239000011261 inert gas Substances 0.000 description 2
- 229910015900 BF3 Inorganic materials 0.000 description 1
- ZOXJGFHDIHLPTG-UHFFFAOYSA-N Boron Chemical compound [B] ZOXJGFHDIHLPTG-UHFFFAOYSA-N 0.000 description 1
- OAICVXFJPJFONN-UHFFFAOYSA-N Phosphorus Chemical compound [P] OAICVXFJPJFONN-UHFFFAOYSA-N 0.000 description 1
- 229910052786 argon Inorganic materials 0.000 description 1
- RBFQJDQYXXHULB-UHFFFAOYSA-N arsane Chemical compound [AsH3] RBFQJDQYXXHULB-UHFFFAOYSA-N 0.000 description 1
- 229910052785 arsenic Inorganic materials 0.000 description 1
- RQNWIZPPADIBDY-UHFFFAOYSA-N arsenic atom Chemical compound [As] RQNWIZPPADIBDY-UHFFFAOYSA-N 0.000 description 1
- 229910052796 boron Inorganic materials 0.000 description 1
- WTEOIRVLGSZEPR-UHFFFAOYSA-N boron trifluoride Chemical compound FB(F)F WTEOIRVLGSZEPR-UHFFFAOYSA-N 0.000 description 1
- 230000007423 decrease Effects 0.000 description 1
- 239000002019 doping agent Substances 0.000 description 1
- 230000000694 effects Effects 0.000 description 1
- 238000002474 experimental method Methods 0.000 description 1
- 238000010438 heat treatment Methods 0.000 description 1
- -1 hydrogen compound Chemical class 0.000 description 1
- 238000007689 inspection Methods 0.000 description 1
- 238000012423 maintenance Methods 0.000 description 1
- 238000004519 manufacturing process Methods 0.000 description 1
- 238000005192 partition Methods 0.000 description 1
- 229910052698 phosphorus Inorganic materials 0.000 description 1
- 239000011574 phosphorus Substances 0.000 description 1
- 229910000073 phosphorus hydride Inorganic materials 0.000 description 1
- 239000004065 semiconductor Substances 0.000 description 1
Images
Classifications
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
- H01J37/3171—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation for ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J27/00—Ion beam tubes
- H01J27/02—Ion sources; Ion guns
- H01J27/08—Ion sources; Ion guns using arc discharge
- H01J27/14—Other arc discharge ion sources using an applied magnetic field
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/08—Ion sources; Ion guns
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/02—Details
- H01J37/04—Arrangements of electrodes and associated parts for generating or controlling the discharge, e.g. electron-optical arrangement or ion-optical arrangement
- H01J37/147—Arrangements for directing or deflecting the discharge along a desired path
- H01J37/15—External mechanical adjustment of electron or ion optical components
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/30—Electron-beam or ion-beam tubes for localised treatment of objects
- H01J37/317—Electron-beam or ion-beam tubes for localised treatment of objects for changing properties of the objects or for applying thin layers thereon, e.g. for ion implantation
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/32431—Constructional details of the reactor
- H01J37/32798—Further details of plasma apparatus not provided for in groups H01J37/3244 - H01J37/32788; special provisions for cleaning or maintenance of the apparatus
- H01J37/32853—Hygiene
- H01J37/32862—In situ cleaning of vessels and/or internal parts
-
- H—ELECTRICITY
- H01—ELECTRIC ELEMENTS
- H01J—ELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
- H01J37/00—Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
- H01J37/32—Gas-filled discharge tubes
- H01J37/34—Gas-filled discharge tubes operating with cathodic sputtering
- H01J37/3488—Constructional details of particle beam apparatus not otherwise provided for, e.g. arrangement, mounting, housing, environment; special provisions for cleaning or maintenance of the apparatus
Landscapes
- Chemical & Material Sciences (AREA)
- Analytical Chemistry (AREA)
- Engineering & Computer Science (AREA)
- Physics & Mathematics (AREA)
- Plasma & Fusion (AREA)
- Health & Medical Sciences (AREA)
- Epidemiology (AREA)
- Public Health (AREA)
- Combustion & Propulsion (AREA)
- Electron Sources, Ion Sources (AREA)
Description
この発明は、イオン源の引出し電極系を構成する電極の表面に堆積した堆積物を除去するクリーニング方法に関する。なお、この明細書において、単にイオンと言う場合は、正イオンを指す。 The present invention relates to a cleaning method for removing deposits deposited on the surface of an electrode constituting an extraction electrode system of an ion source. In this specification, the simple ion refers to a positive ion.
イオン源からイオンビームを引き出す運転を続けると、その引出し電極系を構成する電極に堆積物が堆積(付着)する。それを放置しておくと、電極間の異常放電等の不具合を惹き起こす。 When the operation of extracting the ion beam from the ion source is continued, deposits are deposited (attached) on the electrodes constituting the extraction electrode system. If it is left unattended, it will cause problems such as abnormal discharge between the electrodes.
そこで、イオン源電極をクリーニングする方法の一例として、イオン化ガスの代わりに希ガスをプラズマ室内に供給して、当該希ガスのイオンビームを引き出し、かつガス流量と引出し電圧のいずれか一方または両方を調整することによってイオンビームのビーム径を調整し、それによって、イオンビームを電極表面に堆積した堆積物に衝突させて、堆積物をスパッタによって除去するクリーニング方法が従来から提案されている(例えば特許文献1参照)。 Therefore, as an example of a method for cleaning the ion source electrode, a rare gas is supplied into the plasma chamber instead of the ionized gas, an ion beam of the rare gas is extracted, and either or both of the gas flow rate and the extraction voltage are set. Conventionally, a cleaning method has been proposed in which the beam diameter of the ion beam is adjusted to adjust the ion beam so that the ion beam collides with the deposit deposited on the electrode surface and the deposit is removed by sputtering (for example, patents). Reference 1).
上記従来のクリーニング方法では、希ガスのイオンビームを電極表面の堆積物に衝突させることによって堆積物を除去するのであるが、プラズマ室内に供給する希ガスのガス流量や、引出し電極系に印加する引出し電圧をどのように調整しても、堆積物が除去される領域は、電極の孔(イオン引出し孔)周辺に限定されるので、それ以外の領域に堆積した堆積物を除去することはできない。従って、堆積物を除去することのできる領域が狭い。 In the conventional cleaning method, the deposit is removed by colliding the ion beam of the rare gas with the deposit on the electrode surface. The rare gas is supplied to the plasma chamber or applied to the extraction electrode system. Regardless of how the extraction voltage is adjusted, the area where deposits are removed is limited to the periphery of the electrode holes (ion extraction holes), so deposits deposited in other areas cannot be removed. . Therefore, the area where deposits can be removed is narrow.
また、プラズマ室内のプラズマからイオンビームとして引き出され、各電極に照射されるイオンビーム電流の上限値は、原理上、そのイオン源の最大イオンビーム電流程度であるので、大きくてもせいぜい数百mA程度にしかできず、従って堆積物の高速除去は困難である。 The upper limit value of the ion beam current extracted from the plasma in the plasma chamber and applied to each electrode is, in principle, about the maximum ion beam current of the ion source, and is at most several hundred mA at most. To a certain extent, and therefore high speed removal of deposits is difficult.
そこでこの発明は、イオン源の引出し電極系を構成する電極の広い領域に亘って高速で堆積物を除去することができるクリーニング方法を提供することを主たる目的としている。 Accordingly, the main object of the present invention is to provide a cleaning method capable of removing deposits at a high speed over a wide area of the electrode constituting the extraction electrode system of the ion source.
この発明に係るクリーニング方法は、イオン化ガスが導入され当該イオン化ガスを電離させてプラズマを生成するプラズマ生成部と、このプラズマ生成部内のプラズマから電界の作用でイオンビームを引き出す電極系であって前記プラズマ側からイオンビーム引出し方向に配置された第1電極、第2電極および第3電極を少なくとも有している引出し電極系とを備えているイオン源の前記引出し電極系を構成する電極のクリーニング方法であって、前記イオン源に電圧を印加する電気回路を、イオンビームを引き出す状態と電極のクリーニングを行う状態とに切り換えるスイッチを設けておき、電極のクリーニングを行う際は、前記スイッチをクリーニングを行う状態側に切り換え、かつ前記第3電極を抵抗器を介して接地しておき、前記プラズマ生成部に前記イオン化ガスを導入して前記イオンビームを引き出す代わりに、前記引出し電極系を構成する少なくとも第1電極と第2電極との間にクリーニングガスを供給して、当該第1電極と第2電極との間のガス圧を、前記イオンビーム引き出し時のガス圧よりも高く保った状態で、前記第1電極と第2電極との間に、電源から直列抵抗器を介して電圧を印加して、両電極間に前記クリーニングガスのグロー放電を発生させることを特徴としている。 A cleaning method according to the present invention includes a plasma generation unit that introduces an ionized gas and ionizes the ionized gas to generate plasma, and an electrode system that extracts an ion beam from the plasma in the plasma generation unit by the action of an electric field. A method for cleaning an electrode constituting the extraction electrode system of an ion source comprising: an extraction electrode system having at least a first electrode , a second electrode, and a third electrode arranged in the ion beam extraction direction from the plasma side A switch for switching an electric circuit for applying a voltage to the ion source between a state in which an ion beam is drawn out and a state in which the electrode is cleaned is provided. It switched to a state side to perform, and leave grounding the third electrode via a resistor, the flop Instead of introducing the ionized gas into the zuma generating unit and extracting the ion beam, a cleaning gas is supplied between at least the first electrode and the second electrode constituting the extraction electrode system, and the first electrode In a state where the gas pressure between the second electrode and the second electrode is kept higher than the gas pressure at the time of extracting the ion beam, a voltage is applied from the power source through a series resistor between the first electrode and the second electrode. This is characterized in that glow discharge of the cleaning gas is generated between the two electrodes.
このクリーニング方法においては、第1電極と第2電極との間に発生させたグロー放電によってクリーニングガスのプラズマが生成され、当該プラズマ中のイオンによるスパッタおよび当該プラズマ中の活性粒子との化学反応等によって、両電極表面に堆積している堆積物が除去される。即ち、両電極のクリーニングを行うことができる。 In this cleaning method, a plasma of a cleaning gas is generated by glow discharge generated between the first electrode and the second electrode, sputtering by ions in the plasma, chemical reaction with active particles in the plasma, etc. Thus, the deposits deposited on the surfaces of both electrodes are removed. That is, both electrodes can be cleaned.
しかも、上記グロー放電は、電圧を印加している第1電極と第2電極との間のほぼ全体に発生するので、グロー放電によるプラズマが発生している側の電極面のほぼ全体がプラズマに曝される。従って、イオン引出し孔の周辺に限定されることなく、両電極の広い領域に亘って堆積物を除去することができる。 In addition, since the glow discharge is generated almost entirely between the first electrode and the second electrode to which a voltage is applied, almost the entire electrode surface on the side where the plasma due to the glow discharge is generated becomes the plasma. Be exposed. Therefore, the deposit can be removed over a wide area of both electrodes without being limited to the periphery of the ion extraction hole.
更に、上記グロー放電の放電電流は、容易に、イオン源の最大イオンビーム電流よりも遥かに大きな値にすることができるので、従来のクリーニング方法よりも高速で堆積物を除去することができる。 Furthermore, since the discharge current of the glow discharge can be easily set to a value much larger than the maximum ion beam current of the ion source, deposits can be removed at a higher speed than the conventional cleaning method.
引出し電極系が第1電極、第2電極および第3電極を少なくとも有している場合は、第1電極と第2電極との間にグロー放電を発生させる代わりに、あるいはそれと切り換えて、第2電極と第3電極との間にグロー放電を発生させても良い。それによって、第2電極および第3電極のクリーニングを行うことができる。 If the extraction electrode system has at least a first electrode, a second electrode, and a third electrode, the second electrode can be used instead of or in place of generating a glow discharge between the first electrode and the second electrode. Glow discharge may be generated between the electrode and the third electrode. Thereby, the second electrode and the third electrode can be cleaned.
上記グロー放電を発生させる電圧は、イオンビーム引出し方向側の電極をマイナス側とする直流電圧でも良いし、交流電圧でも良い。 The voltage for generating the glow discharge may be a DC voltage with the electrode on the ion beam extraction direction side being the negative side or an AC voltage.
請求項1に記載の発明によれば、引出し電極系を構成する第1電極と第2電極との間にクリーニングガスのグロー放電を発生させるので、イオン引出し孔の周辺に限定されることなく、両電極の広い領域に亘って堆積物を除去することができる。 According to the first aspect of the present invention, since the glow discharge of the cleaning gas is generated between the first electrode and the second electrode constituting the extraction electrode system, it is not limited to the periphery of the ion extraction hole. Deposits can be removed over a wide area of both electrodes.
しかも、上記グロー放電の放電電流は、容易に、イオン源の最大イオンビーム電流よりも遥かに大きな値にすることができるので、従来のクリーニング方法よりも高速で堆積物を除去することができる。
更に、第1電極、第2電極上に堆積物がある状態でグロー放電を発生させると、両電極間で異常な放電が発生しやすく、これがグロー放電発生用の電源を故障させる原因になることがあるけれども、両電極間に電源から直列抵抗器を介して電圧を印加することによって、両電極間における異常放電発生時の急激な電流増加を上記直列抵抗器によって抑制することができる。
In addition, since the discharge current of the glow discharge can be easily set to a value much larger than the maximum ion beam current of the ion source, deposits can be removed at a higher speed than the conventional cleaning method.
Furthermore, if a glow discharge is generated with deposits on the first electrode and the second electrode, abnormal discharge is likely to occur between the two electrodes, which may cause a failure of the power source for generating the glow discharge. However, by applying a voltage between the two electrodes from the power source via the series resistor, a sudden increase in current when an abnormal discharge occurs between the two electrodes can be suppressed by the series resistor.
かつ、請求項1に記載の発明によれば次の更なる効果を奏する。即ち、引出し電極系が第1電極、第2電極および第3電極を少なくとも有していて、第1電極および第2電極間に電圧を印加して両電極間にグロー放電を発生させて第1電極および第2電極をクリーニングする際に、第3電極を抵抗器を介して接地しておくと、第2電極および第3電極間でプラズマが発生するのを抑制することができるので、第1電極および第2電極間でグロー放電を優先的に発生させることができる。
And according to invention of Claim 1, there exists the following further effect. That is, the extraction electrode system has at least a first electrode, a second electrode, and a third electrode, and a voltage is applied between the first electrode and the second electrode to generate a glow discharge between the two electrodes . When you clean the electrode and the second electrode, the advance of the third electrode is grounded through a resistor, the plasma between the second electrode and the third electrode can be prevented from occurring, the Glow discharge can be preferentially generated between the first electrode and the second electrode.
この発明に係るクリーニング方法を実施するイオン源装置の一例を図1、図2に示す。図1はイオンビーム引き出し時の状態を示し、図2はクリーニング時の状態を示す。 An example of an ion source apparatus for carrying out the cleaning method according to the present invention is shown in FIGS. FIG. 1 shows a state during extraction of an ion beam, and FIG. 2 shows a state during cleaning.
このイオン源装置を構成するイオン源2は、イオン化ガス38が導入され当該イオン化ガス38を電離させてプラズマ6を生成するプラズマ生成部4と、このプラズマ生成部4内のプラズマ6から電界の作用でイオンビーム20を引き出す引出し電極系10とを備えている。
The
プラズマ生成部4は、この例では、プラズマ生成容器5内に設けられたフィラメント8から熱電子を放出させて、当該フィラメント8と陽極を兼ねるプラズマ生成容器5との間で放電(アーク放電)を生じさせて、イオン化ガス38を電離させてプラズマ6を生成するものである。フィラメント8にその加熱用のフィラメント電源50が接続されており、フィラメント8の一端とプラズマ生成容器5との間に前者を負極側にしてアーク放電発生用のアーク電源52が接続されている。
In this example, the
但し、プラズマ生成部4は、このタイプに限られるものではない。フィラメント8の数も図示例のような一つに限られるものではない。例えば、フィラメント8を複数有していても良い。また、高周波放電によってイオン化ガス38を電離させてプラズマ6を生成するタイプ等でも良い。
However, the
イオン化ガス38は、この例では、イオン化ガス源32から流量調節器34、バルブ36およびガス導入口7を経由してプラズマ生成容器5内に導入される。
In this example, the ionized
イオン化ガス38は、所望のドーパント、例えばホウ素(B)、リン(P)またはヒ素(As )を含むガスであり、例えば、フッ化ホウ素ガス(BF3 )、水素希釈ジボランガス(B2H6 /H2 )、水素希釈ホスフィンガス(PH3 /H2 )または水素希釈アルシンガス(AsH3 /H2 )等である。
The ionized
引出し電極系10は、この例では、最プラズマ側からイオンビーム引出し方向にかけて配置された4枚の電極、即ち第1電極(これはプラズマ電極とも呼ばれる)11、第2電極(これは引出し電極とも呼ばれる)12、第3電極(これは抑制電極とも呼ばれる)13および第4電極(これは接地電極とも呼ばれる)14を有している。16は絶縁物であるが、その他の絶縁物の図示は省略している。電極は、4枚に限られるものではなく、2枚、3枚等でも良い。各電極11〜14は、イオン引出し孔15をそれぞれ有している。イオン引出し孔15は、例えば、複数の(多数の)孔でも良いし、1以上のスリットでも良い。
In this example, the
なお、引出し電極系10を構成する各電極11〜14間の間隔は、図示の都合上、広げて図示している。他の図においても同様である。
In addition, the space | interval between each electrode 11-14 which comprises the
プラズマ生成部4(より具体的にはそのプラズマ生成容器5)の前部は、真空排気装置30によってバルブ28を介して真空排気されるイオン源チャンバー22、23に取り付けられており、引出し電極系10はこのイオン源チャンバー22、23内に収納されている。イオン源チャンバー22と23との間は、加速電源58の出力電圧に相当する電圧を絶縁するために、絶縁物24によって絶縁されている。イオン源チャンバー23には、引出し電極系10および上記バルブ28よりも下流側の位置に、イオン源2の保守点検作業等に供するために、そこを仕切るバルブ(ゲートバルブ)26が設けられている。
The front part of the plasma generation unit 4 (more specifically, the plasma generation container 5) is attached to
引出し電極系10の第1電極11は、この例では、上記アーク電源52の負極側に接続されている。プラズマ生成容器5と接地電位部との間に、前者を正極側にして、主としてイオンビーム20のエネルギーを決める加速電源58が接続されている。第2電極12とプラズマ生成容器5との間に、前者を負極側にしかつ後述する切換スイッチ71を介して、主としてプラズマ6からイオンを引き出すための引出し電源54が接続されている。第3電極13と接地電位部との間に、前者を負極側にしかつ後述する切換スイッチ72を介して、主として下流側からの逆流電子抑制のための抑制電源56が接続されている。第4電極14は接地されている。
The
このイオン源装置は、プラズマ生成部4にイオン化ガス38を導入してイオンビーム20を引き出す代わりに、以下に説明するクリーニング方法を実施することができるように、次の構成を更に備えている。
This ion source device further includes the following configuration so that the cleaning method described below can be performed instead of introducing the ionized
即ち、クリーニングガス源42、流量調節器44およびバルブ46を設けて、この例では上記ガス導入口7を経由して、プラズマ生成容器5内にクリーニングガス48(図2参照)を供給することができるようにしている。このクリーニングガス48は、上記位置に設けられた真空排気装置30によって真空排気されることも手伝って、第1電極11等のイオン引出し孔15を通して引出し電極系10の各電極間に拡散して当該各電極間にも供給される。
That is, the cleaning
クリーニングガス48には、後述するグロー放電を発生させたときに電極表面に堆積物を生成しにくいガスを用いるのが好ましい。例えば、クリーニングガス48は、水素ガス、アルゴン等の不活性ガス(希ガスとも言う)またはこれらの混合ガスである。不活性ガスは、Ar 以外のHe 、Ne 、Kr 、Xe でも良い。クリーニングガス48に水素ガスを用いると、電極表面から除去された堆積物は水素と結合して水素化合物を作る等して、真空排気装置30によって外部に排出されやすくなるという利点がある。
As the cleaning
クリーニング時に、真空排気装置30によってイオン源チャンバー22、23内をイオンビーム引き出し時よりも小さい排気速度で排気するために、上記バルブ28に並列に、当該バルブ28よりも開口面積が小さくてコンダクタンスの小さいバルブ29を設けている。
At the time of cleaning, in order to exhaust the inside of the
第1電極11と第2電極12との間に、イオンビーム引出し方向側の電極である第2電極12をマイナス側とする直流電圧を印加して、両電極11、12間にクリーニングガス48のグロー放電80(図2参照)を発生させる直流のグロー放電用電源60を設けている。このグロー放電用電源60の出力電圧は、例えば、数百V〜数kV、より具体的には100V〜1kV程度である。
A DC voltage is applied between the
イオンビーム20の引き出しと、電極のクリーニングとを切り換えるために、スイッチ70〜73を設けている。切換スイッチ71は、第2電極12を、引出し電源54側と、抵抗器64を介してのグロー放電用電源60側とに切り換える。切換スイッチ72は、第3電極13を、抑制電源56側と、抵抗器66を介しての接地側とに切り換える。
スイッチ70、73は、プラズマ生成容器5、第1電極11等を接地電位にするためのものである。なお、スイッチ70、73を閉じる時は、当然、電源52、58の出力電圧を予め0にしておく。
The
イオンビーム20を引き出す時の状態を図1に示す。この場合は、バルブ26は開いておく。そして、バルブ29を閉じかつバルブ28を開いておいて、真空排気装置30によってイオン源チャンバー22、23内を真空排気する。バルブ46を閉じかつバルブ36を開いておいて、プラズマ生成容器5内にイオン化ガス38を導入する。スイッチ70、73は開いておき、切換スイッチ71は引出し電源54側に、切換スイッチ72は抑制電源56側に切り換えておく。
FIG. 1 shows a state when the
これによって、プラズマ生成部4(より具体的にはそのプラズマ生成容器5)内でイオン化ガス38を電離させてプラズマ6を生成し、当該プラズマ6から引出し電極系10によってイオンビーム20を引き出すことができる。
As a result, the
電極のクリーニングを行う時の状態を図2に示す。この場合は、バルブ26は閉じておく。そして、バルブ28を閉じかつバルブ29を開いて、真空排気装置30によってイオン源チャンバー22、23内を小さい排気速度で排気する。また、バルブ36を閉じる代わりにバルブ46を開いて、プラズマ生成容器5内にクリーニングガス48を導入する。これによって、前述したように、プラズマ生成容器5内に導入されたクリーニングガス48は少なくとも第1電極11と第2電極12との間に供給される。このとき、プラズマ生成容器5内に導入するクリーニングガス48の流量、真空排気装置30による排気速度等を調整して、第1電極11と第2電極12との間のガス圧を、イオンビーム引き出し時のガス圧(例えば1Pa未満)よりも高く保つ。より具体的には、クリーニングガス48のグロー放電80を発生させるのに都合の良いガス圧に保つ。例えば、1Pa〜1000Pa程度に保つ。
FIG. 2 shows the state when the electrodes are cleaned. In this case, the
更に、切換スイッチ71をグロー放電用電源60側(具体的には抵抗器64側)に切り換え、かつスイッチ70を閉じて、第1電極11と第2電極12との間に、後者をマイナス側にして、グロー放電用電源60から直流電圧を印加して、両電極11、12間にクリーニングガス48のグロー放電(直流グロー放電)80を発生させる。また、切換スイッチ72は抵抗器66側に切り換え、スイッチ73は閉じておく。
Further, the
上記第1電極11と第2電極12との間に発生させたグロー放電80によってクリーニングガス48のプラズマが生成され、当該プラズマ中のイオンによるスパッタおよび当該プラズマ中のラジカル等の活性粒子との化学反応等によって、両電極11、12表面に堆積している堆積物が除去される。即ち、両電極11、12のクリーニングを行うことができる。
A plasma of the cleaning
しかも、上記グロー放電80は、電圧を印加している第1電極11と第2電極12との間のほぼ全体に発生するので、グロー放電80によるプラズマが発生している側の電極面(即ち第1電極11の背面11bおよび第2電極12の正面12a)のほぼ全体がプラズマに曝される。従って、イオン引出し孔15の周辺に限定されることなく、両電極11、12の広い領域に亘って堆積物を除去することができる。
Moreover, since the
更に、上記グロー放電80の放電電流は、容易に、イオン源の最大イオンビーム電流よりも遥かに大きな値にすることができるので、従来のクリーニング方法よりも高速で堆積物を除去することができる。
Furthermore, since the discharge current of the
これをより詳しく説明すると、グロー放電プラズマの密度が高いほど、当該プラズマ中のイオンおよび活性粒子の密度は高くなるので、堆積物の除去速度は速くなる。従って、プラズマ密度の指標であるグロー放電電流が大きいほど、堆積物の除去速度は速くなる。例えば、フラットパネルディスプレイ(FPD)製造のためのイオンドーピング装置用のイオン源装置を用いた実験によると、前述した従来のクリーニング方法に相当する方法で第2電極12にイオンビームを衝突させた場合、その時のイオンビーム電流は200mA程度が限度であった。これに対して、本クリーニング方法による場合のグロー放電電流は2000mAを達成することができた。
This will be explained in more detail. The higher the density of the glow discharge plasma, the higher the density of ions and active particles in the plasma, so that the deposit removal rate becomes faster. Accordingly, the larger the glow discharge current that is an index of plasma density, the faster the deposit removal rate. For example, according to an experiment using an ion source device for an ion doping apparatus for manufacturing a flat panel display (FPD), when an ion beam is made to collide with the
ところで、電極11、12への堆積物の堆積量は、イオンビームが当たる側の面である正面12aの方が、それに対向する電極11の背面11bよりも遥かに多くなる。そこで、グロー放電80を発生させる電圧を、図2に示す例のように、イオンビーム引出し方向側の電極である第2電極12をマイナス側とする直流電圧にすると、グロー放電80によるプラズマ中のイオンは、マイナス側の電極すなわち第2電極12の正面12aに専ら入射して衝突するので、堆積物が多く堆積する当該正面12aの堆積物除去を優先して行うことができる。従って、クリーニングをより効率良く行うことができる。
By the way, the amount of deposits deposited on the
なお、クリーニングガス48は、図1に示す例のように供給すると、ガス導入口7をイオン化ガス38と兼用することができるという利点があるけれども、第1電極11と第2電極12との間にクリーニングガス48を供給するためには、例えば図6に示す例のように、イオン源チャンバー22(または23)の壁面からその内部にクリーニングガス48を導入しても良い。図3〜図5に示す各例の場合も同様である。
When the cleaning
また、第1電極11と第2電極12との間のガス圧をグロー放電80の発生に都合の良いものに調整するためには、図2に示す例のように、バルブ26、28を閉じ、バルブ29を経由して真空排気装置30によって小さい排気速度で排気するのが実際的で好ましいけれども、もちろん、これ以外の方法で第1電極11と第2電極12との間のガス圧を調整しても良い。
Further, in order to adjust the gas pressure between the
電極11、12上に堆積物がある状態でグロー放電80を発生させると、両電極11、12間で異常な放電が発生しやすく、これがグロー放電用電源60を故障させる原因になることがある。そこで、図2に示す例のように、上記直列抵抗器64を設けておくのが好ましく、そのようにすると、異常放電時の急激な電流増加を抵抗器64によって抑制することができる。即ち、抵抗器64は限流抵抗の働きをする。
If the
第3電極13を切換スイッチ72を介して接地すると、グロー放電用電源60から、第2電極12と第3電極13との間にも電圧が印加される。そこで、電極11、12間でグロー放電80を優先的に発生させるためには、図2に示す例のように、第3電極13を高抵抗値の抵抗器66を介して接地するのが好ましい。そのようにすると、仮に、第2電極12と第3電極13との間でプラズマが発生すると当該プラズマ中の、イオンよりも移動度の高い電子が第3電極13に多く入射して第3電極13が負に帯電する結果、第2電極12と第3電極13との間の電位差が下がるので、両電極12、13間でプラズマが発生するのを抑制することができる。
When the
上記グロー放電用電源60を設ける代わりに、図3に示す例のように、切換スイッチ71によって第2電極12を抵抗器64を介して引出し電源54に接続するように構成して、引出し電源54をグロー放電80発生用の電源として兼用しても良い。そのようにすると、グロー放電専用の電源を追加することなく、上記クリーニングを行うことができる。なお、この場合は、引出し電源54の最大出力電流によってグロー放電電流が制限されることになる。
Instead of providing the glow
また、上記直流のグロー放電用電源60を設ける代わりに、図4に示す例のように、交流のグロー放電用電源62を設けて、交流電圧印加によって上記グロー放電80(この場合は交流グロー放電)を発生させても良い。
Further, instead of providing the DC glow
グロー放電80を発生させる電圧を交流電圧にすると、グロー放電80によるプラズマ中のイオンは、印加電圧の極性反転に応じて、当該グロー放電80を挟む両方の電極11、12に入射して衝突するので、両方の電極11、12に、即ちイオンビーム引出し方向側の電極である第2電極12の正面12aおよびそれに対向する第1電極11の背面11bの両方に堆積した堆積物を効率良く除去することができる。
When the voltage for generating the
また、交流のグロー放電用電源60は、通常は変圧器を主体に構成されていて、半導体素子を用いている直流電源よりも故障しにくいので、電極11、12間で異常放電が発生しても故障しにくいという利点もある。
Further, the AC glow
上記各クリーニング方法は、第1電極11と第2電極12との間でグロー放電80を発生させるクリーニング方法であるので、引出し電極系10が少なくとも第1電極11および第2電極12を有していれば適用することができる。
Each of the above cleaning methods is a cleaning method for generating a
また、第3電極13は第2電極12よりも下流側にあるので、イオンビーム引き出しに伴う第3電極13への堆積物の堆積量は第2電極12への堆積量よりも少ないけれども、第1電極11と第2電極12との間にグロー放電80を発生させる前記クリーニング方法と同様にして、第2電極12と第3電極13との間にグロー放電80を発生させて両電極12、13のクリーニングを行っても良い。
In addition, since the
このクリーニング方法の一例を図5を参照して説明する。図2に示した例との相違点を主体に説明すると、上記グロー放電用電源60および抵抗器64を切換スイッチ72側に接続して、クリーニング時は切換スイッチ72をグロー放電用電源60側(具体的には抵抗器64側)に切り換える。また、第2電極12を接地電位にするスイッチ74を設けておいて、クリーニング時はそれを閉じる。このとき、当然、引出し電源54の出力電圧は予め0にしておく。
An example of this cleaning method will be described with reference to FIG. The difference from the example shown in FIG. 2 will be mainly described. The glow
クリーニングガス48は、図2の例の場合と同様にプラズマ生成容器5に導入しても良いし、図6に示した例のようにイオン源チャンバー22(または23)の壁面からその内部に導入しても良い。このようにして、少なくとも第2電極12と第3電極13との間にクリーニングガス48を供給して、第2電極12と第3電極13との間のガス圧を、前述したようにイオンビーム引き出し時のガス圧よりも高く保った状態で、グロー放電用電源60から第2電極12と第3電極13との間に直流電圧を印加して、両電極12、13間にクリーニングガス48のグロー放電80を発生させる。
The cleaning
これによって、図2に示した例の場合と同様の作用によって、イオン引出し孔15の周辺に限定されることなく、両電極12、13の広い領域に亘って堆積物を除去することができる。
Thus, deposits can be removed over a wide area of both
しかも、上記グロー放電80の放電電流は、容易に、イオン源の最大イオンビーム電流よりも遥かに大きな値にすることができるので、従来のクリーニング方法よりも高速で堆積物を除去することができる。
Moreover, since the discharge current of the
また、グロー放電80を発生させる電圧を、イオンビーム引出し方向側の電極である第3電極13をマイナス側とする直流電圧にすると、グロー放電80によるプラズマ中のイオンは、マイナス側の電極すなわち第3電極13の正面13aに専ら入射して衝突するので、堆積物が多く堆積する当該正面13aの堆積物除去を優先して行うことができる。従って、クリーニングをより効率良く行うことができる。
Further, when the voltage for generating the
もっとも、図4に示した例と同様に、直流のグロー放電用電源60の代わりに交流のグロー放電用電源62を設けても良い。そのようにすれば、両方の電極12、13に、即ちイオンビーム引出し方向側の電極である第3電極13の正面13aおよびそれに対向する第2電極12の背面12bの両方に堆積した堆積物を効率良く除去することができる。
However, as in the example shown in FIG. 4, an AC glow
引出し電極系が第1電極11、第2電極12および第3電極13を少なくとも有している場合、(a)図2等に示した例のように第1電極11と第2電極12との間にグロー放電80を発生させても良いし、(b)図5に示した例のように第2電極12と第3電極13との間にグロー放電80を発生させても良いし、(c)グロー放電用電源60、62等の接続を上記のようなスイッチ等を用いて適宜切り換えることによって、上記(a)のグロー放電発生(クリーニング)と上記(b)のグロー放電発生(クリーニング)とを切り換えて行うようにしても良い。
When the extraction electrode system includes at least the
なお、第4電極14への堆積物の堆積量は通常は少ないので、第4電極14をクリーニングする必要性はあまり高くないけれども、必要に応じて、上記と同様にして、第3電極13と第4電極14との間にクリーニングガス48を供給しかつグロー放電用の電圧を印加して、両電極13、14間にグロー放電を発生させてクリーニングを行っても良い。
Since the amount of deposits on the
クリーニング後は、図1に示した状態に戻すことによって、イオンビーム20を引き出すことができる。
After cleaning, the
2 イオン源
4 プラズマ生成部
10 引出し電極系
11 第1電極
12 第2電極
13 第3電極
14 第4電極
20 イオンビーム
38 イオン化ガス
48 クリーニングガス
60、62 グロー放電用電源
80 グロー放電
2
Claims (1)
前記イオン源に電圧を印加する電気回路を、イオンビームを引き出す状態と電極のクリーニングを行う状態とに切り換えるスイッチを設けておき、
電極のクリーニングを行う際は、前記スイッチをクリーニングを行う状態側に切り換え、
かつ前記第3電極を抵抗器を介して接地しておき、
前記プラズマ生成部に前記イオン化ガスを導入して前記イオンビームを引き出す代わりに、前記引出し電極系を構成する少なくとも第1電極と第2電極との間にクリーニングガスを供給して、当該第1電極と第2電極との間のガス圧を、前記イオンビーム引き出し時のガス圧よりも高く保った状態で、
前記第1電極と第2電極との間に、電源から直列抵抗器を介して電圧を印加して、両電極間に前記クリーニングガスのグロー放電を発生させることを特徴とする、イオン源電極のクリーニング方法。 A plasma generation unit that introduces an ionized gas and ionizes the ionized gas to generate plasma, and an electrode system that extracts an ion beam from the plasma in the plasma generation unit by the action of an electric field, and in the ion beam extraction direction from the plasma side A method for cleaning an electrode constituting the extraction electrode system of an ion source comprising: an extraction electrode system having at least a first electrode , a second electrode, and a third electrode arranged;
A switch for switching an electric circuit for applying a voltage to the ion source between a state of drawing out an ion beam and a state of cleaning an electrode is provided,
When cleaning the electrode, switch the switch to the state to be cleaned,
And the third electrode is grounded through a resistor ,
Instead of introducing the ionized gas into the plasma generation unit and extracting the ion beam, a cleaning gas is supplied between at least the first electrode and the second electrode constituting the extraction electrode system, and the first electrode In a state where the gas pressure between the first electrode and the second electrode is kept higher than the gas pressure at the time of extracting the ion beam,
A voltage is applied between the first electrode and the second electrode through a series resistor from a power source to generate a glow discharge of the cleaning gas between the two electrodes. Cleaning method.
Priority Applications (3)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010179909A JP5141732B2 (en) | 2010-08-11 | 2010-08-11 | Ion source electrode cleaning method |
CN201110137140.XA CN102376513B (en) | 2010-08-11 | 2011-05-24 | Cleaning method of ion source electrode |
KR1020110067169A KR101243748B1 (en) | 2010-08-11 | 2011-07-07 | Method for cleaning ion source electrode |
Applications Claiming Priority (1)
Application Number | Priority Date | Filing Date | Title |
---|---|---|---|
JP2010179909A JP5141732B2 (en) | 2010-08-11 | 2010-08-11 | Ion source electrode cleaning method |
Related Child Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2012200149A Division JP5370556B2 (en) | 2012-09-12 | 2012-09-12 | Ion source electrode cleaning method |
Publications (2)
Publication Number | Publication Date |
---|---|
JP2012038668A JP2012038668A (en) | 2012-02-23 |
JP5141732B2 true JP5141732B2 (en) | 2013-02-13 |
Family
ID=45794945
Family Applications (1)
Application Number | Title | Priority Date | Filing Date |
---|---|---|---|
JP2010179909A Active JP5141732B2 (en) | 2010-08-11 | 2010-08-11 | Ion source electrode cleaning method |
Country Status (3)
Country | Link |
---|---|
JP (1) | JP5141732B2 (en) |
KR (1) | KR101243748B1 (en) |
CN (1) | CN102376513B (en) |
Families Citing this family (10)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JP5370462B2 (en) * | 2011-11-07 | 2013-12-18 | 日新イオン機器株式会社 | Ion source electrode cleaning device |
CN103515172B (en) * | 2012-06-22 | 2016-07-20 | 日新离子机器株式会社 | The method of operation of ion beam irradiation apparatus and ion beam irradiation apparatus |
US9530615B2 (en) * | 2012-08-07 | 2016-12-27 | Varian Semiconductor Equipment Associates, Inc. | Techniques for improving the performance and extending the lifetime of an ion source |
US20140127394A1 (en) * | 2012-11-07 | 2014-05-08 | Varian Semiconductor Equipment Associates, Inc. | Reducing Glitching In An Ion Implanter |
US9006690B2 (en) * | 2013-05-03 | 2015-04-14 | Axcelis Technologies, Inc. | Extraction electrode assembly voltage modulation in an ion implantation system |
US9570271B2 (en) * | 2014-03-03 | 2017-02-14 | Praxair Technology, Inc. | Boron-containing dopant compositions, systems and methods of use thereof for improving ion beam current and performance during boron ion implantation |
DE102014226039A1 (en) * | 2014-12-16 | 2016-06-16 | Carl Zeiss Smt Gmbh | Ionization device and mass spectrometer with it |
JP6480222B2 (en) * | 2015-03-18 | 2019-03-06 | 株式会社アルバック | Ion beam apparatus, ion implantation apparatus, and ion beam emission method |
WO2017029742A1 (en) * | 2015-08-20 | 2017-02-23 | 株式会社日立ハイテクノロジーズ | Ion beam device and method for cleaning gas field ion source |
CN107999469B (en) * | 2017-11-20 | 2021-04-27 | 安徽晓星能源科技有限公司 | Medium-frequency alternating-current glow cleaning power supply |
Family Cites Families (13)
Publication number | Priority date | Publication date | Assignee | Title |
---|---|---|---|---|
JPS60262339A (en) * | 1984-06-07 | 1985-12-25 | Jeol Ltd | Conditioning method of accelerating tube |
JPS62180944A (en) * | 1986-02-05 | 1987-08-08 | Hitachi Ltd | Ion source for ion implantation apparatus |
JPH0746588B2 (en) * | 1986-09-09 | 1995-05-17 | 日本電信電話株式会社 | Microwave ion source |
JPH02207442A (en) * | 1989-02-07 | 1990-08-17 | Fuji Electric Co Ltd | Charged particle device |
JPH1083899A (en) * | 1996-09-09 | 1998-03-31 | Ebara Corp | Neutral particle beam source |
US5992244A (en) * | 1998-03-04 | 1999-11-30 | Regents Of The University Of Minnesota | Charged particle neutralizing apparatus and method of neutralizing charged particles |
JPH11329336A (en) * | 1998-05-11 | 1999-11-30 | Nissin Electric Co Ltd | Ion implanter |
JP2000350970A (en) * | 1999-05-10 | 2000-12-19 | Eaton Corp | Method and apparatus for cleaning contaminated surface in ion injector |
JP2001229841A (en) | 2000-02-21 | 2001-08-24 | Hitachi Ltd | Method of cleaning lead-out electrode and ion beam treatment apparatus |
JP4374487B2 (en) * | 2003-06-06 | 2009-12-02 | 株式会社Sen | Ion source apparatus and cleaning optimization method thereof |
CN101302606A (en) * | 2007-05-11 | 2008-11-12 | 北京石油化工学院 | Magnesium alloy surface strengthening method and apparatus |
WO2010042303A1 (en) * | 2008-10-06 | 2010-04-15 | Shimadzu Corporation | Curtain gas filter for mass- and mobility-analyzers that excludes ion-source gases and ions of high mobility |
US8263944B2 (en) * | 2008-12-22 | 2012-09-11 | Varian Semiconductor Equipment Associates, Inc. | Directional gas injection for an ion source cathode assembly |
-
2010
- 2010-08-11 JP JP2010179909A patent/JP5141732B2/en active Active
-
2011
- 2011-05-24 CN CN201110137140.XA patent/CN102376513B/en active Active
- 2011-07-07 KR KR1020110067169A patent/KR101243748B1/en active IP Right Grant
Also Published As
Publication number | Publication date |
---|---|
CN102376513A (en) | 2012-03-14 |
KR20120022549A (en) | 2012-03-12 |
JP2012038668A (en) | 2012-02-23 |
KR101243748B1 (en) | 2013-03-13 |
CN102376513B (en) | 2015-06-10 |
Similar Documents
Publication | Publication Date | Title |
---|---|---|
JP5141732B2 (en) | Ion source electrode cleaning method | |
JP4345895B2 (en) | Ion source operation method and ion implantation apparatus | |
KR101876812B1 (en) | Techniques for improving the performance and extending the lifetime of an ion source | |
JP5652582B2 (en) | Hybrid ion source | |
US9564297B2 (en) | Electron beam plasma source with remote radical source | |
WO2016200668A1 (en) | In-situ plasma cleaning of process chamber components | |
WO2015017635A1 (en) | Improved lifetime ion source | |
JP2011527486A (en) | Ion source cleaning method and apparatus | |
JP5502879B2 (en) | Substrate processing equipment | |
KR100388594B1 (en) | Ion beam processing apparatus | |
JP5370462B2 (en) | Ion source electrode cleaning device | |
Vorobyov et al. | Investigation of the stability of the electron source with a multi-aperture plasma emitter generating a large cross-section electron beam | |
JP5342386B2 (en) | Method for removing fluorine compound deposited on source housing of ion generator and ion generator | |
JP5370556B2 (en) | Ion source electrode cleaning method | |
US20140199492A1 (en) | Ion implanter and method of operating ion implanter | |
Ehlers et al. | Increasing the efficiency of a multicusp ion source | |
JP2014110136A (en) | Ion source, ion beam irradiation device, and method of cleaning ion source | |
JP4032504B2 (en) | Sputtering equipment | |
CN217911956U (en) | Grid mesh cleaning device of ion beam etching system | |
WO2010082345A1 (en) | Silicon-dot forming method, and silicon-dot forming apparatus | |
Sakai et al. | Analysis of discharge characteristics of the inertial electrostatic confinement fusion using a particle code with Monte Carlo collision scheme | |
KR100469552B1 (en) | System and method for surface treatment using plasma | |
JP2014186883A (en) | Ion milling device | |
KR20100008092U (en) | electrode function sterilization plasma module | |
Shmelev et al. | Collective ion acceleration in spark stage of vacuum discharge |
Legal Events
Date | Code | Title | Description |
---|---|---|---|
A977 | Report on retrieval |
Free format text: JAPANESE INTERMEDIATE CODE: A971007 Effective date: 20120502 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120515 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120615 |
|
A131 | Notification of reasons for refusal |
Free format text: JAPANESE INTERMEDIATE CODE: A131 Effective date: 20120814 |
|
A521 | Request for written amendment filed |
Free format text: JAPANESE INTERMEDIATE CODE: A523 Effective date: 20120912 |
|
TRDD | Decision of grant or rejection written | ||
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 Effective date: 20121023 |
|
A01 | Written decision to grant a patent or to grant a registration (utility model) |
Free format text: JAPANESE INTERMEDIATE CODE: A01 |
|
A61 | First payment of annual fees (during grant procedure) |
Free format text: JAPANESE INTERMEDIATE CODE: A61 Effective date: 20121105 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R150 | Certificate of patent or registration of utility model |
Ref document number: 5141732 Country of ref document: JP Free format text: JAPANESE INTERMEDIATE CODE: R150 Free format text: JAPANESE INTERMEDIATE CODE: R150 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
FPAY | Renewal fee payment (event date is renewal date of database) |
Free format text: PAYMENT UNTIL: 20151130 Year of fee payment: 3 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |
|
R250 | Receipt of annual fees |
Free format text: JAPANESE INTERMEDIATE CODE: R250 |