WO2010082345A1 - Silicon-dot forming method, and silicon-dot forming apparatus - Google Patents

Silicon-dot forming method, and silicon-dot forming apparatus Download PDF

Info

Publication number
WO2010082345A1
WO2010082345A1 PCT/JP2009/050630 JP2009050630W WO2010082345A1 WO 2010082345 A1 WO2010082345 A1 WO 2010082345A1 JP 2009050630 W JP2009050630 W JP 2009050630W WO 2010082345 A1 WO2010082345 A1 WO 2010082345A1
Authority
WO
WIPO (PCT)
Prior art keywords
plasma
silicon
chamber
silicon dot
plasma generation
Prior art date
Application number
PCT/JP2009/050630
Other languages
French (fr)
Japanese (ja)
Inventor
司 林
敦志 東名
建治 加藤
英治 高橋
隆司 三上
Original Assignee
日新電機株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by 日新電機株式会社 filed Critical 日新電機株式会社
Priority to JP2010546524A priority Critical patent/JPWO2010082345A1/en
Priority to PCT/JP2009/050630 priority patent/WO2010082345A1/en
Publication of WO2010082345A1 publication Critical patent/WO2010082345A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/321Radio frequency generated discharge the radio frequency energy being inductively coupled to the plasma
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/04Coating on selected surface areas, e.g. using masks
    • C23C16/047Coating on selected surface areas, e.g. using masks using irradiation by energy or particles
    • CCHEMISTRY; METALLURGY
    • C23COATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; CHEMICAL SURFACE TREATMENT; DIFFUSION TREATMENT OF METALLIC MATERIAL; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL; INHIBITING CORROSION OF METALLIC MATERIAL OR INCRUSTATION IN GENERAL
    • C23CCOATING METALLIC MATERIAL; COATING MATERIAL WITH METALLIC MATERIAL; SURFACE TREATMENT OF METALLIC MATERIAL BY DIFFUSION INTO THE SURFACE, BY CHEMICAL CONVERSION OR SUBSTITUTION; COATING BY VACUUM EVAPORATION, BY SPUTTERING, BY ION IMPLANTATION OR BY CHEMICAL VAPOUR DEPOSITION, IN GENERAL
    • C23C16/00Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes
    • C23C16/22Chemical coating by decomposition of gaseous compounds, without leaving reaction products of surface material in the coating, i.e. chemical vapour deposition [CVD] processes characterised by the deposition of inorganic material, other than metallic material
    • C23C16/24Deposition of silicon only
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32082Radio frequency generated discharge
    • H01J37/32091Radio frequency generated discharge the radio frequency energy being capacitively coupled to the plasma
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32192Microwave generated discharge
    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32431Constructional details of the reactor
    • H01J37/3266Magnetic control means

Definitions

  • the present invention is a microscopic silicon crystalline particle (hereinafter also referred to as “silicon dot”) which is also referred to as a silicon nanoparticle used as an electronic device material or a light emitting material for a single electronic device or the like.
  • the present invention relates to a forming method and a forming apparatus.
  • silicon nanoparticles As a method of forming silicon nanoparticles (silicon dots), a physical method is known in which silicon is heated and evaporated using an excimer laser or the like in an inert gas, and a gas evaporation method is also known. (See Kanagawa Prefectural Institute of Advanced Industrial Science and Technology, Research Report No. 9/2003, pages 77-78). The latter is a technique in which silicon is heated and evaporated by high frequency induction heating or arc discharge instead of laser.
  • a CVD method is also known in which a material gas is introduced into a CVD chamber to form silicon nanoparticles on a heated substrate (see Japanese Patent Application Laid-Open No. 2004-179658).
  • silicon nanoparticles are grown from the nucleus through a step of forming a nucleus for growing silicon nanoparticles on the substrate.
  • JP 2004-179658 A Kanagawa AIST Research Report No.9 / 2003 pp. 77-78
  • the method of heating and evaporating silicon by laser irradiation is difficult to irradiate silicon with laser by uniformly controlling the energy density. It is difficult to align the distribution. Even in the gas evaporation method, non-uniform heating of silicon occurs, and it is difficult to make the particle size and density distribution of silicon dots uniform.
  • the substrate when the nucleus is formed on the substrate, the substrate must be heated to about 550 ° C. or more, a substrate having a low heat-resistant temperature cannot be adopted, and the substrate material can be selected. That is the limit.
  • the present invention provides a silicon dot forming method that can form silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and has a wide selectable range of substrate materials in terms of heat resistance. Let it be the first problem.
  • the present invention also provides a silicon dot forming apparatus capable of forming silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and having a wide selectable range of base material in terms of heat resistance. Let it be the 2nd subject.
  • the present inventor conducted research to solve the above-mentioned problems and found the following.
  • a gas containing silicon for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )
  • SiH 4 monosilane
  • Si 2 H 6 disilane
  • SiCl 4 silicon tetrachloride
  • SiF 4 silicon tetrafluoride
  • the positive ions are SiH 3 + , SiH 2 + , Si 2 H X + (x is 1 to 7). ), Si n H y + (n is an integer of 3 or more, y is an integer of y ⁇ 2n + 2), etc., and these plural types of positive ions are generated.
  • silicon dots can be formed over a wide range of substrates in a shorter time than when using mass-separated positive ions, and the negative ions containing silicon are substantially the same type.
  • the silicon dot density distribution can be made uniform.
  • a gas containing silicon for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )
  • SiH 4 monosilane
  • Si 2 H 6 disilane
  • SiCl 4 silicon tetrachloride
  • SiF 4 silicon tetrafluoride
  • mass separation must be performed to selectively direct only positive ions of a predetermined mass to the silicon dot formation target, but this requires an expensive and bulky mass separator, Further, since the positive ions selected by the mass separation process have a small beam diameter, a scanning means is required to form silicon dots over a wide area of the substrate, and it takes time to form silicon dots over a wide area.
  • a negative ion of substantially the same type is extracted by applying a voltage for extracting the negative ion to the ion extraction electrode device and irradiated to the silicon dot formation target substrate, a mass separation device or a scanning mechanism
  • silicon dots can be formed over a wide area of the substrate in a shorter time than when mass-separated positive ions are used, and the negative ions containing silicon are substantially the same type.
  • the diameter can be made uniform and the silicon dot density distribution can be made uniform.
  • a gas containing silicon for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )
  • SiH 4 monosilane
  • Si 2 H 6 disilane
  • SiCl 4 silicon tetrachloride
  • SiF 4 silicon tetrafluoride
  • the plasma is a plasma having a low plasma potential such as inductively coupled plasma.
  • the types of plasma include low-potential plasma such as inductively coupled plasma and electrostatically coupled plasma (capacitively coupled plasma).
  • electrostatic coupling type plasma since the plasma density (number of ions per 1 cm 3 ) is relatively low and the plasma potential is relatively high, crystalline silicon dots are formed on the silicon dot formation target substrate. Is difficult. In order to form crystalline silicon dots by the plasma CVD method, it is necessary to better decompose the gas containing silicon and lower the plasma potential.
  • the plasma density is low, that is, if the gas containing silicon is poorly decomposed, a large amount of hydrogen and other impurities are likely to be mixed into the silicon nanoparticles (silicon dots), and the dots are in an amorphous state or a microcrystalline state. It is difficult to obtain quality silicon dots.
  • the plasma potential is high, the formed silicon crystal is easily destroyed (in other words, susceptible to plasma damage), and the dots are in an amorphous state or a microcrystalline state. In this case, it is difficult to obtain crystalline silicon dots.
  • the substrate is a low-cost substrate such as a low-melting glass substrate.
  • the substrate is a low-cost substrate such as a low-melting glass substrate.
  • plasma with a low plasma potential such as inductively coupled plasma has a feature that a high plasma density and a low plasma potential are easily obtained as compared with electrostatic coupled plasma. Therefore, in the formation of silicon dots by low plasma potential plasma such as inductively coupled plasma, it is easy to form relatively crystalline silicon dots.
  • an ion beam is applied to the surface of the substrate. It may be irradiated. By irradiating the ion beam during the formation of the silicon dots, the movement or migration of the silicon atoms is promoted, and the crystallinity of the silicon dots becomes higher.
  • the present invention provides the following first silicon dot forming method and first silicon dot forming apparatus. Further, based on the second knowledge, a second silicon dot forming method and a second silicon dot forming apparatus, which will be described later, are provided. Furthermore, a third silicon dot forming method to be described later is provided based on the third knowledge.
  • First Silicon Dot Forming Method and First Silicon Dot Forming Apparatus (1-1) First Silicon Dot Forming Method A substrate placement electrode that includes a plasma generation device and places a silicon dot formation target substrate therein Preparing an installed plasma generation chamber; Installing a silicon dot formation target substrate on the substrate installation electrode; Evacuating from the plasma generation chamber, introducing a gas containing silicon into the plasma generation chamber while maintaining the plasma generation chamber at a silicon dot forming pressure, and generating plasma from the gas by the plasma generation device; By applying a first positive pulse voltage to the substrate installation electrode, the silicon dot formation target substrate installed on the electrode is irradiated with negative ions containing silicon in the plasma with a first ion energy.
  • a silicon dot forming method comprising growing silicon dots on the silicon dot formation target substrate based on the nucleus.
  • (1-2) First silicon dot forming device A plasma generating chamber provided with a plasma generating device and provided with a substrate installation electrode for setting a silicon dot formation target substrate therein, A gas introduction device for introducing a gas containing silicon into the plasma generation chamber; An exhaust device for exhausting from the plasma generation chamber; A positive bias power supply device for applying a positive pulse voltage to the substrate installation electrode,
  • the plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
  • the positive bias power supply device irradiates the substrate installation electrode with negative ions containing silicon in the plasma to the silicon dot formation target substrate installed on the electrode with a first ion energy, thereby generating silicon dots.
  • a silicon dot forming device which is a power supply device for applying a second positive pulse voltage for growing silicon dots.
  • Second Silicon Dot Forming Method and Silicon Dot Forming Apparatus (2-1) Second Silicon Dot Forming Method
  • a plasma generation chamber provided with a plasma generation device, and silicon dot formation connected to the plasma generation chamber
  • a gas containing silicon is contained in the plasma generation chamber while exhausting the plasma generation chamber and the silicon dot formation chamber to maintain the plasma generation chamber at the plasma generation pressure and maintaining the silicon dot formation chamber at the silicon dot formation pressure.
  • a first negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber. Irradiating with an ion energy of 1 to form nuclei for silicon dot growth on the silicon dot formation target substrate; Following the nucleation, a second negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber, and a second substrate is formed on the silicon dot formation target substrate.
  • a silicon dot forming method comprising: irradiating with ion energy to grow silicon dots on the silicon dot formation target substrate based on the nuclei.
  • (2-2) Second silicon dot forming apparatus a plasma generating chamber provided with a plasma generating apparatus; A silicon dot forming chamber that is connected to the plasma generation chamber and in which a substrate setting portion for setting a silicon dot forming target substrate is disposed; A negative ion extraction electrode device provided in an opening facing the substrate installation portion of the plasma generation chamber; A gas introduction device for introducing a gas containing silicon into the plasma generation chamber; An exhaust device for exhausting air from the plasma generation chamber and the silicon dot formation chamber; A negative ion extraction power supply device for applying a voltage for extracting negative ions including silicon to the negative ion extraction electrode device;
  • the plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
  • the negative ion extraction power supply device causes the negative ion extraction electrode device to supply negative ions including silicon in the plasma to a silicon dot formation target substrate installed in a substrate installation portion of the silicon dot formation chamber with a first ion energy
  • a silicon dot forming apparatus which is a power supply device that applies a second negative ion extraction voltage for growing silicon dots based on the nuclei by irradiation with the nuclei.
  • a plasma generating chamber provided with a plasma generating chamber having a low plasma potential plasma generation apparatus and a substrate installation part for installing a silicon dot formation target substrate therein, and an ion beam are supplied to the substrate installation part.
  • Preparing an ion beam irradiation apparatus for irradiating a silicon dot formation target substrate to be installed Installing a silicon dot formation target substrate in the substrate installation portion;
  • a gas containing silicon is introduced into the plasma generation chamber while evacuating the plasma generation chamber while maintaining the plasma generation chamber at the silicon dot formation pressure, and the low plasma potential plasma is generated from the gas by the low plasma potential plasma generation device.
  • the ion beam irradiation is performed by irradiating an ion beam with a first ion energy for forming a nucleus that becomes a silicon dot on the silicon dot formation target substrate, and then applying a silicon dot based on the nucleus.
  • FIG. 5 is a diagram showing a schematic configuration of another example of the first silicon dot forming apparatus according to the present invention. It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention.
  • FIG. 12 It is a figure which shows schematic structure of one example of the 2nd silicon dot formation apparatus which concerns on this invention. It is a figure which shows the timing of plasma lighting-on / off and negative ion extraction voltage application (negative ion beam extraction) to a negative ion extraction electrode apparatus. It is a figure which shows schematic structure of the other example of the 2nd silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of the further another example of the 2nd silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of the further another example of the 2nd silicon dot formation apparatus which concerns on this invention. It is a figure which shows schematic structure of one example of a 3rd silicon dot formation apparatus. It is the figure which looked at the antenna employ
  • First type silicon dot forming method and first type silicon dot forming apparatus, second type silicon dot forming method, second type silicon dot forming apparatus, and third type silicon described below as embodiments of the present invention The dot formation method can be mentioned.
  • First type silicon dot forming method and apparatus (1) First type silicon dot forming method The first type silicon dot forming method basically includes: Preparing a plasma generation chamber provided with a substrate installation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein; Installing a silicon dot formation target substrate on the substrate installation electrode; Evacuating from the plasma generation chamber, introducing a gas containing silicon into the plasma generation chamber while maintaining the plasma generation chamber at a silicon dot forming pressure, and generating plasma from the gas by the plasma generation device; By applying a first positive pulse voltage to the substrate installation electrode, the silicon dot formation target substrate installed on the electrode is irradiated with negative ions containing silicon in the plasma with a first ion energy.
  • a silicon dot forming method including growing silicon dots on the silicon dot formation target substrate based on the nucleus.
  • the first type silicon dot forming device is basically A plasma generation chamber provided with a substrate generation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein; A gas introduction device for introducing a gas containing silicon into the plasma generation chamber; An exhaust device for exhausting from the plasma generation chamber; A positive bias power supply device for applying a positive pulse voltage to the substrate installation electrode,
  • the plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device, The positive bias power supply device irradiates the substrate installation electrode with negative ions containing silicon in the plasma to the silicon dot formation target substrate installed on the electrode with a first ion energy, thereby generating silicon dots.
  • a silicon dot forming device which is a power supply device for applying a second positive pulse voltage for growing silicon dots.
  • silicon dots having a uniform particle diameter can be formed on the silicon dot formation target substrate with a uniform density distribution. Moreover, silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
  • silicon dots can be formed over a wide area of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism.
  • the first ion energy is obtained when the plasma potential of the plasma is P [V].
  • P [eV] or more, and the second ion energy is 2 keV or less, more preferably 500 eV or less (therefore, the first and second positive pulse voltages are pulse voltages that can obtain such ion energy).
  • P itself in P [V] and P [eV] is a numerical value.
  • the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots.
  • the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown.
  • the second ion energy is too low, silicon dots may be difficult to grow. For example, in view of the plasma potential, an example of 50 eV or more can be given.
  • the plasma contains more negative ions containing silicon. In other words, it is better that the negative ion concentration in the plasma is higher.
  • Method 1 for increasing negative ion concentration This is a method for increasing negative ion density by performing plasma lighting in a pulsed manner and applying a positive voltage pulsed to the base electrode immediately after the plasma is extinguished. Furthermore, plasma is generated from the plasma source gas by turning on the plasma generating device. Next, the plasma generator is turned off. As a result, the temperature of the electrons in the plasma decreases rapidly. During this period, the density of electrons and positive and negative ions hardly changes. Therefore, low-energy electrons are dominant in the plasma. The probability that negative ions are generated rapidly due to the dissociative adhesion between the slow electrons and the molecules increases rapidly.
  • the negative ion density rapidly increases immediately after the plasma generator is turned off. As the time further elapses, the electrons are light, so that they diffuse rapidly and disappear and the density decreases. On the other hand, since positive and negative ions have a large mass, they hardly disappear. For this reason, the electron density becomes extremely low, and a peculiar plasma (having almost no electrons) in which the plasma is maintained by positive and negative ions is formed.
  • Method 1 can be used in combination with Method 2 and Method 3 described later.
  • the plasma generation chamber is divided into two, and a raw material gas is guided to one of the first plasma chambers to excite it to generate plasma.
  • a base electrode is provided in the other second plasma chamber.
  • An energy filter using a magnetic field is provided between the two plasma chambers.
  • the first plasma chamber vigorous plasma generation is performed and the energy of electrons is high. High-energy electrons are difficult to bond with neutral radicals and atoms.
  • the energy filter suppresses the passage of high energy electrons.
  • the second plasma chamber has many low energy electrons. Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms.
  • Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 ⁇ , SiH 2 ⁇ , and the like. When the number of low energy electrons decreases in such a manner, low energy electrons enter the second plasma chamber from the first plasma chamber.
  • the energy filter is selective to electronic energy. Neutral atoms and molecules are allowed to pass freely. This is done by creating a magnetic field of about several tens of Gauss. Such a magnetic field can be generated, for example, by opposing permanent magnets. Alternatively, a magnetic field can be generated by passing a current through a plurality of parallel conductor bars.
  • the third method is a method of increasing the negative ion density by utilizing the low work function of cesium or the like.
  • This method is already widely used as a negative ion source.
  • cesium (Cs) When cesium (Cs) is adsorbed on the metal surface, it has the effect of lowering the work function of the metal surface. Since the work function is lowered, electrons are more easily emitted. Therefore, when the metal is negatively biased, the metal functions as an electron emitter. Electrons are given to SiH x radicals, molecules, positive ions, etc., which are negatively ionized. Cs can be stored in a solid state in the evaporation source and vaporized by heating to be led to the metal surface. In addition to Cs, rubidium (Rb), potassium (K), barium (Ba), and the like can also be used.
  • the method 1 is used to periodically turn on and off the plasma generation device, and the application of a positive pulse voltage to the substrate installation electrode turns off the plasma generation device. You may make it carry out during the period until this plasma production
  • the plasma generating apparatus is periodically turned on and off so that the method 1 can be used, and a positive pulse voltage is applied to the substrate installation electrode by the positive bias power supply apparatus.
  • a control unit that controls the plasma generation device and the positive bias power supply device so as to be performed during a period from when the plasma generation device is turned off to when the plasma generation device is turned on again after a lapse of a predetermined period.
  • the method 2 is used to form an electron trapping magnetic field in an intermediate portion of the plasma generation chamber, and one side of the plasma generation chamber from the electron trapping magnetic field formation region.
  • a first plasma chamber provided with the plasma generating device and the other side is a second plasma chamber having the base electrode, and plasma is generated from the gas containing silicon in the first plasma chamber, and the electrons
  • the movement of some of the electrons in the plasma generated in the first plasma chamber by the trapped magnetic field to the second plasma chamber is suppressed, and the movement to the second plasma chamber that arrives in the second plasma chamber is suppressed.
  • the concentration of negative ions including silicon in the second plasma chamber may be increased by the action of electrons having lower energy than the generated electrons. .
  • the first type silicon dot forming apparatus includes a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber so that the method 2 can be used, and the electron trapping magnetic field in the plasma generation chamber
  • a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber so that the method 2 can be used, and the electron trapping magnetic field in the plasma generation chamber
  • One side from the formation region is a first plasma chamber provided with the plasma generation device, and the other side is a second plasma chamber having the base electrode, and the silicon is generated in the first plasma chamber by the plasma generation device.
  • Plasma is generated from the gas containing, and the movement of a part of the electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field formed by the magnetic field forming device to the second plasma chamber is suppressed, Silicon in the second plasma chamber is caused by the action of electrons arriving in the second plasma chamber and having lower energy than the electrons whose movement to the second plasma chamber is suppressed.
  • a silicon dot forming apparatus capable of increasing the concentration of negative ions, including.
  • the action of low energy electrons arriving in the second plasma chamber means that the low energy electrons collide with neutral atoms and molecules in the second plasma chamber. This is an action of increasing negative ions including.
  • the method 3 is used to previously provide a conductive target in which at least one substance selected from cesium, rubidium, potassium, and barium is deposited in the plasma generation chamber. Applying a negative voltage to the conductive target in plasma generation from the silicon-containing gas by the plasma generation apparatus in the plasma generation chamber, and bringing positive ions in the plasma into contact with the target.
  • the concentration of negative ions containing silicon may be increased.
  • the conductive target in which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided, for example, by providing a conductive target before the material deposition in the plasma generation chamber. It can be obtained by introducing the vapor of at least one substance selected from cesium, rubidium, potassium and barium to the target and depositing the substance.
  • the first type silicon dot forming apparatus is previously provided with a conductive target in which at least one substance selected from cesium, rubidium, potassium, and barium is deposited in the plasma generation chamber.
  • a silicon dot forming device provided with a negative bias power supply device for applying a negative voltage to the conductive target in the plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber.
  • the first type silicon dot forming apparatus uses the method 3 to A conductive target installed in the plasma generation chamber; A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target; A negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber; But you can.
  • Second type silicon dot forming method and silicon dot forming apparatus (2-1) Second type silicon dot forming method
  • the second type silicon dot forming method is basically A plasma generation chamber provided with a plasma generation device, a silicon dot formation chamber arranged in a continuous manner with the plasma generation chamber, and a substrate installation portion for installing a silicon dot formation target substrate, and the substrate installation portion of the plasma generation chamber Preparing a negative ion extraction electrode device provided in an opening facing the surface; Installing a silicon dot formation target substrate in the substrate installation portion; A gas containing silicon is contained in the plasma generation chamber while exhausting the plasma generation chamber and the silicon dot formation chamber to maintain the plasma generation chamber at the plasma generation pressure and maintaining the silicon dot formation chamber at the silicon dot formation pressure.
  • a first negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber. Irradiating with an ion energy of 1 to form nuclei for silicon dot growth on the silicon dot formation target substrate; Following the nucleation, a second negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber, and a second substrate is formed on the silicon dot formation target substrate.
  • a silicon dot forming method comprising irradiating with ion energy and growing silicon dots on the silicon dot formation target substrate based on the nuclei.
  • the second type silicon dot forming device is basically composed of: A plasma generation chamber equipped with a plasma generation device; A silicon dot forming chamber that is connected to the plasma generation chamber and in which a substrate setting portion for setting a silicon dot forming target substrate is disposed; A negative ion extraction electrode device provided in an opening facing the substrate installation portion of the plasma generation chamber; A gas introduction device for introducing a gas containing silicon into the plasma generation chamber; An exhaust device for exhausting air from the plasma generation chamber and the silicon dot formation chamber; A negative ion extraction power supply device for applying a voltage for extracting negative ions including silicon to the negative ion extraction electrode device;
  • the plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
  • the negative ion extraction power supply device causes the negative ion extraction electrode device to supply negative ions including silicon in the plasma to a silicon dot formation target substrate installed in a substrate installation portion of the silicon dot formation chamber with
  • silicon dots having a uniform particle diameter can be formed with a uniform density distribution on the silicon dot formation target substrate.
  • silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
  • silicon dots can be formed over a wide range of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism.
  • the P [eV And the second ion energy is 2 keV or less, more preferably 500 eV or less (therefore, the first and second negative ion extraction voltages applied to the negative ion extraction electrode device can obtain such ion energy.
  • P itself of P [V] and P [eV] is a numerical value.
  • the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots.
  • the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown.
  • the second ion energy is too low, silicon dots may be difficult to grow. For example, in view of the plasma potential, an example of 50 eV or more can be given.
  • the second type silicon dot forming method and apparatus when forming silicon dots having a uniform particle size on a silicon dot formation target substrate with a uniform density distribution, more negative ions containing silicon are included in the plasma. It is better to be. In other words, it is better that the negative ion concentration in the plasma is higher.
  • the above-described methods 1, 2 and 3 can be used as a method for increasing the negative ion concentration.
  • the plasma generating device is periodically turned on and off so that the method 1 can be used, and negative ion extraction including the silicon to the negative ion extraction electrode device is performed.
  • the voltage application may be performed during a period from when the plasma generating apparatus is turned off to when the plasma generating apparatus is turned on again after a lapse of a predetermined period.
  • the second type silicon dot forming apparatus includes the silicon to the negative ion extraction electrode apparatus by the negative ion extraction power supply apparatus, in which the plasma generation apparatus is periodically turned on and off.
  • the application of the negative ion extraction voltage is performed during a period from when the plasma generation device is turned off to when the plasma generation device is turned on again after a lapse of a predetermined period.
  • a silicon dot forming apparatus including a control unit for controlling the ion extraction power supply device may be used.
  • the method 2 can be used.
  • An electron trapping magnetic field is formed in an intermediate portion of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber provided with the plasma generating device and the other side is the A second plasma chamber provided with a negative ion extraction electrode device is used, a plasma is generated from the gas containing silicon in the first plasma chamber, and one of the electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field is generated.
  • the movement of the part to the second plasma chamber is suppressed, and the action of electrons having a lower energy than the electrons that have entered the second plasma chamber and are suppressed to move to the second plasma chamber
  • the concentration of negative ions including silicon may be increased.
  • the second type silicon dot forming apparatus includes a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber, and the electron in the plasma generation chamber
  • a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber, and the electron in the plasma generation chamber
  • One side from the trapping magnetic field forming region is a first plasma chamber provided with the plasma generation device, and the other side is a second plasma chamber having the negative ion extraction electrode device, and the first plasma is generated by the plasma generation device.
  • Plasma is generated from the gas containing silicon in the chamber, and a part of electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field formed by the magnetic field forming device is moved to the second plasma chamber.
  • the second plasma is generated by the action of electrons having energy lower than that of the electrons suppressed and moved to the second plasma chamber.
  • a silicon dot forming apparatus capable of increasing the concentration of negative ions containing silicon chamber.
  • the action of low energy electrons arriving in the second plasma chamber means that the low energy electrons collide with neutral atoms and molecules in the second plasma chamber. This is an action of increasing negative ions including atoms.
  • the conductive target in which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided, for example, by providing a conductive target before the material deposition in the plasma generation chamber. It can be obtained by introducing the vapor of at least one substance selected from cesium, rubidium, potassium and barium to the target and depositing the substance.
  • the second type silicon dot forming apparatus is preliminarily provided with a conductive target in which at least one substance selected from cesium, rubidium, potassium and barium is deposited in the plasma generation chamber.
  • a silicon dot forming device provided with a negative bias power supply device for applying a negative voltage to the conductive target in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber. Good.
  • the second type silicon dot forming device A conductive target installed in the plasma generation chamber; A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target; Silicon having a negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber It may be a dot forming device.
  • the third type silicon dot formation method is basically A plasma generating chamber having a plasma generating chamber having a low plasma potential, such as inductively coupled plasma, and a substrate setting portion for setting a silicon dot formation target substrate therein, and a silicon dot having an ion beam set in the substrate setting portion Preparing an ion beam irradiation apparatus for irradiating a substrate to be formed; Installing a silicon dot formation target substrate in the substrate installation portion; A gas containing silicon is introduced into the plasma generation chamber while evacuating the plasma generation chamber while maintaining the plasma generation chamber at the silicon dot formation pressure, and the low plasma potential plasma is generated from the gas by the low plasma potential plasma generation device.
  • the ion beam irradiation is performed by irradiating an ion beam with a first ion energy for forming a nucleus that becomes a silicon dot on the silicon dot formation target substrate, and then applying a silicon dot based on the nucleus.
  • This is a silicon dot forming method in which silicon dots are formed on the silicon dot formation target substrate by performing ion beam irradiation with second ion energy for growth.
  • silicon dots having a uniform particle diameter can be formed with a uniform density distribution on the silicon dot formation target substrate. Moreover, silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
  • silicon dots can be formed over a wide area of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism.
  • a plasma having a low plasma potential such as inductively coupled plasma is generated from a gas containing silicon, a silicon dot formation target substrate is placed under the plasma, and an ion beam is applied to the surface of the substrate. Irradiation forms silicon dots.
  • the plasma generated from the gas containing silicon is a plasma having a low plasma potential such as inductively coupled plasma, and the plasma can have a higher plasma density and a lower plasma potential than the electrostatically coupled plasma as described above. Therefore, a silicon dot having high crystallinity can be obtained on a substrate having a relatively low heat resistance such as a low-melting glass substrate at a low temperature (for example, 600 ° C. or less) that can suppress thermal damage to the substrate. it can.
  • the surface of the substrate is irradiated with an ion beam from an ion beam irradiation device, so that migration or migration of silicon atoms is performed. Is promoted, and the crystallinity of the silicon dots becomes higher. It is not necessary to perform a separate heat treatment to increase crystallinity after the formation of silicon dots.
  • high-quality crystalline silicon dots can be obtained with high productivity.
  • the silicon dots thus obtained are of high quality with high crystallinity.
  • the ion species is selected, the ion acceleration energy is adjusted, or a combination thereof, in addition to controlling the crystallinity of the silicon dots, the crystal grains Diameter control, crystal orientation control, internal stress control, film adhesion force control, and the like can be performed.
  • an antenna for applying an inductively coupled high-frequency electric field can be installed in the plasma generation chamber, so that it is possible to easily cope with an increase in the area of the substrate.
  • the plasma density of inductively coupled plasma or the like is 1 ⁇ 10 11 ions / cm 3 or more. More preferably, it is 2 ⁇ 10 11 ions / cm 3 or more.
  • the plasma density is less than 1 ⁇ 10 11 ions / cm 3 , that is, if the gas containing silicon is poorly decomposed, a large amount of impurities such as hydrogen are likely to be mixed into the silicon dots, thereby inhibiting the formation of silicon atom networks.
  • the silicon dots may be in an amorphous or microcrystalline state, making it difficult to obtain crystalline silicon dots.
  • the upper limit value of the plasma density is not limited to this, but can be about 1 ⁇ 10 13 ions / cm 3 , for example.
  • the gas introduction device, the gas pressure adjusting device in the plasma generation chamber, and the plasma generation device (particularly the power source for plasma excitation) for converting the raw material gas into plasma are controlled together, in other words, the raw material gas.
  • the plasma density is 1 ⁇ 10 11 (ion number / cm 3 ) or more, more preferably, by means of controlling the supply amount of plasma, the pressure in the plasma generation chamber, and the power for converting the gas into plasma (high frequency power supplied to the high frequency antenna). Examples include 2 ⁇ 10 11 (ion / cm 3 ) or more, or about 1 ⁇ 10 11 (ion / cm 3 ) to 1 ⁇ 10 13 (ion / cm 3 ).
  • the potential of plasma such as inductively coupled plasma is 50 V or less in order to stably obtain crystalline silicon dots. If the plasma potential is greater than 50 V, the silicon dots are susceptible to ion damage (plasma damage) from the plasma, and the silicon dots become amorphous or microcrystalline, making it difficult to obtain crystalline silicon dots. .
  • the plasma potential is more preferably 30 V or less, and even more preferably 10 V or less.
  • means for controlling the potential of the low plasma potential plasma such as inductively coupled plasma to 50 V or lower, 30 V or lower, or even 10 V or lower can be provided.
  • the source gas supply device for film formation, the degree of vacuum (gas pressure) adjustment device in the film formation chamber (vacuum chamber), and the high frequency power source for plasma excitation for converting the source gas into plasma are controlled together, in other words, the source gas.
  • the plasma potential may be set to about 50 V or less, 30 V or less, or even 10 V or less by means of controlling the supply amount, the degree of vacuum in the film formation chamber, and the high-frequency power for converting the gas into plasma (power supplied to the high-frequency antenna). .
  • the lower limit of the plasma potential will be approximately 20V, and depending on the device, it will be approximately 10V.
  • the ion energy in the ion beam irradiated from the ion beam irradiation apparatus to the silicon dot formation target substrate may be determined according to the purpose of the ion beam irradiation, and the silicon dot nucleus is formed.
  • the plasma potential is P [V]
  • the ion energy at the time of ion beam irradiation with the first ion energy is preferably P [eV] or more.
  • the ion energy at the time of ion beam irradiation with the second ion energy for growing crystalline silicon dots from the nucleus is 2 keV or less, more preferably 500 eV or less.
  • P itself of P [V] and P [eV] is a numerical value.
  • the third type silicon dot formation method when the first ion energy falls below the P [eV] in the ion beam irradiation to the silicon dot formation target substrate, it is difficult to form “nuclei”. However, if it is too large, damage to the silicon dot formation target substrate may occur due to ion irradiation. To about 5 keV.
  • the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots.
  • the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown.
  • silicon dots may be difficult to grow.
  • an example of 50 eV or more can be given.
  • the ion species of the ion beam irradiated from the ion beam irradiation apparatus to the silicon dot formation target substrate are inert gas (helium (He) gas, neon (Ne) gas, argon (Ar ) Gas, krypton (Kr) gas, xenon (Xe) gas, etc.), reactive gas (hydrogen (H 2 ) gas, fluorine (F 2 ) gas, hydrogen fluoride (HF) gas, etc.) and silicon-based gas (monosilane) (SiH 4 ) gas, silicon hydride gas such as disilane (Si 2 H 6 ) gas, silicon fluoride gas such as silicon tetrafluoride (SiF 4 ) gas, silicon chloride gas such as silicon tetrachloride (SiCl 4 ) gas Etc.) can be exemplified by ions generated from at least one kind of gas.
  • inert gas helium (He) gas, neon (Ne) gas
  • the plasma source gas for example, at least one of the silicon-based gases exemplified as a gas serving as an ion species source of the ion beam, or the silicon-based gas Among these, at least one gas and at least one gas among the reactive gases can be used.
  • the temperature of the silicon dot formation target substrate for forming silicon dots can be 600 ° C. or lower (the lower limit is not limited to this, but, for example, about room temperature). Compared to the prior art, it is possible to obtain high quality silicon dots even at such a low temperature. For this reason, in the third type silicon dot formation, for example, a temperature control device that controls the temperature of the substrate supported by the substrate installation portion of the plasma generation chamber to 600 ° C. or less may be employed.
  • the number of ions / number of silicon atoms is preferably 0.01-10. This is because if the ratio is smaller than 0.01, the crystallization effect by ion irradiation may be insufficient, and if it is larger than 10, the amount of ions becomes excessive and the generation of silicon dot defects may increase. .
  • the number of silicon atoms that reach the surface of the silicon dot formation target substrate can be controlled while monitoring the silicon dot particle size, and the number of ions that reach the surface of the substrate can be extracted from the ion beam irradiation apparatus (ion source). It can be controlled by controlling the voltage or by controlling the high frequency power for generating plasma in the ion source.
  • the particle size is uniform of the silicon dots means that the particle size of each silicon dot is the same or substantially the same, and even if there is a variation in the particle size of the silicon dots. It also refers to the case where the particle diameters of silicon dots can be considered to be practically uniform.
  • the particle diameters of silicon dots are aligned within a predetermined range (for example, a range of 10 nm or less or a range of 5 nm or less) or are generally aligned,
  • the diameter is distributed in the range of 2 nm to 3 nm and the range of 5 nm to 8 nm, but as a whole, the particle size of the silicon dots is considered to be generally within a predetermined range (eg, a range of 10 nm or less). This includes cases where there is no problem in practical use.
  • “the particle size is uniform” of the silicon dots indicates a case where it can be said that the silicon dots are substantially uniform as a whole from a practical viewpoint.
  • a silicon dot forming method and a silicon dot forming apparatus capable of forming silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and having a wide selectable range of substrate materials in terms of heat resistance are provided. be able to.
  • FIG. 1 shows an example of the first type silicon dot forming apparatus.
  • the silicon dot forming apparatus shown in FIG. 1 includes a plasma generation chamber 11, a flat plate type high-frequency power application electrode 12 installed in the plasma generation chamber, and a flat plate type substrate installation electrode 13 opposed thereto.
  • the plasma generation chamber 11 is grounded.
  • the electrode 12 is supported by a support member 121 made of a conductive material.
  • the support member 121 extends through the ceiling wall of the plasma generation chamber 11 to the outside.
  • the support member 121 is electrically insulated from the plasma generation chamber 11 by an insulating member 122.
  • the base electrode 13 is supported by a support member 131 made of a conductive material.
  • the support member 131 passes through the bottom wall of the plasma generation chamber 11 and extends outside the chamber.
  • the support member 131 is electrically insulated from the plasma generation chamber 11 by an insulating member 132.
  • the electrode 13 has a heater (not shown), and can heat the silicon dot formation target substrate S installed on the electrode 13.
  • a high frequency power supply device 15 is connected to the high frequency power application electrode 12 through a support member 121 and a matching box 14.
  • the high-frequency power supply device 15 includes a high-frequency power supply 151 and a switch 152 that turns on / off power supply from the power supply to the electrode 12.
  • a positive bias power supply device 16 is connected to the base electrode 13 through a support member 132.
  • the power supply device 16 includes an output variable DC power supply 161 for applying a positive bias voltage to the electrode 13 and a switch 162 for turning on / off the application of the positive bias voltage from the power supply to the electrode 13.
  • the high frequency power application electrode 12, the matching box 14, the high frequency power supply device 15 and the like constitute a plasma generating device 1A.
  • the ON / OFF of the switch 152 of the high frequency power supply device 15 and the switch 162 of the bias power supply device 16 is controlled by the control unit 17. This control will be described later with reference to FIG.
  • the output of the DC power supply 161 of the bias power supply device 16 is also controlled by the control unit 17.
  • the plasma generation chamber 11 is connected to a gas introduction device 18 for introducing a gas containing silicon into the chamber and an exhaust device 19 for exhausting the gas from the plasma generation chamber 11.
  • control unit 17 includes a trigger circuit for triggering the switches 152 and 162 to be turned on, a timing adjusting circuit for determining the timing of the switch-on operation by the trigger circuit, and the like.
  • a silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting electrode 13 in the plasma generation chamber 11 and is exhausted from the chamber 11 by the exhaust device 19.
  • a gas containing silicon is introduced from the gas introduction device 18 while maintaining the inside of the chamber at a silicon dot formation pressure on the substrate S, and high frequency power is applied from the high frequency power supply device 15 to the high frequency electrode 12 under the instruction of the control unit 17 Then, while the gas is turned into plasma, a first positive pulse voltage is applied from the positive bias power supply 16 to the substrate installation electrode 13 and the substrate S installed thereon, and negative ions containing silicon in the plasma are applied to the substrate.
  • a nucleus serving as a base of silicon dots is formed on the substrate S, and then a second positive pulse voltage is applied to the substrate S from the power supply device 16 to generate plasma.
  • a second positive pulse voltage is applied to the substrate S from the power supply device 16 to generate plasma.
  • examples of the gas containing silicon supplied from the gas introducing device 18 include gases such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), and silicon tetrafluoride (SiF 4 ).
  • gases such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), and silicon tetrafluoride (SiF 4 ).
  • gases such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), and silicon tetrafluoride (SiF 4 ).
  • Examples of the negative ions attracted to the substrate S include primary silane negative ions such as SiH 3 ⁇ and SiH 2 ⁇ .
  • the gas species and negative ion species containing silicon can be applied to other embodiments of the first silicon dot forming method and apparatus according to the present invention described later, and a second type silicon dot forming method described later. It can also be applied to examples of devices.
  • the controller 17 turns on / off the plasma generating apparatus 1A at a predetermined cycle. That is, when applying high-frequency power to the electrode 12, the control unit 17 turns on and off the switch 152 at a predetermined cycle as shown in the upper part of FIG. 2, and generates (lights) and extinguishes plasma at a predetermined cycle.
  • the switch 162 when applying a positive pulse voltage to the base electrode 13, the switch 162 is turned on / off at a predetermined cycle as shown in the lower part of FIG. 2, and positive bias application to the electrode 13 is turned on / off at a predetermined cycle. 13 is applied with a positive pulse voltage.
  • the positive pulse voltage is applied to the electrode 13 for a predetermined period Tb between the time when the plasma generating apparatus 1A is turned off and the period after the predetermined period Ta has elapsed until the plasma generating apparatus 1A is turned on again.
  • the positive pulse voltage is applied to the electrode 13 during a predetermined period Tb between the time when the switch 152 of the high-frequency power supply device 15 is turned off and the time after the predetermined period Ta has elapsed until the switch 152 is turned on again.
  • T is the off period of the apparatus 1A, and hence the plasma extinguishing period.
  • the negative ion density can be increased by performing plasma lighting in a pulse manner and applying a positive pulse voltage to the substrate installation electrode 13 immediately after the plasma is extinguished. More specifically, plasma is generated (lighted) from the gas introduced into the chamber 11 when the plasma generating apparatus 1A is turned on (switch 152 is turned on), and then the apparatus 1A is turned off (switch 152 is turned off). When the plasma is extinguished, the temperature of the electrons in the plasma rapidly decreases. At this time, the density of electrons and positive and negative ions hardly changes, but low-energy electrons are dominant in the plasma. The probability that negative ions are generated due to the dissociative adhesion between the low-energy electrons and the molecules increases rapidly.
  • the negative ion concentration (density) rapidly increases immediately after the plasma generating apparatus 1A is turned off. As the time further elapses, the electrons are light, so that they diffuse rapidly and disappear and the density decreases. On the other hand, since positive and negative ions have a large mass, they hardly disappear. For this reason, the electron density becomes extremely low, and a peculiar plasma (having almost no electrons) in which the plasma is maintained by positive and negative ions is formed.
  • a period Ta in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinguishing to the start of application of the positive pulse voltage to the electrode 13, and when the period Ta elapses, the electrode 13 and the substrate S installed on the electrode 13 are set.
  • a positive pulse voltage is applied during the period Tb [ ⁇ (T ⁇ Ta)], negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots. .
  • silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
  • the silicon dot forming pressure in the plasma generation chamber 11 for forming silicon dots is approximately 0.5 Pa to 50 Pa depending on the type of gas containing silicon used for plasma generation. can do.
  • This silicon dot formation pressure is also a pressure capable of generating plasma.
  • the silicon dot formation pressure in the chamber 11 is lower than 0.5 Pa, the dots may not grow easily or the dot growth may be slow. If it exceeds 50 Pa, crystalline silicon dots may not be obtained.
  • the frequency of the high frequency power applied to the high frequency power application electrode 12 depends on the type of gas containing silicon used for plasma generation, it is approximately 13.56 MHz to 60 MHz, and the power is 5 mW / cm 3 to 100 mW. For example, about / cm 3 .
  • the high-frequency power frequency falls below 13.56 MHz, the plasma potential increases. If it exceeds 60 MHz, the plasma may become difficult to light.
  • the electric power if it becomes smaller than 5 mW / cm 3 , the plasma density may become too low, and if it exceeds 100 mW / cm 3 , it is necessary to take measures against heat at the power introduction part to the electrode. May come.
  • the magnitude of the positive pulse voltage applied to the substrate installation electrode 13 is determined according to the purpose of ion irradiation toward the substrate S. For example, upon application of a first positive pulse voltage for ion irradiation with a first ion energy (a plasma potential of P [V] or more and 5 keV or less if the plasma potential is P [V]) that forms a nucleus serving as a silicon dot.
  • a first positive pulse voltage for ion irradiation with a first ion energy a plasma potential of P [V] or more and 5 keV or less if the plasma potential is P [V]
  • the first positive pulse voltage is about 500 V to 5 kV.
  • the positive pulse voltage is about 50 V to 2 kV (more preferably, 50 V to 500 V).
  • the substrate S may be damaged. There is.
  • the second pulse voltage drops below 50V, the value becomes equivalent to the plasma potential, and the effect of applying the second pulse voltage may not be recognized in relation to the preferable plasma potential as described above.
  • the second pulse voltage exceeds 2 kV, the growth of silicon dots may become difficult, and the crystallinity of the formed dots may deteriorate.
  • a first ion for ion irradiation with a first ion energy (for example, P [eV] or more and 5 keV or less if the plasma potential is P [V]) that forms a nucleus serving as a silicon dot is used.
  • a positive pulse voltage and a second positive pulse voltage for ion irradiation with a second ion energy for growing silicon dots from the nucleus (for example, 50 eV or more and 2 ke or less (more preferably 500 eV or less)) are obtained in advance by experiments or the like. It can be set in the control unit 17 in advance.
  • the plasma lighting period Tc can be exemplified as about 10 ⁇ sec to 500 ⁇ sec
  • the plasma extinguishing period T can be exemplified as about 500 ⁇ sec to 10 msec.
  • the period Ta from the plasma extinction to the start of positive pulse voltage application can be about 50 ⁇ sec to 200 ⁇ sec
  • the positive pulse voltage application period Tb can be about 5 ⁇ sec to 100 ⁇ sec.
  • the silicon dot forming pressure, the magnitude of the positive pulse voltage applied to the base electrode, and the periods Tc, T, Ta, and Tb described above are the other ones of the first silicon dot forming method and apparatus according to the present invention described later.
  • the present invention can also be applied to the embodiment.
  • the plasma generating apparatus 1A described above generates high-frequency plasma
  • the plasma generating apparatus is not limited thereto, and may generate microwave plasma, DC discharge plasma, or the like. Regardless of which plasma generation apparatus is employed, the plasma generation apparatus is periodically turned on and off, and a positive pulse voltage is applied to the substrate S at the same time when negative ions increase immediately after being turned off.
  • FIG. 3 shows another example of the silicon dot forming apparatus.
  • the silicon dot forming apparatus shown in FIG. 3 includes a plasma generation chamber 21, a filament 22 installed in the plasma generation chamber, and a flat plate-type substrate installation electrode 23 facing the filament.
  • a conductor rod 291 for forming a magnetic field for capturing high-energy electrons is provided between the filament 22 and the base electrode 23.
  • a plurality of conductor rods 291 are arranged in parallel at a predetermined interval.
  • the first plasma chamber 211 is above the rods 291 and the second plasma chamber 212 is below the rods 291.
  • the filament 22 penetrates the ceiling wall of the plasma generation chamber 21.
  • the filament 22 is electrically insulated from the chamber 21 by an insulating member 221.
  • the substrate installation electrode 23 is supported by a support member 231 made of a conductive material.
  • the support member 231 passes through the bottom wall of the plasma generation chamber 21 and extends outside the chamber.
  • the support member 231 is electrically insulated from the plasma generation chamber 21 by an insulating member 232.
  • a filament heating power source 241 is connected to the filament 22, and a discharge power source 242 is provided between the filament 22 and the plasma generation chamber 21, and a discharge voltage is applied from the discharge power source 242 to the plasma generation chamber 21. I can do it.
  • the power source 242 is connected to the plasma generation chamber 21 via a switch 243 that turns on / off voltage application to the plasma generation chamber 21.
  • Permanent magnets are arranged on the outside of the first plasma chamber 211 and the outside of the second plasma chamber 212 of the plasma generation chamber 21 so that N poles and S poles are alternately arranged.
  • a magnetic field (cusp magnetic field) is formed so that the plasma can be confined efficiently.
  • the filament 22, the filament heating power source 241, the discharging power source 242, the switch 243, and the like form the plasma generating apparatus 2A.
  • a positive bias power supply device 25 is connected to the substrate installation electrode 23 via a support member 231.
  • the power supply device 25 includes an output variable DC power supply 251 for applying a positive bias voltage to the electrode 23 and a switch 252 for turning on / off the application of the positive bias voltage from the power supply to the electrode 23.
  • On / off of the switch 243 and on / off of the switch 252 in the plasma generating apparatus 2A are controlled by the control unit 26 as described later.
  • the output of the DC power supply 251 of the bias power supply device 25 is also controlled by the control unit 26.
  • a gas introduction device 27 for introducing a gas containing silicon into the chamber and an exhaust device 28 for exhausting the gas from the plasma generation chamber 21 are connected to the plasma generation chamber 21.
  • a magnetic field B can be formed around each conductor rod 291 by passing a current from the power source 292 to the plurality of conductor rods 291.
  • the conductor rod 291 and the power source 292 constitute a magnetic field forming device 29 for forming an electron trapping magnetic field.
  • silicon dots can be formed as follows.
  • a silicon dot formation target substrate S such as a silicon substrate is installed on the substrate installation electrode 23 in the second plasma chamber 212.
  • a gas containing silicon is introduced from the gas introducing device 27 while the chamber is evacuated from the chamber 21 by the exhaust device 28 and maintained at a reduced pressure to form silicon dots on the substrate S, while the filament 22 is applied by the heating power source 241.
  • the switch 243 is turned on under the instruction of the control unit 26 and a positive voltage is applied from the discharge power source 242 to the plasma generation chamber 21, thereby drawing out the thermoelectrons from the heated filament 22 to the gas.
  • the plasma is generated in the first plasma chamber 211 by the collision.
  • a current in the same direction is supplied from the power source 292 of the magnetic field forming device 29 to each conductor rod 291 to form a weak magnetic field of several gauss to several tens of gauss.
  • the first positive pulse voltage is applied to the substrate installation electrode 23 and the substrate S installed on the substrate 25, and negative ions including silicon in the plasma are attracted to the substrate.
  • a nucleus serving as a base of silicon dots is formed, and then a second positive pulse voltage is applied to the substrate S from the power supply device 25 to attract negative ions including silicon in the plasma to the substrate, thereby forming the nucleus. Based on this, silicon dots can be grown.
  • the plasma formed in the first plasma chamber 211 arrives at the second plasma chamber 212 from between the conductor rods 291. At this time, high-energy electrons in the plasma generated in the first plasma chamber 211 form a magnetic field. The passage through the second plasma chamber 212 is suppressed by the magnetic field barrier formed by the device 29. Low energy electrons can travel through the magnetic field to the second plasma chamber 212. Thus, the magnetic field acts as an energy filter.
  • examples of low energy electrons that pass through the magnetic field forming device 29 and arrive at the second plasma chamber 212 are approximately 30 eV or less.
  • Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms.
  • Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 ⁇ , SiH 2 ⁇ , and the like.
  • the negative ion concentration density is increased in the second plasma chamber 212.
  • the control unit 26 turns on and off the plasma generating apparatus 2A at a predetermined cycle at the same timing as shown in FIG. 2, and also applies a positive bias voltage to the substrate installation electrode 23. Turn on and off at a predetermined timing. That is, the control unit 26 turns on and off the switch 243 in the plasma generation apparatus 2A at a predetermined cycle, and generates (lights) and extinguishes plasma at a predetermined cycle.
  • the switch 252 is turned on / off at a predetermined cycle
  • positive bias application to the electrode 23 is turned on / off at a predetermined cycle, and a positive pulse voltage is applied to the electrode 23.
  • the positive pulse voltage is applied to the electrode 23 for a predetermined period Tb between the time when the plasma generating apparatus 2A is turned off and the period after the elapse of the predetermined period Ta until the plasma generating apparatus 2A is turned on again.
  • the positive pulse voltage is applied to the electrode 23 during a predetermined period Tb between the time when the switch 243 of the plasma generating apparatus 2A is turned off and the time after the predetermined period Ta has elapsed until the switch 243 is turned on again. Made.
  • negative ions including silicon atoms are applied all at once by applying the first and second positive pulse voltages to the substrate installation electrode 23 and the substrate S installed thereon at a timing at which the negative ion concentration is sufficiently increased in the second plasma chamber 212.
  • This operation can be repeated to form a “nucleus” that becomes the basis of the silicon dot, and the silicon dot can be grown based on the nucleus.
  • silicon dots having a uniform particle diameter can be formed on the entire surface with a uniform density distribution.
  • the gas containing silicon is introduced into the first plasma chamber 211 as shown in FIG. 3, but it may be introduced into the second plasma chamber 212, or the first and second It may be introduced into both of the two plasma chambers.
  • the plasma generating apparatus 2A generates plasma using the filament 22 that emits thermoelectrons.
  • the plasma generating apparatus is not limited thereto, and other high-frequency plasma and microwave plasma are used. Etc. may be generated.
  • the electron trapping magnetic field is formed by passing a current through the conductor rod 291.
  • magnets for example, permanent magnets as shown
  • mg1 to mg4 are provided outside the unit, and the first and second magnets mg1 and mg2 and opposite magnets mg3 and mg4 face each other.
  • the electron trapping magnetic field B may be formed in the boundary region between the two plasma chambers.
  • FIG. 5 shows another example of the silicon dot forming apparatus.
  • the silicon dot forming apparatus of FIG. 5 is of a type that forms ECR plasma.
  • This apparatus includes a plasma generation chamber 31, a magnetron 32, a base installation electrode 33, and the like.
  • the magnetron 32 is connected to the plasma generation chamber 31 via a waveguide 321 and a microwave transmission window 323 made of a dielectric material.
  • An ECR coil 323 for forming a magnetic field is provided outside the plasma generation chamber 31.
  • the coil 323 is energized from a power supply (not shown) to form a longitudinal magnetic field B.
  • the magnetron 32, the waveguide 321, the dielectric window 323, the coil 323, etc. form a plasma generating device 3A.
  • the substrate installation electrode 33 is provided in the lower part of the plasma generation chamber 31 and is supported by a conductive support member 331.
  • the support member 331 extends outside through the bottom wall of the chamber 31.
  • the support member 331 is insulated from the chamber 31 by an insulating member 332.
  • a positive bias power supply device 34 is connected to the electrode 33 via a support member 331.
  • the power supply device 34 includes an output variable DC power supply 341 for applying a positive bias voltage to the electrode 33 and a switch 342 for turning on / off the application of the positive bias voltage from the power supply to the electrode 33.
  • the magnetron 32 and the on / off of the switch 342 are controlled by a control unit 35 as will be described later.
  • the output of the DC power supply 341 of the bias power supply 34 is also controlled by the control unit 35.
  • a gas introduction device 36 for introducing a gas containing silicon into the chamber and an exhaust device 37 for exhausting the gas from the plasma generation chamber 31 are connected to the plasma generation chamber 31.
  • silicon dots can be formed as follows.
  • a silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting electrode 33.
  • a gas containing silicon is introduced from the gas introduction device 36 while the chamber 31 is evacuated from the chamber 31 by the exhaust device 37 and maintained at a reduced pressure to form a silicon dot on the substrate S.
  • magnetron 32 is turned on. The microwave generated by the magnetron 32 propagates through the waveguide 321, enters the plasma generating chamber 31 through the window 323, acts on the introduced gas, and turns it into plasma.
  • the switch 342 of the positive bias power supply 34 is turned on / off to apply the first positive pulse voltage to the substrate installation electrode 33 and the substrate S installed thereon, so that the silicon in the plasma
  • the switch 342 of the positive bias power supply 34 is turned on / off to apply the first positive pulse voltage to the substrate installation electrode 33 and the substrate S installed thereon, so that the silicon in the plasma
  • nuclei that are the basis of silicon dots are formed on the substrate S, and then a second positive pulse voltage is applied to the substrate S to negatively contain silicon in the plasma.
  • silicon dots are grown based on the nuclei.
  • the control unit 35 turns on and off the plasma generating device 3A at a predetermined cycle at the same timing as shown in FIG. Is also turned on and off at a predetermined timing. That is, the control unit 35 turns on and off the magnetron 32 in the plasma generating apparatus 3A at a predetermined cycle, and generates (lights on) and extinguishes plasma at a predetermined cycle.
  • the switch 342 is turned on / off at a predetermined cycle, and the positive bias application to the electrode 33 is turned on / off at a predetermined cycle. A positive pulse voltage is applied.
  • the positive pulse voltage is applied to the electrode 33 for a predetermined period Tb between the time when the plasma generating device 3A is turned off and the time after the elapse of the predetermined time period Ta until the plasma generating device 3A is turned on again.
  • the positive pulse voltage is applied to the electrode 33 during a predetermined period Tb between the time when the magnetron 32 is turned off and the time after the predetermined period Ta has elapsed until the magnetron 32 is turned on again.
  • the first and second positive pulse voltages are applied to the base electrode 33 and the base S placed thereon to apply negative ions all at once. The whole is drawn and this operation is repeated to form a “nucleus” that becomes the basis of the silicon dot, and further, the silicon dot is grown based on the nucleus.
  • silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
  • FIG. 6 shows another example of the silicon dot forming apparatus.
  • the silicon dot forming apparatus of FIG. 6 uses a cesium-based sputter negative ion source.
  • the apparatus of FIG. 6 is disposed in the plasma generation chamber 41, the conductive sputtering target 42 disposed in the upper portion of the chamber 41, the high-frequency antenna 43 disposed in the intermediate region in the chamber 41, and the lower portion in the chamber 41.
  • a substrate mounting electrode 44 is included.
  • the sputter target 42 is supported by a conductive support member 421.
  • the support member 421 extends through the ceiling wall of the chamber 41 to the outside.
  • the support member 421 is insulated from the chamber 41 by an insulating member 422.
  • a negative bias voltage of about 300 V to 800 V can be applied to the target 42 from the negative bias power supply device 423.
  • the target 42 may have a cesium (Cs) layer formed on the surface in advance, but in this example, after the target 42 is installed in the chamber 42, cesium is vapor deposited on the target. That is, a cesium deposition device 424 is provided outside the chamber 41.
  • the apparatus 424 includes an oven 424a containing cesium (Cs) therein, a heater 424b for heating and evaporating cesium through the oven, and a duct 424c for guiding and depositing the evaporated cesium to the target 42, The apparatus 424 deposits cesium on the surface of the target 42.
  • the power supply device 45 includes a high frequency power supply 451 and a switch 452 for turning on / off application of the power supply output to the antenna.
  • the other end of the antenna 43 is grounded.
  • the antenna 43, the matching box 450, the high frequency power supply device 45, and the like constitute a plasma generation device 4A.
  • the substrate installation electrode 44 is supported by a conductive support member 441, and the support member 441 passes through the bottom wall of the chamber 41 and extends to the outside.
  • the support member 441 is insulated from the chamber 41 by an insulating member 442.
  • a positive bias power supply device 46 is connected to the electrode 44 via a support member 441.
  • the power supply device 46 includes an output variable DC power source 461 for applying a positive bias voltage to the electrode 43 and a switch 462 for turning on / off the application of the positive bias voltage from the power source to the electrode 43.
  • the switch 452 of the high frequency power supply device 45 and on / off of the switch 462 are controlled by the control unit 47 as described later.
  • the output of the DC power supply 461 of the bias power supply device 46 is also controlled by the control unit 47.
  • a gas introduction device 48 for introducing a gas containing silicon into the chamber and an exhaust device 49 for exhausting the gas from the plasma generation chamber 41 are connected to the plasma generation chamber 41.
  • silicon dots can be formed as follows.
  • a silicon dot formation target substrate S such as a silicon substrate is installed on the substrate installation electrode 44.
  • cesium is deposited on the sputter target 42 by the cesium deposition apparatus 424.
  • a negative bias voltage is applied from the bias power supply device 423 to the target 42 on which this cesium is deposited, while the exhaust device 49 exhausts the chamber 41 from the chamber 41 and keeps the chamber at a reduced pressure to form silicon dots on the substrate S.
  • a gas containing silicon is introduced from the gas introduction device 48, and the switch 452 of the high frequency power supply device 45 is turned on under the instruction of the control unit 47 to apply high frequency power from the high frequency power supply 451 to the high frequency antenna 43.
  • the gas is turned into plasma.
  • the target 42 to which cesium is deposited and a negative bias voltage is applied functions as an electron emitter.
  • the positive ions contained in the plasma are attracted to the target 42 to which a negative bias is applied, while electrons are emitted from the target 42, and the electrons are given to radicals, molecules, positive ions, etc. containing silicon, and they are Negative ionization.
  • the density (concentration) of negative ions containing silicon is increased.
  • the switch 462 of the positive bias power supply 46 is turned on and off to apply a first positive pulse voltage to the base electrode 44 and the base S placed thereon, and attract negative ions including silicon in the plasma to the base.
  • a nucleus serving as a silicon dot is formed on the substrate S, and then a second positive pulse voltage is applied from the power supply device 46 to the substrate S to attract negative ions including silicon in the plasma to the substrate.
  • silicon dots can be grown based on the nuclei.
  • the control unit 47 turns on and off the plasma generating device 4A at a predetermined cycle at the same timing as shown in FIG.
  • the application of each second positive bias voltage is also turned on / off at a predetermined timing. That is, the control unit 47 turns on / off the switch 452 in the plasma generation apparatus 4A at a predetermined cycle, and generates (lights) and extinguishes plasma at a predetermined cycle.
  • the switch 462 is turned on / off at a predetermined cycle, and the positive bias application to the electrode 44 is turned on / off at a predetermined cycle. A positive pulse voltage is applied.
  • the positive pulse voltage is applied to the electrode 44 for a predetermined period Tb between the time when the plasma generating apparatus 4A is turned off and the period after the predetermined period Ta has elapsed until the plasma generating apparatus 4A is turned on again.
  • the positive pulse voltage is applied to the electrode 44 during a predetermined period Tb between the time when the switch 452 of the high frequency power supply device 45 is turned off and the time after the predetermined period Ta has elapsed until the switch 452 is turned on again.
  • a positive pulse voltage is applied to the base body setting electrode 44 and the base body S installed thereon to attract negative ions all over the base body S.
  • the operation is repeated to form silicon dots.
  • silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
  • FIG. 7 An example of a type of silicon dot forming apparatus is shown.
  • the silicon dot forming apparatus shown in FIG. 7 includes a plasma generation chamber 51, a silicon dot forming chamber 52 connected to the chamber 51, and a negative ion extraction electrode device 53 provided in the opening 511 of the chamber 51.
  • An ECR plasma generation device 54 is connected to the ceiling wall of the plasma generation chamber 51.
  • the ECR plasma generator 54 includes a chamber 541, an antenna 542 installed in the chamber, and a magnetic field generator 543 for forming a magnetic field that satisfies the ECR condition in the chamber 541.
  • the ECR plasma generator 54 is generated by a magnetron (not shown).
  • the microwave can be transmitted to the Anna 542 through the coaxial cable 544.
  • the chamber 541 communicates with the plasma generation chamber 51 through an electron emission port 541a provided in the chamber 541 and an opening 512 in the plasma generation chamber ceiling wall.
  • the chamber 541 is connected to a gas introduction device 55 for supplying a gas containing silicon to the chamber 541 and further to the plasma generation chamber 51.
  • the ECR plasma generation device 54 can generate microwaves in the chamber 541 under the magnetic field generated by the magnetic field forming device 543 by applying a microwave to the gas introduced from the gas introduction device 55 into the chamber 541.
  • Permanent magnets are arranged outside the plasma generation chamber 51 so that N poles and S poles are alternately arranged, thereby forming a multipolar magnetic field (cusp magnetic field) to efficiently confine the plasma. It is.
  • a discharge power source 56 is connected between the ECR plasma generator 54 and the plasma generation chamber 51 via a switch 561. When the switch 561 is turned on, a bias voltage for discharge is applied to the plasma generation chamber 51 by the power source 56. Is done.
  • the ECR plasma generation device 54, the discharge power supply 56, the switch 561, and the like constitute a plasma generation device 5A for generating a target main plasma in the plasma generation chamber 51.
  • a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged.
  • the base body setting part 57 is supported by a conductive support member 571.
  • the support member 571 extends through the bottom wall of the chamber 52 to the outside of the chamber.
  • the support member 571 is insulated from the chamber 52 by an insulating member 572.
  • the base body setting part 57 is grounded via a support member 571.
  • the base body setting portion 57 has a heater (not shown), and can heat the silicon dot formation target base body S placed thereon.
  • the negative ion extraction electrode device 53 faces the base body setting portion 57.
  • the electrode device 53 includes an acceleration electrode 531 close to the opening 511 of the plasma generation chamber 51, a deceleration electrode 532 outside thereof, and a ground electrode 533 outside thereof.
  • Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
  • the acceleration electrode 531 is connected to an acceleration power supply PW1 whose output is variable via a resistor R and a switch S1.
  • the deceleration electrode 532 is connected to an output variable deceleration power supply PW2 via a switch S2.
  • the switch S1 When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531.
  • the switch S ⁇ b> 2 When the switch S ⁇ b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
  • the resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 51 to the negative ion extraction electrode device 53. is doing.
  • the control unit 58 controls on / off (open / close) of the switch 561 for connecting the discharge power source 56 to the ECR plasma generation device 54 and the plasma generation chamber 51 and on / off (open / close) of the switches S1 and S2 in the negative ion extraction power supply device PW. It is controlled by.
  • the outputs of the power supplies PW1 and PW2 are also controlled by the control unit 58. Details of the control will be described later.
  • an exhaust device 59 is connected to the plasma generation chamber 51, and the exhaust device can exhaust the plasma generation chamber 51 and the chamber 541 of the ECR plasma generation device 54 to set them to the plasma generation pressure. It is possible to exhaust the silicon dot forming chamber 52 and set it to the silicon dot forming pressure.
  • silicon dots can be formed on the silicon dot formation target substrate S as follows.
  • a silicon dot formation target substrate S such as a silicon substrate is set in the substrate setting portion 57 in the silicon dot forming chamber 52.
  • the exhaust device 59 exhausts the plasma generation chamber 51, the chamber 541 of the ECR plasma generation device 54, and the silicon dot formation chamber 52.
  • the internal pressure of the chamber 51 and the chamber 541 is maintained at the plasma generation pressure and the internal pressure of the chamber 52 is maintained at the silicon dot formation pressure, and the gas containing silicon is supplied from the gas introduction device 55 to the chamber 541 and thus the plasma generation chamber 51 To introduce.
  • the ECR plasma generator 54 generates ECR plasma.
  • the switch 561 is turned on to apply a bias voltage for discharge from the discharge power source 56 to the plasma generation chamber 51.
  • a bias voltage is applied from the power source 56 to the plasma generation chamber 51, electrons and negative ions are extracted from the chamber 541 of the ECR plasma generation device 54, and the electrons drift into the plasma generation chamber 51. Colliding with the generated gas, main discharge plasma containing silicon and containing many negative ions is generated in the chamber 51.
  • the switches S1 and S2 of the negative ion extraction power supply device PW are turned on to apply a voltage for extracting negative ions to the negative ion extraction electrode device 53. More specifically, a positive acceleration voltage from the power source PW1 is applied to the acceleration electrode 531 of the electrode device 53 and a negative deceleration voltage from the power source PW2 is applied to the deceleration electrode 532 for negative ion extraction.
  • the application of the negative ion extraction voltage includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
  • the first ion extraction voltage extracts negative ions including silicon in the main discharge plasma in the chamber 51 to the silicon dot formation chamber 52 and applies the first ions to the silicon dot formation target substrate S installed in the substrate installation portion 57. It is a voltage for irradiating with energy to form a nucleus that causes silicon dot growth.
  • the second ion extraction voltage is such that negative ions including silicon in the plasma in the chamber 51 are extracted to the chamber 52, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus. And a voltage for growing silicon dots.
  • the negative ions containing silicon in the plasma generated in the chamber 51 are extracted from the numerous holes of the electrodes of the device to the silicon dot formation chamber 52 by the electrode device 53 to which the negative ion extraction voltage is applied as described above.
  • the substrate S is irradiated with an ion beam. By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
  • the switches 561 and the switches S1 and S2 may be closed, and negative silicon ions may be continuously drawn to irradiate the substrate S.
  • the silicon dots are formed as follows. In this way, the concentration of negative ions including silicon in the plasma generation chamber 51 is increased, and negative ions are extracted and irradiated onto the substrate S at a timing at which the negative ion concentration is increased.
  • the control unit 58 turns on and off the plasma generating apparatus 5A at a predetermined cycle. More specifically, when the control unit 58 turns on (closes) the switch 561 and applies the discharge bias voltage from the discharge power supply 56 to the plasma generation chamber 51, the control unit 58 sets the switch 561 as shown in the upper part of FIG. The plasma is generated (lit) and extinguished in the chamber 51 at a predetermined cycle. On the other hand, when the first and second negative ion extraction voltages are applied to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle as shown in the lower part of FIG. The application of each negative ion extraction voltage of 2 is turned on and off at a predetermined cycle.
  • the negative ion extraction voltage is applied to the electrode device 53 when the plasma generating device 5A is turned on (the switch 561 is turned on) again after a predetermined period Ta ′ has elapsed after the plasma generating device 5A is turned off (the switch 561 is turned off).
  • the predetermined period Tb ′ is set during the period until switching. In FIG. 8, “T ′” is the off period of the apparatus 5A, and hence the plasma extinguishing period.
  • the negative ion concentration can be increased by performing plasma lighting in the plasma generation chamber 51 in a pulsed manner and applying a negative ion extraction voltage immediately after the plasma is extinguished. More specifically, when the switch 561 is turned on to generate (light) plasma in the chamber 51, and then the switch 561 is turned off to turn off the plasma, the temperature of electrons in the plasma rapidly decreases, and low energy is generated in the plasma. The electron becomes dominant. The probability that negative ions are generated due to the dissociative adhesion between the low-energy electrons and the molecules increases rapidly. Due to such dissociative adhesion, the negative ion concentration (density) rapidly increases immediately after the plasma generator 5A is turned off (the switch 561 is turned off).
  • a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53.
  • negative ions are supplied to the electrode device 53.
  • An extraction voltage is applied during the period Tb ′ [ ⁇ (T′ ⁇ Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots.
  • silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
  • the plasma generation pressure in the plasma generation chamber 51 for forming silicon dots is approximately 0.05 Pa to 50 Pa, although it depends on the type of gas containing silicon used for plasma generation. be able to.
  • the pressure in the silicon dot forming chamber 52 may be a pressure set in accordance with setting the internal pressure of the plasma generation chamber 51 as such. When the pressure in the chamber 51 becomes lower than 0.05 Pa, it may be difficult for the dots to grow or the dot growth may be slow. If it exceeds 50 Pa, crystalline silicon dots may not be obtained.
  • the positive bias voltage applied to the plasma generation chamber 51 by the discharge power source 56 may be about 100 V to 1 kV, although it depends on the type of gas containing silicon used.
  • the acceleration voltage applied to the acceleration electrode 531 and the deceleration voltage applied to the deceleration electrode 532 of the electrode device 53 are determined according to the purpose of ion irradiation toward the substrate S. That is, the voltage for ion extraction irradiation for forming nuclei that form the basis of silicon dots is applied under the first ion energy (for example, 500 eV or more and 5 keV or less) for nucleation. Is determined by the controller 58.
  • the voltage for ion extraction irradiation for growing silicon dots based on the nucleus is the second ion energy for the ion irradiation to grow silicon dots [for example, the first ion energy is 500 eV or more and 5 keV or less.
  • the second ion energy is 50 eV or more and 2 keV or less (more preferably 500 eV or less)].
  • Such a voltage can be obtained in advance by experiments or the like and set in the control unit 58.
  • a period substantially corresponding to about 100 Hz to 1 kHz can be given as a frequency.
  • the plasma lighting period Tc ′ can be exemplified as about 10 ⁇ sec to 500 ⁇ sec
  • the plasma extinguishing period T ′ can be exemplified as about 500 ⁇ sec to 10 msec.
  • the period Ta ′ from plasma extinguishing to the start of positive pulse voltage application can be about 50 ⁇ sec to 200 ⁇ sec
  • the positive pulse voltage application period Tb ′ can be about 5 ⁇ sec to 100 ⁇ sec.
  • the plasma generation pressure, the magnitude of the positive bias voltage applied to the plasma generation chamber, the magnitude of the voltage applied to the negative ion extraction electrode device, and the periods Tc ′, T ′, Ta ′, and Tb ′ will be described later.
  • the present invention is also applicable to other embodiments of the second silicon dot forming method and apparatus according to the present invention.
  • the plasma generation apparatus 5A described above uses electrons in the ECR plasma.
  • the plasma generation apparatus is not limited thereto, and other than that, it may generate high-frequency plasma, DC discharge plasma, or the like. Good. Regardless of which plasma generation apparatus is employed, the plasma generation apparatus is periodically turned on and off, and a negative ion extraction voltage is applied to the negative ion extraction electrode apparatus in time with the increase of negative ions immediately after being turned off.
  • FIG. 9 shows another example of the second silicon dot forming apparatus according to the present invention.
  • the silicon dot forming apparatus of FIG. 9 includes a plasma generation chamber 61, a silicon dot forming chamber 62 connected to the chamber 61, and a negative ion extraction electrode device 53 provided in an opening 613 of the chamber 61.
  • the upper part of the plasma generation chamber 61 is formed in a truncated cone shape, and a magnetron 63 is connected to the apex thereof.
  • the magnetron 63 is connected to the chamber 61 through a waveguide 631 and a microwave transmission window 632 made of a dielectric material.
  • a magnetic field forming device 633 that forms a magnetic field that satisfies the ECR condition is provided outside the upper portion of the chamber 61.
  • a conductor rod 671 for forming a magnetic field for capturing high-energy electrons is provided in the middle part of the plasma generation chamber 61.
  • a plurality of conductor rods 671 are arranged in parallel at a predetermined interval.
  • the upper side of the rods 671 is a first plasma chamber 611 and the lower side of the rod 671 is a second plasma chamber 612.
  • Permanent magnets are arranged outside the second plasma chamber 612 of the plasma generation chamber 61 so that N poles and S poles are alternately arranged, thereby forming a multipolar magnetic field (cusp magnetic field) efficiently.
  • the plasma is confined.
  • the magnetron 63, the waveguide 631, the dielectric window 632, the magnetic field forming device 633, and the like constitute a plasma generating device 6A.
  • a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged.
  • the base body setting part 57 is supported by a conductive support member 571.
  • the support member 571 extends through the bottom wall of the chamber 62 to the outside of the chamber.
  • the support member 571 is insulated from the chamber 62 by an insulating member 572.
  • the base body setting part 57 is grounded via a support member 571.
  • the negative ion extraction electrode device 53 faces the base body setting portion 57.
  • the electrode device 53 has the same structure as the electrode device 53 shown in FIG. 7, and includes an acceleration electrode 531, a deceleration electrode 532, and a ground electrode 533.
  • Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
  • the accelerating electrode 531 is connected to a variable power accelerating power source PW1 via a resistor R and a switch S1, and the decelerating electrode 532 is connected to a variable power deciding power source PW2 via a switch S2.
  • the switch S1 When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531.
  • the switch S ⁇ b> 2 When the switch S ⁇ b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
  • the resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 61 to the electrode device 53.
  • the on / off of the magnetron 63 and the on / off of the switches S1 and S2 in the power supply device PW are controlled by the control unit 64.
  • the outputs of the power supplies PW1 and PW2 are also controlled by the control unit 64. Details of the control will be described later.
  • the plasma generation chamber 61 is connected to a gas introduction device 65 for introducing a gas containing silicon into the chamber and to an exhaust device 66. They can be exhausted from the plasma generation chamber 61 by the exhaust device 66 and set to the plasma generation pressure, and exhausted from the silicon dot formation chamber 62 and set to the silicon dot formation pressure.
  • a magnetic field B can be formed around each conductor rod 671 by passing a current from the power source 672 to the plurality of conductor rods 671.
  • the conductor rod 671, the power source 672, and the like constitute a magnetic field forming device 67 for forming an electron trapping magnetic field.
  • silicon dots can be formed as follows.
  • a silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting portion 57 in the silicon dot forming apparatus 62.
  • a gas containing silicon is generated from the gas introduction device 65 while the chamber 61 is evacuated from the chamber 61 by the evacuation device 66 and the chamber is maintained at the plasma generation pressure and the silicon dot formation chamber 62 is maintained at the silicon dot formation pressure. It introduces into the chamber 61.
  • the magnetron 63 is turned on under the instruction of the control unit 64 to generate ECR plasma in the first plasma chamber 611. Further, a current in the same direction is supplied from the power source 672 of the magnetic field forming device 67 to each conductor rod 671 to form a weak magnetic field of several gauss to several tens of gauss, and further a negative ion extraction power source under the instruction of the control unit 64
  • the switches S1 and S2 of the device PW are turned on to apply a voltage for extracting negative ions to the negative ion extracting electrode device 53. More specifically, a positive acceleration voltage from the power source PW1 is applied to the acceleration electrode 531 of the electrode device 53 and a negative deceleration voltage from the power source PW2 is applied to the deceleration electrode 532 for negative ion extraction.
  • the plasma formed in the first plasma chamber 611 comes to the second plasma chamber 672 from between the conductor rods 671. At this time, high-energy electrons in the plasma generated in the first plasma chamber 611 form a magnetic field. The passage through the second plasma chamber 612 is suppressed by the magnetic field barrier formed by the device 67. Low energy electrons can move through the magnetic field to the second plasma chamber 612. Thus, the magnetic field acts as an energy filter. Although depending on the type of gas containing silicon used for plasma generation, examples of the low-energy electrons that pass through the magnetic field forming device 67 and arrive at the second plasma chamber 612 are approximately 30 eV or less.
  • Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms.
  • Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 ⁇ , SiH 2 ⁇ , and the like.
  • the negative ion concentration density
  • Negative ions containing silicon in the plasma generated in the chamber 61 are drawn out from the numerous holes of the electrodes of the device to the silicon dot forming chamber 62 by the electrode device 53 to which a negative ion extraction voltage is applied as described above.
  • the substrate S is irradiated with an ion beam. By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
  • the application of the negative ion extraction voltage includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
  • the first ion extraction voltage extracts negative ions containing silicon in the plasma in the first plasma chamber 611 to the silicon dot formation chamber 62, and the first ion extraction voltage is applied to the silicon dot formation target substrate S installed in the substrate installation unit 57.
  • This is a voltage for forming nuclei that are irradiated with ion energy and are the basis of silicon dot growth.
  • the second ion extraction voltage negative ions including silicon in the plasma in the chamber 61 are extracted to the chamber 62, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus. And a voltage for growing silicon dots. Such a voltage can be obtained in advance by experiments or the like and set in the control unit 58.
  • silicon ions may be formed by continuously extracting negative ions and irradiating the substrate S, but in this example, the plasma generation chamber 61 is formed. The concentration of negative ions including silicon inside is increased, and negative ions are extracted and irradiated onto the substrate S at a timing at which the negative ion concentration is increased.
  • the control unit 64 turns the plasma generator 6A on and off at a predetermined cycle. More specifically, when the controller 64 turns on the magnetron 63 and causes the first plasma chamber 611 to generate ECR plasma, the controller 61 turns on and off the magnetron 63 at a predetermined cycle, as shown in the upper part of FIG. Plasma is generated (lit) and extinguished in a predetermined cycle. On the other hand, when a negative ion extraction voltage is applied to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle as shown in the lower part of FIG. Turn it on and off.
  • the negative ion extraction voltage is applied to the electrode device 53 during a predetermined period Tb ′ between the time when the plasma generating apparatus 6A is turned off and the time after the predetermined period Ta ′ elapses until the plasma generating apparatus 6A is turned on again. Made.
  • the plasma ion generation in the plasma generation chamber 61 is performed in a pulsed manner, and the negative ion concentration can be increased by applying the negative ion extraction voltage immediately after the plasma is extinguished.
  • a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53.
  • negative ions are supplied to the electrode device 53.
  • An extraction voltage is applied during the period Tb ′ [ ⁇ (T′ ⁇ Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots.
  • silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
  • the gas containing silicon is introduced into the first plasma chamber 611 as shown in FIG. 9, but it may be introduced into the second plasma chamber 612, or the first and second It may be introduced into both of the two plasma chambers.
  • the plasma generator 6A generates ECR plasma. For example, as shown in FIG. 3, the plasma generator 6A generates plasma using thermionic electrons emitted by heating the filament, or high-frequency plasma. It may be generated.
  • the electron trapping magnetic field is formed by passing a current through the conductor rod 671.
  • magnets for example, permanent magnets as shown
  • mg1 to mg4 are provided outside the unit, and the first and second magnets mg1 and mg2 and opposite magnets mg3 and mg4 face each other.
  • the electron trapping magnetic field B may be formed in the boundary region between the two plasma chambers.
  • FIG. 11 shows another example of the second type silicon dot forming apparatus.
  • the silicon dot forming apparatus of FIG. 11 uses a cesium-based sputtering negative ion source.
  • the apparatus of FIG. 11 includes a plasma generation chamber 71, a silicon dot formation chamber 72 connected to the chamber 71, and a negative ion extraction electrode device 53 provided in an opening 711 of the chamber 71.
  • a sputter target 73 is provided in the upper part of the plasma generation chamber 71, and a high-frequency antenna 74 is disposed in the middle.
  • the sputter target 73 is supported by a conductive support member 731.
  • the support member 731 extends through the ceiling wall of the chamber 71 to the outside.
  • the support member 731 is insulated from the chamber 71 by an insulating member 732.
  • a negative bias voltage of about 300 V to 800 V can be applied to the target 73 from the negative bias power supply device 733.
  • the target 73 may have a cesium (Cs) layer formed on the surface in advance.
  • Cs cesium
  • a cesium deposition apparatus 424 is provided outside the chamber 71.
  • the apparatus 424 is the same as that shown in FIG. 6, and an oven 424a containing cesium (Cs) therein, a heater 424b for heating and evaporating cesium through the oven, and a target 73 for evaporating cesium.
  • a duct 424c is led to be deposited and deposited on the surface of the target 73 by the apparatus 424.
  • the power supply device 75 includes a high frequency power supply 751 and a switch 752 for turning on / off application of the power supply output to the antenna.
  • the other end of the antenna 74 is grounded.
  • the antenna 74, the matching box 750, the high frequency power supply device 75, and the like constitute a plasma generation device 7A.
  • a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged in the silicon dot formation chamber 72.
  • the base body setting portion 57 is the same as the base body setting portion 57 shown in FIG. With respect to the base body setting portion 57, the same reference numerals as those in FIG. 7 and the like are attached to the same parts and portions as those in the base body setting portion shown in FIG.
  • the negative ion extraction electrode device 53 faces the base body setting portion 57.
  • the electrode device 53 has the same structure as the electrode device 53 shown in FIG. 7, and includes an acceleration electrode 531, a deceleration electrode 532, and a ground electrode 533.
  • Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
  • the accelerating electrode 531 is connected to a variable power accelerating power source PW1 via a resistor R and a switch S1, and the decelerating electrode 532 is connected to a variable power deciding power source PW2 via a switch S2.
  • the switch S1 When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531.
  • the switch S ⁇ b> 2 When the switch S ⁇ b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
  • the resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 71 to the electrode device 53.
  • the on / off of each of the switches S1 and S2 in the switch 752 of the high frequency power supply device 75 and the negative ion extraction power supply device PW is controlled by the control unit 76.
  • the outputs of the power supplies PW1 and PW2 are also controlled by the control unit 76. Details of the control will be described later.
  • a gas introduction device 77 for introducing a gas containing silicon into the chamber is connected to the plasma generation chamber 71 and an exhaust device 78 is connected.
  • the exhaust device 78 can exhaust the plasma generation chamber 71 and set it to the plasma generation pressure, and exhaust the silicon dot formation chamber 72 to set the chamber 72 to the silicon dot formation pressure.
  • silicon dots can be formed as follows.
  • a base S for forming silicon dots such as a silicon substrate is placed on the base placement portion 57.
  • cesium is deposited on the sputter target 73 by the cesium deposition apparatus 424.
  • a negative bias voltage is applied from the bias power supply device 733 to the target 73 on which the cesium is deposited.
  • the exhaust device 78 evacuates the chamber 71 to maintain the chamber at the plasma generation pressure, and exhausts the chamber 72 to maintain the silicon dot formation pressure on the substrate S, while supplying silicon from the gas introduction device 77. Introducing gas containing.
  • the switch 752 of the high frequency power supply device 75 is turned on (closed) under the instruction of the control unit 76 to apply high frequency power from the high frequency power supply 751 to the high frequency antenna 74, while the switch S1 in the negative ion extraction power supply device PW, S2 is turned on (closed), and a negative ion extraction voltage is applied to the negative ion extraction electrode device 53.
  • the gas is turned into plasma. Further, the target 42 to which cesium is deposited and a negative bias voltage is applied functions as an electron emitter.
  • the positive ions contained in the plasma are attracted to the target 73 to which a negative bias is applied.
  • electrons are emitted from the target 73, and the electrons are given to radicals, molecules, positive ions, etc. containing silicon, which are negatively ionized. To do. Thus, the density (concentration) of negative ions containing silicon is increased.
  • the negative ions including silicon in the plasma generated in the chamber 71 in this way are applied to the electrode of the apparatus by the electrode apparatus 53 to which a negative ion extraction voltage is applied under the instruction of the control unit 76 as described above. These holes are drawn out to the silicon dot forming chamber 72 and irradiated onto the substrate S as an ion beam.
  • the application of the negative ion extraction voltage to the electrode device 53 includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
  • the first ion extraction voltage negative ions including silicon in the plasma in the chamber 71 are extracted to the silicon dot formation chamber 72 and applied to the silicon dot formation target substrate S installed in the substrate installation unit 57 with the first ion energy. This is a voltage for irradiating to form nuclei that cause silicon dot growth.
  • negative ions including silicon in the plasma in the chamber 71 are extracted to the chamber 72, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus.
  • a voltage for growing silicon dots By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
  • Silicon dots may be formed by closing all the switches 752, S1 and S2 and continuously extracting negative ions and irradiating the substrate S, but in this example, silicon atoms in the plasma generation chamber 71 are removed. The concentration of the negative ions contained is increased, and negative ions are extracted and irradiated onto the substrate S at a timing when the negative ion concentration is increased.
  • the controller 76 turns on / off the plasma generator 7A at a predetermined cycle. More specifically, the control unit 76 turns on and off the switch 752 of the high-frequency power supply device 75 to generate (turn on) and extinguish plasma in the plasma generation chamber 71 in a predetermined cycle, as shown in the upper part of FIG. On the other hand, when applying a negative ion extraction voltage to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle, and negative ion extraction is turned on and off at a predetermined cycle as shown in the lower part of FIG.
  • the negative ion extraction voltage is applied to the electrode device 53 when the plasma generating device 7A is turned on again (switch 752 is turned on) after a lapse of a predetermined period Ta ′ after the plasma generating device 7A is turned off (switch 752 is turned off).
  • the predetermined period Tb ′ is set during the period until switching.
  • a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53.
  • a period Ta ′ elapses, negative ions are supplied to the electrode device 53.
  • An extraction voltage is applied during the period Tb ′ [ ⁇ (T′ ⁇ Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots.
  • silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
  • FIG. 12 shows an example of a third type silicon dot forming apparatus.
  • the silicon dot forming apparatus shown in FIG. 12 has a plasma generation chamber 1 ′, an exhaust device 12 ′ is connected to the chamber 1 ′, and a gas introduction for introducing a gas containing silicon into the chamber 1 ′.
  • a device 13 ' is connected.
  • a base body setting portion 11 ′ for holding the silicon dot formation target base body S is disposed in the chamber 1 ′.
  • the substrate S can be placed on the substrate installation portion 11 ′ by opening / closing the gate valve 10 ′ and a substrate transport robot (not shown).
  • the substrate installation portion 11 ' has a substrate heating heater 14'.
  • an antenna 9' is installed at a position facing the peripheral edge of the substrate S held by the substrate installation unit 11 '.
  • the opening of the antenna 9 ' is indicated by 9a' in FIG. FIG. 13 shows the antenna 9 'viewed from above.
  • the antenna 9 ′ is a double half-loop antenna here, and is formed by coupling two U-shaped conductive members 91 ′ covered with an insulator 92 ′ (here, ceramic) for suppressing capacitive coupling. .
  • One end of the antenna 9 ′ is connected to the high frequency power source 2 ′ via the matching unit 3 ′, and the other end is grounded via the capacitor 15 ′.
  • an inductively coupled plasma can be generated from the gas supplied to the chamber 1 ′ by applying an inductively coupled high frequency electric field to the gas.
  • an ion source 4 ' is provided at a position facing the substrate mounting portion 11' with the antenna 9 'interposed therebetween.
  • An ion source gas supply unit 16 ′ is connected to the ion source 4 ′, and a high frequency power source 6 ′ is connected via a matching unit 5 ′ for gas plasma conversion.
  • the ion source 4 ′ has an ion irradiation electrode device 40 ′ composed of three electrodes (acceleration electrode 41 ′, deceleration electrode 42 ′, and ground electrode 43 ′ from the back side of the ion source) for extracting ions. is doing. Between the ion irradiation electrode device 40 ′ and the ion source 4 ′, an output variable acceleration power source 7 ′ and an output variable deceleration power source 8 ′ are connected. The ion source 4 ′, the electrode device 40 ′ and the like constitute an ion beam irradiation device 400.
  • the excitation method of the ion source 4 ' is shown here as a high-frequency type, but other types such as a filament type and a microwave type can be adopted.
  • the ion irradiation electrode system is not limited to the three-electrode structure, and may be composed of other numbers of electrodes.
  • control unit 100 On / off and output of the acceleration power supply 7 ′ and the deceleration power supply 8 ′ connected to the electrode system 40 ′ in the ion beam irradiation apparatus 400 are controlled by the control unit 100. In addition to this, the control unit 100 also controls the power source 2 ', the power source 6', and the like.
  • the base S is placed in the base installation portion 11 ′, and predetermined silicon dots are formed in the chamber 1 ′ by operating the exhaust device 12 ′.
  • a gas containing silicon is introduced into the plasma generation chamber 1 ′ from the gas introduction device 13 ′ while maintaining the pressure, and an inductively coupled high-frequency electric field is applied from the high-frequency power source 2 ′ via the matching unit 3 ′ and the antenna 9 ′. Then, the introduced gas is turned into plasma, and inductively coupled plasma is generated around the position indicated by 17 'in the figure.
  • the gas containing silicon at least one gas among silicon-based gases or at least one gas among reactive gases and at least one gas among silicon-based gases is used.
  • an ion source gas is introduced into the ion source 4 ′ from the ion source gas supply section 16 ′, and high-frequency power is supplied to the ion source 4 ′ from the power source 6 ′ via the matching unit 5 ′, which is indicated by 18 ′ in the figure.
  • Plasma is generated at a position in the ion source, and ions are extracted from the plasma 18 ′ by applying a voltage for ion extraction to the ion irradiation electrode device 40 ′ by the power supplies 7 ′ and 8 ′, thereby opening the antenna 9 ′.
  • the substrate S is irradiated with the ion beam through 9a ′.
  • an ion source gas ions of at least one of an inert gas, a reactive gas, and a silicon-based gas are used.
  • Voltage application for extracting ions from the power supplies 7 ′ and 8 ′ to the ion irradiation electrode device 40 ′ is performed as follows under the instruction of the control unit 100. That is, the silicon dot is formed on the silicon dot formation target substrate S so that the ion beam is irradiated with the first ion energy for forming the nucleus serving as the silicon dot. A voltage for extracting ions is applied from the power sources 7 'and 8' to the ion irradiation electrode device 40 'so that ion beam irradiation is performed with the second ion energy for growth.
  • the first ion energy for forming nuclei is P [eV] or more and about 5 keV when the plasma potential is P [V]
  • the second ion energy for growing silicon dots is 2 keV or less. It is up to about 50 eV.
  • the voltage to be applied from the power sources 7 ′ and 8 ′ to the electrode device 40 ′, or from the power sources 7 ′ and 8 ′ to perform the ion beam irradiation with the second ion energy is obtained in advance by experiments or the like and set in the control unit 100.
  • crystalline silicon dots are formed on the substrate S.
  • the pressure in the plasma generation chamber 1 ' is adjusted so that the pressure in the plasma generation chamber 1', particularly in the vicinity of the surface of the substrate S, is in the range of 0.6 Pa to 1.3 Pa.
  • the temperature of the substrate S is kept at RT (room temperature) to 600 ° C. by the heater 14 '.
  • the inductively coupled plasma 17 ′ is generated from the source gas containing silicon, the substrate S is placed under the inductively coupled plasma, and the ion beam is applied to the surface of the substrate S. Irradiation forms silicon dots.
  • the plasma generated from the gas containing silicon is the inductively coupled plasma 17 ′, and the inductively coupled plasma 17 ′ has a higher plasma density and a lower plasma potential than the electrostatically coupled plasma as described above. . Therefore, a silicon dot having high crystallinity can be obtained on a substrate having a relatively low heat resistance such as a low-melting glass substrate at a low temperature (for example, 600 ° C. or less) that can suppress thermal damage to the substrate. it can.
  • the surface of the substrate S is irradiated with an ion beam from the ion source 4 ′, so that the movement or migration of silicon atoms is promoted.
  • the crystallinity of the silicon dots becomes higher. It is not necessary to perform a separate heat treatment to increase crystallinity after the formation of silicon dots. In this way, high-quality crystalline silicon dots can be obtained with high productivity.
  • Silicon dot formation by the silicon dot formation apparatus shown in FIG. 7 ⁇ Silicon dot formation conditions> 1) Plasma conditions (high frequency plasma) ECR plasma conditions Microwave 2.45 GHz, magnetic field 875 Gauss Voltage for ion extraction applied to electrode device 53 from power sources PW1 and PW2 Voltage to obtain first ion energy 50 eV and second in-on energy 200 eV Source gas SiH 4 gas and hydrogen Gas (SiH 4 10%) Silicon dot forming pressure 0.05Pa ⁇ 1Pa Plasma extinguishing period T '500 ⁇ sec Plasma lighting period Tc '500 ⁇ sec Application of negative ion extraction voltage Application start Ta ′ 100 ⁇ sec Application period Tb ′ 100 ⁇ sec 2) Substrate Silicon wafer 3) Substrate temperature 300 ° C ⁇ Evaluation of silicon dots> When the crystallinity of the silicon dots [crystalline / (crystalline + amorphous)] was measured by analysis by laser Raman spectroscopy, high-quality silicon dots with a crystallin
  • Silicon dot formation by the silicon dot formation apparatus shown in FIG. 12 ⁇ Silicon dot formation conditions> 1) Plasma conditions (inductively coupled plasma) Excitation method High frequency power 13.56 MHz, 35 mW / cm 3 Source gas SiH 4 gas and hydrogen gas (SiH 4 10%) Silicon dot forming pressure 0.6 Pa to 1.3 Pa Plasma potential 23V Plasma density 6 ⁇ 10 10 ions / cm 3 2) Ion beam irradiation conditions First ion energy 500 eV Second ion energy 50eV 3) Substrate Non-alkali glass substrate 4) Substrate temperature 300 ° C ⁇ Evaluation of silicon dots> When the crystallinity of the silicon dots [crystalline / (crystalline + amorphous)] was measured by analysis by laser Raman spectroscopy, high-quality silicon dots with a crystallinity of 97% or more were confirmed.
  • the present invention can be used to form silicon dots having a small particle diameter used as an electronic device material such as a single electronic device or a light emitting material.

Abstract

Disclosed are a silicon-dot forming method for forming silicon-dots of regular diameters in a homogeneous density distribution over an object substrate on which silicon dots are to be formed, wherein the method includes a wide range of selecting the substrate material in terms of heat resistance; and a silicon-dot forming apparatus for performing the method. A silicon-containing gas is introduced into a plasma-generating chamber, and plasma is generated from the gas by a plasma-generating device. A first positive pulse voltage is applied to a substrate-mounting electrode so that the substrate on the electrode is irradiated with negative ions containing silicon by a first ion energy, thereby to generate nuclei. Next, a second positive pulse voltage is applied to the electrode so that the substrate is irradiated with the negative ions containing the silicon ions by a second ion energy, thereby to cause the silicon dots to grow on the basis of the nuclei.

Description

シリコンドット形成方法及びシリコンドット形成装置Silicon dot forming method and silicon dot forming apparatus
 本発明は単一電子デバイス等のための電子デバイス材料や発光材料などとして用いられるシリコンナノ粒子などとも称されている微小サイズのシリコンの結晶質粒子(以下「シリコンドット」ということがある。)の形成方法及び形成装置に関する。 The present invention is a microscopic silicon crystalline particle (hereinafter also referred to as “silicon dot”) which is also referred to as a silicon nanoparticle used as an electronic device material or a light emitting material for a single electronic device or the like. The present invention relates to a forming method and a forming apparatus.
 シリコンナノ粒子(シリコンドット)の形成方法としては、シリコンを不活性ガス中でエキシマレーザー等を用いて加熱、蒸発させて形成する物理的手法が知られており、また、ガス中蒸発法も知られている(神奈川県産業技術総合研究所研究報告No.9/2003 77~78頁参照) 。後者は、レーザーに代えて高周波誘導加熱やアーク放電によりシリコンを加熱蒸発させる手法である。 As a method of forming silicon nanoparticles (silicon dots), a physical method is known in which silicon is heated and evaporated using an excimer laser or the like in an inert gas, and a gas evaporation method is also known. (See Kanagawa Prefectural Institute of Advanced Industrial Science and Technology, Research Report No. 9/2003, pages 77-78). The latter is a technique in which silicon is heated and evaporated by high frequency induction heating or arc discharge instead of laser.
 また、CVDチャンバ内に材料ガスを導入し、加熱した基板上にシリコンナノ粒子を形成するCVD法も知られている(特開2004-179658号公報参照)。
 この方法では、シリコンナノ粒子成長のための核を基板上に形成する工程を経て、該核からシリコンナノ粒子を成長させる。
A CVD method is also known in which a material gas is introduced into a CVD chamber to form silicon nanoparticles on a heated substrate (see Japanese Patent Application Laid-Open No. 2004-179658).
In this method, silicon nanoparticles are grown from the nucleus through a step of forming a nucleus for growing silicon nanoparticles on the substrate.
特開2004-179658号公報JP 2004-179658 A
 しかしながら、かかる従来のシリコンドット形成方法のうち、シリコンをレーザー照射により加熱蒸発させる手法は、均一にエネルギー密度を制御してレーザーをシリコンに照射することが困難であり、シリコンドットの粒径や密度分布を揃えることが困難である。 ガス中蒸発法においても、シリコンの不均一な加熱が起こり、そのためにシリコンドットの粒径や密度分布を揃えることが困難である。 However, among the conventional silicon dot formation methods, the method of heating and evaporating silicon by laser irradiation is difficult to irradiate silicon with laser by uniformly controlling the energy density. It is difficult to align the distribution. Even in the gas evaporation method, non-uniform heating of silicon occurs, and it is difficult to make the particle size and density distribution of silicon dots uniform.
 また、前記のCVD法においては、前記核を基板上に形成するにあたり、基板を550℃程度以上に加熱しなければならず、耐熱温度の低い基板を採用できず、基板材料の選択可能範囲がそれだけ制限される。 In the CVD method, when the nucleus is formed on the substrate, the substrate must be heated to about 550 ° C. or more, a substrate having a low heat-resistant temperature cannot be adopted, and the substrate material can be selected. That is the limit.
 そこで本発明は、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成でき、耐熱性の点で基体材料の選択可能範囲が広いシリコンドット形成方法を提供することを第1の課題とする。 Accordingly, the present invention provides a silicon dot forming method that can form silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and has a wide selectable range of substrate materials in terms of heat resistance. Let it be the first problem.
 また本発明は、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成でき、耐熱性の点で基体材料の選択可能範囲が広いシリコンドット形成装置を提供することを第2の課題とする。 The present invention also provides a silicon dot forming apparatus capable of forming silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and having a wide selectable range of base material in terms of heat resistance. Let it be the 2nd subject.
 本発明者は前記課題を解決するため研究を重ね、次のことを見出した。 The present inventor conducted research to solve the above-mentioned problems and found the following.
〔1〕第1の知見
(1) シリコンを含むガス〔例えばモノシラン(SiH)、ジシラン(Si)、四塩化ケイ素(SiCl)、四フッ化ケイ素(SiF 4)等のガス)〕をプラズマ化し、該プラズマ中のシリコンを含むイオンをバイアスを印加した基体設置電極上のシリコンドット形成対象基体に照射すれば、シリコンドットのもとになる核を形成できる。
[1] First knowledge
(1) A gas containing silicon (for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )) is converted into plasma, and the plasma By irradiating a silicon dot formation target substrate on a substrate-installed electrode to which a bias is applied with ions containing silicon therein, nuclei that are the basis of silicon dots can be formed.
(2) その際、プラズマ中に発生するシリコンを含むイオンには正イオンと負イオンとがあるが、正イオンはSiH 、SiH や、Si (xは1~7の範囲の整数)、Si (nは3以上の整数、yはy≦2n+2の整数)等の高次シラン系イオンがあり、これら複数種類の正イオンが発生する。 (2) At this time, there are positive ions and negative ions in the silicon-containing ions generated in the plasma. The positive ions are SiH 3 + , SiH 2 + , Si 2 H X + (x is 1 to 7). ), Si n H y + (n is an integer of 3 or more, y is an integer of y ≦ 2n + 2), etc., and these plural types of positive ions are generated.
(3) 基体設置電極に負のバイアスを印加して正イオンをシリコンドット形成対象基体に照射したのでは、照射される正イオンが複数種類あり、それぞれ質量が異なるので、形成されるシリコンドットの粒径や分布が不揃いになる傾向がある。 (3) When a negative bias is applied to the substrate mounting electrode and positive ions are irradiated to the silicon dot formation target substrate, there are multiple types of positive ions to be irradiated and each has a different mass. There is a tendency for the particle size and distribution to be uneven.
(4) この問題を解決しようとすると、質量分離して所定の質量の正イオンのみを選択的にシリコンドット形成対象基体に向かわせなければならないが、それには高価で嵩張る質量分離装置を必要とし、また、質量分離処理により選択された正イオンはビーム径が細いので、基体の広い面積にシリコンドットを形成するには走査手段が必要となるうえ、広い面積へのシリコンドット形成に時間がかかる。 (4) In order to solve this problem, it is necessary to selectively separate only positive ions of a predetermined mass toward the silicon dot formation target substrate by mass separation, which requires an expensive and bulky mass separation device. In addition, since the positive ions selected by the mass separation process have a small beam diameter, a scanning means is required to form silicon dots over a large area of the substrate, and it takes time to form silicon dots over a large area. .
(5) 一方、シリコンを含む負イオンについてはSiH 、SiH と言った1次シラン系負イオンの他に安定なものは存在しない。高次シラン系負イオンが発生するようなことがあっても、その寿命は極めて短く、すぐ解離し、負イオンとしては実質上1次シラン系負イオンだけとなる。
 プラズマ中で重合が進んで微粒子が生成される場合に電子衝突により微粒子が負に帯電することがあるが、衝突確率の低いプラズマ条件では、負に帯電する微粒子も存在しない。
(5) On the other hand, there are no stable negative ions including silicon other than primary silane negative ions such as SiH 3 and SiH 2 . Even when higher order silane negative ions are generated, their lifetime is extremely short, they dissociate immediately, and the negative ions are essentially only primary silane negative ions.
When the polymerization proceeds in plasma and fine particles are generated, the fine particles may be negatively charged by electron collision, but there are no negatively charged fine particles under plasma conditions with a low collision probability.
(6) よって、基体設置電極に正のバイアスをパルス状に印加して実質上同じ種類の負イオンを一括してシリコンドット形成対象基体へ照射すれば、質量分離装置や走査機構を要することなく、また、質量分離された正イオンを用いる場合より短い時間でシリコンドットを基体の広い範囲にわたり形成でき、しかも、シリコンを含む負イオンは実質上同種類なので、それだけシリコンドットの粒径を揃え、シリコンドット密度分布を均一化できる。 (6) Therefore, if a positive bias is applied to the substrate installation electrode in a pulsed manner and substantially the same type of negative ions is irradiated to the silicon dot formation target substrate in a lump, there is no need for a mass separator or a scanning mechanism. In addition, silicon dots can be formed over a wide range of substrates in a shorter time than when using mass-separated positive ions, and the negative ions containing silicon are substantially the same type. The silicon dot density distribution can be made uniform.
〔2〕第2の知見
(1) シリコンを含むガス〔例えばモノシラン(SiH)、ジシラン(Si)、四塩化ケイ素(SiCl)、四フッ化ケイ素(SiF 4)等のガス)〕をプラズマ化し、該プラズマ中のシリコンを含むイオンをイオン引出し電極装置を用いて引き出し、シリコンドット形成対象基体に照射すれば、シリコンドットのもとになる核を形成できる。
[2] Second knowledge
(1) A gas containing silicon (for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )) is converted into plasma, and the plasma If ions containing silicon therein are extracted using an ion extraction electrode device and irradiated onto a silicon dot formation target substrate, a nucleus serving as a basis for silicon dots can be formed.
(2) その際、プラズマ中に発生するシリコンを含むイオンには正イオンと負イオンとがあるが、既述のとおり正イオンは複数種類が発生する。 (2) At that time, there are positive ions and negative ions in the silicon-containing ions generated in the plasma, but as described above, multiple types of positive ions are generated.
(3) 正イオンを引き出してシリコンドット形成対象基体に照射したのでは、照射される正イオンが複数種類あり、それぞれ質量が異なるので、形成されるシリコンドットの粒径や分布が不揃いになる傾向がある。 (3) When the positive ions are extracted and irradiated to the silicon dot formation target substrate, there are multiple types of positive ions to be irradiated, and the masses are different, so the particle size and distribution of the formed silicon dots tend to be uneven. There is.
(4) この問題を解決しようとすると、質量分離して所定の質量の正イオンのみを選択的にシリコンドット形成対象に向かわせなければならないが、それには高価で嵩張る質量分離装置を必要とし、また、質量分離処理により選択された正イオンはビーム径が細いので、基体の広い面積にシリコンドットを形成するには走査手段が必要になるうえ、広い面積へのシリコンドット形成に時間がかかる。 (4) To solve this problem, mass separation must be performed to selectively direct only positive ions of a predetermined mass to the silicon dot formation target, but this requires an expensive and bulky mass separator, Further, since the positive ions selected by the mass separation process have a small beam diameter, a scanning means is required to form silicon dots over a wide area of the substrate, and it takes time to form silicon dots over a wide area.
(5) 一方、シリコンを含む負イオンについてはSiH 、SiH と言った1次シラン系負イオンの他に安定なものは存在しない。高次シラン系負イオンが発生するようなことがあっても、その寿命は極めて短く、すぐ解離し、負イオンとしては実質上1次シラン系負イオンだけとなる。
 プラズマ中で重合が進んで微粒子が生成される場合に電子衝突により微粒子が負に帯電することがあるが、衝突確率の低いプラズマ条件では、負に帯電する微粒子も存在しない。
(5) On the other hand, there are no stable negative ions including silicon other than primary silane negative ions such as SiH 3 and SiH 2 . Even when higher order silane negative ions are generated, their lifetime is extremely short, they dissociate immediately, and the negative ions are essentially only primary silane negative ions.
When the polymerization proceeds in plasma and fine particles are generated, the fine particles may be negatively charged by electron collision, but there are no negatively charged fine particles under plasma conditions with a low collision probability.
(6) よって、実質上同じ種類の負イオンを、イオン引出し電極装置に該負イオンを引き出すための電圧を印加することで引き出してシリコンドット形成対象基体へ照射すれば、質量分離装置や走査機構を要することなく、また、質量分離された正イオンを用いる場合より短い時間でシリコンドットを基体の広い範囲にわたり形成でき、しかも、シリコンを含む負イオンは実質上同種類なので、それだけシリコンドットの粒径を揃え、シリコンドット密度分布を均一化できる。 (6) Therefore, if a negative ion of substantially the same type is extracted by applying a voltage for extracting the negative ion to the ion extraction electrode device and irradiated to the silicon dot formation target substrate, a mass separation device or a scanning mechanism In addition, silicon dots can be formed over a wide area of the substrate in a shorter time than when mass-separated positive ions are used, and the negative ions containing silicon are substantially the same type. The diameter can be made uniform and the silicon dot density distribution can be made uniform.
〔3〕第3の知見
(1) シリコンを含むガス〔例えばモノシラン(SiH)、ジシラン(Si)、四塩化ケイ素(SiCl)、四フッ化ケイ素(SiF 4)等のガス)〕をプラズマ化し、該プラズマにシリコンドット形成対象基体を曝すとともに該基体にイオンビームを照射することで、例えば基体温度が600℃以下でもシリコンドットを形成できる。
[3] Third knowledge
(1) A gas containing silicon (for example, a gas such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), silicon tetrafluoride (SiF 4 )) is converted into plasma, and the plasma By exposing the substrate to which silicon dots are to be formed and irradiating the substrate with an ion beam, silicon dots can be formed even when the substrate temperature is 600 ° C. or lower.
(2) このときプラズマは誘導結合型プラズマ等の低プラズマ電位のプラズマであることが重要である。
 一般的に言えば、プラズマの種類としては、誘導結合型プラズマ等の低電位プラズマのほか、静電結合型プラズマ(容量結合型プラズマ)がある。
 しかし、静電結合型プラズマによるシリコンドット形成では、プラズマ密度(1cm当たりのイオン個数)が比較的低いこととプラズマ電位が比較的高いためにシリコンドット形成対象基体に結晶質シリコンドットを形成することが困難である。プラズマCVD法で結晶質シリコンドットを形成するためには、シリコンを含むガスをよりよく分解し、さらにプラズマ電位を低くする必要がある。
(2) At this time, it is important that the plasma is a plasma having a low plasma potential such as inductively coupled plasma.
Generally speaking, the types of plasma include low-potential plasma such as inductively coupled plasma and electrostatically coupled plasma (capacitively coupled plasma).
However, in silicon dot formation by electrostatic coupling type plasma, since the plasma density (number of ions per 1 cm 3 ) is relatively low and the plasma potential is relatively high, crystalline silicon dots are formed on the silicon dot formation target substrate. Is difficult. In order to form crystalline silicon dots by the plasma CVD method, it is necessary to better decompose the gas containing silicon and lower the plasma potential.
 プラズマ密度が低いと、つまりシリコンを含むガスの分解が悪いと、シリコンナノ粒子(シリコンドット)中に水素等の不純物が多量に混入し易く、該ドットはアモルファス状態或いは微結晶状態になり、結晶質のシリコンドットを得難い。また、プラズマ電位が高いと、形成されるシリコン結晶が破壊され易く(換言すればプラズマダメージを受け易く)、ドットはアモルファス状態或いは微結晶状態になり、この場合も結晶質のシリコンドットを得難い。 If the plasma density is low, that is, if the gas containing silicon is poorly decomposed, a large amount of hydrogen and other impurities are likely to be mixed into the silicon nanoparticles (silicon dots), and the dots are in an amorphous state or a microcrystalline state. It is difficult to obtain quality silicon dots. In addition, when the plasma potential is high, the formed silicon crystal is easily destroyed (in other words, susceptible to plasma damage), and the dots are in an amorphous state or a microcrystalline state. In this case, it is difficult to obtain crystalline silicon dots.
(3) これらの静電結合型プラズマによるシリコンドット形成の弱点は、シリコンドット形成対象基体の温度を高くすることで克服できるが、例えば、該基体として低融点ガラス基板のような低価格な基板を用いる場合、該基体の温度をあまり高くすることができないので、該基体上に結晶質のシリコンドットを形成することは難しい。 (3) These weak points of silicon dot formation by electrostatic coupling plasma can be overcome by increasing the temperature of the substrate on which the silicon dots are formed. For example, the substrate is a low-cost substrate such as a low-melting glass substrate. When is used, it is difficult to form crystalline silicon dots on the substrate because the temperature of the substrate cannot be so high.
(4) これに対し、誘導結合型プラズマ等の低プラズマ電位のプラズマは静電結合型プラズマと比べて高プラズマ密度、低プラズマ電位が得られ易いという特長がある。それ故、誘導結合型プラズマ等の低プラズマ電位プラズマによるシリコンドット形成では、比較的結晶質のシリコンドットを形成し易い。 (4) On the other hand, plasma with a low plasma potential such as inductively coupled plasma has a feature that a high plasma density and a low plasma potential are easily obtained as compared with electrostatic coupled plasma. Therefore, in the formation of silicon dots by low plasma potential plasma such as inductively coupled plasma, it is easy to form relatively crystalline silicon dots.
(5) また、シリコンドットの結晶性をさらに高めるために、誘導結合型プラズマ等の低プラズマ電位プラズマの下でシリコンドット形成対象基体上にシリコンドットを形成するにあたり、該基体表面にイオンビームを照射してもよい。シリコンドット形成中にイオンビームを照射することにより、シリコン原子の移動乃至マイグレーション(migration)が促進され、シリコンドットの結晶性がより高くなる。 (5) In order to further improve the crystallinity of silicon dots, when forming silicon dots on a silicon dot formation target substrate under a low plasma potential plasma such as inductively coupled plasma, an ion beam is applied to the surface of the substrate. It may be irradiated. By irradiating the ion beam during the formation of the silicon dots, the movement or migration of the silicon atoms is promoted, and the crystallinity of the silicon dots becomes higher.
 前記第1の知見に基づき本発明は次の第1のシリコンドット形成方法及び第1のシリコンドット形成装置を提供する。また、前記第2の知見に基づき、後述する第2のシリコンドット形成方法及び第2のシリコンドット形成装置を提供する。さらに、前記第3の知見に基づき、後述する第3のシリコンドット形成方法を提供する。 Based on the first knowledge, the present invention provides the following first silicon dot forming method and first silicon dot forming apparatus. Further, based on the second knowledge, a second silicon dot forming method and a second silicon dot forming apparatus, which will be described later, are provided. Furthermore, a third silicon dot forming method to be described later is provided based on the third knowledge.
〔1〕第1のシリコンドット形成方法及び第1のシリコンドット形成装置
(1-1)第1のシリコンドット形成方法
 プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室を準備すること、
 該基体設置電極にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入するとともに前記プラズマ生成装置により該ガスからプラズマを発生させること、
 該基体設置電極に第1の正のパルス電圧を印加することで、該電極に設置されたシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
 前記核形成にひきつづき、該基体設置電極に第2の正のパルス電圧を印加することで、該シリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
 を含むシリコンドット形成方法。
[1] First Silicon Dot Forming Method and First Silicon Dot Forming Apparatus (1-1) First Silicon Dot Forming Method A substrate placement electrode that includes a plasma generation device and places a silicon dot formation target substrate therein Preparing an installed plasma generation chamber;
Installing a silicon dot formation target substrate on the substrate installation electrode;
Evacuating from the plasma generation chamber, introducing a gas containing silicon into the plasma generation chamber while maintaining the plasma generation chamber at a silicon dot forming pressure, and generating plasma from the gas by the plasma generation device;
By applying a first positive pulse voltage to the substrate installation electrode, the silicon dot formation target substrate installed on the electrode is irradiated with negative ions containing silicon in the plasma with a first ion energy. Forming nuclei for silicon dot growth on the silicon dot formation target substrate;
Subsequent to the nucleation, a second positive pulse voltage is applied to the substrate installation electrode to irradiate the silicon dot formation target substrate with negative ions containing silicon in the plasma with the second ion energy. A silicon dot forming method comprising growing silicon dots on the silicon dot formation target substrate based on the nucleus.
(1-2)第1のシリコンドット形成装置
 プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室と、
 該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
 該プラズマ生成室内から排気する排気装置と、
 前記基体設置電極に正パルス電圧を印加するための正バイアス電源装置とを備えており、
 前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
 前記正バイアス電源装置は、前記基体設置電極に、該電極に設置されるシリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の正のパルス電圧の印加及び該シリコンドット形成対象基体に該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとにシリコンドットを成長させるための第2の正のパルス電圧の印加を行う電源装置であるシリコンドット形成装置。
(1-2) First silicon dot forming device A plasma generating chamber provided with a plasma generating device and provided with a substrate installation electrode for setting a silicon dot formation target substrate therein,
A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
An exhaust device for exhausting from the plasma generation chamber;
A positive bias power supply device for applying a positive pulse voltage to the substrate installation electrode,
The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
The positive bias power supply device irradiates the substrate installation electrode with negative ions containing silicon in the plasma to the silicon dot formation target substrate installed on the electrode with a first ion energy, thereby generating silicon dots. Applying a first positive pulse voltage to form a nucleus to become, and irradiating the silicon dot formation target substrate with negative ions containing silicon in the plasma with a second ion energy, based on the nucleus A silicon dot forming device which is a power supply device for applying a second positive pulse voltage for growing silicon dots.
〔2〕第2のシリコンドット形成方法及びシリコンドット形成装置
(2-1)第2のシリコンドット形成方法
 プラズマ生成装置を備えたプラズマ生成室と、該プラズマ生成室に連設され、シリコンドット形成対象基体を設置する基体設置部を配置したシリコンドット形成室と、該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引き出し電極装置とを準備すること、
 該基体設置部にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内及び該シリコンドット形成室内から排気して該プラズマ生成室内をプラズマ生成圧に維持するとともに該シリコンドット形成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記プラズマ生成装置により該ガスからプラズマを発生させること、
 前記負イオン引出し電極装置に第1の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し前記基体設置部に設置されたシリコンドット形成対象基体に第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
 該核形成にひきつづき該負イオン引出し電極装置に第2の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し該シリコンドット形成対象基体に第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
 を含むシリコンドット形成方法。
[2] Second Silicon Dot Forming Method and Silicon Dot Forming Apparatus (2-1) Second Silicon Dot Forming Method A plasma generation chamber provided with a plasma generation device, and silicon dot formation connected to the plasma generation chamber Preparing a silicon dot forming chamber in which a substrate placement portion for placing a target substrate is disposed, and a negative ion extraction electrode device provided in an opening facing the substrate placement portion of the plasma generation chamber;
Installing a silicon dot formation target substrate in the substrate installation portion;
A gas containing silicon is contained in the plasma generation chamber while exhausting the plasma generation chamber and the silicon dot formation chamber to maintain the plasma generation chamber at the plasma generation pressure and maintaining the silicon dot formation chamber at the silicon dot formation pressure. Introducing and generating plasma from the gas by the plasma generator,
A first negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber. Irradiating with an ion energy of 1 to form nuclei for silicon dot growth on the silicon dot formation target substrate;
Following the nucleation, a second negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber, and a second substrate is formed on the silicon dot formation target substrate. A silicon dot forming method comprising: irradiating with ion energy to grow silicon dots on the silicon dot formation target substrate based on the nuclei.
(2-2)第2のシリコンドット形成装置
 プラズマ生成装置を備えたプラズマ生成室と、
 該プラズマ生成室に連設され、シリコンドット形成対象基体を設置するための基体設置部を配置したシリコンドット形成室と、
 該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引出し電極装置と、
 該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
 該プラズマ生成室内及び該シリコンドット形成室内から排気する排気装置と、
 該負イオン引出し電極装置にシリコンを含む負イオンを引き出す電圧を印加するための負イオン引出し電源装置とを備えており、
 前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
 前記負イオン引出し電源装置は、前記負イオン引出し電極装置に、前記シリコンドット形成室の基体設置部に設置されるシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の負イオン引出し電圧の印加及び該シリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとシリコンドットを成長させるための第2の負イオン引出し電圧の印加を行う電源装置であるシリコンドット形成装置。
(2-2) Second silicon dot forming apparatus; a plasma generating chamber provided with a plasma generating apparatus;
A silicon dot forming chamber that is connected to the plasma generation chamber and in which a substrate setting portion for setting a silicon dot forming target substrate is disposed;
A negative ion extraction electrode device provided in an opening facing the substrate installation portion of the plasma generation chamber;
A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
An exhaust device for exhausting air from the plasma generation chamber and the silicon dot formation chamber;
A negative ion extraction power supply device for applying a voltage for extracting negative ions including silicon to the negative ion extraction electrode device;
The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
The negative ion extraction power supply device causes the negative ion extraction electrode device to supply negative ions including silicon in the plasma to a silicon dot formation target substrate installed in a substrate installation portion of the silicon dot formation chamber with a first ion energy. Application of a first negative ion extraction voltage for forming nuclei for silicon dot growth upon irradiation with negative ions containing silicon in the plasma to the silicon dot formation target substrate at a second ion energy A silicon dot forming apparatus, which is a power supply device that applies a second negative ion extraction voltage for growing silicon dots based on the nuclei by irradiation with the nuclei.
〔3〕第3のシリコンドット形成方法
 低プラズマ電位のプラズマの生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置部が設けられたプラズマ生成室及びイオンビームを該基体設置部に設置されるシリコンドット形成対象基体に照射するイオンビーム照射装置を準備すること、
 該基体設置部にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記低プラズマ電位プラズマ生成装置により該ガスから低プラズマ電位プラズマを発生させること、
 該プラズマに前記基体設置部に設置したシリコンドット形成対象基体をさらすとともに前記イオンビーム照射装置から該シリコンドット形成対象基体にイオンビームを照射することを含み、
 該イオンビームの照射は、該シリコンドット形成対象基体にシリコンドットのもとになる核を形成するための第1のイオンエネルギによるイオンビーム照射と、その後の、該核をもとにシリコンドットを成長させるための第2のイオンエネルギによるイオンビーム照射とで行って該シリコンドット形成対象基体にシリコンドットを形成するシリコンドット形成方法。
[3] Third Silicon Dot Forming Method A plasma generating chamber provided with a plasma generating chamber having a low plasma potential plasma generation apparatus and a substrate installation part for installing a silicon dot formation target substrate therein, and an ion beam are supplied to the substrate installation part. Preparing an ion beam irradiation apparatus for irradiating a silicon dot formation target substrate to be installed;
Installing a silicon dot formation target substrate in the substrate installation portion;
A gas containing silicon is introduced into the plasma generation chamber while evacuating the plasma generation chamber while maintaining the plasma generation chamber at the silicon dot formation pressure, and the low plasma potential plasma is generated from the gas by the low plasma potential plasma generation device. Letting
Exposing the silicon dot formation target substrate placed in the base placement portion to the plasma and irradiating the silicon dot formation target substrate from the ion beam irradiation apparatus to the silicon dot formation target,
The ion beam irradiation is performed by irradiating an ion beam with a first ion energy for forming a nucleus that becomes a silicon dot on the silicon dot formation target substrate, and then applying a silicon dot based on the nucleus. A silicon dot forming method for forming silicon dots on the silicon dot formation target substrate by performing ion beam irradiation with second ion energy for growth.
本発明に係る第1シリコンドット形成装置の1例の概略構成を示す図である。It is a figure which shows schematic structure of one example of the 1st silicon dot formation apparatus which concerns on this invention. プラズマ点灯消灯と基体設置電極への正バイアスパルス電圧印加のタイミングを示す図である。It is a figure which shows the timing of plasma lighting / extinguishing and a positive bias pulse voltage application to a base | substrate installation electrode. 本発明に係る第1シリコンドット形成装置の他の例の概略構成を示す図である 。FIG. 5 is a diagram showing a schematic configuration of another example of the first silicon dot forming apparatus according to the present invention. 本発明に係る第1シリコンドット形成装置のさらに他の例の概略構成を示す図である。It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. 本発明に係る第1シリコンドット形成装置のさらに他の例の概略構成を示す図である。It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. 本発明に係る第1シリコンドット形成装置のさらに他の例の概略構成を示す図である。It is a figure which shows schematic structure of the further another example of the 1st silicon dot formation apparatus which concerns on this invention. 本発明に係る第2シリコンドット形成装置の1例の概略構成を示す図である。It is a figure which shows schematic structure of one example of the 2nd silicon dot formation apparatus which concerns on this invention. プラズマ点灯消灯と負イオン引出し電極装置への負イオン引出し電圧印加(負イオンビーム引き出し)のタイミングを示す図である。It is a figure which shows the timing of plasma lighting-on / off and negative ion extraction voltage application (negative ion beam extraction) to a negative ion extraction electrode apparatus. 本発明に係る第2シリコンドット形成装置の他の例の概略構成を示す図である。It is a figure which shows schematic structure of the other example of the 2nd silicon dot formation apparatus which concerns on this invention. 本発明に係る第2シリコンドット形成装置のさらに他の例の概略構成を示す図である。It is a figure which shows schematic structure of the further another example of the 2nd silicon dot formation apparatus which concerns on this invention. 本発明に係る第2シリコンドット形成装置のさらに他の例の概略構成を示す図である。It is a figure which shows schematic structure of the further another example of the 2nd silicon dot formation apparatus which concerns on this invention. 第3シリコンドット形成装置の1例の概略構成を示す図である。It is a figure which shows schematic structure of one example of a 3rd silicon dot formation apparatus. 第12図の装置で採用するアンテナを上から見た図である。It is the figure which looked at the antenna employ | adopted with the apparatus of FIG. 12 from the top.
符号の説明Explanation of symbols
S シリコンドット形成対象基体      2A プラズマ生成装置
1A プラズマ生成装置          21 プラズマ生成室
11 プラズマ生成室           211 第1プラズマ室
12 高周波電力印加電極         212 第2プラズマ室
13 基体設置電極            22 フィラメント
14 マッチングボックス         23 基体設置電極
15 高周波電源装置           241 フィラメント加熱用電源
151 高周波電源            242 放電用電源
152 スイッチ             243 スイッチ
16 正バイアス電源装置         25 正バイアス電源装置
161 直流電源             251 直流電源
162 スイッチ             252 スイッチ
17 制御部               26 制御部
18 ガス導入装置            27 ガス導入装置
19 排気装置              28 排気装置
                     29 磁場形成装置
                     291 導体棒
                     292 
                     mg1~mg4 磁石
                     B 電子捕捉磁場

3A プラズマ生成装置          4A プラズマ生成装置
31 プラズマ生成室           41 プラズマ生成室
32 マグネトロン            42 スパッタターゲット
33 基体設置電極            423 負バイアス電源装置
321 導波管              424 セシウム堆積装置
322 マイクロ波透過窓         424a セシウム収容オーブン
323 ECRコイル           424b ヒータ
33 基体設置電極            424c ダクト
34 正バイアス電源装置         43 高周波アンテナ
341 直流電源             44 基体設置電極
342 スイッチ             45 高周波電源装置
35 制御部               450 マッチングボックス
36 ガス導入装置            451 高周波電源
37 排気装置              452 スイッチ
                     46 正バイアス電源装置
                     461 直流電源
                     462 スイッチ
                     47 制御物品
                     48 ガス導入装置
                     49 排気装置

51 プラズマ生成室           61 プラズマ生成室
511 開口部              611 第1プラズマ室
512 天井壁の開口           612 第2プラズマ室
52 シリコンドット形成室        613 開口部
53 負イオン引出し電極装置       62 シリコンドット形成室
531 加速電極             6A プラズマ生成装置
532 減速電極             63 マグネトロン
533 接地電極             631 導波管
PW 負イオン引出し電源装置       632 マイクロ波透過窓
R 抵抗                 633 磁場形成装置
PW1 加速電源             64 制御部
PW2 減速電源             65 ガス導入装置
S1、S2 スイッチ           66 排気装置
5A プラズマ生成装置          67 磁場形成装置
54 ECRプラズマ生成装置       671 導体棒
541 チャンバ             672 電源
541a 電子放出孔
442 アンテナ
543 磁場形成装置
544 同軸ケーブル
55 ガス導入装置
56 放電用電源
561 スイッチ
57 基体設置部
58 制御部
59 排気装置

71 プラズマ生成室           1’ プラズマ生成室
711 開口部              10’ ゲート弁
72 シリコンドット形成室        11’ 基体設置部
73 スパッタターゲット         12’ 排気装置
74 高周波アンテナ           13’ ガス導入装置
733 負バイアス電源装置        14’ 基体加熱用ヒータ
750 マッチングボックス        9’ アンテナ
7A プラズマ生成装置          9a アンテナの開口
75 高周波電源装置           92’絶縁物92’
751 高周波電源            91’コの字型導電性部材
752 スイッチ             2’ 高周波電源
76 制御部               3’ 整合器
77 ガス導入装置            15’ コンデンサ
78 排気装置              400 イオンビーム照射装置
                     4’ イオン源
                     16’イオン源用ガス供給部
                     5’ 整合器
                     6’ 高周波電源
                     40’ イオン照射用電極系
                     41’ 加速電極
                     42’ 減速電極
                     43’ 接地電極
                     7’ 加速電源
                     8’ 減速電源
                     100 制御部
S Silicon dot formation target substrate 2A Plasma generation device 1A Plasma generation device 21 Plasma generation chamber 11 Plasma generation chamber 211 First plasma chamber 12 High-frequency power application electrode 212 Second plasma chamber 13 Substrate installation electrode 22 Filament 14 Matching box 23 Substrate installation electrode DESCRIPTION OF SYMBOLS 15 High frequency power supply device 241 Filament heating power supply 151 High frequency power supply 242 Discharge power supply 152 Switch 243 Switch 16 Positive bias power supply device 25 Positive bias power supply device 161 DC power supply 251 DC power supply 162 Switch 252 Switch 17 Control unit 26 Control unit 18 Gas introduction device 27 Gas introduction device 19 Exhaust device 28 Exhaust device 2 9 Magnetic field generator 291 Conductor bar 292
mg1 ~ mg4 Magnet B Electron capture magnetic field

3A Plasma generator 4A Plasma generator 31 Plasma generator chamber 41 Plasma generator chamber 32 Magnetron 42 Sputter target 33 Substrate installation electrode 423 Negative bias power source device 321 Waveguide 424 Cesium deposition device 322 Microwave transmission window 424a Cesium containing oven 323 ECR coil 424b Heater 33 Substrate installation electrode 424c Duct 34 Positive bias power supply device 43 High frequency antenna 341 DC power supply 44 Substrate installation electrode 342 Switch 45 High frequency power supply device 35 Control unit 450 Matching box 36 Gas introduction device 451 High frequency power supply 37 Exhaust device 452 Switch 46 Positive bias Power supply 461 DC power supply 462 Switch 47 Control article 48 Gas introduction device 49 Exhaust device

51 plasma generation chamber 61 plasma generation chamber 511 opening 611 first plasma chamber 512 opening in ceiling wall 612 second plasma chamber 52 silicon dot formation chamber 613 opening 53 negative ion extraction electrode device 62 silicon dot formation chamber 531 acceleration electrode 6A plasma Generation device 532 Deceleration electrode 63 Magnetron 533 Ground electrode 631 Waveguide PW Negative ion extraction power supply device 632 Microwave transmission window R resistance 633 Magnetic field forming device PW1 Acceleration power supply 64 Control unit PW2 Deceleration power supply 65 Gas introduction device S1, S2 Switch 66 Exhaust Apparatus 5A Plasma generator 67 Magnetic field generator 54 ECR plasma generator 671 Conductor bar 541 Chamber 672 Power supply 541a Electron emission hole 442 Antenna 543 Magnetic field forming device 544 Coaxial cable 55 Gas introduction device 56 Power supply for discharge 561 Switch 57 Base installation unit 58 Control unit 59 Exhaust device

71 Plasma generation chamber 1 'Plasma generation chamber 711 Opening 10' Gate valve 72 Silicon dot formation chamber 11 'Substrate installation portion 73 Sputter target 12' Exhaust device 74 High-frequency antenna 13 'Gas introduction device 733 Negative bias power supply device 14' Substrate heating Heater 750 matching box 9 'antenna 7A plasma generator 9a antenna opening 75 high frequency power supply 92' insulator 92 '
751 High-frequency power supply 91 'U-shaped conductive member 752 Switch 2' High-frequency power supply 76 Control unit 3 'Matching device 77 Gas introduction device 15' Capacitor 78 Exhaust device 400 Ion beam irradiation device 4 'Ion source 16' Ion source gas Supply unit 5 'Matching device 6' High frequency power supply 40 'Ion irradiation electrode system 41' Acceleration electrode 42 'Deceleration electrode 43' Ground electrode 7 'Acceleration power supply 8' Deceleration power supply 100 Control unit
 本発明の実施形態として以下に記す第1タイプのシリコンドット形成方法及び第1タイプのシリコンドット形成装置、第2タイプのシリコンドット形成方法及び第2タイプのシリコンドット形成装置並びに第3タイプのシリコンドット形成方法を挙げることができる。 First type silicon dot forming method and first type silicon dot forming apparatus, second type silicon dot forming method, second type silicon dot forming apparatus, and third type silicon described below as embodiments of the present invention The dot formation method can be mentioned.
〔1〕第1タイプのシリコンドット形成方法及び装置
(1)第1タイプのシリコンドット形成方法
 第1タイプのシリコンドット形成方法は、基本的には、
 プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室を準備すること、
 該基体設置電極にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入するとともに前記プラズマ生成装置により該ガスからプラズマを発生させること、
 該基体設置電極に第1の正のパルス電圧を印加することで、該電極に設置されたシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
 前記核形成にひきつづき、該基体設置電極に第2の正のパルス電圧を印加することで、該シリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
 を含むシリコンドット形成方法である。
[1] First type silicon dot forming method and apparatus (1) First type silicon dot forming method The first type silicon dot forming method basically includes:
Preparing a plasma generation chamber provided with a substrate installation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein;
Installing a silicon dot formation target substrate on the substrate installation electrode;
Evacuating from the plasma generation chamber, introducing a gas containing silicon into the plasma generation chamber while maintaining the plasma generation chamber at a silicon dot forming pressure, and generating plasma from the gas by the plasma generation device;
By applying a first positive pulse voltage to the substrate installation electrode, the silicon dot formation target substrate installed on the electrode is irradiated with negative ions containing silicon in the plasma with a first ion energy. Forming nuclei for silicon dot growth on the silicon dot formation target substrate;
Subsequent to the nucleation, a second positive pulse voltage is applied to the substrate installation electrode to irradiate the silicon dot formation target substrate with negative ions containing silicon in the plasma with the second ion energy. A silicon dot forming method including growing silicon dots on the silicon dot formation target substrate based on the nucleus.
(2)第1タイプのシリコンドット形成装置
 第1タイプのシリコンドット形成装置は、基本的には、
 プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室と、
 該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
 該プラズマ生成室内から排気する排気装置と、
 前記基体設置電極に正パルス電圧を印加するための正バイアス電源装置とを備えており、
 前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
 前記正バイアス電源装置は、前記基体設置電極に、該電極に設置されるシリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の正のパルス電圧の印加及び該シリコンドット形成対象基体に該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとにシリコンドットを成長させるための第2の正のパルス電圧の印加を行う電源装置であるシリコンドット形成装置である。
(2) First Type Silicon Dot Forming Device The first type silicon dot forming device is basically
A plasma generation chamber provided with a substrate generation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein;
A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
An exhaust device for exhausting from the plasma generation chamber;
A positive bias power supply device for applying a positive pulse voltage to the substrate installation electrode,
The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
The positive bias power supply device irradiates the substrate installation electrode with negative ions containing silicon in the plasma to the silicon dot formation target substrate installed on the electrode with a first ion energy, thereby generating silicon dots. Applying a first positive pulse voltage to form a nucleus to become, and irradiating the silicon dot formation target substrate with negative ions containing silicon in the plasma with a second ion energy, based on the nucleus It is a silicon dot forming device which is a power supply device for applying a second positive pulse voltage for growing silicon dots.
 第1タイプのシリコンドット形成方法及び装置によると、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成できる。また、基体温度が比較的低温でもシリコンドットを形成でき、耐熱性の点で広い範囲から基体材料を選択できる。 According to the first type silicon dot forming method and apparatus, silicon dots having a uniform particle diameter can be formed on the silicon dot formation target substrate with a uniform density distribution. Moreover, silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
 また、質量分離装置やイオンビームの走査機構といった高価な装置類を必要とすることなく、質量分離された正イオンを用いる場合より短い時間でシリコンドットを基体の広い範囲にわたり形成できる。    Also, silicon dots can be formed over a wide area of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism. *
 第1タイプのシリコンドット形成方法及び装置では、前記シリコンドット形成対象基体へのシリコンを含む負イオンの照射において、前記第1のイオンエネルギは、前記プラズマのプラズマ電位がP〔V〕とすると、P〔eV〕以上とし、前記第2のイオンエネルギは2keV以下、より好ましくは500eV以下とする(従って第1、第2の正のパルス電圧はそのようなイオンエネルギが得られるパルス電圧とする)例を挙げることができる。 なお、ここでP〔V〕及びP〔eV〕における「P」自身は数値である。 In the first type of silicon dot forming method and apparatus, in the irradiation of negative ions containing silicon to the silicon dot formation target substrate, the first ion energy is obtained when the plasma potential of the plasma is P [V]. P [eV] or more, and the second ion energy is 2 keV or less, more preferably 500 eV or less (therefore, the first and second positive pulse voltages are pulse voltages that can obtain such ion energy). An example can be given. Here, “P” itself in P [V] and P [eV] is a numerical value.
 第1のイオンエネルギは、プラズマ電位をP〔V〕としたとき、P〔eV〕を下まわってくると、「核」の形成が困難になってくることがあるので、「核」の形成のためにP〔eV〕以上とすることが望ましいが、大きすぎるとシリコンドット形成対象基体のイオン照射によるダメージが発生してくるから、5keV程度までとする例を挙げることができる。 If the first ion energy falls below P [eV] when the plasma potential is P [V], formation of the “nucleus” may become difficult. For this reason, it is desirable to set it to P [eV] or more, but if it is too large, damage to the silicon dot formation target substrate will occur due to ion irradiation, and an example of up to about 5 keV can be given.
 第2のイオンエネルギは、2keVを超えてくると、「核」をもとに成長しようとするシリコンドットがイオンによるスパッタリング作用乃至衝突破壊作用を大きく受けるようになってシリコンドットの成長が困難になってくることがある一方、第2のイオンエネルギが2keV以下、より好ましくは500eV以下ではイオン照射によるシリコン原子の移動乃至マイグレーション促進効果があり、結晶性の高い良質のシリコンドットが成長する。しかし、第2のイオンエネルギがあまり低すぎると、シリコンドットが成長し難くなることがあるので、プラズマ電位との兼ね合いで、例えば50eV以上とする例を挙げることができる。 When the second ion energy exceeds 2 keV, the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots. On the other hand, when the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown. However, if the second ion energy is too low, silicon dots may be difficult to grow. For example, in view of the plasma potential, an example of 50 eV or more can be given.
 シリコンドット形成対象基体に粒径の揃ったシリコンドットを均一な密度分布で形成するにあたっては、シリコンを含む負イオンがより多くプラズマに含まれている方がよい。換言すればプラズマにおける負イオンの濃度が高い方がよい。 When forming silicon dots having a uniform particle size with a uniform density distribution on a silicon dot formation target substrate, it is better that the plasma contains more negative ions containing silicon. In other words, it is better that the negative ion concentration in the plasma is higher.
 負イオンの濃度(負イオンの密度)を高める方法として次の3通りの方法を例示することができる。
(1) 負イオン濃度を高める方法1                          プラズマ点灯をパルス的に行い、プラズマ消灯直後に基体設置電極にパルス的に正の電圧を印加することによって負イオン密度を高める方法である。さらに言えば、プラズマ生成装置をオンすることによって、プラズマ原料ガスからプラズマを生成させる。次にプラズマ生成装置をオフする。そうすると、プラズマ中の電子の温度は急速に低下する。この期間、電子及び正負イオンの密度は殆ど変化しない。従ってプラズマ中では低エネルギー電子が支配的となる。この低速電子と分子が解離性付着を起こすことによって負イオンが生成される確率が急激に高くなる。このような解離性付着によって、負イオン密度はプラズマ生成装置のオフ直後から急激に上昇する。さらに時間が経過すると、電子は軽いために、急速に拡散し、消滅して密度が低下する。一方で、正及び負のイオンは質量が大きいため、殆ど消滅しない。このため電子密度が極端に低くなり、正負イオンでプラズマが維持される特異な(電子が殆ど無い)プラズマが形成される。
The following three methods can be exemplified as methods for increasing the negative ion concentration (negative ion density).
(1) Method 1 for increasing negative ion concentration This is a method for increasing negative ion density by performing plasma lighting in a pulsed manner and applying a positive voltage pulsed to the base electrode immediately after the plasma is extinguished. Furthermore, plasma is generated from the plasma source gas by turning on the plasma generating device. Next, the plasma generator is turned off. As a result, the temperature of the electrons in the plasma decreases rapidly. During this period, the density of electrons and positive and negative ions hardly changes. Therefore, low-energy electrons are dominant in the plasma. The probability that negative ions are generated rapidly due to the dissociative adhesion between the slow electrons and the molecules increases rapidly. Due to such dissociative adhesion, the negative ion density rapidly increases immediately after the plasma generator is turned off. As the time further elapses, the electrons are light, so that they diffuse rapidly and disappear and the density decreases. On the other hand, since positive and negative ions have a large mass, they hardly disappear. For this reason, the electron density becomes extremely low, and a peculiar plasma (having almost no electrons) in which the plasma is maintained by positive and negative ions is formed.
 この現象を利用することでシリコンを含む負イオンの濃度を高めることができる。
 この方法1は後述する方法2や方法3とも併用できる。
By utilizing this phenomenon, the concentration of negative ions containing silicon can be increased.
Method 1 can be used in combination with Method 2 and Method 3 described later.
(2) 負イオン濃度を高める方法2
 プラズマ生成室を二つに分け、その一方の第1プラズマ室に原料ガスを導いてこれを励起しプラズマを生成させる。他方の第2プラズマ室に基体設置電極を設ける。二つのプラズマ室の間には磁場によるエネルギーフィルタを設ける。第1プラズマ室では旺盛なプラズマ生成が行われ電子のエネルギーが高い。高エネルギー電子は中性ラジカルや原子と結合しにくい。エネルギーフィルタは高エネルギーの電子の通過を抑制する。第2プラズマ室は低エネルギーの電子が多く存在することになる。低エネルギー電子は中性分子、原子との衝突結合の断面積が大きい。低エネルギー電子は中性ラジカルに結びついてこれをSiH- 、SiH- 等に負イオン化する。そのようにして低エネルギーの電子が少なくなると第1プラズマ室から第2プラズマ室へ低エネルギー電子が入ってくる。エネルギーフィルタは、電子エネルギーに対して選択性あるものである。中性原子、分子は自由に通過を許すものとする。それは数十ガウス程度の磁場を形成することによってなされる。そのような磁場は、例えば永久磁石を対向させることによって発生させることができる。あるいは平行な複数の導体棒に電流を流すことによって磁場を発生させることができる。
(2) Method 2 to increase negative ion concentration
The plasma generation chamber is divided into two, and a raw material gas is guided to one of the first plasma chambers to excite it to generate plasma. A base electrode is provided in the other second plasma chamber. An energy filter using a magnetic field is provided between the two plasma chambers. In the first plasma chamber, vigorous plasma generation is performed and the energy of electrons is high. High-energy electrons are difficult to bond with neutral radicals and atoms. The energy filter suppresses the passage of high energy electrons. The second plasma chamber has many low energy electrons. Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms. Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 −, SiH 2 −, and the like. When the number of low energy electrons decreases in such a manner, low energy electrons enter the second plasma chamber from the first plasma chamber. The energy filter is selective to electronic energy. Neutral atoms and molecules are allowed to pass freely. This is done by creating a magnetic field of about several tens of Gauss. Such a magnetic field can be generated, for example, by opposing permanent magnets. Alternatively, a magnetic field can be generated by passing a current through a plurality of parallel conductor bars.
(3) 負イオン濃度を高める方法3
 第3方法は、セシウム等の仕事関数が低いことを利用して負イオン密度を高める方法である。負イオン源として既に広く使われている方法である。セシウム(Cs)は金属表面に吸着されると金属表面の仕事関数を下げる作用がある。仕事関数が下がるので電子がより放出されやすくなる。そこでこの金属を負にバイアスすると金属は電子の放出体として機能する。電子がSiHラジカルや分子、正イオンなどに与えられ、それらが負イオン化する。Csは蒸発源に固体の状態で収容しておき加熱気化して金属表面に導くことができる。Csの他にルビジウム(Rb)、カリウム(K)、バリウム(Ba)なども利用できる。
(3) Method 3 to increase negative ion concentration
The third method is a method of increasing the negative ion density by utilizing the low work function of cesium or the like. This method is already widely used as a negative ion source. When cesium (Cs) is adsorbed on the metal surface, it has the effect of lowering the work function of the metal surface. Since the work function is lowered, electrons are more easily emitted. Therefore, when the metal is negatively biased, the metal functions as an electron emitter. Electrons are given to SiH x radicals, molecules, positive ions, etc., which are negatively ionized. Cs can be stored in a solid state in the evaporation source and vaporized by heating to be led to the metal surface. In addition to Cs, rubidium (Rb), potassium (K), barium (Ba), and the like can also be used.
 そこで第1タイプのシリコンドット形成方法では、前記方法1を利用して、前記プラズマ生成装置を周期的にオンオフさせ、前記基体設置電極への正パルス電圧の印加は、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行うようにしてもよい。 Therefore, in the first type of silicon dot forming method, the method 1 is used to periodically turn on and off the plasma generation device, and the application of a positive pulse voltage to the substrate installation electrode turns off the plasma generation device. You may make it carry out during the period until this plasma production | generation apparatus is turned on again after progress for a predetermined period after switching.
 また、第1タイプのシリコンドット形成装置は、前記方法1を利用できるように、前記プラズマ生成装置が周期的にオンオフされ、前記正バイアス電源装置による前記基体設置電極への正パルス電圧の印加が、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行われるように、前記プラズマ生成装置及び前記正バイアス電源装置を制御する制御部を備えているシリコンドット形成装置でもよい。 Further, in the first type silicon dot forming apparatus, the plasma generating apparatus is periodically turned on and off so that the method 1 can be used, and a positive pulse voltage is applied to the substrate installation electrode by the positive bias power supply apparatus. A control unit that controls the plasma generation device and the positive bias power supply device so as to be performed during a period from when the plasma generation device is turned off to when the plasma generation device is turned on again after a lapse of a predetermined period. A silicon dot forming apparatus provided with
 また、第1タイプのシリコンドット形成方法では、前記方法2を利用して、前記プラズマ生成室内の中間部に電子捕捉磁場を形成し、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側を前記プラズマ生成装置を備えた第1プラズマ室とするとともに他方の側を前記基体設置電極を有する第2プラズマ室とし、該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めるようにしてもよい。         Further, in the first type silicon dot forming method, the method 2 is used to form an electron trapping magnetic field in an intermediate portion of the plasma generation chamber, and one side of the plasma generation chamber from the electron trapping magnetic field formation region. Is a first plasma chamber provided with the plasma generating device and the other side is a second plasma chamber having the base electrode, and plasma is generated from the gas containing silicon in the first plasma chamber, and the electrons The movement of some of the electrons in the plasma generated in the first plasma chamber by the trapped magnetic field to the second plasma chamber is suppressed, and the movement to the second plasma chamber that arrives in the second plasma chamber is suppressed. The concentration of negative ions including silicon in the second plasma chamber may be increased by the action of electrons having lower energy than the generated electrons. .
 第1タイプのシリコンドット形成装置は、前記方法2を利用できるように、前記プラズマ生成室内の中間部に電子捕捉磁場を形成するための磁場形成装置を備え、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側が前記プラズマ生成装置を備えた第1プラズマ室とされるとともに他方の側が前記基体設置電極を有する第2プラズマ室とされ、該プラズマ生成装置により該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記磁場形成装置で形成される電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めることができるシリコンドット形成装置でもよい。 The first type silicon dot forming apparatus includes a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber so that the method 2 can be used, and the electron trapping magnetic field in the plasma generation chamber One side from the formation region is a first plasma chamber provided with the plasma generation device, and the other side is a second plasma chamber having the base electrode, and the silicon is generated in the first plasma chamber by the plasma generation device. Plasma is generated from the gas containing, and the movement of a part of the electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field formed by the magnetic field forming device to the second plasma chamber is suppressed, Silicon in the second plasma chamber is caused by the action of electrons arriving in the second plasma chamber and having lower energy than the electrons whose movement to the second plasma chamber is suppressed. Or a silicon dot forming apparatus capable of increasing the concentration of negative ions, including.
 このように前記方法2を利用する方法及び装置において、「第2プラズマ室内へ到来する低エネルギ電子の作用」とは、第2プラズマ室内で低エネルギー電子が中性原子、分子との衝突によりシリコンを含む負イオンを増加させる作用である。 In this way, in the method and apparatus using the method 2, “the action of low energy electrons arriving in the second plasma chamber” means that the low energy electrons collide with neutral atoms and molecules in the second plasma chamber. This is an action of increasing negative ions including.
 また、第1タイプのシリコンドット形成方法では、前記方法3を利用して、前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットを予め設け、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加し、該プラズマ中の正イオンを該ターゲットに接触させることで、該プラズマ中のシリコンを含む負イオンの濃度を高めるようにしてもよい。 In the first type silicon dot forming method, the method 3 is used to previously provide a conductive target in which at least one substance selected from cesium, rubidium, potassium, and barium is deposited in the plasma generation chamber. Applying a negative voltage to the conductive target in plasma generation from the silicon-containing gas by the plasma generation apparatus in the plasma generation chamber, and bringing positive ions in the plasma into contact with the target. The concentration of negative ions containing silicon may be increased.
 前記セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットは、例えば、該物質堆積前の導電性ターゲットを前記プラズマ生成室内に設け、該物質堆積前の導電性ターゲットにセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を導いて該物質を堆積させることで得ることができる。 The conductive target in which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided, for example, by providing a conductive target before the material deposition in the plasma generation chamber. It can be obtained by introducing the vapor of at least one substance selected from cesium, rubidium, potassium and barium to the target and depositing the substance.
 第1タイプのシリコンドット形成装置は、前記方法3を利用するために、前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットが予め設けられており、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加する負バイアス電源装置が設けられているシリコンドット形成装置でもよい。 In order to use the method 3, the first type silicon dot forming apparatus is previously provided with a conductive target in which at least one substance selected from cesium, rubidium, potassium, and barium is deposited in the plasma generation chamber. And a silicon dot forming device provided with a negative bias power supply device for applying a negative voltage to the conductive target in the plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber.
 第1タイプのシリコンドット形成装置は、前記方法3を利用するために、
 前記プラズマ生成室内に設置された導電性ターゲットと、
 セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を生成して該導電性ターゲットに導き該ターゲットに該物質を堆積させる物質堆積装置と、
 該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において、該物質堆積装置により該物質が堆積した該導電性ターゲットに負電圧を印加する負バイアス電源装置とを備えたものでもよい。
The first type silicon dot forming apparatus uses the method 3 to
A conductive target installed in the plasma generation chamber;
A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target;
A negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber; But you can.
〔2〕第2タイプのシリコンドット形成方法及びシリコンドット形成装置
(2-1)第2タイプのシリコンドット形成方法
 第2タイプのシリコンドット形成方法は、基本的には、
 プラズマ生成装置を備えたプラズマ生成室と、該プラズマ生成室に連設され、シリコンドット形成対象基体を設置する基体設置部を配置したシリコンドット形成室と、該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引き出し電極装置とを準備すること、
 該基体設置部にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内及び該シリコンドット形成室内から排気して該プラズマ生成室内をプラズマ生成圧に維持するとともに該シリコンドット形成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記プラズマ生成装置により該ガスからプラズマを発生させること、
 前記負イオン引出し電極装置に第1の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し前記基体設置部に設置されたシリコンドット形成対象基体に第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
 該核形成にひきつづき該負イオン引出し電極装置に第2の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し該シリコンドット形成対象基体に第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
 を含むシリコンドット形成方法である。
[2] Second type silicon dot forming method and silicon dot forming apparatus (2-1) Second type silicon dot forming method The second type silicon dot forming method is basically
A plasma generation chamber provided with a plasma generation device, a silicon dot formation chamber arranged in a continuous manner with the plasma generation chamber, and a substrate installation portion for installing a silicon dot formation target substrate, and the substrate installation portion of the plasma generation chamber Preparing a negative ion extraction electrode device provided in an opening facing the surface;
Installing a silicon dot formation target substrate in the substrate installation portion;
A gas containing silicon is contained in the plasma generation chamber while exhausting the plasma generation chamber and the silicon dot formation chamber to maintain the plasma generation chamber at the plasma generation pressure and maintaining the silicon dot formation chamber at the silicon dot formation pressure. Introducing and generating plasma from the gas by the plasma generator,
A first negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber. Irradiating with an ion energy of 1 to form nuclei for silicon dot growth on the silicon dot formation target substrate;
Following the nucleation, a second negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber, and a second substrate is formed on the silicon dot formation target substrate. A silicon dot forming method comprising irradiating with ion energy and growing silicon dots on the silicon dot formation target substrate based on the nuclei.
(2-2)第2タイプのシリコンドット形成装置
 第2タイプのシリコンドット形成装置は、基本的には、
 プラズマ生成装置を備えたプラズマ生成室と、
 該プラズマ生成室に連設され、シリコンドット形成対象基体を設置するための基体設置部を配置したシリコンドット形成室と、
 該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引出し電極装置と、
 該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
 該プラズマ生成室内及び該シリコンドット形成室内から排気する排気装置と、
 該負イオン引出し電極装置にシリコンを含む負イオンを引き出す電圧を印加するための負イオン引出し電源装置とを備えており、
 前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
 前記負イオン引出し電源装置は、前記負イオン引出し電極装置に、前記シリコンドット形成室の基体設置部に設置されるシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の負イオン引出し電圧の印加及び該シリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとにシリコンドットを成長させるための第2の負イオン引出し電圧の印加を行う電源装置であるシリコンドット形成装置である。
(2-2) Second type silicon dot forming device The second type silicon dot forming device is basically composed of:
A plasma generation chamber equipped with a plasma generation device;
A silicon dot forming chamber that is connected to the plasma generation chamber and in which a substrate setting portion for setting a silicon dot forming target substrate is disposed;
A negative ion extraction electrode device provided in an opening facing the substrate installation portion of the plasma generation chamber;
A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
An exhaust device for exhausting air from the plasma generation chamber and the silicon dot formation chamber;
A negative ion extraction power supply device for applying a voltage for extracting negative ions including silicon to the negative ion extraction electrode device;
The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
The negative ion extraction power supply device causes the negative ion extraction electrode device to supply negative ions including silicon in the plasma to a silicon dot formation target substrate installed in a substrate installation portion of the silicon dot formation chamber with a first ion energy. Application of a first negative ion extraction voltage for forming nuclei for silicon dot growth upon irradiation with negative ions containing silicon in the plasma to the silicon dot formation target substrate at a second ion energy This is a silicon dot forming apparatus that is a power supply device that applies a second negative ion extraction voltage for growing silicon dots based on the nuclei.
 第2タイプのシリコンドット形成方法及び装置によっても、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成できる。また、基体温度が比較的低温でもシリコンドットを形成でき、耐熱性の点で広い範囲から基体材料を選択できる。
 また、質量分離装置やイオンビームの走査機構といった高価な装置類を必要とすることなく、質量分離された正イオンを用いる場合より短い時間でシリコンドットを基体の広い範囲にわたり形成できる。
Also with the second type silicon dot forming method and apparatus, silicon dots having a uniform particle diameter can be formed with a uniform density distribution on the silicon dot formation target substrate. Moreover, silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
In addition, silicon dots can be formed over a wide range of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism.
 第2タイプのシリコンドット形成方法及び装置では、前記シリコンドット形成対象基体へのシリコンを含む負イオンの照射において、前記第1のイオンエネルギは、プラズマ電位がP〔V〕とすると、P〔eV〕以上とし、前記第2のイオンエネルギは2keV以下、より好ましくは500eV以下とする(従って前記負イオン引出し電極装置に印加する第1、第2の負イオン引出し電圧はそのようなイオンエネルギが得られる電圧とする)例を挙げることができる。
 なお、ここでP〔V〕、P〔eV〕の「P」それ自身は数値である。
In the second type silicon dot forming method and apparatus, when the plasma potential is P [V] in the irradiation of negative ions containing silicon to the silicon dot formation target substrate, the P [eV And the second ion energy is 2 keV or less, more preferably 500 eV or less (therefore, the first and second negative ion extraction voltages applied to the negative ion extraction electrode device can obtain such ion energy. Example).
Here, “P” itself of P [V] and P [eV] is a numerical value.
 前記の第1タイプのシリコンドット形成方法及び装置の場合と同様に、第1のイオンエネルギは、プラズマ電位がP〔V〕であるとき、P〔eV〕を下まわってくると、負イオンの加速が困難になってきて、「核」の形成が困難になってくることがあるので、「核」の形成のためにP〔eV〕以上とすることが望ましいが、大きすぎるとシリコンドット形成対象基体のイオン照射によるダメージが発生してくるから、5keV程度までとする例を挙げることができる。 As in the case of the first type silicon dot forming method and apparatus described above, when the first ion energy falls below P [eV] when the plasma potential is P [V], negative ion ions Since it becomes difficult to accelerate and the formation of “nuclei” may become difficult, it is desirable to set P [eV] or more for the formation of “nuclei”. Since damage to the target substrate due to ion irradiation occurs, an example of up to about 5 keV can be given.
 第2のイオンエネルギは、2keVを超えてくると、「核」をもとに成長しようとするシリコンドットがイオンによるスパッタリング作用乃至衝突破壊作用を大きく受けるようになってシリコンドットの成長が困難になってくることがある一方、第2のイオンエネルギが2keV以下、より好ましくは500eV以下ではイオン照射によるシリコン原子の移動乃至マイグレーション促進効果があり、結晶性の高い良質のシリコンドットが成長する。しかし、第2のイオンエネルギがあまり低すぎると、シリコンドットが成長し難くなることがあるので、プラズマ電位との兼ね合いで、例えば50eV以上とする例を挙げることができる。 When the second ion energy exceeds 2 keV, the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots. On the other hand, when the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown. However, if the second ion energy is too low, silicon dots may be difficult to grow. For example, in view of the plasma potential, an example of 50 eV or more can be given.
 第2タイプのシリコンドット形成方法及び装置においても、シリコンドット形成対象基体に粒径の揃ったシリコンドットを均一な密度分布で形成するにあたっては、シリコンを含む負イオンがより多くプラズマに含まれている方がよい。換言すればプラズマにおける負イオン濃度が高い方がよい。 Also in the second type silicon dot forming method and apparatus, when forming silicon dots having a uniform particle size on a silicon dot formation target substrate with a uniform density distribution, more negative ions containing silicon are included in the plasma. It is better to be. In other words, it is better that the negative ion concentration in the plasma is higher.
 第2タイプのシリコンドット形成方法及び装置の場合も、負イオン濃度を高める方法として前記の方法1、2及び3を利用できる。 Also in the case of the second type silicon dot forming method and apparatus, the above-described methods 1, 2 and 3 can be used as a method for increasing the negative ion concentration.
 そこで、第2タイプのシリコンドット形成方法では、前記方法1を利用できるように、前記プラズマ生成装置を周期的にオンオフさせ、前記負イオン引出し電極装置への前記シリコンを含む負イオン引出しのための電圧印加を、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行うようにしてもよい。 Therefore, in the second type silicon dot forming method, the plasma generating device is periodically turned on and off so that the method 1 can be used, and negative ion extraction including the silicon to the negative ion extraction electrode device is performed. The voltage application may be performed during a period from when the plasma generating apparatus is turned off to when the plasma generating apparatus is turned on again after a lapse of a predetermined period.
 また、第2タイプのシリコンドット形成装置は、前記方法1を利用するために、 前記プラズマ生成装置が周期的にオンオフされ、前記負イオン引出し電源装置による前記負イオン引出し電極装置へのシリコンを含む負イオンの引出し電圧の印加が、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行われるように、前記プラズマ生成装置及び前記負イオン引出し電源装置を制御する制御部を備えているシリコンドット形成装置でもよい。 In addition, in order to use the method 1, the second type silicon dot forming apparatus includes the silicon to the negative ion extraction electrode apparatus by the negative ion extraction power supply apparatus, in which the plasma generation apparatus is periodically turned on and off. The application of the negative ion extraction voltage is performed during a period from when the plasma generation device is turned off to when the plasma generation device is turned on again after a lapse of a predetermined period. A silicon dot forming apparatus including a control unit for controlling the ion extraction power supply device may be used.
 第2タイプのシリコンドット形成方法では、前記方法2を利用できるように、
 前記プラズマ生成室内の中間部に電子捕捉磁場を形成し、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側を前記プラズマ生成装置を備えた第1プラズマ室とするとともに他方の側を前記負イオン引出し電極装置を設けた第2プラズマ室とし、該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めるようにしてもよい。
In the second type silicon dot forming method, the method 2 can be used.
An electron trapping magnetic field is formed in an intermediate portion of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber provided with the plasma generating device and the other side is the A second plasma chamber provided with a negative ion extraction electrode device is used, a plasma is generated from the gas containing silicon in the first plasma chamber, and one of the electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field is generated. The movement of the part to the second plasma chamber is suppressed, and the action of electrons having a lower energy than the electrons that have entered the second plasma chamber and are suppressed to move to the second plasma chamber The concentration of negative ions including silicon may be increased.
 また、第2タイプのシリコンドット形成装置は、前記方法2を利用するために、 前記プラズマ生成室内の中間部に電子捕捉磁場を形成するための磁場形成装置を備え、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側が前記プラズマ生成装置を備えた第1プラズマ室とされるとともに他方の側が前記負イオン引出し電極装置を有する第2プラズマ室とされ、該プラズマ生成装置により該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記磁場形成装置で形成される電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めることができるシリコンドット形成装置でもよい。 In order to use the method 2, the second type silicon dot forming apparatus includes a magnetic field forming device for forming an electron trapping magnetic field in an intermediate portion of the plasma generation chamber, and the electron in the plasma generation chamber One side from the trapping magnetic field forming region is a first plasma chamber provided with the plasma generation device, and the other side is a second plasma chamber having the negative ion extraction electrode device, and the first plasma is generated by the plasma generation device. Plasma is generated from the gas containing silicon in the chamber, and a part of electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field formed by the magnetic field forming device is moved to the second plasma chamber. The second plasma is generated by the action of electrons having energy lower than that of the electrons suppressed and moved to the second plasma chamber. Or a silicon dot forming apparatus capable of increasing the concentration of negative ions containing silicon chamber.
 このように前記方法2を利用する方法及び装置において、「第2プラズマ室内へ到来する低エネルギ電子の作用」とは、第2プラズマ室内で低エネルギー電子が中性原子、分子との衝突によりシリコン原子を含む負イオンを増加させる作用である。 In this way, in the method and apparatus using the method 2, “the action of low energy electrons arriving in the second plasma chamber” means that the low energy electrons collide with neutral atoms and molecules in the second plasma chamber. This is an action of increasing negative ions including atoms.
 さらに、第2タイプのシリコンドット形成方法では、前記方法3を利用できるように、前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットを予め設け、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加し、該プラズマ中の正イオンを該ターゲットに接触させることで、該プラズマ中のシリコンを含む負イオンの濃度を高めるようにしてもよい。 Further, in the second type silicon dot formation method, a conductive target in which at least one substance selected from cesium, rubidium, potassium and barium is deposited in advance in the plasma generation chamber so that the method 3 can be used. Providing a negative voltage to the conductive target in plasma generation from the gas containing silicon by the plasma generation apparatus in the plasma generation chamber, and bringing positive ions in the plasma into contact with the target; You may make it raise the density | concentration of the negative ion containing a silicon | silicone inside.
 前記セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットは、例えば、該物質堆積前の導電性ターゲットを前記プラズマ生成室内に設け、該物質堆積前の導電性ターゲットにセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を導いて該物質を堆積させることで得ることができる。 The conductive target in which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided, for example, by providing a conductive target before the material deposition in the plasma generation chamber. It can be obtained by introducing the vapor of at least one substance selected from cesium, rubidium, potassium and barium to the target and depositing the substance.
 第2タイプのシリコンドット形成装置は、前記方法3を利用するために、前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットが予め設けられており、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加する負バイアス電源装置が設けられているシリコンドット形成装置であってもよい。 In order to use the method 3, the second type silicon dot forming apparatus is preliminarily provided with a conductive target in which at least one substance selected from cesium, rubidium, potassium and barium is deposited in the plasma generation chamber. And a silicon dot forming device provided with a negative bias power supply device for applying a negative voltage to the conductive target in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber. Good.
 第2タイプのシリコンドット形成装置は、
 前記プラズマ生成室内に設置された導電性ターゲットと、
 セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を生成して該導電性ターゲットに導き該ターゲットに該物質を堆積させる物質堆積装置と、
 該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において、該物質堆積装置により該物質が堆積した該導電性ターゲットに負電圧を印加する負バイアス電源装置とを備えたシリコンドット形成装置であってもよい。
The second type silicon dot forming device
A conductive target installed in the plasma generation chamber;
A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target;
Silicon having a negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber It may be a dot forming device.
〔3〕第3タイプのシリコンドット形成方法
 第3タイプのシリコンドット形成方法は、基本的には、
 誘導結合プラズマ等の低プラズマ電位のプラズマの生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置部が設けられたプラズマ生成室及びイオンビームを該基体設置部に設置されるシリコンドット形成対象基体に照射するイオンビーム照射装置を準備すること、
 該基体設置部にシリコンドット形成対象基体を設置すること、
 該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記低プラズマ電位プラズマ生成装置により該ガスから低プラズマ電位プラズマを発生させること、
 該プラズマに前記基体設置部に設置したシリコンドット形成対象基体をさらすとともに前記イオンビーム照射装置から該シリコンドット形成対象基体にイオンビームを照射することを含み、
 該イオンビームの照射は、該シリコンドット形成対象基体にシリコンドットのもとになる核を形成するための第1のイオンエネルギによるイオンビーム照射と、その後の、該核をもとにシリコンドットを成長させるための第2のイオンエネルギによるイオンビーム照射とで行って該シリコンドット形成対象基体にシリコンドットを形成するシリコンドット形成方法である。
[3] Third type silicon dot formation method The third type silicon dot formation method is basically
A plasma generating chamber having a plasma generating chamber having a low plasma potential, such as inductively coupled plasma, and a substrate setting portion for setting a silicon dot formation target substrate therein, and a silicon dot having an ion beam set in the substrate setting portion Preparing an ion beam irradiation apparatus for irradiating a substrate to be formed;
Installing a silicon dot formation target substrate in the substrate installation portion;
A gas containing silicon is introduced into the plasma generation chamber while evacuating the plasma generation chamber while maintaining the plasma generation chamber at the silicon dot formation pressure, and the low plasma potential plasma is generated from the gas by the low plasma potential plasma generation device. Letting
Exposing the silicon dot formation target substrate placed in the base placement portion to the plasma and irradiating the silicon dot formation target substrate from the ion beam irradiation apparatus to the silicon dot formation target,
The ion beam irradiation is performed by irradiating an ion beam with a first ion energy for forming a nucleus that becomes a silicon dot on the silicon dot formation target substrate, and then applying a silicon dot based on the nucleus. This is a silicon dot forming method in which silicon dots are formed on the silicon dot formation target substrate by performing ion beam irradiation with second ion energy for growth.
 第3タイプのシリコンドット形成方法によっても、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成できる。また、基体温度が比較的低温でもシリコンドットを形成でき、耐熱性の点で広い範囲から基体材料を選択できる。 Also by the third type silicon dot formation method, silicon dots having a uniform particle diameter can be formed with a uniform density distribution on the silicon dot formation target substrate. Moreover, silicon dots can be formed even when the substrate temperature is relatively low, and a substrate material can be selected from a wide range in terms of heat resistance.
 また、質量分離装置やイオンビームの走査機構といった高価な装置類を必要とすることなく、質量分離された正イオンを用いる場合より短い時間でシリコンドットを基体の広い範囲にわたり形成できる。 Also, silicon dots can be formed over a wide area of the substrate in a shorter time than when using mass-separated positive ions without requiring expensive devices such as a mass separation device or an ion beam scanning mechanism.
 第3タイプのシリコンドット形成方法によると、シリコンを含むガスから誘導結合プラズマ等の低プラズマ電位のプラズマを生成させ、該プラズマの下にシリコンドット形成対象基体を置くとともに該基体表面にイオンビームを照射してシリコンドットを形成する。 According to the third type silicon dot forming method, a plasma having a low plasma potential such as inductively coupled plasma is generated from a gas containing silicon, a silicon dot formation target substrate is placed under the plasma, and an ion beam is applied to the surface of the substrate. Irradiation forms silicon dots.
 このようにシリコンを含むガスから生成させるプラズマは誘導結合プラズマ等の低プラズマ電位のプラズマであり、該プラズマは前記のとおり静電結合型プラズマと比べて高プラズマ密度、低プラズマ電位が得られる。それ故、例えば低融点ガラス基板のような耐熱性の比較的低い基体上にも該基体の熱的損傷を抑制できる低温下で(例えば600℃以下で)結晶性の高いシリコンドットを得ることができる。 Thus, the plasma generated from the gas containing silicon is a plasma having a low plasma potential such as inductively coupled plasma, and the plasma can have a higher plasma density and a lower plasma potential than the electrostatically coupled plasma as described above. Therefore, a silicon dot having high crystallinity can be obtained on a substrate having a relatively low heat resistance such as a low-melting glass substrate at a low temperature (for example, 600 ° C. or less) that can suppress thermal damage to the substrate. it can.
 また、誘導結合プラズマ等の低プラズマ電位のプラズマの下で基体上にシリコンドットを形成するにあたり、該基体表面にイオンビーム照射装置からイオンビームを照射するので、シリコン原子の移動乃至マイグレーション(migration)が促進され、シリコンドットの結晶性がより高くなる。
 シリコンドット形成後に結晶性を高めるために別途熱処理する必要はない。
In addition, when forming silicon dots on a substrate under a plasma having a low plasma potential such as inductively coupled plasma, the surface of the substrate is irradiated with an ion beam from an ion beam irradiation device, so that migration or migration of silicon atoms is performed. Is promoted, and the crystallinity of the silicon dots becomes higher.
It is not necessary to perform a separate heat treatment to increase crystallinity after the formation of silicon dots.
 このように第3タイプの方法によると、生産性よく良質の結晶質シリコンドットを得ることができる。そして、このようにして得られたシリコンドットは結晶性の高い良質のものである。 Thus, according to the third type method, high-quality crystalline silicon dots can be obtained with high productivity. The silicon dots thus obtained are of high quality with high crystallinity.
 また第3タイプのシリコンドット形成方法によると、イオンビーム照射にあたり、イオン種を選択し、或いはイオン加速エネルギを調整し、或いはこれらの組み合わせにより、シリコンドットの結晶化度の制御はもとより、結晶粒径制御、結晶配向制御、内部応力制御、膜密着力制御等を行うことができる。 In addition, according to the third type silicon dot formation method, in the ion beam irradiation, the ion species is selected, the ion acceleration energy is adjusted, or a combination thereof, in addition to controlling the crystallinity of the silicon dots, the crystal grains Diameter control, crystal orientation control, internal stress control, film adhesion force control, and the like can be performed.
 また、第3タイプのシリコンドット形成方法によると、例えば誘導結合型高周波電界を印加するためのアンテナをプラズマ生成室内に設置できるので、基体の大面積化にも容易に対応できる。 Further, according to the third type silicon dot forming method, for example, an antenna for applying an inductively coupled high-frequency electric field can be installed in the plasma generation chamber, so that it is possible to easily cope with an increase in the area of the substrate.
 第3タイプのシリコンドット形成方法において、結晶性の高いシリコンドットを安定して得るためには、誘導結合型プラズマ等のプラズマ密度が1×1011イオン個/cm以上であることが望ましい。より好ましくは2×1011イオン個/cm以上である。 In the third type silicon dot formation method, in order to stably obtain silicon dots with high crystallinity, it is desirable that the plasma density of inductively coupled plasma or the like is 1 × 10 11 ions / cm 3 or more. More preferably, it is 2 × 10 11 ions / cm 3 or more.
 プラズマ密度が1×1011イオン個/cmより小さいと、すなわちシリコンを含むガスの分解が悪いと、シリコンドット中に水素等の不純物が多量に混入し易く、シリコン原子のネットワーク形成が阻害されて、シリコンのドットがアモルファス或いは微結晶状態になり、結晶質のシリコンドットが得られ難くなることがある。
 プラズマ密度の上限値としては、それには限定されないが、例えば1×1013イオン個/cm程度を挙げることができる。
If the plasma density is less than 1 × 10 11 ions / cm 3 , that is, if the gas containing silicon is poorly decomposed, a large amount of impurities such as hydrogen are likely to be mixed into the silicon dots, thereby inhibiting the formation of silicon atom networks. Thus, the silicon dots may be in an amorphous or microcrystalline state, making it difficult to obtain crystalline silicon dots.
The upper limit value of the plasma density is not limited to this, but can be about 1 × 10 13 ions / cm 3 , for example.
 かかるプラズマ密度の制御としては、例えば、ガス導入装置及びプラズマ生成室内のガス圧調整装置、原料ガスをプラズマ化するプラズマ生成装置(特にプラズマ励起用電源)を共に制御して、換言すれば原料ガスの供給量及びプラズマ生成室内圧力、該ガスをプラズマ化させる電力(高周波アンテナに供給する高周波電力)を制御する手段をもって、プラズマ密度を1×1011(イオン個/cm)以上、より好ましくは2×1011(イオン個/cm)以上、或いは1×1011(イオン個/cm)~1×1013(イオン個/cm)程度等にする場合を挙げることができる。 For controlling the plasma density, for example, the gas introduction device, the gas pressure adjusting device in the plasma generation chamber, and the plasma generation device (particularly the power source for plasma excitation) for converting the raw material gas into plasma are controlled together, in other words, the raw material gas. The plasma density is 1 × 10 11 (ion number / cm 3 ) or more, more preferably, by means of controlling the supply amount of plasma, the pressure in the plasma generation chamber, and the power for converting the gas into plasma (high frequency power supplied to the high frequency antenna). Examples include 2 × 10 11 (ion / cm 3 ) or more, or about 1 × 10 11 (ion / cm 3 ) to 1 × 10 13 (ion / cm 3 ).
 また、第3タイプのシリコンドット形成方法において、結晶質のシリコンドットを安定して得るためには、誘導結合型プラズマ等のプラズマの電位が50V以下であることが望ましい。プラズマ電位が50Vより大きいと、シリコンのドットがプラズマからのイオンのダメージ(プラズマダメージ)を受け易く、シリコンのドットがアモルファス或いは微結晶状態になり、結晶質シリコンドットが得られ難くなることがある。該プラズマ電位は、より好ましくは30V以下であり、さらに好ましくは10V以下である。
 このために、誘導結合型プラズマ等の低プラズマ電位プラズマの電位を50V以下、或いは30V以下、或いはさらに10V以下に制御する手段を設けることができる。
In addition, in the third type silicon dot forming method, it is desirable that the potential of plasma such as inductively coupled plasma is 50 V or less in order to stably obtain crystalline silicon dots. If the plasma potential is greater than 50 V, the silicon dots are susceptible to ion damage (plasma damage) from the plasma, and the silicon dots become amorphous or microcrystalline, making it difficult to obtain crystalline silicon dots. . The plasma potential is more preferably 30 V or less, and even more preferably 10 V or less.
For this purpose, means for controlling the potential of the low plasma potential plasma such as inductively coupled plasma to 50 V or lower, 30 V or lower, or even 10 V or lower can be provided.
 例えば、成膜用原料ガス供給装置及び成膜室(真空チャンバ)内の真空度(ガス圧)調整装置、原料ガスをプラズマ化するプラズマ励起用高周波電源を共に制御して、換言すれば原料ガスの供給量及び成膜室内真空度、該ガスをプラズマ化させる高周波電力(高周波アンテナに供給する電力)を制御する手段をもって、プラズマ電位を50V程度以下、或いは30V以下、或いはさらに10V以下としてもよい。
 もっとも、今日のシリコンドット形成に用いることができる、構造的、コスト的に合理的な装置を対象に考えれば、プラズマ電位の下限は概ね20V程度、装置によっては10V程度になるであろう。
For example, the source gas supply device for film formation, the degree of vacuum (gas pressure) adjustment device in the film formation chamber (vacuum chamber), and the high frequency power source for plasma excitation for converting the source gas into plasma are controlled together, in other words, the source gas. The plasma potential may be set to about 50 V or less, 30 V or less, or even 10 V or less by means of controlling the supply amount, the degree of vacuum in the film formation chamber, and the high-frequency power for converting the gas into plasma (power supplied to the high-frequency antenna). .
However, when considering a structurally and costly device that can be used for forming silicon dots today, the lower limit of the plasma potential will be approximately 20V, and depending on the device, it will be approximately 10V.
 第3タイプのシリコンドット形成方法において、イオンビーム照射装置からシリコンドット形成対象基体へ照射するイオンビームにおけるイオンエネルギはイオンビーム照射の目的に応じたものとすればよく、シリコンドットの核を形成する第1のイオンエネルギによるイオンビーム照射時の該イオンエネルギは、プラズマ電位がP〔V〕であるとすると、P〔eV〕以上が好ましい。該核から結晶質のシリコンドットを成長させるための第2のイオンエネルギによるイオンビーム照射時の該イオンエネルギとしては2keV以下、より好ましくは500eV以下を例示できる。
 なお、ここでP〔V〕、P〔eV〕の「P」それ自身は数値である。
In the third type silicon dot forming method, the ion energy in the ion beam irradiated from the ion beam irradiation apparatus to the silicon dot formation target substrate may be determined according to the purpose of the ion beam irradiation, and the silicon dot nucleus is formed. When the plasma potential is P [V], the ion energy at the time of ion beam irradiation with the first ion energy is preferably P [eV] or more. The ion energy at the time of ion beam irradiation with the second ion energy for growing crystalline silicon dots from the nucleus is 2 keV or less, more preferably 500 eV or less.
Here, “P” itself of P [V] and P [eV] is a numerical value.
 第3タイプのシリコンドット形成方法では、前記シリコンドット形成対象基体へのイオンビーム照射において、第1のイオンエネルギが、前記P〔eV〕を下まわってくると、「核」の形成が困難になってくることがあるので、「核」の形成のために該P〔eV〕以上とすることが望ましいが、大きすぎるとシリコンドット形成対象基体のイオン照射によるダメージが発生してくることがあるから、5keV程度までとする例を挙げることができる。 In the third type silicon dot formation method, when the first ion energy falls below the P [eV] in the ion beam irradiation to the silicon dot formation target substrate, it is difficult to form “nuclei”. However, if it is too large, damage to the silicon dot formation target substrate may occur due to ion irradiation. To about 5 keV.
 第2のイオンエネルギは、2keVを超えてくると、「核」をもとに成長しようとするシリコンドットがイオンによるスパッタリング作用乃至衝突破壊作用を大きく受けるようになってシリコンドットの成長が困難になってくることがある一方、第2のイオンエネルギが2keV以下、より好ましくは500eV以下ではイオン照射によるシリコン原子の移動乃至マイグレーション促進効果があり、結晶性の高い良質のシリコンドットが成長する。 When the second ion energy exceeds 2 keV, the silicon dots to be grown based on the “nuclei” are greatly affected by the sputtering action or collision destruction action by the ions, making it difficult to grow the silicon dots. On the other hand, when the second ion energy is 2 keV or less, more preferably 500 eV or less, there is an effect of promoting movement or migration of silicon atoms by ion irradiation, and high-quality silicon dots with high crystallinity are grown.
 しかし、第2のイオンエネルギがあまり低すぎると、シリコンドットが成長し難くなることがあるので、プラズマ電位との兼ね合いで、例えば50eV以上とする例を挙げることができる。 However, if the second ion energy is too low, silicon dots may be difficult to grow. For example, in view of the plasma potential, an example of 50 eV or more can be given.
 第3タイプのシリコンドット形成方法において、イオンビーム照射装置からシリコンドット形成対象基体へ照射するイオンビームのイオン種としては、不活性ガス(ヘリウム(He)ガス、ネオン(Ne)ガス、アルゴン(Ar)ガス、クリプトン(Kr)ガス、キセノン(Xe)ガス等)、反応性ガス(水素(H)ガス、フッ素(F)ガス、フッ化水素(HF)ガス等)及びシリコン系ガス(モノシラン(SiH)ガス、ジシラン(Si)ガス等の水素化シリコンガス、四フッ化シリコン(SiF)ガス等のフッ化シリコンガス、四塩化シリコン(SiCl)ガス等の塩化シリコンガス等)のうち少なくとも一種のガスから発生させたイオンを例示できる。 In the third type silicon dot forming method, the ion species of the ion beam irradiated from the ion beam irradiation apparatus to the silicon dot formation target substrate are inert gas (helium (He) gas, neon (Ne) gas, argon (Ar ) Gas, krypton (Kr) gas, xenon (Xe) gas, etc.), reactive gas (hydrogen (H 2 ) gas, fluorine (F 2 ) gas, hydrogen fluoride (HF) gas, etc.) and silicon-based gas (monosilane) (SiH 4 ) gas, silicon hydride gas such as disilane (Si 2 H 6 ) gas, silicon fluoride gas such as silicon tetrafluoride (SiF 4 ) gas, silicon chloride gas such as silicon tetrachloride (SiCl 4 ) gas Etc.) can be exemplified by ions generated from at least one kind of gas.
 また、第3タイプのシリコンドット形成方法において、前記プラズマの原料ガスとして、例えば、前記イオンビームのイオン種源となるガスとして例示した前記シリコン系ガスのうち少なくとも一種のガス、又は前記シリコン系ガスのうち少なくとも一種のガスと前記反応性ガスのうち少なくとも一種のガスとを用いることができる。 Further, in the third type silicon dot forming method, as the plasma source gas, for example, at least one of the silicon-based gases exemplified as a gas serving as an ion species source of the ion beam, or the silicon-based gas Among these, at least one gas and at least one gas among the reactive gases can be used.
 また、第3タイプのシリコンドット形成方法において、シリコンドット形成のためのシリコンドット形成対象基体の温度として600℃以下(下限についてはそれには限定されないが例えば室温程度)にすることができる。従来に比べてこのような低温下でも良質なシリコンドットを得ることができる。
 このため第3タイプのシリコンドット形成では、例えば、プラズマ生成室の基体設置部に支持される基体の温度を600℃以下に制御する温度制御装置を採用してもよい。
Further, in the third type silicon dot forming method, the temperature of the silicon dot formation target substrate for forming silicon dots can be 600 ° C. or lower (the lower limit is not limited to this, but, for example, about room temperature). Compared to the prior art, it is possible to obtain high quality silicon dots even at such a low temperature.
For this reason, in the third type silicon dot formation, for example, a temperature control device that controls the temperature of the substrate supported by the substrate installation portion of the plasma generation chamber to 600 ° C. or less may be employed.
 また、第3タイプのシリコンドット形成方法において、前記誘導結合型プラズマ等の低プラズマ電位のプラズマから前記基体表面に到達するシリコン原子数に対するイオンビーム照射装置から該基体へ照射されるイオン数の割合(イオン数/シリコン原子数)を0.01~10とすることが好ましい。これは、その割合が0.01より小さいとイオン照射による結晶化効果が不十分になることがあり、10より大きいとイオン量が過剰となりシリコンドット欠陥の発生が増加することがあるからである。 In the third type silicon dot forming method, the ratio of the number of ions irradiated from the ion beam irradiation apparatus to the substrate with respect to the number of silicon atoms reaching the substrate surface from the low plasma potential plasma such as the inductively coupled plasma The number of ions / number of silicon atoms is preferably 0.01-10. This is because if the ratio is smaller than 0.01, the crystallization effect by ion irradiation may be insufficient, and if it is larger than 10, the amount of ions becomes excessive and the generation of silicon dot defects may increase. .
 なお、シリコンドット形成対象基体表面に到達するシリコン原子数はシリコンドット粒径をモニタしつつ制御することができ、基体表面に到達するイオン数はイオンビーム照射装置(イオン源)からのイオンの引き出し電圧を制御したり、イオン源内のプラズマを発生させるための高周波電力を制御すること等により制御することができる。 The number of silicon atoms that reach the surface of the silicon dot formation target substrate can be controlled while monitoring the silicon dot particle size, and the number of ions that reach the surface of the substrate can be extracted from the ion beam irradiation apparatus (ion source). It can be controlled by controlling the voltage or by controlling the high frequency power for generating plasma in the ion source.
 いずれにしても、シリコンドットの「粒径が揃っている」とは、各シリコンドットの粒径がいずれも同じ又は略同じである場合のほか、シリコンドットの粒径にバラツキがあったとしても、シリコンドットの粒径が、実用上は、揃っているとみることができる場合も指す。 In any case, “the particle size is uniform” of the silicon dots means that the particle size of each silicon dot is the same or substantially the same, and even if there is a variation in the particle size of the silicon dots. It also refers to the case where the particle diameters of silicon dots can be considered to be practically uniform.
 例えば、シリコンドットの粒径が、所定の範囲(例えば10nm以下の範囲或いは5nm以下の範囲)内に揃っている、或いは概ね揃っているとみても、実用上差し支えない場合や、シリコンドットの粒径が例えば2nm~3nmの範囲と5nm~8nmの範囲に分布しているが、全体としては、シリコンドットの粒径が所定の範囲(例えば10nm以下の範囲)内に概ね揃っているとみることができ、実用上差し支えない場合等も含まれる。要するに、シリコンドットの「粒径が揃っている」とは、実用上の観点から、全体として、実質上揃っている、と言える場合を指す。 For example, even if it is considered that the particle diameters of silicon dots are aligned within a predetermined range (for example, a range of 10 nm or less or a range of 5 nm or less) or are generally aligned, For example, the diameter is distributed in the range of 2 nm to 3 nm and the range of 5 nm to 8 nm, but as a whole, the particle size of the silicon dots is considered to be generally within a predetermined range (eg, a range of 10 nm or less). This includes cases where there is no problem in practical use. In short, “the particle size is uniform” of the silicon dots indicates a case where it can be said that the silicon dots are substantially uniform as a whole from a practical viewpoint.
 かくして、シリコンドット形成対象基体上に粒径の揃ったシリコンドットを均一な密度分布で形成でき、耐熱性の点で基体材料の選択可能範囲が広いシリコンドット形成方法及びシリコンドット形成装置を提供することができる。 Thus, a silicon dot forming method and a silicon dot forming apparatus capable of forming silicon dots having a uniform particle diameter on a silicon dot formation target substrate with a uniform density distribution and having a wide selectable range of substrate materials in terms of heat resistance are provided. be able to.
 以下図面を参照してシリコンドット形成方法及び装置の例について説明する。
〔1〕前記第1タイプのシリコンドット形成方法及び装置の例(第1図~第6図参照)
(1-1)第1図に示すシリコンドット形成装置によるシリコンドット形成
 第1図は前記第1タイプのシリコンドット形成装置の1例を示している。第1図に示すシリコンドット形成装置は、プラズマ生成室11並びに該プラズマ生成室内に設置された平板型の高周波電力印加電極12及びこれに対向する平板型の基体設置電極13を含んでいる。
Hereinafter, an example of a silicon dot forming method and apparatus will be described with reference to the drawings.
[1] Example of the first type silicon dot forming method and apparatus (see FIGS. 1 to 6)
(1-1) Silicon Dot Formation by Silicon Dot Forming Apparatus Shown in FIG. 1 FIG. 1 shows an example of the first type silicon dot forming apparatus. The silicon dot forming apparatus shown in FIG. 1 includes a plasma generation chamber 11, a flat plate type high-frequency power application electrode 12 installed in the plasma generation chamber, and a flat plate type substrate installation electrode 13 opposed thereto.
 プラズマ生成室11は接地されている。電極12は導電性材料からなる支持部材121で支持されている。支持部材121はプラズマ生成室11の天井壁を貫通して室外へ延びている。支持部材121は絶縁性部材122にてプラズマ生成室11から電気的に絶縁されている。 The plasma generation chamber 11 is grounded. The electrode 12 is supported by a support member 121 made of a conductive material. The support member 121 extends through the ceiling wall of the plasma generation chamber 11 to the outside. The support member 121 is electrically insulated from the plasma generation chamber 11 by an insulating member 122.
 基体設置電極13は導電性材料からなる支持部材131で支持されている。支持部材131はプラズマ生成室11の底壁を貫通して室外へ延びている。支持部材131は絶縁性部材132にてプラズマ生成室11から電気的に絶縁されている。電極13は図示省略のヒータを有しており、電極13に設置されるシリコンドット形成対象基体Sを加熱することができる。 The base electrode 13 is supported by a support member 131 made of a conductive material. The support member 131 passes through the bottom wall of the plasma generation chamber 11 and extends outside the chamber. The support member 131 is electrically insulated from the plasma generation chamber 11 by an insulating member 132. The electrode 13 has a heater (not shown), and can heat the silicon dot formation target substrate S installed on the electrode 13.
 高周波電力印加電極12には支持部材121及びマッチングボックス14を介して高周波電源装置15が接続されている。高周波電源装置15は高周波電源151と該電源から電極12への電力供給をオンオフするスイッチ152を含んでいる。 A high frequency power supply device 15 is connected to the high frequency power application electrode 12 through a support member 121 and a matching box 14. The high-frequency power supply device 15 includes a high-frequency power supply 151 and a switch 152 that turns on / off power supply from the power supply to the electrode 12.
 基体設置電極13には支持部材132を介して正バイアス電源装置16が接続されている。電源装置16には電極13に正バイアス電圧を印加するための出力可変の直流電源161と該電源から電極13への正バイアス電圧印加をオンオフするスイッチ162が含まれている。高周波電力印加電極12、マッチングボックス14及び高周波電源装置15等はプラズマ生成装置1Aを構成している。 A positive bias power supply device 16 is connected to the base electrode 13 through a support member 132. The power supply device 16 includes an output variable DC power supply 161 for applying a positive bias voltage to the electrode 13 and a switch 162 for turning on / off the application of the positive bias voltage from the power supply to the electrode 13. The high frequency power application electrode 12, the matching box 14, the high frequency power supply device 15 and the like constitute a plasma generating device 1A.
 高周波電源装置15のスイッチ152及びバイアス電源装置16のスイッチ162のオンオフは制御部17により制御される。該制御については後ほど第2図を参照して説明する。また、バイアス電源装置16の直流電源161の出力も制御部17に制御される。 ON / OFF of the switch 152 of the high frequency power supply device 15 and the switch 162 of the bias power supply device 16 is controlled by the control unit 17. This control will be described later with reference to FIG. The output of the DC power supply 161 of the bias power supply device 16 is also controlled by the control unit 17.
 以上のほか、プラズマ生成室11にはシリコンを含むガスを該室内へ導入するガス導入装置18及びプラズマ生成室11内から排気するための排気装置19がそれぞれ接続されている。 In addition to the above, the plasma generation chamber 11 is connected to a gas introduction device 18 for introducing a gas containing silicon into the chamber and an exhaust device 19 for exhausting the gas from the plasma generation chamber 11.
 前記制御部17は、図示していないが、スイッチ152、162をトリガしてオンするためのトリガ回路や該トリガ回路によるスイッチオン操作のタイミングを決定するタイミング調整回路等が含まれている。 Although not shown, the control unit 17 includes a trigger circuit for triggering the switches 152 and 162 to be turned on, a timing adjusting circuit for determining the timing of the switch-on operation by the trigger circuit, and the like.
 第1図に示すシリコンドット形成装置によると、プラズマ生成室11内の基体設置電極13にシリコン基板等のシリコンドット形成対象基体Sを設置し、排気装置19にて室11内から排気して該室内を基体Sへのシリコンドット形成圧に減圧維持しつつガス導入装置18からシリコンを含むガスを導入し、制御部17の指示のもとに高周波電源装置15から高周波電極12に高周波電力を印加して該ガスをプラズマ化する一方、正バイアス電源装置16から基体設置電極13及びそれに設置された基体Sに第1の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、基体S上にシリコンドットのもとになる核を形成し、ひき続き基体Sに電源装置16から第2の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、該核をもとにしてシリコンドットを成長させることができる。 According to the silicon dot forming apparatus shown in FIG. 1, a silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting electrode 13 in the plasma generation chamber 11 and is exhausted from the chamber 11 by the exhaust device 19. A gas containing silicon is introduced from the gas introduction device 18 while maintaining the inside of the chamber at a silicon dot formation pressure on the substrate S, and high frequency power is applied from the high frequency power supply device 15 to the high frequency electrode 12 under the instruction of the control unit 17 Then, while the gas is turned into plasma, a first positive pulse voltage is applied from the positive bias power supply 16 to the substrate installation electrode 13 and the substrate S installed thereon, and negative ions containing silicon in the plasma are applied to the substrate. By pulling, a nucleus serving as a base of silicon dots is formed on the substrate S, and then a second positive pulse voltage is applied to the substrate S from the power supply device 16 to generate plasma. By attracting negative ions comprising silicon to the substrate, it is possible to grow silicon dots by the nucleic based.
 ここでガス導入装置18から供給するシリコンを含むガスとしては、例えばモノシラン(SiH)、ジシラン(Si)、四塩化ケイ素(SiCl)、四フッ化ケイ素(SiF 4)等のガスを挙げることができる。
 基体Sへ引き寄せる負イオンとしては、SiH 、SiH と言った1次シラン系負イオンを挙げることかできる。
Here, examples of the gas containing silicon supplied from the gas introducing device 18 include gases such as monosilane (SiH 4 ), disilane (Si 2 H 6 ), silicon tetrachloride (SiCl 4 ), and silicon tetrafluoride (SiF 4 ). Can be mentioned.
Examples of the negative ions attracted to the substrate S include primary silane negative ions such as SiH 3 and SiH 2 .
 かかるシリコンを含むガス種及び負イオン種については、後述する本発明に係る第1のシリコンドット形成方法及び装置の他の実施形態についても適用可能であり、後述する第2タイプのシリコンドット形成方法及び装置の例についても適用可能である。 The gas species and negative ion species containing silicon can be applied to other embodiments of the first silicon dot forming method and apparatus according to the present invention described later, and a second type silicon dot forming method described later. It can also be applied to examples of devices.
 前記制御部17はプラズマ生成装置1Aを所定の周期でオンオフさせる。すなわち、制御部17は、電極12に高周波電力を印加させるに際し、第2図の上段に示すようにスイッチ152を所定の周期でオンオフし、プラズマを所定の周期で発生(点灯)、消滅させる。一方、基体設置電極13に正パルス電圧を印加させるに際し、第2図の下段に示すようにスイッチ162を所定の周期でオンオフし、電極13への正バイアス印加を所定の周期でオンオフさせ、電極13に正パルス電圧を印加させる。 The controller 17 turns on / off the plasma generating apparatus 1A at a predetermined cycle. That is, when applying high-frequency power to the electrode 12, the control unit 17 turns on and off the switch 152 at a predetermined cycle as shown in the upper part of FIG. 2, and generates (lights) and extinguishes plasma at a predetermined cycle. On the other hand, when applying a positive pulse voltage to the base electrode 13, the switch 162 is turned on / off at a predetermined cycle as shown in the lower part of FIG. 2, and positive bias application to the electrode 13 is turned on / off at a predetermined cycle. 13 is applied with a positive pulse voltage.
 電極13への正パルス電圧の印加は、プラズマ生成装置1Aがオフに切り替わってから所定期間Ta経過後から再びプラズマ生成装置1Aがオンに切り替わるまでの期間の間の所定期間Tbになされる。 換言すれば、電極13への正パルス電圧の印加は、高周波電源装置15のスイッチ152がオフされてから所定期間Ta経過後から再びスイッチ152がオンされるまでの期間の間の所定期間Tbになされる。
 なお、第2図において「T」は装置1Aのオフ期間、従ってプラズマ消灯期間である。
The positive pulse voltage is applied to the electrode 13 for a predetermined period Tb between the time when the plasma generating apparatus 1A is turned off and the period after the predetermined period Ta has elapsed until the plasma generating apparatus 1A is turned on again. In other words, the positive pulse voltage is applied to the electrode 13 during a predetermined period Tb between the time when the switch 152 of the high-frequency power supply device 15 is turned off and the time after the predetermined period Ta has elapsed until the switch 152 is turned on again. Made.
In FIG. 2, “T” is the off period of the apparatus 1A, and hence the plasma extinguishing period.
 このように、プラズマ点灯をパルス的に行い、プラズマ消灯直後に基体設置電極13に正パルス電圧を印加することによって負イオン密度を高めることができる。さらに説明すると、室11内へ導入されたガスからプラズマ生成装置1Aのオン(スイッチ152のオン)にてプラズマを生成(点灯)させ、次いで装置1Aをオフして(スイッチ152をオフして)プラズマを消灯すると、プラズマ中の電子の温度は急速に低下する。このとき電子及び正負イオンの密度は殆ど変化しないがプラズマ中では低エネルギー電子が支配的となる。この低エネルギー電子と分子が解離性付着を起こすことによって負イオンが生成される確率が急激に高くなる。 In this way, the negative ion density can be increased by performing plasma lighting in a pulse manner and applying a positive pulse voltage to the substrate installation electrode 13 immediately after the plasma is extinguished. More specifically, plasma is generated (lighted) from the gas introduced into the chamber 11 when the plasma generating apparatus 1A is turned on (switch 152 is turned on), and then the apparatus 1A is turned off (switch 152 is turned off). When the plasma is extinguished, the temperature of the electrons in the plasma rapidly decreases. At this time, the density of electrons and positive and negative ions hardly changes, but low-energy electrons are dominant in the plasma. The probability that negative ions are generated due to the dissociative adhesion between the low-energy electrons and the molecules increases rapidly.
 このような解離性付着によって、負イオン濃度(密度)はプラズマ生成装置1Aのオフ直後から急激に上昇する。さらに時間が経過すると、電子は軽いために、急速に拡散し、消滅して密度が低下する。一方で、正及び負のイオンは質量が大きいため、殆ど消滅しない。このため電子密度が極端に低くなり、正負イオンでプラズマが維持される特異な(電子が殆ど無い)プラズマが形成される。 Due to such dissociative adhesion, the negative ion concentration (density) rapidly increases immediately after the plasma generating apparatus 1A is turned off. As the time further elapses, the electrons are light, so that they diffuse rapidly and disappear and the density decreases. On the other hand, since positive and negative ions have a large mass, they hardly disappear. For this reason, the electron density becomes extremely low, and a peculiar plasma (having almost no electrons) in which the plasma is maintained by positive and negative ions is formed.
 そこで、プラズマ消灯から電極13への正パルス電圧印加開始までの期間として、このように負イオン濃度が十分高くなる期間Taを設定し、期間Taが経過すると電極13及びそれに設置された基体Sへ正パルス電圧を期間Tb〔<(T-Ta)〕の間に印加し、負イオン濃度が高められるタイミングで負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットを形成する。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に形成することができる。
Therefore, a period Ta in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinguishing to the start of application of the positive pulse voltage to the electrode 13, and when the period Ta elapses, the electrode 13 and the substrate S installed on the electrode 13 are set. A positive pulse voltage is applied during the period Tb [<(T−Ta)], negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots. .
Thus, silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
 このようにシリコンドットを形成するためのプラズマ生成室11内のシリコンドット形成圧としては、プラズマ生成のために用いるシリコンを含むガスの種類等にもよるが、概ね0.5Pa~50Pa程度を採用することができる。このシリコンドット形成圧はプラズマを生成させ得る圧力でもある。
 室11内のシリコンドット形成圧が0.5Paより低くなってくると、ドットが成長し難くなることがある、或いはドット成長が遅くなることがある。50Paを超えてくると、結晶質のシリコンドットが得られなくなってくることがある。
As described above, the silicon dot forming pressure in the plasma generation chamber 11 for forming silicon dots is approximately 0.5 Pa to 50 Pa depending on the type of gas containing silicon used for plasma generation. can do. This silicon dot formation pressure is also a pressure capable of generating plasma.
When the silicon dot formation pressure in the chamber 11 is lower than 0.5 Pa, the dots may not grow easily or the dot growth may be slow. If it exceeds 50 Pa, crystalline silicon dots may not be obtained.
 さらに、高周波電力印加電極12へ印加する高周波電力の周波数はプラズマ生成のために用いるシリコンを含むガスの種類等にもよるが、概ね13.56MHz~60MHz程度、電力としては5mW/cm~100mW/cm程度を例示できる。
 高周波電力周波数が13.56MHzを下まわってくると、プラズマ電位が高くなってくる。60MHzを超えてくると、プラズマが点灯し難くなってくることがある。
 電力については、5mW/cmより小さくなってくると、プラズマ密度が低くなりすぎることがあがあり、100mW/cmを超えてくると、電極への電力導入部の熱対策が必要になってくることがある。
Furthermore, although the frequency of the high frequency power applied to the high frequency power application electrode 12 depends on the type of gas containing silicon used for plasma generation, it is approximately 13.56 MHz to 60 MHz, and the power is 5 mW / cm 3 to 100 mW. For example, about / cm 3 .
When the high-frequency power frequency falls below 13.56 MHz, the plasma potential increases. If it exceeds 60 MHz, the plasma may become difficult to light.
As for the electric power, if it becomes smaller than 5 mW / cm 3 , the plasma density may become too low, and if it exceeds 100 mW / cm 3 , it is necessary to take measures against heat at the power introduction part to the electrode. May come.
 基体設置電極13へ印加する正パルス電圧の大きさは、基体Sへ向けてのイオン照射の目的にそって決められる。例えば、シリコンドットのもとになる核を形成する第1のイオンエネルギ(プラズマ電位がP〔V〕とするとP〔eV〕以上5keV以下)によるイオン照射のための第1の正パルス電圧印加に際しては、ここでは該第1の正パルス電圧を500V~5kV程度とする。 The magnitude of the positive pulse voltage applied to the substrate installation electrode 13 is determined according to the purpose of ion irradiation toward the substrate S. For example, upon application of a first positive pulse voltage for ion irradiation with a first ion energy (a plasma potential of P [V] or more and 5 keV or less if the plasma potential is P [V]) that forms a nucleus serving as a silicon dot. Here, the first positive pulse voltage is about 500 V to 5 kV.
 該核からシリコンドットを成長させる第2のイオンエネルギ〔50eV以上2keV以下(より好ましくは50eV以上500eV以下)〕によるイオン照射のための第2の正パルス電圧印加に際しては、ここでは該第2の正パルス電圧を50V~2kV(より好ましくは50V以上500V以下)程度とする。  When applying a second positive pulse voltage for ion irradiation with a second ion energy [50 eV or more and 2 keV or less (more preferably 50 eV or more and 500 eV or less)] for growing silicon dots from the nucleus, here, The positive pulse voltage is about 50 V to 2 kV (more preferably, 50 V to 500 V). *
 第1の正パルス電圧がプラズマ電位に対応する電圧を下まわってくると「核」の形成が困難になってくることがあり、5kVを超えてくると、基体Sにダメージが生じてくることがある。第2パルス電圧が50Vより低下してくるとプラズマ電位と等価な値になってきて、前記のとおりの好ましいプラズマ電位との関係で第2パルス電圧印加の効果が認められなくなってくることがある。一方、第2パルス電圧が2kVを超えてくると、シリコンドットの成長が困難になってきたり、形成されるドットの結晶性が悪化してきたりすることがある。 If the first positive pulse voltage falls below the voltage corresponding to the plasma potential, it may become difficult to form “nuclei”, and if it exceeds 5 kV, the substrate S may be damaged. There is. When the second pulse voltage drops below 50V, the value becomes equivalent to the plasma potential, and the effect of applying the second pulse voltage may not be recognized in relation to the preferable plasma potential as described above. . On the other hand, when the second pulse voltage exceeds 2 kV, the growth of silicon dots may become difficult, and the crystallinity of the formed dots may deteriorate.
 一般的に言えば、シリコンドットのもとになる核を形成する第1のイオンエネルギ(例えばプラズマ電位がP〔V〕とするとP〔eV〕以上5keV以下)によるイオン照射のための第1の正パルス電圧や、核からシリコンドットを成長させる第2のイオンエネルギ〔例えば50eV以上2ke以下(より好ましくは500eV以下)〕によるイオン照射のための第2の正パルス電圧は、予め実験等により求めておいて制御部17に設定しておくことができる。 Generally speaking, a first ion for ion irradiation with a first ion energy (for example, P [eV] or more and 5 keV or less if the plasma potential is P [V]) that forms a nucleus serving as a silicon dot is used. A positive pulse voltage and a second positive pulse voltage for ion irradiation with a second ion energy for growing silicon dots from the nucleus (for example, 50 eV or more and 2 ke or less (more preferably 500 eV or less)) are obtained in advance by experiments or the like. It can be set in the control unit 17 in advance.
 また、周期的にプラズマを点灯消灯させるときの該周期としては、シリコンを含む負イオンの生成効率を良くする観点から、例えば、概ね周波数にして100Hz~1kHz程度相当の周期を挙げることができる。
 具体例として、プラズマ点灯期間Tcは、10μsec~500μsec程度、プラズマ消灯期間Tは500μsec~10msec程度を例示でき、
 プラズマ消灯から正パルス電圧印加開始までの期間Taとしては50μsec~200μsec程度を、正パルス電圧印加期間Tbは5μsec~100μsec程度を例示できる。
In addition, as the period when the plasma is turned on and off periodically, for example, from the viewpoint of improving the generation efficiency of negative ions including silicon, a period corresponding to about 100 Hz to 1 kHz as a frequency can be given.
As a specific example, the plasma lighting period Tc can be exemplified as about 10 μsec to 500 μsec, and the plasma extinguishing period T can be exemplified as about 500 μsec to 10 msec.
The period Ta from the plasma extinction to the start of positive pulse voltage application can be about 50 μsec to 200 μsec, and the positive pulse voltage application period Tb can be about 5 μsec to 100 μsec.
 いま説明した、シリコンドット形成圧、基体設置電極へ印加する正パルス電圧の大きさ、期間Tc、T、Ta、Tbは、後述する本発明に係る第1のシリコンドット形成方法及び装置の他の実施形態についても適用可能である。 The silicon dot forming pressure, the magnitude of the positive pulse voltage applied to the base electrode, and the periods Tc, T, Ta, and Tb described above are the other ones of the first silicon dot forming method and apparatus according to the present invention described later. The present invention can also be applied to the embodiment.
 以上説明したプラズマ生成装置1Aは、高周波プラズマを生成するものであったが、プラズマ生成装置はそれに限定されるものではなく、それ以外にマイクロ波プラズマ、直流放電プラズマ等を生成するものでもよい。いずれのプラズマ生成装置を採用した場合も、プラズマ生成装置を周期的にオンオフし、オフになった直後の負イオン増加時にタイミングを合わせて基体Sに正パルス電圧を印加する。 Although the plasma generating apparatus 1A described above generates high-frequency plasma, the plasma generating apparatus is not limited thereto, and may generate microwave plasma, DC discharge plasma, or the like. Regardless of which plasma generation apparatus is employed, the plasma generation apparatus is periodically turned on and off, and a positive pulse voltage is applied to the substrate S at the same time when negative ions increase immediately after being turned off.
(1-2)第3図に示すシリコンドット形成装置によるシリコンドット形成
 第3図にシリコンドット形成装置の他の例を示す。第3図のシリコンドット形成装置は、プラズマ生成室21並びに該プラズマ生成室内に設置されたフィラメント22及びこれに対向する平板型の基体設置電極23を含んでいる。
(1-2) Silicon dot formation by the silicon dot forming apparatus shown in FIG. 3 FIG. 3 shows another example of the silicon dot forming apparatus. The silicon dot forming apparatus shown in FIG. 3 includes a plasma generation chamber 21, a filament 22 installed in the plasma generation chamber, and a flat plate-type substrate installation electrode 23 facing the filament.
 フィラメント22と基体設置電極23との間に高エネルギー電子捕捉用磁場を形成するための導体棒291が設けられている。導体棒291は所定間隔をおいて複数本平行に配置されており、それら棒291より上側は第1プラズマ室211とされ、棒291より下側は第2プラズマ室212とされている。 A conductor rod 291 for forming a magnetic field for capturing high-energy electrons is provided between the filament 22 and the base electrode 23. A plurality of conductor rods 291 are arranged in parallel at a predetermined interval. The first plasma chamber 211 is above the rods 291 and the second plasma chamber 212 is below the rods 291.
 フィラメント22はプラズマ生成室21の天井壁を貫通している。フィラメント22は絶縁性部材221で室21とは電気的に絶縁されている。基体設置電極23は導電性材料からなる支持部材231で支持されている。支持部材231はプラズマ生成室21の底壁を貫通して室外へ延びている。支持部材231は絶縁性部材232にてプラズマ生成室21と電気的に絶縁されている。 The filament 22 penetrates the ceiling wall of the plasma generation chamber 21. The filament 22 is electrically insulated from the chamber 21 by an insulating member 221. The substrate installation electrode 23 is supported by a support member 231 made of a conductive material. The support member 231 passes through the bottom wall of the plasma generation chamber 21 and extends outside the chamber. The support member 231 is electrically insulated from the plasma generation chamber 21 by an insulating member 232.
 フィラメント22にはフィラメント加熱用電源241が接続されており、さらに、フィラメント22とプラズマ生成室21間に放電用電源242が設けられ、該放電用電源242からプラズマ生成室21に放電用電圧を印加できるようにしてある。電源242はプラズマ生成室21への電圧印加をオンオフするスイッチ243を介してプラズマ生成室21に接続されている。 A filament heating power source 241 is connected to the filament 22, and a discharge power source 242 is provided between the filament 22 and the plasma generation chamber 21, and a discharge voltage is applied from the discharge power source 242 to the plasma generation chamber 21. I can do it. The power source 242 is connected to the plasma generation chamber 21 via a switch 243 that turns on / off voltage application to the plasma generation chamber 21.
 プラズマ生成室21の、第1プラズマ室211の外側及び第2プラズマ室212の外側のそれぞれにはN極とS極が交互に配置されるように永久磁石が配列されており、これにより多極磁界(カスプ磁場)を形成して効率よくプラズマを閉じ込められるようにしてある。
 フィラメント22、フィラメント加熱用電源241、放電用電源242及びスイッチ243等はプラズマ生成装置2Aを形成している。
Permanent magnets are arranged on the outside of the first plasma chamber 211 and the outside of the second plasma chamber 212 of the plasma generation chamber 21 so that N poles and S poles are alternately arranged. A magnetic field (cusp magnetic field) is formed so that the plasma can be confined efficiently.
The filament 22, the filament heating power source 241, the discharging power source 242, the switch 243, and the like form the plasma generating apparatus 2A.
 基体設置電極23には支持部材231を介して正バイアス電源装置25が接続されている。電源装置25には電極23に正バイアス電圧を印加するための出力可変の直流電源251と該電源から電極23への正バイアス電圧印加をオンオフするスイッチ252が含まれている。プラズマ生成装置2Aにおけるスイッチ243のオンオフ及びこのスイッチ252のオンオフは後述するように制御部26にて制御される。バイアス電源装置25の直流電源251の出力も制御部26に制御される。 A positive bias power supply device 25 is connected to the substrate installation electrode 23 via a support member 231. The power supply device 25 includes an output variable DC power supply 251 for applying a positive bias voltage to the electrode 23 and a switch 252 for turning on / off the application of the positive bias voltage from the power supply to the electrode 23. On / off of the switch 243 and on / off of the switch 252 in the plasma generating apparatus 2A are controlled by the control unit 26 as described later. The output of the DC power supply 251 of the bias power supply device 25 is also controlled by the control unit 26.
 以上のほか、プラズマ生成室21にはシリコンを含むガスを該室内へ導入するガス導入装置27及びプラズマ生成室21内から排気するための排気装置28がそれぞれ接続されている。
 また、前記の複数本の導体棒291には電源292から電流を流すことで各導体棒291の周囲に磁場Bを形成することができるようにしてある。導体棒291及び電源292等は電子捕捉磁場を形成するための磁場形成装置29を構成している。
In addition to the above, a gas introduction device 27 for introducing a gas containing silicon into the chamber and an exhaust device 28 for exhausting the gas from the plasma generation chamber 21 are connected to the plasma generation chamber 21.
In addition, a magnetic field B can be formed around each conductor rod 291 by passing a current from the power source 292 to the plurality of conductor rods 291. The conductor rod 291 and the power source 292 constitute a magnetic field forming device 29 for forming an electron trapping magnetic field.
 第3図に示すシリコンドット形成装置によると、次のようにしてシリコンドットを形成できる。
 第2プラズマ室212における基体設置電極23にシリコン基板等のシリコンドット形成対象基体Sを設置する。そして排気装置28にて室21内から排気して該室内を基体Sへのシリコンドット形成圧に減圧維持しつつガス導入装置27からシリコンを含むガスを導入する一方、加熱用電源241でフィラメント22を加熱し、制御部26の指示のもとにスイッチ243をオンして放電用電源242からプラズマ生成室21に正極性電圧を印加することで、加熱されたフィラメント22から熱電子を引き出しガスに衝突させ、それにより第1プラズマ室211にプラズマを生成させる。
According to the silicon dot forming apparatus shown in FIG. 3, silicon dots can be formed as follows.
A silicon dot formation target substrate S such as a silicon substrate is installed on the substrate installation electrode 23 in the second plasma chamber 212. A gas containing silicon is introduced from the gas introducing device 27 while the chamber is evacuated from the chamber 21 by the exhaust device 28 and maintained at a reduced pressure to form silicon dots on the substrate S, while the filament 22 is applied by the heating power source 241. Then, the switch 243 is turned on under the instruction of the control unit 26 and a positive voltage is applied from the discharge power source 242 to the plasma generation chamber 21, thereby drawing out the thermoelectrons from the heated filament 22 to the gas. The plasma is generated in the first plasma chamber 211 by the collision.
 また、磁場形成装置29の電源292から各導体棒291に同じ向きの電流を流し、数ガウス~数十ガウス程度の弱い磁場を形成させ、さらに制御部26の指示のもとに正バイアス電源装置25のスイッチ252をオンオフして基体設置電極23及びそれに設置された基体Sに第1の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、基体S上にシリコンドットのもとになる核を形成し、ひき続き基体Sに電源装置25から第2の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、該核をもとにしてシリコンドットを成長させることができる。 Further, a current in the same direction is supplied from the power source 292 of the magnetic field forming device 29 to each conductor rod 291 to form a weak magnetic field of several gauss to several tens of gauss. On the substrate S, the first positive pulse voltage is applied to the substrate installation electrode 23 and the substrate S installed on the substrate 25, and negative ions including silicon in the plasma are attracted to the substrate. A nucleus serving as a base of silicon dots is formed, and then a second positive pulse voltage is applied to the substrate S from the power supply device 25 to attract negative ions including silicon in the plasma to the substrate, thereby forming the nucleus. Based on this, silicon dots can be grown.
 第1プラズマ室211で形成されたプラズマは導体棒291の間から第2プラズマ室212へ到来してくるが、このとき、第1プラズマ室211で発生したプラズマ中の高いエネルギーの電子は磁場形成装置29により形成される磁場の障壁に遮られ、第2プラズマ室212への通り抜けが抑制される。低エネルギー電子は該磁場を通り抜けて第2プラズマ室212へ移動することができる。このように磁場はエネルギーフィルタとして作用する。 The plasma formed in the first plasma chamber 211 arrives at the second plasma chamber 212 from between the conductor rods 291. At this time, high-energy electrons in the plasma generated in the first plasma chamber 211 form a magnetic field. The passage through the second plasma chamber 212 is suppressed by the magnetic field barrier formed by the device 29. Low energy electrons can travel through the magnetic field to the second plasma chamber 212. Thus, the magnetic field acts as an energy filter.
 プラズマ生成に用いるシリコンを含むガスの種類等にもよるが、磁場形成装置29を通り抜けて第2プラズマ室212へ到来して来る低エネルギー電子として、概ね30eV以下程度のものを例示できる。 Although depending on the type of gas containing silicon used for plasma generation, examples of low energy electrons that pass through the magnetic field forming device 29 and arrive at the second plasma chamber 212 are approximately 30 eV or less.
 かくして、第2プラズマ室212におけるプラズマ中には、低エネルギーの電子が多く存在する。低エネルギー電子は中性分子、原子との衝突結合の断面積が大きい。低エネルギー電子は中性ラジカルに結びついてこれをSiH- 、SiH- 等に負イオン化する。そのようにして低エネルギーの電子が少なくなると第1プラズマ室211から第2プラズマ室212へ低エネルギー電子が入ってくる。かくして第2プラズマ室212においては負イオン濃度(密度)が高められる。 Thus, there are many low-energy electrons in the plasma in the second plasma chamber 212. Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms. Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 −, SiH 2 −, and the like. When the number of low-energy electrons decreases in such a manner, low-energy electrons enter the second plasma chamber 212 from the first plasma chamber 211. Thus, the negative ion concentration (density) is increased in the second plasma chamber 212.
 必ずしもそうする必要はないが、本例では制御部26は、第2図に示すと同様のタイミングでプラズマ生成装置2Aを所定の周期でオンオフさせ、基体設置電極23への正バイアス電圧の印加も所定のタイミングでオンオフさせる。すなわち、制御部26は、プラズマ生成装置2Aにおけるスイッチ243を所定の周期でオンオフし、プラズマを所定の周期で発生(点灯)、消滅させる。一方、基体設置電極13に正バイアス電圧を印加させるに際し、スイッチ252を所定の周期でオンオフし、電極23への正バイアス印加を所定の周期でオンオフさせ、電極23に正パルス電圧を印加させる。 Although not necessarily required, in this example, the control unit 26 turns on and off the plasma generating apparatus 2A at a predetermined cycle at the same timing as shown in FIG. 2, and also applies a positive bias voltage to the substrate installation electrode 23. Turn on and off at a predetermined timing. That is, the control unit 26 turns on and off the switch 243 in the plasma generation apparatus 2A at a predetermined cycle, and generates (lights) and extinguishes plasma at a predetermined cycle. On the other hand, when a positive bias voltage is applied to the base electrode 13, the switch 252 is turned on / off at a predetermined cycle, positive bias application to the electrode 23 is turned on / off at a predetermined cycle, and a positive pulse voltage is applied to the electrode 23.
 電極23への正パルス電圧の印加は、プラズマ生成装置2Aがオフに切り替わってから所定期間Ta経過後から再びプラズマ生成装置2Aがオンに切り替わるまでの期間の間の所定期間Tbになされる。換言すれば、電極23への正パルス電圧の印加は、プラズマ生成装置2Aのスイッチ243がオフされてから所定期間Ta経過後から再びスイッチ243がオンされるまでの期間の間の所定期間Tbになされる。 The positive pulse voltage is applied to the electrode 23 for a predetermined period Tb between the time when the plasma generating apparatus 2A is turned off and the period after the elapse of the predetermined period Ta until the plasma generating apparatus 2A is turned on again. In other words, the positive pulse voltage is applied to the electrode 23 during a predetermined period Tb between the time when the switch 243 of the plasma generating apparatus 2A is turned off and the time after the predetermined period Ta has elapsed until the switch 243 is turned on again. Made.
 かくして第2プラズマ室212において負イオン濃度が十分高められるタイミングで基体設置電極23及びそれに設置された基体Sに第1、第2の正パルス電圧を印加してシリコン原子を含む負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットのもとになる「核」を形成し、該核をもとにシリコンドットを成長させることができる。かくして粒径の揃ったシリコンドットを均一な密度分布で基体に全面的に形成することができる。 Thus, negative ions including silicon atoms are applied all at once by applying the first and second positive pulse voltages to the substrate installation electrode 23 and the substrate S installed thereon at a timing at which the negative ion concentration is sufficiently increased in the second plasma chamber 212. This operation can be repeated to form a “nucleus” that becomes the basis of the silicon dot, and the silicon dot can be grown based on the nucleus. Thus, silicon dots having a uniform particle diameter can be formed on the entire surface with a uniform density distribution.
 以上説明したシリコンドット形成では、シリコンを含むガスの導入を第3図に示すように第1プラズマ室211に対し行ったが、第2プラズマ室212に導入してもよいし、第1、第2のプラズマ室の双方に導入してもよい。 In the silicon dot formation described above, the gas containing silicon is introduced into the first plasma chamber 211 as shown in FIG. 3, but it may be introduced into the second plasma chamber 212, or the first and second It may be introduced into both of the two plasma chambers.
 また、プラズマ生成装置2Aは、熱電子を放出するフィラメント22を利用してプラズマを生成するものであったが、プラズマ生成装置はそれに限定されるものではなく、それ以外の高周波プラズマ、マイクロ波プラズマ等を生成するものでもよい。 The plasma generating apparatus 2A generates plasma using the filament 22 that emits thermoelectrons. However, the plasma generating apparatus is not limited thereto, and other high-frequency plasma and microwave plasma are used. Etc. may be generated.
 第3図に示すシリコンドット形成装置及び方法では、電子捕捉磁場は導体棒291に電流を流すことで形成したが、第4図に示すように、導体棒291に代えてプラズマ生成室21の中間部の外側に、前記カスプ磁場を作る磁石とは別に、磁石(例えば図示のように永久磁石)mg1~mg4を設け、異極が対向する磁石mg1とmg2、磁石mg3とmg4により第1、第2のプラズマ室の境界領域に電子捕捉磁場Bを形成してもよい。 In the silicon dot forming apparatus and method shown in FIG. 3, the electron trapping magnetic field is formed by passing a current through the conductor rod 291. However, as shown in FIG. Apart from the magnet that creates the cusp magnetic field, magnets (for example, permanent magnets as shown) mg1 to mg4 are provided outside the unit, and the first and second magnets mg1 and mg2 and opposite magnets mg3 and mg4 face each other. The electron trapping magnetic field B may be formed in the boundary region between the two plasma chambers.
(1-3)第5図に示すシリコンドット形成装置によるシリコンドット形成
 第5図にシリコンドット形成装置の他の例を示す。第5図のシリコンドット形成装置は、ECRプラズマを形成するタイプのものである。この装置は、プラズマ生成室31、マグネトロン32、基体設置電極33等を備えている。
(1-3) Silicon dot formation by the silicon dot forming apparatus shown in FIG. 5 FIG. 5 shows another example of the silicon dot forming apparatus. The silicon dot forming apparatus of FIG. 5 is of a type that forms ECR plasma. This apparatus includes a plasma generation chamber 31, a magnetron 32, a base installation electrode 33, and the like.
 マグネトロン32は、導波管321及び誘電体材料からなるマイクロ波透過窓323を介してプラズマ生成室31に接続されている。プラズマ生成室31の外側には、磁場形成のためのECRコイル323が設けられている。コイル323は図示省略の電源から通電され、縦磁場Bを形成する。マグネトロン32、導波管321、誘電体窓323、コイル323等はプラズマ生成装置3Aを形成している。 The magnetron 32 is connected to the plasma generation chamber 31 via a waveguide 321 and a microwave transmission window 323 made of a dielectric material. An ECR coil 323 for forming a magnetic field is provided outside the plasma generation chamber 31. The coil 323 is energized from a power supply (not shown) to form a longitudinal magnetic field B. The magnetron 32, the waveguide 321, the dielectric window 323, the coil 323, etc. form a plasma generating device 3A.
 基体設置電極33はプラズマ生成室31内の下部に設けられ、導電性の支持部材331で支持されている。支持部材331は室31の底壁を貫通して外部へ延びている。支持部材331は絶縁性部材332で室31から絶縁されている。電極33には支持部材331を介して正バイアス電源装置34が接続されている。電源装置34には電極33に正バイアス電圧を印加するための出力可変の直流電源341と該電源から電極33への正バイアス電圧印加をオンオフするスイッチ342が含まれている。
 前記のマグネトロン32及びこのスイッチ342のオンオフは後述するように制御部35にて制御される。バイアス電源装置34の直流電源341の出力も制御部35に制御される。
The substrate installation electrode 33 is provided in the lower part of the plasma generation chamber 31 and is supported by a conductive support member 331. The support member 331 extends outside through the bottom wall of the chamber 31. The support member 331 is insulated from the chamber 31 by an insulating member 332. A positive bias power supply device 34 is connected to the electrode 33 via a support member 331. The power supply device 34 includes an output variable DC power supply 341 for applying a positive bias voltage to the electrode 33 and a switch 342 for turning on / off the application of the positive bias voltage from the power supply to the electrode 33.
The magnetron 32 and the on / off of the switch 342 are controlled by a control unit 35 as will be described later. The output of the DC power supply 341 of the bias power supply 34 is also controlled by the control unit 35.
 以上のほか、プラズマ生成室31にはシリコンを含むガスを該室内へ導入するガス導入装置36及びプラズマ生成室31内から排気するための排気装置37がそれぞれ接続されている。 In addition to the above, a gas introduction device 36 for introducing a gas containing silicon into the chamber and an exhaust device 37 for exhausting the gas from the plasma generation chamber 31 are connected to the plasma generation chamber 31.
 第5図に示すシリコンドット形成装置によると、次のようにしてシリコンドットを形成できる。
 基体設置電極33にシリコン基板等のシリコンドット形成対象基体Sを設置する。そして排気装置37にて室31内から排気して該室内を基体Sへのシリコンドット形成圧に減圧維持しつつガス導入装置36からシリコンを含むガスを導入する一方、制御部35の指示のもとにマグネトロン32をオンする。マグネトロン32で発生したマイクロ波は導波管321を伝搬し、窓323からスラズマ生成室31内へ入り、導入されたガスに作用して、これをプラズマ化する。
According to the silicon dot forming apparatus shown in FIG. 5, silicon dots can be formed as follows.
A silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting electrode 33. A gas containing silicon is introduced from the gas introduction device 36 while the chamber 31 is evacuated from the chamber 31 by the exhaust device 37 and maintained at a reduced pressure to form a silicon dot on the substrate S. And magnetron 32 is turned on. The microwave generated by the magnetron 32 propagates through the waveguide 321, enters the plasma generating chamber 31 through the window 323, acts on the introduced gas, and turns it into plasma.
 また、制御部35の指示のもとに正バイアス電源装置34のスイッチ342をオンオフして基体設置電極33及びそれに設置された基体Sに第1の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、基体S上にシリコンドットのもとになる核を形成し、ひき続き基体Sに第2の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、該核をもとにしてシリコンドットを成長させる。 Further, under the instruction of the control unit 35, the switch 342 of the positive bias power supply 34 is turned on / off to apply the first positive pulse voltage to the substrate installation electrode 33 and the substrate S installed thereon, so that the silicon in the plasma By attracting negative ions that contain silicon to the substrate, nuclei that are the basis of silicon dots are formed on the substrate S, and then a second positive pulse voltage is applied to the substrate S to negatively contain silicon in the plasma. By attracting ions to the substrate, silicon dots are grown based on the nuclei.
 このとき、必ずしもそうする必要はないが本例では、制御部35は、第2図に示すと同様のタイミングでプラズマ生成装置3Aを所定の周期でオンオフさせ、基体設置電極33への正バイアス電圧の印加も所定のタイミングでオンオフさせる。すなわち、制御部35は、プラズマ生成装置3Aにおけるマグネトロン32を所定の周期でオンオフし、プラズマを所定の周期で発生(点灯)、消滅させる。一方、基体設置電極33に第1、第2の各正バイアス電圧を印加させるに際し、スイッチ342を所定の周期でオンオフし、電極33への正バイアス印加を所定の周期でオンオフさせ、電極33に正パルス電圧を印加させる。 At this time, although not necessarily required, in this example, the control unit 35 turns on and off the plasma generating device 3A at a predetermined cycle at the same timing as shown in FIG. Is also turned on and off at a predetermined timing. That is, the control unit 35 turns on and off the magnetron 32 in the plasma generating apparatus 3A at a predetermined cycle, and generates (lights on) and extinguishes plasma at a predetermined cycle. On the other hand, when the first and second positive bias voltages are applied to the base electrode 33, the switch 342 is turned on / off at a predetermined cycle, and the positive bias application to the electrode 33 is turned on / off at a predetermined cycle. A positive pulse voltage is applied.
 電極33への正パルス電圧の印加は、プラズマ生成装置3Aがオフに切り替わってから所定期間Ta経過後から再びプラズマ生成装置3Aがオンに切り替わるまでの期間の間の所定期間Tbになされる。換言すれば、電極33への正パルス電圧の印加は、マグネトロン32がオフされてから所定期間Ta経過後から再びマグネトロン32がオンされるまでの期間の間の所定期間Tbになされる。 The positive pulse voltage is applied to the electrode 33 for a predetermined period Tb between the time when the plasma generating device 3A is turned off and the time after the elapse of the predetermined time period Ta until the plasma generating device 3A is turned on again. In other words, the positive pulse voltage is applied to the electrode 33 during a predetermined period Tb between the time when the magnetron 32 is turned off and the time after the predetermined period Ta has elapsed until the magnetron 32 is turned on again.
 かくしてプラズマ生成室31において負イオン濃度(密度)が高められるタイミングで基体設置電極33及びそれに設置された基体Sに第1、第2の正パルス電圧を印加して負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットのもとになる「核」を形成し、さらに該核をもとにシリコンドットを成長させる。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に形成することができる。
Thus, at the timing when the negative ion concentration (density) is increased in the plasma generation chamber 31, the first and second positive pulse voltages are applied to the base electrode 33 and the base S placed thereon to apply negative ions all at once. The whole is drawn and this operation is repeated to form a “nucleus” that becomes the basis of the silicon dot, and further, the silicon dot is grown based on the nucleus.
Thus, silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
(1-4)第6図に示すシリコンドット形成装置によるシリコンドット形成
 第6図にシリコンドット形成装置の他の例を示す。第6図のシリコンドット形成装置はセシウム利用のスパッタ型負イオン源を利用したものである。第6図の装置は、プラズマ生成室41、室41内の上部に配置された導電性スパッタターゲット42、室41内の中間領域に配置された高周波アンテナ43、室41内の下部に配置された基体設置電極44を含んでいる。
(1-4) Silicon dot formation by the silicon dot forming apparatus shown in FIG. 6 FIG. 6 shows another example of the silicon dot forming apparatus. The silicon dot forming apparatus of FIG. 6 uses a cesium-based sputter negative ion source. The apparatus of FIG. 6 is disposed in the plasma generation chamber 41, the conductive sputtering target 42 disposed in the upper portion of the chamber 41, the high-frequency antenna 43 disposed in the intermediate region in the chamber 41, and the lower portion in the chamber 41. A substrate mounting electrode 44 is included.
 スパッタターゲット42は導電性の支持部材421で支持されている。支持部材421は室41の天井壁を貫通して室外へ延びている。支持部材421は絶縁性部材422で室41から絶縁されている。ターゲット42には負バイアス電源装置423から300V~800V程度の負バイアス電圧を印加できるようにしてある。 The sputter target 42 is supported by a conductive support member 421. The support member 421 extends through the ceiling wall of the chamber 41 to the outside. The support member 421 is insulated from the chamber 41 by an insulating member 422. A negative bias voltage of about 300 V to 800 V can be applied to the target 42 from the negative bias power supply device 423.
 ターゲット42は、予めその表面にセシウム(Cs)層を形成したものでもよいが、本例では、該ターゲット42を室42内に設置したのち、該ターゲットにセシウムを蒸着堆積させる。すなわち、室41外にセシウム堆積装置424が設けられている。装置424は、内部にセシウム(Cs)を収容したオーブン424aと、該オーブンを介してセシウユを加熱蒸発させるヒータ424bと、蒸発したセシウムをターゲット42へ導いて堆積させるダクト424cを含んでおり、該装置424でターゲット42表面にセシウムを堆積させる。 The target 42 may have a cesium (Cs) layer formed on the surface in advance, but in this example, after the target 42 is installed in the chamber 42, cesium is vapor deposited on the target. That is, a cesium deposition device 424 is provided outside the chamber 41. The apparatus 424 includes an oven 424a containing cesium (Cs) therein, a heater 424b for heating and evaporating cesium through the oven, and a duct 424c for guiding and depositing the evaporated cesium to the target 42, The apparatus 424 deposits cesium on the surface of the target 42.
 高周波アンテナ43は、その一端がマッチングボックス450を介して高周波電源装置45に接続されている。電源装置45は高周波電源451と、該電源出力のアンテナへの印加をオンオフするスイッチ452を含んでいる。アンテナ43の他端は接地されている。アンテナ43、マッチングボックス450及び高周波電源装置45等はプラズマ生成装置4Aを構成している。 One end of the high frequency antenna 43 is connected to the high frequency power supply device 45 through the matching box 450. The power supply device 45 includes a high frequency power supply 451 and a switch 452 for turning on / off application of the power supply output to the antenna. The other end of the antenna 43 is grounded. The antenna 43, the matching box 450, the high frequency power supply device 45, and the like constitute a plasma generation device 4A.
 基体設置電極44は導電性の支持部材441で支持されており、支持部材441は室41の底壁を貫通して外部へ延びている。支持部材441は絶縁性部材442で室41から絶縁されている。電極44には支持部材441を介して正バイアス電源装置46が接続されている。電源装置46には電極43に正バイアス電圧を印加するための出力可変の直流電源461と該電源から電極43への正バイアス電圧印加をオンオフするスイッチ462が含まれている。 The substrate installation electrode 44 is supported by a conductive support member 441, and the support member 441 passes through the bottom wall of the chamber 41 and extends to the outside. The support member 441 is insulated from the chamber 41 by an insulating member 442. A positive bias power supply device 46 is connected to the electrode 44 via a support member 441. The power supply device 46 includes an output variable DC power source 461 for applying a positive bias voltage to the electrode 43 and a switch 462 for turning on / off the application of the positive bias voltage from the power source to the electrode 43.
 高周波電源装置45のスイッチ452及びこのスイッチ462のオンオフは後述するように制御部47にて制御される。バイアス電源装置46の直流電源461の出力も制御部47に制御される。 The switch 452 of the high frequency power supply device 45 and on / off of the switch 462 are controlled by the control unit 47 as described later. The output of the DC power supply 461 of the bias power supply device 46 is also controlled by the control unit 47.
 以上のほか、プラズマ生成室41にはシリコンを含むガスを該室内へ導入するガス導入装置48及びプラズマ生成室41内から排気するための排気装置49がそれぞれ接続されている。 In addition to the above, a gas introduction device 48 for introducing a gas containing silicon into the chamber and an exhaust device 49 for exhausting the gas from the plasma generation chamber 41 are connected to the plasma generation chamber 41.
 第6図に示すシリコンドット形成装置によると、次のようにしてシリコンドットを形成できる。
 基体設置電極44にシリコン基板等のシリコンドット形成対象基体Sを設置する。また、セシウム堆積装置424によりスパッタターゲット42にセシウムを堆積させる。そして、このセシウムを堆積させたターゲット42にバイアス電源装置423から負バイアス電圧を印加する一方、排気装置49にて室41内から排気して該室内を基体Sへのシリコンドット形成圧に減圧維持しつつガス導入装置48からシリコンを含むガスを導入し、制御部47の指示のもとに高周波電源装置45のスイッチ452をオンして高周波電源451から高周波アンテナ43へ高周波電力を印加する。高周波アンテナ43に高周波電力が印加されることで、ガスがプラズマ化される。また、セシウムが堆積し、負バイアス電圧が印加されたターゲット42が電子放出体として機能する。
According to the silicon dot forming apparatus shown in FIG. 6, silicon dots can be formed as follows.
A silicon dot formation target substrate S such as a silicon substrate is installed on the substrate installation electrode 44. Further, cesium is deposited on the sputter target 42 by the cesium deposition apparatus 424. Then, a negative bias voltage is applied from the bias power supply device 423 to the target 42 on which this cesium is deposited, while the exhaust device 49 exhausts the chamber 41 from the chamber 41 and keeps the chamber at a reduced pressure to form silicon dots on the substrate S. At the same time, a gas containing silicon is introduced from the gas introduction device 48, and the switch 452 of the high frequency power supply device 45 is turned on under the instruction of the control unit 47 to apply high frequency power from the high frequency power supply 451 to the high frequency antenna 43. When high frequency power is applied to the high frequency antenna 43, the gas is turned into plasma. Further, the target 42 to which cesium is deposited and a negative bias voltage is applied functions as an electron emitter.
 かくして、プラズマに含まれる正イオンは、負バイアスが印加されたターゲット42に引き寄せられる一方、ターゲット42から電子が放出され、該電子がシリコンを含むラジカルや分子、正イオンなどに与えられてそれらが負イオン化する。かくしてシリコンを含む負イオンの密度(濃度)が高くなる。
 そして、正バイアス電源装置46のスイッチ462をオンオフして基体設置電極44及びそれに設置された基体Sに第1の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、基体S上にシリコンドットのもとになる核を形成し、ひき続き電源装置46から基体Sに第2の正パルス電圧を印加して、プラズマ中のシリコンを含む負イオンを基体に引き寄せることで、該核をもとにしてシリコンドットを成長させることができる。
Thus, the positive ions contained in the plasma are attracted to the target 42 to which a negative bias is applied, while electrons are emitted from the target 42, and the electrons are given to radicals, molecules, positive ions, etc. containing silicon, and they are Negative ionization. Thus, the density (concentration) of negative ions containing silicon is increased.
Then, the switch 462 of the positive bias power supply 46 is turned on and off to apply a first positive pulse voltage to the base electrode 44 and the base S placed thereon, and attract negative ions including silicon in the plasma to the base. Then, a nucleus serving as a silicon dot is formed on the substrate S, and then a second positive pulse voltage is applied from the power supply device 46 to the substrate S to attract negative ions including silicon in the plasma to the substrate. Thus, silicon dots can be grown based on the nuclei.
 このとき、必ずしもそうする必要はないが、本例では制御部47は、第2図に示すと同様のタイミングでプラズマ生成装置4Aを所定の周期でオンオフさせ、基体設置電極44への第1、第2の各正バイアス電圧の印加も所定のタイミングでオンオフさせる。すなわち、制御部47は、プラズマ生成装置4Aにおけるスイッチ452を所定の周期でオンオフし、プラズマを所定の周期で発生(点灯)、消滅させる。一方、基体設置電極44に第1、第2の各正バイアス電圧を印加させるに際し、スイッチ462を所定の周期でオンオフし、電極44への正バイアス印加を所定の周期でオンオフさせ、電極44に正パルス電圧を印加させる。 At this time, although not necessarily required, in this example, the control unit 47 turns on and off the plasma generating device 4A at a predetermined cycle at the same timing as shown in FIG. The application of each second positive bias voltage is also turned on / off at a predetermined timing. That is, the control unit 47 turns on / off the switch 452 in the plasma generation apparatus 4A at a predetermined cycle, and generates (lights) and extinguishes plasma at a predetermined cycle. On the other hand, when applying the first and second positive bias voltages to the base electrode 44, the switch 462 is turned on / off at a predetermined cycle, and the positive bias application to the electrode 44 is turned on / off at a predetermined cycle. A positive pulse voltage is applied.
 電極44への正パルス電圧の印加は、プラズマ生成装置4Aがオフに切り替わってから所定期間Ta経過後から再びプラズマ生成装置4Aがオンに切り替わるまでの期間の間の所定期間Tbになされる。換言すれば、電極44への正パルス電圧の印加は、高周波電源装置45のスイッチ452がオフされてから所定期間Ta経過後から再びスイッチ452がオンされるまでの期間の間の所定期間Tbになされる。 The positive pulse voltage is applied to the electrode 44 for a predetermined period Tb between the time when the plasma generating apparatus 4A is turned off and the period after the predetermined period Ta has elapsed until the plasma generating apparatus 4A is turned on again. In other words, the positive pulse voltage is applied to the electrode 44 during a predetermined period Tb between the time when the switch 452 of the high frequency power supply device 45 is turned off and the time after the predetermined period Ta has elapsed until the switch 452 is turned on again. Made.
 かくしてプラズマ生成室41において負イオン濃度(密度)が十分高められるタイミングで基体設置電極44及びそれに設置された基体Sに正パルス電圧を印加して負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットを形成する。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に形成することができる。
Thus, at the timing when the negative ion concentration (density) is sufficiently increased in the plasma generation chamber 41, a positive pulse voltage is applied to the base body setting electrode 44 and the base body S installed thereon to attract negative ions all over the base body S. The operation is repeated to form silicon dots.
Thus, silicon dots having a uniform particle diameter can be formed on the entire surface of the substrate S with a uniform density distribution.
〔2〕前記第2タイプのシリコンドット形成方法及び装置の例(第7図~第11図参照)(2-1)第7図に示すシリコンドット形成装置によるシリコンドット形成
 第7図は第2タイプのシリコンドット形成装置の1例を示している。第7図に示すシリコンドット形成装置は、プラズマ生成室51、室51に連設されたシリコンドット形成室52及び室51の開口部511に設けられた負イオン引出し電極装置53を含んでいる。
[2] Example of Second Type Silicon Dot Forming Method and Apparatus (See FIGS. 7 to 11) (2-1) Silicon Dot Formation by Silicon Dot Forming Apparatus Shown in FIG. An example of a type of silicon dot forming apparatus is shown. The silicon dot forming apparatus shown in FIG. 7 includes a plasma generation chamber 51, a silicon dot forming chamber 52 connected to the chamber 51, and a negative ion extraction electrode device 53 provided in the opening 511 of the chamber 51.
 プラズマ生成室51の天井壁にはECRプラズマ生成装置54が接続されている。ECRプラズマ生成装置54は、チャンバ541、該チャンバ内に設置されたアンテナ542、チャンバ541内にECR条件を満たす磁場を形成するための磁場形成装置543を含んでおり、図示省略のマグネトロンで発生させたマイクロ波を同軸ケーブル544でアンナ542へ伝送することができる。チャンバ541はそれに設けた電子放出口541a及びプラズマ生成室天井壁の開口512を介してプラズマ生成室51に連通している。 An ECR plasma generation device 54 is connected to the ceiling wall of the plasma generation chamber 51. The ECR plasma generator 54 includes a chamber 541, an antenna 542 installed in the chamber, and a magnetic field generator 543 for forming a magnetic field that satisfies the ECR condition in the chamber 541. The ECR plasma generator 54 is generated by a magnetron (not shown). The microwave can be transmitted to the Anna 542 through the coaxial cable 544. The chamber 541 communicates with the plasma generation chamber 51 through an electron emission port 541a provided in the chamber 541 and an opening 512 in the plasma generation chamber ceiling wall.
 チャンバ541にはシリコンを含むガスを該チャンバ541、さらにはプラズマ生成室51に供給するためのガス導入装置55が接続されている。ECRプラズマ生成装置54は、ガス導入装置55からチャンバ541へ導入されるガスにマイクロ波を印加し、磁場形成装置543による磁場のもとにチャンバ541内にECRプラズマを発生させることができる。 The chamber 541 is connected to a gas introduction device 55 for supplying a gas containing silicon to the chamber 541 and further to the plasma generation chamber 51. The ECR plasma generation device 54 can generate microwaves in the chamber 541 under the magnetic field generated by the magnetic field forming device 543 by applying a microwave to the gas introduced from the gas introduction device 55 into the chamber 541.
 プラズマ生成室51の外側にはN極とS極が交互に配置されるように永久磁石が配列されており、これにより多極磁界(カスプ磁場)を形成して効率よくプラズマを閉じ込められるようにしてある。 Permanent magnets are arranged outside the plasma generation chamber 51 so that N poles and S poles are alternately arranged, thereby forming a multipolar magnetic field (cusp magnetic field) to efficiently confine the plasma. It is.
 ECRプラズマ生成装置54とプラズマ生成室51との間にスイッチ561を介して放電用電源56が接続してあり、スイッチ561をオンすると電源56によりプラズマ生成室51に放電のためのバイアス電圧が印加される。
 ECRプラズマ生成装置54、放電用電源56及びスイッチ561等はプラズマ生成室51に目的とする主プラズマを生成するためのプラズマ生成装置5Aを構成している。
A discharge power source 56 is connected between the ECR plasma generator 54 and the plasma generation chamber 51 via a switch 561. When the switch 561 is turned on, a bias voltage for discharge is applied to the plasma generation chamber 51 by the power source 56. Is done.
The ECR plasma generation device 54, the discharge power supply 56, the switch 561, and the like constitute a plasma generation device 5A for generating a target main plasma in the plasma generation chamber 51.
 シリコンドット形成室52にはシリコンドット形成対象基体Sを設置するための平板型の基体設置部57が配置されている。基体設置部57は導電性支持部材571に支持されている。支持部材571は室52の底壁を貫通して室外へ延びている。支持部材571は絶縁性部材572にて室52から絶縁されている。基体設置部57は支持部材571を介して接地されている。基体設置部57は図示省略のヒータを有しており、その上に設置されるシリコンドット形成対象基体Sを加熱することができる。 In the silicon dot forming chamber 52, a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged. The base body setting part 57 is supported by a conductive support member 571. The support member 571 extends through the bottom wall of the chamber 52 to the outside of the chamber. The support member 571 is insulated from the chamber 52 by an insulating member 572. The base body setting part 57 is grounded via a support member 571. The base body setting portion 57 has a heater (not shown), and can heat the silicon dot formation target base body S placed thereon.
 負イオン引出し電極装置53は、基体設置部57に対向している。電極装置53は、本例では、プラズマ生成室51の開口部511に近い加速電極531、その外側の減速電極532及びさらにその外側の接地電極533からなっている。電極531~533のそれぞれは多数の孔を分散形成した多孔板からなっている。 The negative ion extraction electrode device 53 faces the base body setting portion 57. In this example, the electrode device 53 includes an acceleration electrode 531 close to the opening 511 of the plasma generation chamber 51, a deceleration electrode 532 outside thereof, and a ground electrode 533 outside thereof. Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
 加速電極531には抵抗R及びスイッチS1を介して出力可変の加速電源PW1が接続されている。減速電極532にはスイッチS2を介して出力可変の減速電源PW2が接続されている。スイッチS1をオン(閉)すると、加速電極531に正の高電圧が印加される。スイッチS2がオン(閉)されると、減速電極532に負電圧が印加される。 The acceleration electrode 531 is connected to an acceleration power supply PW1 whose output is variable via a resistor R and a switch S1. The deceleration electrode 532 is connected to an output variable deceleration power supply PW2 via a switch S2. When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531. When the switch S <b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
 抵抗R、スイッチS1、加速電源PW1、スイッチS2、減速電源PW2等は、負イオン引出し電極装置53に、プラズマ生成室51から負イオンを引き出すための電圧を印加する負イオン引出し電源装置PWを構成している。 The resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 51 to the negative ion extraction electrode device 53. is doing.
 前記放電用電源56をECRプラズマ生成装置54とプラズマ生成室51とに接続するスイッチ561のオンオフ(開閉)並びに負イオン引出し電源装置PWにおけるスイッチS1及びS2のそれぞれのオンオフ(開閉)は制御部58にて制御される。電源PW1、PW2の出力も制御部58に制御される。該制御の詳細は後述する。 The control unit 58 controls on / off (open / close) of the switch 561 for connecting the discharge power source 56 to the ECR plasma generation device 54 and the plasma generation chamber 51 and on / off (open / close) of the switches S1 and S2 in the negative ion extraction power supply device PW. It is controlled by. The outputs of the power supplies PW1 and PW2 are also controlled by the control unit 58. Details of the control will be described later.
 以上のほか、プラズマ生成室51には排気装置59が接続されており、該排気装置でプラズマ生成室51及びECRプラズマ生成装置54のチャンバ541から排気してそれらをプラズマ生成圧に設定できるとともに、シリコンドット形成室52から排気してそれをシリコンドット形成圧に設定できる。 In addition to the above, an exhaust device 59 is connected to the plasma generation chamber 51, and the exhaust device can exhaust the plasma generation chamber 51 and the chamber 541 of the ECR plasma generation device 54 to set them to the plasma generation pressure. It is possible to exhaust the silicon dot forming chamber 52 and set it to the silicon dot forming pressure.
 第7図に示すシリコンドット形成装置によると、次のようにシリコンドット形成対象基体Sにシリコンドットを形成できる。 According to the silicon dot forming apparatus shown in FIG. 7, silicon dots can be formed on the silicon dot formation target substrate S as follows.
 先ず、シリコンドット形成室52内の基体設置部57にシリコン基板等のシリコンドット形成対象基体Sを設置する。そして排気装置59にてプラズマ生成室51、ECRプラズマ生成装置54のチャンバ541及びシリコンドット形成室52から排気する。該排気操作にて室51及びチャンバ541内圧をプラズマ生成圧に維持するとともに室52内圧をシリコンドット形成圧に維持しつつガス導入装置55からシリコンを含むガスをチャンバ541、ひいてはプラズマ生成室51内へ導入する。ECRプラズマ生成装置54にはECRプラズマを生成させる。 First, a silicon dot formation target substrate S such as a silicon substrate is set in the substrate setting portion 57 in the silicon dot forming chamber 52. Then, the exhaust device 59 exhausts the plasma generation chamber 51, the chamber 541 of the ECR plasma generation device 54, and the silicon dot formation chamber 52. By the exhaust operation, the internal pressure of the chamber 51 and the chamber 541 is maintained at the plasma generation pressure and the internal pressure of the chamber 52 is maintained at the silicon dot formation pressure, and the gas containing silicon is supplied from the gas introduction device 55 to the chamber 541 and thus the plasma generation chamber 51 To introduce. The ECR plasma generator 54 generates ECR plasma.
 さらに、制御部58の指示のもとにスイッチ561をオンして放電用電源56からプラズマ生成室51に放電のためのバイアス電圧を印加する。スイッチ561がオンされ、電源56からプラズマ生成室51にバイアス電圧が印加されることで、ECRプラズマ生成装置54のチャンバ541から電子や負イオンが引き出され、該電子がプラズマ生成室51内へドリフトしてきたガスに衝突して室51内にシリコンを含む負イオンの多い主放電プラズマが生成する。 Further, under the instruction of the control unit 58, the switch 561 is turned on to apply a bias voltage for discharge from the discharge power source 56 to the plasma generation chamber 51. When the switch 561 is turned on and a bias voltage is applied from the power source 56 to the plasma generation chamber 51, electrons and negative ions are extracted from the chamber 541 of the ECR plasma generation device 54, and the electrons drift into the plasma generation chamber 51. Colliding with the generated gas, main discharge plasma containing silicon and containing many negative ions is generated in the chamber 51.
 また、制御部58の指示のもとに負イオン引出し電源装置PWのスイッチS1、S2をオンして負イオン引出し電極装置53に負イオン引き出しのための電圧を印加する。さらに言えば、負イオン引き出しのために電極装置53の加速電極531に電源PW1から正極性の加速電圧を、減速電極532に電源PW2から負極性の減速電圧を印加する。 Further, under the instruction of the control unit 58, the switches S1 and S2 of the negative ion extraction power supply device PW are turned on to apply a voltage for extracting negative ions to the negative ion extraction electrode device 53. More specifically, a positive acceleration voltage from the power source PW1 is applied to the acceleration electrode 531 of the electrode device 53 and a negative deceleration voltage from the power source PW2 is applied to the deceleration electrode 532 for negative ion extraction.
 該負イオン引出し電圧の印加は、第1のイオン引出し電圧の印加とその後の第2のイオン引出し電圧の印加とからなる。
 第1のイオン引出し電圧は、室51内の主放電プラズマ中のシリコンを含む負イオンをシリコンドット形成室52へ引出し、基体設置部57に設置されたシリコンドット形成対象基体Sに第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための電圧である。
 第2のイオン引出し電圧は、室51内のプラズマ中のシリコンを含む負イオンを室52へ引出し、シリコンドット形成対象基体Sに第2のイオンエネルギで照射して、基体Sに前記核をもとにシリコンドットを成長させるための電圧である。
The application of the negative ion extraction voltage includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
The first ion extraction voltage extracts negative ions including silicon in the main discharge plasma in the chamber 51 to the silicon dot formation chamber 52 and applies the first ions to the silicon dot formation target substrate S installed in the substrate installation portion 57. It is a voltage for irradiating with energy to form a nucleus that causes silicon dot growth.
The second ion extraction voltage is such that negative ions including silicon in the plasma in the chamber 51 are extracted to the chamber 52, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus. And a voltage for growing silicon dots.
 室51内に生成したプラズマ中のシリコンを含む負イオンは、上記のように負イオン引出し電圧が印加された電極装置53により、該装置の電極の多数の孔からシリコンドット形成室52へ引き出され、イオンビームとなって基体Sに照射される。このイオンビーム照射により粒径の揃ったシリコンドットが均一な密度分布で基体Sに全面的に形成される。 The negative ions containing silicon in the plasma generated in the chamber 51 are extracted from the numerous holes of the electrodes of the device to the silicon dot formation chamber 52 by the electrode device 53 to which the negative ion extraction voltage is applied as described above. The substrate S is irradiated with an ion beam. By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
 シリコンドットを形成するにあたり、スイッチ561及びスイッチS1、S2を全て閉じておいて連続的に負イオンを引き出して基体Sに照射することでシリコンドットを形成してもよいが、本例では、次のようにしてプラズマ生成室51内のシリコンを含む負イオンの濃度を高め、該負イオン濃度が高められるタイミングで負イオンを引き出して基体Sに照射させるようにしている。 In forming the silicon dots, the switches 561 and the switches S1 and S2 may be closed, and negative silicon ions may be continuously drawn to irradiate the substrate S. In this example, the silicon dots are formed as follows. In this way, the concentration of negative ions including silicon in the plasma generation chamber 51 is increased, and negative ions are extracted and irradiated onto the substrate S at a timing at which the negative ion concentration is increased.
 すなわち、制御部58はプラズマ生成装置5Aを所定の周期でオンオフさせる。さらに説明すると、制御部58は、スイッチ561をオン(閉)してプラズマ生成室51に放電用電源56から放電用バイアス電圧を印加させるに際し、第8図の上段に示すようにスイッチ561を所定の周期でオンオフし、室51内にプラズマを所定の周期で発生(点灯)、消滅させる。一方、負イオン引出し電極装置53に第1、第2の各負イオン引出し電圧を印加させるに際し、第8図の下段に示すようにスイッチS1、S2を所定の周期でオンオフし、第1、第2の各負イオン引出し電圧の印加を所定の周期でオンオフさせる。 That is, the control unit 58 turns on and off the plasma generating apparatus 5A at a predetermined cycle. More specifically, when the control unit 58 turns on (closes) the switch 561 and applies the discharge bias voltage from the discharge power supply 56 to the plasma generation chamber 51, the control unit 58 sets the switch 561 as shown in the upper part of FIG. The plasma is generated (lit) and extinguished in the chamber 51 at a predetermined cycle. On the other hand, when the first and second negative ion extraction voltages are applied to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle as shown in the lower part of FIG. The application of each negative ion extraction voltage of 2 is turned on and off at a predetermined cycle.
 電極装置53への負イオン引出し電圧の印加は、プラズマ生成装置5Aがオフ(スイッチ561がオフ)に切り替わってから所定期間Ta’経過後から再びプラズマ生成装置5Aがオン(スイッチ561がオン)に切り替わるまでの期間の間の所定期間Tb’になされる。
 なお、第8図において「T’」は装置5Aのオフ期間、従ってプラズマ消灯期間である。
The negative ion extraction voltage is applied to the electrode device 53 when the plasma generating device 5A is turned on (the switch 561 is turned on) again after a predetermined period Ta ′ has elapsed after the plasma generating device 5A is turned off (the switch 561 is turned off). The predetermined period Tb ′ is set during the period until switching.
In FIG. 8, “T ′” is the off period of the apparatus 5A, and hence the plasma extinguishing period.
 このように、プラズマ生成室51におけるプラズマ点灯をパルス的に行い、プラズマ消灯直後に負イオン引出し電圧を印加することによって負イオン濃度を高めることができる。さらに説明すると、スイッチ561をオンして室51にプラズマを生成(点灯)させ、次いでスイッチ561をオフしてプラズマを消灯すると、プラズマ中の電子の温度は急速に低下し、プラズマ中では低エネルギー電子が支配的となる。この低エネルギー電子と分子が解離性付着を起こすことによって負イオンが生成される確率が急激に高くなる。このような解離性付着によって、負イオン濃度(密度)はプラズマ生成装置5Aのオフ(スイッチ561のオフ)直後から急激に上昇する。さらに時間が経過すると、電子は軽いために、急速に拡散し、消滅して密度が低下する。一方で、正及び負のイオンは質量が大きいため、殆ど消滅しない。このため電子密度が極端に低くなり、正負イオンでプラズマが維持される特異な(電子が殆ど無い)プラズマが形成される。 Thus, the negative ion concentration can be increased by performing plasma lighting in the plasma generation chamber 51 in a pulsed manner and applying a negative ion extraction voltage immediately after the plasma is extinguished. More specifically, when the switch 561 is turned on to generate (light) plasma in the chamber 51, and then the switch 561 is turned off to turn off the plasma, the temperature of electrons in the plasma rapidly decreases, and low energy is generated in the plasma. The electron becomes dominant. The probability that negative ions are generated due to the dissociative adhesion between the low-energy electrons and the molecules increases rapidly. Due to such dissociative adhesion, the negative ion concentration (density) rapidly increases immediately after the plasma generator 5A is turned off (the switch 561 is turned off). As the time further elapses, the electrons are light, so that they diffuse rapidly and disappear and the density decreases. On the other hand, since positive and negative ions have a large mass, they hardly disappear. For this reason, the electron density becomes extremely low, and a peculiar plasma (having almost no electrons) in which the plasma is maintained by positive and negative ions is formed.
 そこで、プラズマ消灯から電極装置53への負イオン引出し電圧印加開始までの期間として、このように負イオン濃度が十分高くなる期間Ta’を設定し、期間Ta’が経過すると電極装置53へ負イオン引出し電圧を期間Tb’〔<(T’-Ta’)〕の間に印加し、負イオン濃度が高められるタイミングで負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットを形成する。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に、一層確実に形成することができる。
Therefore, a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53. When the period Ta ′ elapses, negative ions are supplied to the electrode device 53. An extraction voltage is applied during the period Tb ′ [<(T′−Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots. Form.
Thus, silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
 このようにシリコンドットを形成するためのプラズマ生成室51内のプラズマ生成圧としては、プラズマ生成のために用いるシリコンを含むガスの種類等にもよるが、概ね0.05Pa~50Pa程度を採用することができる。シリコンドット形成室52内の圧力はプラズマ生成室51内圧をそのように設定することに伴って設定される圧力でよい。
 室51内の圧力が0.05Paより低くなってくると、ドットが成長し難くなることがある、或いはドット成長が遅くなることがある。50Paを超えてくると、結晶質のシリコンドットが得られなくなってくることがある。
As described above, the plasma generation pressure in the plasma generation chamber 51 for forming silicon dots is approximately 0.05 Pa to 50 Pa, although it depends on the type of gas containing silicon used for plasma generation. be able to. The pressure in the silicon dot forming chamber 52 may be a pressure set in accordance with setting the internal pressure of the plasma generation chamber 51 as such.
When the pressure in the chamber 51 becomes lower than 0.05 Pa, it may be difficult for the dots to grow or the dot growth may be slow. If it exceeds 50 Pa, crystalline silicon dots may not be obtained.
 放電用電源56によりプラズマ生成室51に印加する正バイアス電圧は、用いるシリコンを含むガスの種類等にもよるが、100V~1kV程度を例示できる。 The positive bias voltage applied to the plasma generation chamber 51 by the discharge power source 56 may be about 100 V to 1 kV, although it depends on the type of gas containing silicon used.
 電極装置53の加速電極531に印加する加速電圧及び減速電極532に印加する減速電圧は基体Sへ向けてのイオン照射の目的にそって決められる。すなわち、シリコンドットのもとになる核を形成するためのイオン引出し照射のための電圧は、該イオン照射が核形成のための第1のイオンエネルギ(例えば500eV以上5keV以下)のもとに行われるように制御部58により決定される。該核をもとにシリコンドットを成長させるためのイオン引出し照射のための電圧は、該イオン照射がシリコンドット成長のための第2のイオンエネルギ〔例えば、第1のイオンエネルギが500eV以上5keV以下である場合の第2イオンエネルギ50eV以上2keV以下(より好ましくは500eV以下)〕のもとに行われるように制御部58により決定される。そのような電圧は予め実験等により求めておいて制御部58に設定しておくことができる。 The acceleration voltage applied to the acceleration electrode 531 and the deceleration voltage applied to the deceleration electrode 532 of the electrode device 53 are determined according to the purpose of ion irradiation toward the substrate S. That is, the voltage for ion extraction irradiation for forming nuclei that form the basis of silicon dots is applied under the first ion energy (for example, 500 eV or more and 5 keV or less) for nucleation. Is determined by the controller 58. The voltage for ion extraction irradiation for growing silicon dots based on the nucleus is the second ion energy for the ion irradiation to grow silicon dots [for example, the first ion energy is 500 eV or more and 5 keV or less. The second ion energy is 50 eV or more and 2 keV or less (more preferably 500 eV or less)]. Such a voltage can be obtained in advance by experiments or the like and set in the control unit 58.
 また、周期的にプラズマを点灯消灯させるときの周期としては、シリコンを含む負イオンの生成効率を良くする観点から、例えば、概ね周波数にして100Hz~1kHz程度相当の周期を挙げることができる。
 具体的には、プラズマ点灯期間Tc’は、10μsec~500μsec程度、プラズマ消灯期間T’は500μsec~10msec程度を例示でき、
 プラズマ消灯から正パルス電圧印加開始までの期間Ta’としては50μsec~200μsec程度を、正パルス電圧印加期間Tb’は5μsec~100μsec程度を例示できる。
In addition, as the period when the plasma is turned on and off periodically, from the viewpoint of improving the generation efficiency of negative ions including silicon, for example, a period substantially corresponding to about 100 Hz to 1 kHz can be given as a frequency.
Specifically, the plasma lighting period Tc ′ can be exemplified as about 10 μsec to 500 μsec, and the plasma extinguishing period T ′ can be exemplified as about 500 μsec to 10 msec.
The period Ta ′ from plasma extinguishing to the start of positive pulse voltage application can be about 50 μsec to 200 μsec, and the positive pulse voltage application period Tb ′ can be about 5 μsec to 100 μsec.
 いま説明した、プラズマ生成圧、プラズマ生成室へ印加する正バイアス電圧の大きさ、負イオン引出し電極装置に印加する電圧の大きさ、期間Tc’、T’、Ta’、Tb’は、後述する本発明に係る第2のシリコンドット形成方法及び装置の他の実施形態についても適用可能である。 The plasma generation pressure, the magnitude of the positive bias voltage applied to the plasma generation chamber, the magnitude of the voltage applied to the negative ion extraction electrode device, and the periods Tc ′, T ′, Ta ′, and Tb ′ will be described later. The present invention is also applicable to other embodiments of the second silicon dot forming method and apparatus according to the present invention.
 以上説明したプラズマ生成装置5Aは、ECRプラズマ中の電子を利用するものであったが、プラズマ生成装置はそれに限定されるものではなく、それ以外に高周波プラズマ、直流放電プラズマ等を生成するものでもよい。いずれのプラズマ生成装置を採用した場合も、プラズマ生成装置を周期的にオンオフし、オフになった直後の負イオン増加時にタイミングを合わせて負イオン引出し電極装置に負イオン引出し電圧を印加する。 The plasma generation apparatus 5A described above uses electrons in the ECR plasma. However, the plasma generation apparatus is not limited thereto, and other than that, it may generate high-frequency plasma, DC discharge plasma, or the like. Good. Regardless of which plasma generation apparatus is employed, the plasma generation apparatus is periodically turned on and off, and a negative ion extraction voltage is applied to the negative ion extraction electrode apparatus in time with the increase of negative ions immediately after being turned off.
(2-2)第9図に示すシリコンドット形成装置によるシリコンドット形成
 第9図に本発明に係る第2のシリコンドット形成装置の他の例を示す。第9図のシリコンドット形成装置は、プラズマ生成室61、室61に連設されたシリコンドット形成室62及び室61の開口部613に設けられた負イオン引出し電極装置53を含んでいる。
(2-2) Silicon Dot Formation by Silicon Dot Forming Apparatus Shown in FIG. 9 FIG. 9 shows another example of the second silicon dot forming apparatus according to the present invention. The silicon dot forming apparatus of FIG. 9 includes a plasma generation chamber 61, a silicon dot forming chamber 62 connected to the chamber 61, and a negative ion extraction electrode device 53 provided in an opening 613 of the chamber 61.
 プラズマ生成室61の上部は頭截錐体状に形成されており、その頂部にマグネトロン63が接続されている。マグネトロン63は導波管631及び誘電体材料からなるマイクロ波透過窓632を介して室61に接続されている。また、室61の上部の外側にはECR条件を満たす磁場を形成する磁場形成装置633が設けられている。 The upper part of the plasma generation chamber 61 is formed in a truncated cone shape, and a magnetron 63 is connected to the apex thereof. The magnetron 63 is connected to the chamber 61 through a waveguide 631 and a microwave transmission window 632 made of a dielectric material. A magnetic field forming device 633 that forms a magnetic field that satisfies the ECR condition is provided outside the upper portion of the chamber 61.
 プラズマ生成室61内の中間部には高エネルギー電子捕捉用磁場を形成するための導体棒671が設けられている。導体棒671は所定間隔をおいて複数本平行に配置されており、それら棒671より上側は第1プラズマ室611とされ、棒671より下側は第2プラズマ室612とされている。 A conductor rod 671 for forming a magnetic field for capturing high-energy electrons is provided in the middle part of the plasma generation chamber 61. A plurality of conductor rods 671 are arranged in parallel at a predetermined interval. The upper side of the rods 671 is a first plasma chamber 611 and the lower side of the rod 671 is a second plasma chamber 612.
 プラズマ生成室61の第2プラズマ室612の外側にはN極とS極が交互に配置されるように永久磁石が配列されており、これにより多極磁界(カスプ磁場)を形成して効率よくプラズマを閉じ込められるようにしてある。
 マグネトロン63、導波管631、誘電体窓632及び磁場形成装置633等はプラズマ生成装置6Aを構成している。
Permanent magnets are arranged outside the second plasma chamber 612 of the plasma generation chamber 61 so that N poles and S poles are alternately arranged, thereby forming a multipolar magnetic field (cusp magnetic field) efficiently. The plasma is confined.
The magnetron 63, the waveguide 631, the dielectric window 632, the magnetic field forming device 633, and the like constitute a plasma generating device 6A.
 シリコンドット形成室62にはシリコンドット形成対象基体Sを設置するための平板型の基体設置部57が配置されている。基体設置部57は導電性支持部材571に支持されている。支持部材571は室62の底壁を貫通して室外へ延びている。支持部材571は絶縁性部材572にて室62から絶縁されている。基体設置部57は支持部材571を介して接地されている。                  In the silicon dot forming chamber 62, a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged. The base body setting part 57 is supported by a conductive support member 571. The support member 571 extends through the bottom wall of the chamber 62 to the outside of the chamber. The support member 571 is insulated from the chamber 62 by an insulating member 572. The base body setting part 57 is grounded via a support member 571. S
 負イオン引出し電極装置53は基体設置部57に対向している。電極装置53は、第7図に示す電極装置53と同構造のものであり、加速電極531、減速電極532及び接地電極533からなっている。電極531~533のそれぞれは多数の孔を分散形成した多孔板からなっている。 The negative ion extraction electrode device 53 faces the base body setting portion 57. The electrode device 53 has the same structure as the electrode device 53 shown in FIG. 7, and includes an acceleration electrode 531, a deceleration electrode 532, and a ground electrode 533. Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
 加速電極531には抵抗R及びスイッチS1を介して出力可変の加速電源PW1、減速電極532にはスイッチS2を介して出力可変の減速電源PW2が接続されいる。スイッチS1をオン(閉)すると、加速電極531に正の高電圧が印加される。スイッチS2がオン(閉)されると、減速電極532に負電圧が印加される。 The accelerating electrode 531 is connected to a variable power accelerating power source PW1 via a resistor R and a switch S1, and the decelerating electrode 532 is connected to a variable power deciding power source PW2 via a switch S2. When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531. When the switch S <b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
 抵抗R、スイッチS1、加速電源PW1、スイッチS2、減速電源PW2等は電極装置53に、プラズマ生成室61から負イオンを引き出すための電圧を印加する負イオン引出し電源装置PWを構成している。 The resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 61 to the electrode device 53.
 前記マグネトロン63のオンオフ並びに電源装置PWにおけるスイッチS1及びS2のそれぞれのオンオフは制御部64にて制御される。電源PW1、PW2の出力も制御部64に制御される。該制御の詳細は後述する。 The on / off of the magnetron 63 and the on / off of the switches S1 and S2 in the power supply device PW are controlled by the control unit 64. The outputs of the power supplies PW1 and PW2 are also controlled by the control unit 64. Details of the control will be described later.
 以上のほか、プラズマ生成室61にはシリコンを含むガスを該室内へ導入するためのガス導入装置65が接続されているとともに排気装置66が接続されている。排気装置66でプラズマ生成室61から排気してそれらをプラズマ生成圧に設定できるとともに、シリコンドット形成室62から排気してそれをシリコンドット形成圧に設定できる。 In addition to the above, the plasma generation chamber 61 is connected to a gas introduction device 65 for introducing a gas containing silicon into the chamber and to an exhaust device 66. They can be exhausted from the plasma generation chamber 61 by the exhaust device 66 and set to the plasma generation pressure, and exhausted from the silicon dot formation chamber 62 and set to the silicon dot formation pressure.
 また、前記の複数本の導体棒671には電源672から電流を流すことで各導体棒671の周囲に磁場Bを形成させることができるようにしてある。導体棒671及び電源672等は電子捕捉磁場を形成するための磁場形成装置67を構成している。 In addition, a magnetic field B can be formed around each conductor rod 671 by passing a current from the power source 672 to the plurality of conductor rods 671. The conductor rod 671, the power source 672, and the like constitute a magnetic field forming device 67 for forming an electron trapping magnetic field.
 第9図に示すシリコンドット形成装置によると、次のようにしてシリコンドットを形成できる。
 シリコンドット形成装置62における基体設置部57にシリコン基板等のシリコンドット形成対象基体Sを設置する。そして排気装置66にて室61内から排気して該室内をプラズマ生成圧に維持するとともにシリコンドット形成室62内をシリコンドット形成圧に維持しつつガス導入装置65からシリコンを含むガスをプラズマ生成室61内へ導入する。
According to the silicon dot forming apparatus shown in FIG. 9, silicon dots can be formed as follows.
A silicon dot formation target substrate S such as a silicon substrate is set on the substrate setting portion 57 in the silicon dot forming apparatus 62. A gas containing silicon is generated from the gas introduction device 65 while the chamber 61 is evacuated from the chamber 61 by the evacuation device 66 and the chamber is maintained at the plasma generation pressure and the silicon dot formation chamber 62 is maintained at the silicon dot formation pressure. It introduces into the chamber 61.
 さらに、制御部64の指示のもとにマグネトロン63をオンして第1プラズマ室611にECRプラズマを生成させる。また、磁場形成装置67の電源672から各導体棒671に同じ向きの電流を流し、数ガウス~数十ガウス程度の弱い磁場を形成させ、さらに制御部64の指示のもとに負イオン引出し電源装置PWのスイッチS1、S2をオンして負イオン引出し電極装置53に負イオン引き出しのための電圧を印加する。さらに言えば、負イオン引き出しのために電極装置53の加速電極531に電源PW1から正極性の加速電圧を、減速電極532に電源PW2から負極性の減速電圧を印加する。 Further, the magnetron 63 is turned on under the instruction of the control unit 64 to generate ECR plasma in the first plasma chamber 611. Further, a current in the same direction is supplied from the power source 672 of the magnetic field forming device 67 to each conductor rod 671 to form a weak magnetic field of several gauss to several tens of gauss, and further a negative ion extraction power source under the instruction of the control unit 64 The switches S1 and S2 of the device PW are turned on to apply a voltage for extracting negative ions to the negative ion extracting electrode device 53. More specifically, a positive acceleration voltage from the power source PW1 is applied to the acceleration electrode 531 of the electrode device 53 and a negative deceleration voltage from the power source PW2 is applied to the deceleration electrode 532 for negative ion extraction.
 第1プラズマ室611で形成されたプラズマは導体棒671の間から第2プラズマ室672へ到来してくるが、このとき、第1プラズマ室611で発生したプラズマ中の高いエネルギーの電子は磁場形成装置67により形成される磁場の障壁に遮られ、第2プラズマ室612への通り抜けが抑制される。低エネルギー電子は該磁場を通り抜けて第2プラズマ室612へ移動することができる。このように磁場はエネルギーフィルタとして作用する。
 プラズマ生成に用いるシリコンを含むガスの種類等にもよるが、磁場形成装置67を通り抜けて第2プラズマ室612へ到来して来る低エネルギー電子として、概ね30eV以下程度のものを例示できる。
The plasma formed in the first plasma chamber 611 comes to the second plasma chamber 672 from between the conductor rods 671. At this time, high-energy electrons in the plasma generated in the first plasma chamber 611 form a magnetic field. The passage through the second plasma chamber 612 is suppressed by the magnetic field barrier formed by the device 67. Low energy electrons can move through the magnetic field to the second plasma chamber 612. Thus, the magnetic field acts as an energy filter.
Although depending on the type of gas containing silicon used for plasma generation, examples of the low-energy electrons that pass through the magnetic field forming device 67 and arrive at the second plasma chamber 612 are approximately 30 eV or less.
 かくして、第2プラズマ室612におけるプラズマ中には、低エネルギーの電子が多く存在する。低エネルギー電子は中性分子、原子との衝突結合の断面積が大きい。低エネルギー電子は中性ラジカルに結びついてこれをSiH- 、SiH- 等に負イオン化する。そのようにして低エネルギーの電子が少なくなると第1プラズマ室611から第2プラズマ室612へ低エネルギー電子が入ってくる。かくして第2プラズマ室612においては負イオン濃度(密度)が高められる。 Thus, there are many low energy electrons in the plasma in the second plasma chamber 612. Low energy electrons have a large cross-sectional area of collisional bonds with neutral molecules and atoms. Low energy electrons are linked to neutral radicals and negatively ionized to SiH 3 −, SiH 2 −, and the like. When the number of low energy electrons decreases in such a manner, low energy electrons enter the second plasma chamber 612 from the first plasma chamber 611. Thus, in the second plasma chamber 612, the negative ion concentration (density) is increased.
 室61内に生成したプラズマ中のシリコンを含む負イオンは、上記のように負イオン引出し電圧が印加された電極装置53により、該装置の電極の多数の孔からシリコンドット形成室62へ引き出され、イオンビームとなって基体Sに照射される。このイオンビーム照射により粒径の揃ったシリコンドットが均一な密度分布で基体Sに全面的に形成される。 Negative ions containing silicon in the plasma generated in the chamber 61 are drawn out from the numerous holes of the electrodes of the device to the silicon dot forming chamber 62 by the electrode device 53 to which a negative ion extraction voltage is applied as described above. The substrate S is irradiated with an ion beam. By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
 さらに説明すると、該負イオン引出し電圧の印加は、第1のイオン引出し電圧の印加とその後の第2のイオン引出し電圧の印加とからなる。
 第1のイオン引出し電圧は、第1プラズマ室611内のプラズマ中のシリコンを含む負イオンをシリコンドット形成室62へ引出し、基体設置部57に設置されたシリコンドット形成対象基体Sに第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための電圧である。
 第2のイオン引出し電圧は、室61内のプラズマ中のシリコンを含む負イオンを室62へ引出し、シリコンドット形成対象基体Sに第2のイオンエネルギで照射して、基体Sに前記核をもとにシリコンドットを成長させるための電圧である。
 そのような電圧は予め実験等により求めておいて制御部58に設定しておくことができる。
More specifically, the application of the negative ion extraction voltage includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
The first ion extraction voltage extracts negative ions containing silicon in the plasma in the first plasma chamber 611 to the silicon dot formation chamber 62, and the first ion extraction voltage is applied to the silicon dot formation target substrate S installed in the substrate installation unit 57. This is a voltage for forming nuclei that are irradiated with ion energy and are the basis of silicon dot growth.
In the second ion extraction voltage, negative ions including silicon in the plasma in the chamber 61 are extracted to the chamber 62, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus. And a voltage for growing silicon dots.
Such a voltage can be obtained in advance by experiments or the like and set in the control unit 58.
 マグネトロン63を運転し続けるとともにスイッチS1、S2を全て閉じておいて連続的に負イオンを引き出して基体Sに照射することでシリコンドットを形成してもよいが、本例では、プラズマ生成室61内のシリコンを含む負イオンの濃度を高め、該負イオン濃度が高められるタイミングで負イオンを引き出して基体Sに照射させるようにしている。 While the magnetron 63 is continuously operated and all the switches S1 and S2 are closed, silicon ions may be formed by continuously extracting negative ions and irradiating the substrate S, but in this example, the plasma generation chamber 61 is formed. The concentration of negative ions including silicon inside is increased, and negative ions are extracted and irradiated onto the substrate S at a timing at which the negative ion concentration is increased.
 すなわち、前記制御部64はプラズマ生成装置6Aを所定の周期でオンオフさせる。さらに説明すると、制御部64は、マグネトロン63をオンして第1プラズマ室611にECRプラズマを生成させるに際し、マグネトロン63を所定の周期でオンオフして第8図の上段に示すと同様に室61内にプラズマを所定の周期で発生(点灯)、消滅させる。一方、負イオン引出し電極装置53に負イオン引出し電圧を印加させるに際し、第8図の下段に示すと同様にスイッチS1、S2を所定の周期でオンオフし、負イオン引出し電圧の印加を所定の周期でオンオフさせる。 That is, the control unit 64 turns the plasma generator 6A on and off at a predetermined cycle. More specifically, when the controller 64 turns on the magnetron 63 and causes the first plasma chamber 611 to generate ECR plasma, the controller 61 turns on and off the magnetron 63 at a predetermined cycle, as shown in the upper part of FIG. Plasma is generated (lit) and extinguished in a predetermined cycle. On the other hand, when a negative ion extraction voltage is applied to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle as shown in the lower part of FIG. Turn it on and off.
 電極装置53への負イオン引出し電圧の印加は、プラズマ生成装置6Aがオフに切り替わってから所定期間Ta’経過後から再びプラズマ生成装置6Aがオンに切り替わるまでの期間の間の所定期間Tb’になされる。
 このように、プラズマ生成室61におけるプラズマ点灯をパルス的に行い、プラズマ消灯直後に負イオン引出し電圧を印加することによって負イオン濃度を高めることができる。
The negative ion extraction voltage is applied to the electrode device 53 during a predetermined period Tb ′ between the time when the plasma generating apparatus 6A is turned off and the time after the predetermined period Ta ′ elapses until the plasma generating apparatus 6A is turned on again. Made.
Thus, the plasma ion generation in the plasma generation chamber 61 is performed in a pulsed manner, and the negative ion concentration can be increased by applying the negative ion extraction voltage immediately after the plasma is extinguished.
 そこで、プラズマ消灯から電極装置53への負イオン引出し電圧印加開始までの期間として、このように負イオン濃度が十分高くなる期間Ta’を設定し、期間Ta’が経過すると電極装置53へ負イオン引出し電圧を期間Tb’〔<(T’-Ta’)〕の間に印加し、負イオン濃度が高められるタイミングで負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットを形成する。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に、一層確実に形成することができる。
Therefore, a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53. When the period Ta ′ elapses, negative ions are supplied to the electrode device 53. An extraction voltage is applied during the period Tb ′ [<(T′−Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots. Form.
Thus, silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
 以上説明したシリコンドット形成では、シリコンを含むガスの導入を第9図に示すように第1プラズマ室611に対し行ったが、第2プラズマ室612に導入してもよいし、第1、第2のプラズマ室の双方に導入してもよい。 In the silicon dot formation described above, the gas containing silicon is introduced into the first plasma chamber 611 as shown in FIG. 9, but it may be introduced into the second plasma chamber 612, or the first and second It may be introduced into both of the two plasma chambers.
 また、プラズマ生成装置6AはECRプラズマを生成するものであったが、例えば、第3図に示すようにフィラメントの加熱により放出される熱電子を利用してプラズマを生成するものや、高周波プラズマを生成するもの等であってもよい。 The plasma generator 6A generates ECR plasma. For example, as shown in FIG. 3, the plasma generator 6A generates plasma using thermionic electrons emitted by heating the filament, or high-frequency plasma. It may be generated.
 第9図に示すシリコンドット形成装置及び方法では、電子捕捉磁場は導体棒671に電流を流すことで形成したが、第10図に示すように、導体棒671に代えてプラズマ生成室61の中間部の外側に、前記カスプ磁場を作る磁石とは別に、磁石(例えば図示のように永久磁石)mg1~mg4を設け、異極が対向する磁石mg1とmg2、磁石mg3とmg4により第1、第2のプラズマ室の境界領域に電子捕捉磁場Bを形成してもよい。 In the silicon dot forming apparatus and method shown in FIG. 9, the electron trapping magnetic field is formed by passing a current through the conductor rod 671. However, as shown in FIG. Apart from the magnet that creates the cusp magnetic field, magnets (for example, permanent magnets as shown) mg1 to mg4 are provided outside the unit, and the first and second magnets mg1 and mg2 and opposite magnets mg3 and mg4 face each other. The electron trapping magnetic field B may be formed in the boundary region between the two plasma chambers.
(2-3)第11図に示すシリコンドット形成装置によるシリコンドット形成
 第11図に第2タイプのシリコンドット形成装置の他の例を示す。第11図のシリコンドット形成装置はセシウム利用のスパッタ型負イオン源を利用したものである。第11図の装置は、プラズマ生成室71、室71に連設されたシリコンドット形成室72及び室71の開口部711に設けられた負イオン引出し電極装置53を含んでいる。
(2-3) Silicon dot formation by the silicon dot forming apparatus shown in FIG. 11 FIG. 11 shows another example of the second type silicon dot forming apparatus. The silicon dot forming apparatus of FIG. 11 uses a cesium-based sputtering negative ion source. The apparatus of FIG. 11 includes a plasma generation chamber 71, a silicon dot formation chamber 72 connected to the chamber 71, and a negative ion extraction electrode device 53 provided in an opening 711 of the chamber 71.
 プラズマ生成室71内の上部にはスパッタターゲット73が設けられており、中間部に高周波アンテナ74が配置されている。スパッタターゲット73は導電性の支持部材731で支持されている。支持部材731は室71の天井壁を貫通して室外へ延びている。支持部材731は絶縁性部材732で室71から絶縁されている。ターゲット73には負バイアス電源装置733から300V~800V程度の負バイアス電圧を印加できるようにしてある。 A sputter target 73 is provided in the upper part of the plasma generation chamber 71, and a high-frequency antenna 74 is disposed in the middle. The sputter target 73 is supported by a conductive support member 731. The support member 731 extends through the ceiling wall of the chamber 71 to the outside. The support member 731 is insulated from the chamber 71 by an insulating member 732. A negative bias voltage of about 300 V to 800 V can be applied to the target 73 from the negative bias power supply device 733.
 ターゲット73は、予めその表面にセシウム(Cs)層を形成したものでもよいが、本例では、該ターゲット73を室71内に設置したのち、該ターゲットにセシウムを蒸着堆積させる。すなわち、室71外にセシウム堆積装置424が設けられている。装置424は、第6図に示すものと同様のものであり、内部にセシウム(Cs)を収容したオーブン424aと、該オーブンを介してセシウユを加熱蒸発させるヒータ424bと、蒸発したセシウムをターゲット73へ導いて堆積させるダクト424cを含んでおり、該装置424でターゲット73表面にセシウムを堆積させる。 The target 73 may have a cesium (Cs) layer formed on the surface in advance. In this example, after the target 73 is installed in the chamber 71, cesium is vapor deposited on the target. That is, a cesium deposition apparatus 424 is provided outside the chamber 71. The apparatus 424 is the same as that shown in FIG. 6, and an oven 424a containing cesium (Cs) therein, a heater 424b for heating and evaporating cesium through the oven, and a target 73 for evaporating cesium. A duct 424c is led to be deposited and deposited on the surface of the target 73 by the apparatus 424.
 高周波アンテナ74は、その一端がマッチングボックス750を介して高周波電源装置75に接続されている。電源装置75は高周波電源751と、該電源出力のアンテナへの印加をオンオフするスイッチ752を含んでいる。アンテナ74の他端は接地されている。アンテナ74、マッチングボックス750及び高周波電源装置75等はプラズマ生成装置7Aを構成している。 One end of the high frequency antenna 74 is connected to the high frequency power supply device 75 via the matching box 750. The power supply device 75 includes a high frequency power supply 751 and a switch 752 for turning on / off application of the power supply output to the antenna. The other end of the antenna 74 is grounded. The antenna 74, the matching box 750, the high frequency power supply device 75, and the like constitute a plasma generation device 7A.
 シリコンドット形成室72にはシリコンドット形成対象基体Sを設置するための平板型の基体設置部57が配置されている。基体設置部57は第7図等に示す基体設置部57と同じものである。基体設置部57に関し、第7図等に示す基体設置部における部品、部分等と同じ部品、部分等には第7図等と同じ参照符号を付してある。 In the silicon dot formation chamber 72, a flat plate-type substrate installation portion 57 for installing the silicon dot formation target substrate S is arranged. The base body setting portion 57 is the same as the base body setting portion 57 shown in FIG. With respect to the base body setting portion 57, the same reference numerals as those in FIG. 7 and the like are attached to the same parts and portions as those in the base body setting portion shown in FIG.
 負イオン引出し電極装置53は基体設置部57に対向している。電極装置53は、第7図に示す電極装置53と同構造のものであり、加速電極531、減速電極532及び接地電極533からなっている。電極531~533のそれぞれは多数の孔を分散形成した多孔板からなっている。 The negative ion extraction electrode device 53 faces the base body setting portion 57. The electrode device 53 has the same structure as the electrode device 53 shown in FIG. 7, and includes an acceleration electrode 531, a deceleration electrode 532, and a ground electrode 533. Each of the electrodes 531 to 533 is composed of a perforated plate in which a large number of holes are dispersedly formed.
 加速電極531には抵抗R及びスイッチS1を介して出力可変の加速電源PW1、減速電極532にはスイッチS2を介して出力可変の減速電源PW2が接続されいる。スイッチS1をオン(閉)すると、加速電極531に正の高電圧が印加される。スイッチS2がオン(閉)されると、減速電極532に負電圧が印加される。
 抵抗R、スイッチS1、加速電源PW1、スイッチS2、減速電源PW2等は電極装置53に、プラズマ生成室71から負イオンを引き出すための電圧を印加する負イオン引出し電源装置PWを構成している。
The accelerating electrode 531 is connected to a variable power accelerating power source PW1 via a resistor R and a switch S1, and the decelerating electrode 532 is connected to a variable power deciding power source PW2 via a switch S2. When the switch S1 is turned on (closed), a positive high voltage is applied to the acceleration electrode 531. When the switch S <b> 2 is turned on (closed), a negative voltage is applied to the deceleration electrode 532.
The resistor R, the switch S1, the acceleration power supply PW1, the switch S2, the deceleration power supply PW2, and the like constitute a negative ion extraction power supply device PW that applies a voltage for extracting negative ions from the plasma generation chamber 71 to the electrode device 53.
 高周波電源装置75のスイッチ752並びに負イオン引出し電源装置PWにおけるスイッチS1及びS2のそれぞれのオンオフは制御部76にて制御される。電源PW1、PW2の出力も制御部76に制御される。該制御の詳細は後述する。 The on / off of each of the switches S1 and S2 in the switch 752 of the high frequency power supply device 75 and the negative ion extraction power supply device PW is controlled by the control unit 76. The outputs of the power supplies PW1 and PW2 are also controlled by the control unit 76. Details of the control will be described later.
 以上のほか、プラズマ生成室71にはシリコンを含むガスを該室内へ導入するためのガス導入装置77が接続されているとともに排気装置78が接続されている。排気装置78でプラズマ生成室71から排気してこれをプラズマ生成圧に設定できるとともに、シリコンドット形成室72から排気して室72をシリコンドット形成圧に設定できる。 In addition to the above, a gas introduction device 77 for introducing a gas containing silicon into the chamber is connected to the plasma generation chamber 71 and an exhaust device 78 is connected. The exhaust device 78 can exhaust the plasma generation chamber 71 and set it to the plasma generation pressure, and exhaust the silicon dot formation chamber 72 to set the chamber 72 to the silicon dot formation pressure.
 第11図に示すシリコンドット形成装置によると、次のようにしてシリコンドットを形成できる。
 基体設置部57にシリコン基板等のシリコンドット形成対象基体Sを設置する。また、セシウム堆積装置424によりスパッタターゲット73にセシウムを堆積させる。そして、このセシウムを堆積させたターゲット73にバイアス電源装置733から負バイアス電圧を印加する。排気装置78にて室71内から排気して該室内をプラズマ生成圧に維持するとともに室72から排気して該室内を基体Sへのシリコンドット形成圧に維持しつつガス導入装置77からシリコンを含むガスを導入する。
According to the silicon dot forming apparatus shown in FIG. 11, silicon dots can be formed as follows.
A base S for forming silicon dots such as a silicon substrate is placed on the base placement portion 57. Further, cesium is deposited on the sputter target 73 by the cesium deposition apparatus 424. Then, a negative bias voltage is applied from the bias power supply device 733 to the target 73 on which the cesium is deposited. The exhaust device 78 evacuates the chamber 71 to maintain the chamber at the plasma generation pressure, and exhausts the chamber 72 to maintain the silicon dot formation pressure on the substrate S, while supplying silicon from the gas introduction device 77. Introducing gas containing.
 一方、制御部76の指示のもとに高周波電源装置75のスイッチ752をオン(閉)して高周波電源751から高周波アンテナ74へ高周波電力を印加する一方、負イオン引出し電源装置PWにおけるスイッチS1、S2をオン(閉)して負イオン引出し電極装置53に負イオン引出し電圧を印加する。 On the other hand, the switch 752 of the high frequency power supply device 75 is turned on (closed) under the instruction of the control unit 76 to apply high frequency power from the high frequency power supply 751 to the high frequency antenna 74, while the switch S1 in the negative ion extraction power supply device PW, S2 is turned on (closed), and a negative ion extraction voltage is applied to the negative ion extraction electrode device 53.
 高周波アンテナ74に高周波電力が印加されることで、ガスがプラズマ化される。また、セシウムが堆積し、負バイアス電圧が印加されたターゲット42が電子放出体として機能する。
 プラズマに含まれる正イオンは、負バイアスが印加されたターゲット73に引き寄せられる一方、ターゲット73から電子が放出され、該電子がシリコンを含むラジカルや分子、正イオンなどに与えられてそれらが負イオン化する。かくしてシリコンを含む負イオンの密度(濃度)が高くなる。
By applying high frequency power to the high frequency antenna 74, the gas is turned into plasma. Further, the target 42 to which cesium is deposited and a negative bias voltage is applied functions as an electron emitter.
The positive ions contained in the plasma are attracted to the target 73 to which a negative bias is applied. On the other hand, electrons are emitted from the target 73, and the electrons are given to radicals, molecules, positive ions, etc. containing silicon, which are negatively ionized. To do. Thus, the density (concentration) of negative ions containing silicon is increased.
 このようにして室71内に生成したプラズマ中のシリコンを含む負イオンは、上記のように制御部76の指示のもとに負イオン引出し電圧が印加された電極装置53により、該装置の電極の多数の孔からシリコンドット形成室72へ引き出され、イオンビームとなって基体Sに照射される。 The negative ions including silicon in the plasma generated in the chamber 71 in this way are applied to the electrode of the apparatus by the electrode apparatus 53 to which a negative ion extraction voltage is applied under the instruction of the control unit 76 as described above. These holes are drawn out to the silicon dot forming chamber 72 and irradiated onto the substrate S as an ion beam.
 さらに説明すると、電極装置53への負イオン引出し電圧の印加は、第1のイオン引出し電圧の印加とその後の第2のイオン引出し電圧の印加とからなる。
 第1のイオン引出し電圧は、室71内のプラズマ中のシリコンを含む負イオンをシリコンドット形成室72へ引出し、基体設置部57に設置されたシリコンドット形成対象基体Sに第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための電圧である。
 第2のイオン引出し電圧は、室71内のプラズマ中のシリコンを含む負イオンを室72へ引出し、シリコンドット形成対象基体Sに第2のイオンエネルギで照射して、基体Sに前記核をもとにシリコンドットを成長させるための電圧である。
 このイオンビーム照射により粒径の揃ったシリコンドットが均一な密度分布で基体Sに全面的に形成される。
More specifically, the application of the negative ion extraction voltage to the electrode device 53 includes the application of the first ion extraction voltage and the subsequent application of the second ion extraction voltage.
In the first ion extraction voltage, negative ions including silicon in the plasma in the chamber 71 are extracted to the silicon dot formation chamber 72 and applied to the silicon dot formation target substrate S installed in the substrate installation unit 57 with the first ion energy. This is a voltage for irradiating to form nuclei that cause silicon dot growth.
In the second ion extraction voltage, negative ions including silicon in the plasma in the chamber 71 are extracted to the chamber 72, and the silicon dot formation target substrate S is irradiated with the second ion energy, so that the substrate S has the nucleus. And a voltage for growing silicon dots.
By this ion beam irradiation, silicon dots having a uniform particle diameter are formed on the entire surface of the substrate S with a uniform density distribution.
 スイッチ752、S1、S2を全て閉じておいて連続的に負イオンを引き出して基体Sに照射することでシリコンドットを形成してもよいが、本例では、プラズマ生成室71内のシリコン原子を含む負イオンの濃度を高め、該負イオン濃度が高められるタイミングで負イオンを引き出して基体Sに照射させるようにしている。 Silicon dots may be formed by closing all the switches 752, S1 and S2 and continuously extracting negative ions and irradiating the substrate S, but in this example, silicon atoms in the plasma generation chamber 71 are removed. The concentration of the negative ions contained is increased, and negative ions are extracted and irradiated onto the substrate S at a timing when the negative ion concentration is increased.
 前記制御部76はプラズマ生成装置7Aを所定の周期でオンオフさせる。さらに説明すると、制御部76は、高周波電源装置75のスイッチ752をオンオフして第8図の上段に示すと同様にプラズマ生成室71内にプラズマを所定の周期で発生(点灯)、消滅させる。一方、負イオン引出し電極装置53に負イオン引出し電圧を印加させるに際しスイッチS1、S2を所定の周期でオンオフし、第8図の下段に示すように負イオン引出しを所定の周期でオンオフさせる。 The controller 76 turns on / off the plasma generator 7A at a predetermined cycle. More specifically, the control unit 76 turns on and off the switch 752 of the high-frequency power supply device 75 to generate (turn on) and extinguish plasma in the plasma generation chamber 71 in a predetermined cycle, as shown in the upper part of FIG. On the other hand, when applying a negative ion extraction voltage to the negative ion extraction electrode device 53, the switches S1 and S2 are turned on and off at a predetermined cycle, and negative ion extraction is turned on and off at a predetermined cycle as shown in the lower part of FIG.
 電極装置53への負イオン引出し電圧の印加は、プラズマ生成装置7Aがオフ(スイッチ752がオフ)に切り替わってから所定期間Ta’経過後から再びプラズマ生成装置7Aがオン(スイッチ752がオン)に切り替わるまでの期間の間の所定期間Tb’になされる。 The negative ion extraction voltage is applied to the electrode device 53 when the plasma generating device 7A is turned on again (switch 752 is turned on) after a lapse of a predetermined period Ta ′ after the plasma generating device 7A is turned off (switch 752 is turned off). The predetermined period Tb ′ is set during the period until switching.
 このように、プラズマ生成室51におけるプラズマ点灯をパルス的に行い、プラズマ消灯直後に負イオン引出し電圧を印加することによって負イオン濃度を高めることができる。そこで、プラズマ消灯から電極装置53への負イオン引出し電圧印加開始までの期間として、このように負イオン濃度が十分高くなる期間Ta’を設定し、期間Ta’が経過すると電極装置53へ負イオン引出し電圧を期間Tb’〔<(T’-Ta’)〕の間に印加し、負イオン濃度が高められるタイミングで負イオンを一挙に基体Sの全体に引き寄せ、この操作を繰り返してシリコンドットを形成する。
 かくして粒径の揃ったシリコンドットを均一な密度分布で基体Sに全面的に、一層確実に形成することができる。
Thus, the plasma ion generation in the plasma generation chamber 51 is performed in a pulsed manner, and the negative ion concentration can be increased by applying the negative ion extraction voltage immediately after the plasma is extinguished. Therefore, a period Ta ′ in which the negative ion concentration becomes sufficiently high is set as a period from the plasma extinction to the start of application of the negative ion extraction voltage to the electrode device 53. When the period Ta ′ elapses, negative ions are supplied to the electrode device 53. An extraction voltage is applied during the period Tb ′ [<(T′−Ta ′)], and negative ions are drawn all at once at a timing at which the negative ion concentration is increased, and this operation is repeated to form silicon dots. Form.
Thus, silicon dots having a uniform particle diameter can be more reliably formed on the entire surface of the substrate S with a uniform density distribution.
〔3〕第3タイプのシリコンドット形成方法及び装置の例(第12図及び第13図参照) 第12図に第3タイプのシリコンドット形成装置の1例を示す。
 第12図に示すシリコンドット形成装置は、プラズマ生成室1’を有し、室1’には排気装置12’が接続されるとともに、シリコンを含むガスを室1’へ導入するためのガス導入装置13’が接続されている。
[3] Example of Third Type Silicon Dot Forming Method and Apparatus (See FIGS. 12 and 13) FIG. 12 shows an example of a third type silicon dot forming apparatus.
The silicon dot forming apparatus shown in FIG. 12 has a plasma generation chamber 1 ′, an exhaust device 12 ′ is connected to the chamber 1 ′, and a gas introduction for introducing a gas containing silicon into the chamber 1 ′. A device 13 'is connected.
 室1’内にはシリコンドット形成対象基体Sを保持する基体設置部11’が配置されている。基体Sはゲート弁10’の開閉と図示省略の基体搬送ロボットにより基体設置部11’に配置することができる。基体設置部11’は基体加熱用ヒータ14’を有している。 In the chamber 1 ′, a base body setting portion 11 ′ for holding the silicon dot formation target base body S is disposed. The substrate S can be placed on the substrate installation portion 11 ′ by opening / closing the gate valve 10 ′ and a substrate transport robot (not shown). The substrate installation portion 11 'has a substrate heating heater 14'.
 また、室1’には、基体設置部11’に保持される基体S周縁部に対向する位置にアンテナ9’が設置されている。アンテナ9’の開口部は図13において9a’で示してある。図13に上方から見たアンテナ9’を示す。 In the chamber 1 ', an antenna 9' is installed at a position facing the peripheral edge of the substrate S held by the substrate installation unit 11 '. The opening of the antenna 9 'is indicated by 9a' in FIG. FIG. 13 shows the antenna 9 'viewed from above.
 アンテナ9’は、ここではダブルハーフループアンテナであり、容量結合を抑制するための絶縁物92’(ここではセラミック)を被覆した二つのコの字型導電性部材91’を結合したものである。アンテナ9’の一端部は整合器3’を介して高周波電源2’に接続されており、他端部はコンデンサ15’を介して接地されている。これにより、室1’内に供給されるガスに誘導結合型高周波電界を印加して該ガスから誘導結合型プラズマを生成できる。 The antenna 9 ′ is a double half-loop antenna here, and is formed by coupling two U-shaped conductive members 91 ′ covered with an insulator 92 ′ (here, ceramic) for suppressing capacitive coupling. . One end of the antenna 9 ′ is connected to the high frequency power source 2 ′ via the matching unit 3 ′, and the other end is grounded via the capacitor 15 ′. Thus, an inductively coupled plasma can be generated from the gas supplied to the chamber 1 ′ by applying an inductively coupled high frequency electric field to the gas.
 図12に示すように、アンテナ9’を間にして基体設置部11’に対向する位置にはイオン源4’が設けられている。イオン源4’にはイオン源用ガス供給部16’が接続されているとともに、ガスプラズマ化のために整合器5’を介して高周波電源6’が接続されている。 As shown in FIG. 12, an ion source 4 'is provided at a position facing the substrate mounting portion 11' with the antenna 9 'interposed therebetween. An ion source gas supply unit 16 ′ is connected to the ion source 4 ′, and a high frequency power source 6 ′ is connected via a matching unit 5 ′ for gas plasma conversion.
 イオン源4’は、イオンを引き出すためのここでは3枚の電極(イオン源の奥側から加速電極41’、減速電極42’、接地電極43’)からなるイオン照射用電極装置40’を有している。イオン照射用電極装置40’とイオン源4’との間には出力可変の加速電源7’及び出力可変の減速電源8’が接続されている。イオン源4’及び電極装置40’等はイオンビーム照射装置400を構成している。なお、イオン源4’の励起方法はここでは高周波型を示しているが、この他フィラメント型、マイクロ波型等を採用できる。また、イオン照射用電極系は3枚電極構造に限定されず他の枚数の電極からなるものでもよい。 Here, the ion source 4 ′ has an ion irradiation electrode device 40 ′ composed of three electrodes (acceleration electrode 41 ′, deceleration electrode 42 ′, and ground electrode 43 ′ from the back side of the ion source) for extracting ions. is doing. Between the ion irradiation electrode device 40 ′ and the ion source 4 ′, an output variable acceleration power source 7 ′ and an output variable deceleration power source 8 ′ are connected. The ion source 4 ′, the electrode device 40 ′ and the like constitute an ion beam irradiation device 400. The excitation method of the ion source 4 'is shown here as a high-frequency type, but other types such as a filament type and a microwave type can be adopted. The ion irradiation electrode system is not limited to the three-electrode structure, and may be composed of other numbers of electrodes.
 イオンビーム照射装置400における電極系40’に接続された加速電源7’及び減速電源8’のオンオフや出力は制御部100にて制御される。制御部100はこのほか、電源2’、電源6’等も制御する。 On / off and output of the acceleration power supply 7 ′ and the deceleration power supply 8 ′ connected to the electrode system 40 ′ in the ion beam irradiation apparatus 400 are controlled by the control unit 100. In addition to this, the control unit 100 also controls the power source 2 ', the power source 6', and the like.
 第12図に示すシリコンドット形成装置を用いてシリコンドットを形成するにあたっては、基体Sを基体設置部11’に配置し、室1’内を排気装置12’の運転にて所定のシリコンドット形成圧に維持しつつガス導入装置13’からプラズマ生成室1’内にシリコンを含むガスを導入するとともに高周波電源2’から整合器3’、アンテナ9’を介して誘導結合型高周波電界を印加して前記導入したガスをプラズマ化し、図中17’で示す位置あたりに誘導結合型プラズマを発生させる。 In forming silicon dots using the silicon dot forming apparatus shown in FIG. 12, the base S is placed in the base installation portion 11 ′, and predetermined silicon dots are formed in the chamber 1 ′ by operating the exhaust device 12 ′. A gas containing silicon is introduced into the plasma generation chamber 1 ′ from the gas introduction device 13 ′ while maintaining the pressure, and an inductively coupled high-frequency electric field is applied from the high-frequency power source 2 ′ via the matching unit 3 ′ and the antenna 9 ′. Then, the introduced gas is turned into plasma, and inductively coupled plasma is generated around the position indicated by 17 'in the figure.
 シリコンを含むガスとしては、シリコン系ガスのうち少なくとも一種のガス又はシリコン系ガスのうち少なくとも一種のガスと反応性ガスのうち少なくとも一種のガスを用いる。 As the gas containing silicon, at least one gas among silicon-based gases or at least one gas among reactive gases and at least one gas among silicon-based gases is used.
 また、イオン源4’にイオン源用ガス供給部16’からイオンの原料ガスを導入し、これに電源6’から整合器5’を介して高周波電力を供給して、図中18’で示すイオン源内の位置にプラズマを発生させ、イオン照射用電極装置40’に電源7’、8’によりイオン引き出しのための電圧を印加することによりプラズマ18’からイオンを引き出し、アンテナ9’の開口部9a’を通して基体Sに該イオンビームを照射する。イオンの原料ガスとしては不活性ガス、反応性ガス及びシリコン系ガスのうち少なくとも一種のガスのイオンを用いる。 Further, an ion source gas is introduced into the ion source 4 ′ from the ion source gas supply section 16 ′, and high-frequency power is supplied to the ion source 4 ′ from the power source 6 ′ via the matching unit 5 ′, which is indicated by 18 ′ in the figure. Plasma is generated at a position in the ion source, and ions are extracted from the plasma 18 ′ by applying a voltage for ion extraction to the ion irradiation electrode device 40 ′ by the power supplies 7 ′ and 8 ′, thereby opening the antenna 9 ′. The substrate S is irradiated with the ion beam through 9a ′. As an ion source gas, ions of at least one of an inert gas, a reactive gas, and a silicon-based gas are used.
 イオン照射用電極装置40’への電源7’、8’からのイオン引き出しのための電圧印加は、制御部100の指示のもとに次のように行われる。
 すなわち、シリコンドット形成対象基体Sにシリコンドットのもとになる核を形成するための第1のイオンエネルギによるイオンビーム照射がなされるように、さらにその後に、該核をもとにシリコンドットを成長させるための第2のイオンエネルギによるイオンビーム照射がなされるように、電源7’、8’からイオン照射用電極装置40’へイオン引き出しのための電圧が印加される。
Voltage application for extracting ions from the power supplies 7 ′ and 8 ′ to the ion irradiation electrode device 40 ′ is performed as follows under the instruction of the control unit 100.
That is, the silicon dot is formed on the silicon dot formation target substrate S so that the ion beam is irradiated with the first ion energy for forming the nucleus serving as the silicon dot. A voltage for extracting ions is applied from the power sources 7 'and 8' to the ion irradiation electrode device 40 'so that ion beam irradiation is performed with the second ion energy for growth.
 ここでは、核を形成するための第1のイオンエネルギはプラズマ電位がP〔V〕とするとP〔eV〕以上5keV程度までであり、シリコンドットを成長させるための第2のイオンエネルギは2keV以下50eV程度までである。
 第1イオンエネルギによるイオンビーム照射を行うために電源7’、8’から電極装置40’へ印加すべき電圧や、第2イオンエネルギによるイオンビーム照射を行うために電源7’、8’から電極装置40’へ印加すべき電圧は予め実験等により求められ、制御部100に設定さている。
Here, the first ion energy for forming nuclei is P [eV] or more and about 5 keV when the plasma potential is P [V], and the second ion energy for growing silicon dots is 2 keV or less. It is up to about 50 eV.
In order to perform ion beam irradiation with the first ion energy, the voltage to be applied from the power sources 7 ′ and 8 ′ to the electrode device 40 ′, or from the power sources 7 ′ and 8 ′ to perform the ion beam irradiation with the second ion energy. The voltage to be applied to the device 40 ′ is obtained in advance by experiments or the like and set in the control unit 100.
 このようにして、基体S上に結晶質のシリコンドットが形成される。なお、シリコンドット形成中は、プラズマ生成室1’内、特に基体S表面近傍の圧力が0.6Pa~1.3Paの範囲内になるようにプラズマ生成室1’内の圧力を調整する。また、基体Sの温度はヒータ14’によりRT(室温)~600℃に保つ。 In this way, crystalline silicon dots are formed on the substrate S. During the formation of silicon dots, the pressure in the plasma generation chamber 1 'is adjusted so that the pressure in the plasma generation chamber 1', particularly in the vicinity of the surface of the substrate S, is in the range of 0.6 Pa to 1.3 Pa. The temperature of the substrate S is kept at RT (room temperature) to 600 ° C. by the heater 14 '.
 以上説明した膜形成方法及び膜形成装置によると、シリコンを含む原料ガスから誘導結合型プラズマ17’を生成させ、該誘導結合型プラズマの下に基体Sを置くとともに該基体S表面にイオンビームを照射してシリコンドットを形成する。 According to the film forming method and the film forming apparatus described above, the inductively coupled plasma 17 ′ is generated from the source gas containing silicon, the substrate S is placed under the inductively coupled plasma, and the ion beam is applied to the surface of the substrate S. Irradiation forms silicon dots.
 このようにシリコンを含むガスから生成させるプラズマは誘導結合型プラズマ17’であり、誘導結合型プラズマ17’は既述のとおり静電結合型プラズマと比べて高プラズマ密度、低プラズマ電位が得られる。それ故、例えば低融点ガラス基板のような耐熱性の比較的低い基体上にも該基体の熱的損傷を抑制できる低温下で(例えば600℃以下で)結晶性の高いシリコンドットを得ることができる。 The plasma generated from the gas containing silicon is the inductively coupled plasma 17 ′, and the inductively coupled plasma 17 ′ has a higher plasma density and a lower plasma potential than the electrostatically coupled plasma as described above. . Therefore, a silicon dot having high crystallinity can be obtained on a substrate having a relatively low heat resistance such as a low-melting glass substrate at a low temperature (for example, 600 ° C. or less) that can suppress thermal damage to the substrate. it can.
 また、誘導結合型プラズマ17’の下で基体S上にシリコンドットを形成するにあたり、基体S表面にイオン源4’からイオンビームを照射するので、シリコン原子の移動乃至マイグレーション(migration)が促進され、シリコンドットの結晶性がより高くなる。
 シリコンドット形成後に結晶性を高めるために別途熱処理する必要はない。
 このようにして生産性よく良質の結晶質シリコンドットを得ることができる。
Further, when forming silicon dots on the substrate S under the inductively coupled plasma 17 ′, the surface of the substrate S is irradiated with an ion beam from the ion source 4 ′, so that the movement or migration of silicon atoms is promoted. The crystallinity of the silicon dots becomes higher.
It is not necessary to perform a separate heat treatment to increase crystallinity after the formation of silicon dots.
In this way, high-quality crystalline silicon dots can be obtained with high productivity.
〔4〕実験について
 次に、図1、第7図、図12に示すシリコンドット形成装置を用いたシリコンドット形成の実験例について説明する。
(4-1)図1に示すシリコンドット形成装置によるシリコンドット形成
<シリコンドット形成条件>
1)プラズマ条件(高周波プラズマ)
 高周波電源装置15      60MHz、18mW/cm
 電極13への正バイアス電圧  核形成       1kV
                シリコンドット成長 100V
 原料ガス           SiHガス及び水素ガス(SiH10%)
 シリコンドット形成圧     0.5Pa~2Pa
 プラズマ消灯期間T      500μsec
 プラズマ点灯期間Tc     500μsec
 正バイアス印加開始Ta    100μsec
 正バイアス印加期間Tb    100μsec
2)基体            シリコンウエハ
3)基体温度          300℃
<シリコンドットの評価>
 レーザラマン分光法による分析によってシリコンドットの結晶化度〔結晶質/(結晶質+アモルファス)〕を測定したところ、結晶化度95%以上の良質のシリコンドットが確認された。
[4] Experiments Next, experimental examples of silicon dot formation using the silicon dot forming apparatus shown in FIGS. 1, 7, and 12 will be described.
(4-1) Silicon dot formation by the silicon dot forming apparatus shown in FIG.
1) Plasma conditions (high frequency plasma)
High frequency power supply 15 60 MHz, 18 mW / cm 3
Positive bias voltage to electrode 13 Nucleation 1 kV
Silicon dot growth 100V
Source gas SiH 4 gas and hydrogen gas (SiH 4 10%)
Silicon dot formation pressure 0.5 Pa to 2 Pa
Plasma extinction period T 500μsec
Plasma lighting period Tc 500μsec
Start positive bias application Ta 100μsec
Positive bias application period Tb 100 μsec
2) Substrate Silicon wafer 3) Substrate temperature 300 ° C
<Evaluation of silicon dots>
When the crystallinity [crystalline / (crystalline + amorphous)] of the silicon dots was measured by analysis by laser Raman spectroscopy, high-quality silicon dots having a crystallinity of 95% or more were confirmed.
(4-2)第7図に示すシリコンドット形成装置によるシリコンドット形成
<シリコンドット形成条件>
1)プラズマ条件(高周波プラズマ)
 ECRプラズマ条件     マイクロ波 2.45GHz、磁場875ガウス
 電極装置53に電源PW1、PW2から印加するイオン引き出しのための電圧
               第1イオンエネルギ50eV及び第2インオンエネル               ギ200eVを得る電圧
 原料ガス          SiHガス及び水素ガス(SiH10%)
 シリコンドット形成圧    0.05Pa~1Pa
 プラズマ消灯期間T’    500μsec
 プラズマ点灯期間Tc’   500μsec
 負イオン引出し電圧の印加                               
     印加開始Ta’   100μsec
     印加期間Tb’   100μsec
2)基体           シリコンウエハ
3)基体温度         300℃
<シリコンドットの評価>
 レーザラマン分光法による分析によってシリコンドットの結晶化度〔結晶質/(結晶質+アモルファス)〕を測定したところ、結晶化度96%以上の良質のシリコンドットが確認された。
(4-2) Silicon dot formation by the silicon dot formation apparatus shown in FIG. 7 <Silicon dot formation conditions>
1) Plasma conditions (high frequency plasma)
ECR plasma conditions Microwave 2.45 GHz, magnetic field 875 Gauss Voltage for ion extraction applied to electrode device 53 from power sources PW1 and PW2 Voltage to obtain first ion energy 50 eV and second in-on energy 200 eV Source gas SiH 4 gas and hydrogen Gas (SiH 4 10%)
Silicon dot forming pressure 0.05Pa ~ 1Pa
Plasma extinguishing period T '500μsec
Plasma lighting period Tc '500μsec
Application of negative ion extraction voltage
Application start Ta ′ 100 μsec
Application period Tb ′ 100 μsec
2) Substrate Silicon wafer 3) Substrate temperature 300 ° C
<Evaluation of silicon dots>
When the crystallinity of the silicon dots [crystalline / (crystalline + amorphous)] was measured by analysis by laser Raman spectroscopy, high-quality silicon dots with a crystallinity of 96% or more were confirmed.
(4-3)図12に示すシリコンドット形成装置によるシリコンドット形成
<シリコンドット形成条件>
1)プラズマ条件(誘導結合型プラズマ)
 励起法           高周波電力 13.56MHz、35mW/cm
 原料ガス          SiHガス及び水素ガス(SiH10%)
 シリコンドット形成圧    0.6Pa~1.3Pa
 プラズマ電位        23V
 プラズマ密度        6×1010イオン個/cm
2)イオンビーム照射条件
 第1イオンエネルギ     500eV
 第2イオンエネルギ     50eV
3)基体           無アルカリガラス基板
4)基体温度         300℃
<シリコンドットの評価>
 レーザラマン分光法による分析によってシリコンドットの結晶化度〔結晶質/(結晶質+アモルファス)〕を測定したところ、結晶化度97%以上の良質のシリコンドットが確認された。
(4-3) Silicon dot formation by the silicon dot formation apparatus shown in FIG. 12 <Silicon dot formation conditions>
1) Plasma conditions (inductively coupled plasma)
Excitation method High frequency power 13.56 MHz, 35 mW / cm 3
Source gas SiH 4 gas and hydrogen gas (SiH 4 10%)
Silicon dot forming pressure 0.6 Pa to 1.3 Pa
Plasma potential 23V
Plasma density 6 × 10 10 ions / cm 3
2) Ion beam irradiation conditions First ion energy 500 eV
Second ion energy 50eV
3) Substrate Non-alkali glass substrate 4) Substrate temperature 300 ° C
<Evaluation of silicon dots>
When the crystallinity of the silicon dots [crystalline / (crystalline + amorphous)] was measured by analysis by laser Raman spectroscopy, high-quality silicon dots with a crystallinity of 97% or more were confirmed.
 本発明は、単一電子デバイス等の電子デバイス材料や発光材料などとして用いられる微小粒径のシリコンドットの形成に利用できる。 The present invention can be used to form silicon dots having a small particle diameter used as an electronic device material such as a single electronic device or a light emitting material.

Claims (31)

  1.  プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室を準備すること、
     該基体設置電極にシリコンドット形成対象基体を設置すること、
     該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入するとともに前記プラズマ生成装置により該ガスからプラズマを発生させること、
     該基体設置電極に第1の正のパルス電圧を印加することで、該電極に設置されたシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
     前記核形成にひきつづき、該基体設置電極に第2の正のパルス電圧を印加することで、該シリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
     を含むシリコンドット形成方法。
    Preparing a plasma generation chamber provided with a substrate installation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein;
    Installing a silicon dot formation target substrate on the substrate installation electrode;
    Evacuating from the plasma generation chamber, introducing a gas containing silicon into the plasma generation chamber while maintaining the plasma generation chamber at a silicon dot forming pressure, and generating plasma from the gas by the plasma generation device;
    By applying a first positive pulse voltage to the substrate installation electrode, the silicon dot formation target substrate installed on the electrode is irradiated with negative ions containing silicon in the plasma with a first ion energy. Forming nuclei for silicon dot growth on the silicon dot formation target substrate;
    Subsequent to the nucleation, a second positive pulse voltage is applied to the substrate installation electrode to irradiate the silicon dot formation target substrate with negative ions containing silicon in the plasma with the second ion energy. A silicon dot forming method comprising growing silicon dots on the silicon dot formation target substrate based on the nucleus.
  2.  前記シリコンドット形成対象基体へのシリコンを含む負イオンの照射において、前記第1のイオンエネルギは、前記プラズマのプラズマ電位がP〔V〕とすると、P〔eV〕以上とし、前記第2のイオンエネルギは2keV以下とする請求の範囲第1項記載のシリコンドット形成方法。 In irradiation of negative ions containing silicon to the silicon dot formation target substrate, the first ion energy is set to P [eV] or more when the plasma potential of the plasma is P [V], and the second ion The silicon dot forming method according to claim 1, wherein the energy is 2 keV or less.
  3.  前記プラズマ生成室内の中間部に電子捕捉磁場を形成し、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側を前記プラズマ生成装置を備えた第1プラズマ室とするとともに他方の側を前記基体設置電極を有する第2プラズマ室とし、該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高める請求の範囲第1項又は第2項記載のシリコンドット形成方法。 An electron trapping magnetic field is formed in an intermediate portion of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber provided with the plasma generating device and the other side is the A second plasma chamber having a base electrode is formed, plasma is generated from the silicon-containing gas in the first plasma chamber, and a part of electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field is generated. Silicon contained in the second plasma chamber is contained by the action of electrons having a lower energy than the electrons that are suppressed from moving to the second plasma chamber and suppressed to move to the second plasma chamber. 3. The silicon dot forming method according to claim 1, wherein the concentration of negative ions is increased.
  4.  前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットを予め設け、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加し、該プラズマ中の正イオンを該ターゲットに接触させることで、該プラズマ中のシリコンを含む負イオンの濃度を高める請求の範囲第1項又は第2項記載のシリコンドット形成方法。 The plasma generation chamber is preliminarily provided with a conductive target on which at least one material selected from cesium, rubidium, potassium and barium is deposited, and plasma generation from the silicon-containing gas by the plasma generation apparatus in the plasma generation chamber 3. The method according to claim 1, wherein a negative voltage is applied to the conductive target in order to bring positive ions in the plasma into contact with the target, thereby increasing the concentration of negative ions including silicon in the plasma. The silicon dot formation method of description.
  5.  前記セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットは、該物質堆積前の導電性ターゲットを前記プラズマ生成室内に設け、該物質堆積前の導電性ターゲットにセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を導いて該物質を堆積させることで得る請求の範囲第4項記載のシリコンドット形成方法。 The conductive target on which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided in the plasma generation chamber with the conductive target before the material deposition, and the conductive target before the material deposition is provided on the conductive target. 5. The method of forming a silicon dot according to claim 4, which is obtained by introducing vapor of at least one substance selected from cesium, rubidium, potassium and barium and depositing the substance.
  6.  前記プラズマ生成装置を周期的にオンオフさせ、前記基体設置電極への正パルス電圧の印加は、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行う請求の範囲第1項から第5項のいずれかに記載のシリコンドット形成方法。 The plasma generator is periodically turned on and off, and the application of a positive pulse voltage to the substrate installation electrode is performed after a predetermined period of time has elapsed from when the plasma generator is turned off until the plasma generator is turned on again. The silicon dot forming method according to any one of claims 1 to 5, wherein the silicon dot forming method is performed during the period.
  7.  プラズマ生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置電極が設けられたプラズマ生成室と、
     該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
     該プラズマ生成室内から排気する排気装置と、
     前記基体設置電極に正パルス電圧を印加するための正バイアス電源装置とを備えており、
     前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
     前記正バイアス電源装置は、前記基体設置電極に、該電極に設置されるシリコンドット形成対象基体へ該プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の正のパルス電圧の印加及び該シリコンドット形成対象基体に該プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとにシリコンドットを成長させるための第2の正のパルス電圧の印加を行う電源装置であるシリコンドット形成装置。
    A plasma generation chamber provided with a substrate generation electrode provided with a plasma generation device and having a silicon dot formation target substrate installed therein;
    A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
    An exhaust device for exhausting from the plasma generation chamber;
    A positive bias power supply device for applying a positive pulse voltage to the substrate installation electrode,
    The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
    The positive bias power supply device irradiates the substrate installation electrode with negative ions containing silicon in the plasma to the silicon dot formation target substrate installed on the electrode with a first ion energy, thereby generating silicon dots. Applying a first positive pulse voltage to form a nucleus to become, and irradiating the silicon dot formation target substrate with negative ions containing silicon in the plasma with a second ion energy, based on the nucleus A silicon dot forming device which is a power supply device for applying a second positive pulse voltage for growing silicon dots.
  8.  前記シリコンドット形成対象基体へのシリコンを含む負イオンの照射において、前記第1のイオンエネルギは、前記プラズマのプラズマ電位がP〔V〕とすると、P〔eV〕以上であり、前記第2のイオンエネルギは2keV以下である請求の範囲第7項記載のシリコンドット形成装置。 In irradiation of negative ions containing silicon to the silicon dot formation target substrate, the first ion energy is equal to or higher than P [eV] when the plasma potential of the plasma is P [V]. The silicon dot forming apparatus according to claim 7, wherein the ion energy is 2 keV or less.
  9.  前記プラズマ生成室内の中間部に電子捕捉磁場を形成するための磁場形成装置を備え、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側が前記プラズマ生成装置を備えた第1プラズマ室とされるとともに他方の側が前記基体設置電極を有する第2プラズマ室とされ、該プラズマ生成装置により該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記磁場形成装置で形成される電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めることができる請求の範囲第7項又は第8項記載のシリコンドット形成装置。 A magnetic field forming device for forming an electron trapping magnetic field is provided in an intermediate part of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber having the plasma generating device. And the other side is a second plasma chamber having the base electrode, and plasma is generated from the silicon-containing gas in the first plasma chamber by the plasma generator, and the electron trap formed by the magnetic field generator The movement of some of the electrons in the plasma generated in the first plasma chamber by the magnetic field to the second plasma chamber is suppressed, and the movement to the second plasma chamber that arrives in the second plasma chamber is suppressed. The concentration of negative ions including silicon in the second plasma chamber can be increased by the action of electrons having lower energy than the electrons. Silicon dot forming apparatus.
  10.  前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットが予め設けられており、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加する負バイアス電源装置が設けられている請求の範囲第7項又は第8項記載のシリコンドット形成装置。 A conductive target in which at least one material selected from cesium, rubidium, potassium, and barium is deposited is provided in advance in the plasma generation chamber, and the silicon generation gas from the plasma generation apparatus in the plasma generation chamber is provided. 9. The silicon dot forming apparatus according to claim 7, further comprising a negative bias power supply device that applies a negative voltage to the conductive target during plasma generation.
  11.  前記プラズマ生成室内に設置された導電性ターゲットと、
     セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を生成して該導電性ターゲットに導き該ターゲットに該物質を堆積させる物質堆積装置と、
     該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において、該物質堆積装置により該物質が堆積した該導電性ターゲットに負電圧を印加する負バイアス電源装置とを備えた請求の範囲第7項又は第8項記載のシリコンドット形成装置。
    A conductive target installed in the plasma generation chamber;
    A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target;
    And a negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber. The silicon dot forming apparatus according to claim 7 or 8, wherein
  12.  前記プラズマ生成装置が周期的にオンオフされ、前記正バイアス電源装置による前記基体設置電極への正パルス電圧の印加が、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行われるように、前記プラズマ生成装置及び前記正バイアス電源装置を制御する制御部を備えている請求の範囲第7項から第11項のいずれかに記載のシリコンドット形成装置。 The plasma generator is periodically turned on and off, and the application of a positive pulse voltage to the substrate installation electrode by the positive bias power supply device is performed after a predetermined period has elapsed since the plasma generator was turned off. 12. The silicon according to claim 7, further comprising a control unit that controls the plasma generation device and the positive bias power supply device so as to be performed during a period until the device is turned on again. Dot forming device.
  13.  プラズマ生成装置を備えたプラズマ生成室と、該プラズマ生成室に連設され、シリコンドット形成対象基体を設置する基体設置部を配置したシリコンドット形成室と、該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引き出し電極装置とを準備すること、
     該基体設置部にシリコンドット形成対象基体を設置すること、
     該プラズマ生成室内及び該シリコンドット形成室内から排気して該プラズマ生成室内をプラズマ生成圧に維持するとともに該シリコンドット形成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記プラズマ生成装置により該ガスからプラズマを発生させること、
     前記負イオン引出し電極装置に第1の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し前記基体設置部に設置されたシリコンドット形成対象基体に第1のイオンエネルギで照射して該シリコンドット形成対象基体にシリコンドット成長のもとになる核を形成すること、
     該核形成にひきつづき該負イオン引出し電極装置に第2の負イオン引出し電圧を印加して前記プラズマ中のシリコンを含む負イオンを前記シリコンドット形成室へ引出し該シリコンドット形成対象基体に第2のイオンエネルギで照射して該シリコンドット形成対象基体に前記核をもとにシリコンドットを成長させること
     を含むシリコンドット形成方法。
    A plasma generation chamber provided with a plasma generation device, a silicon dot formation chamber arranged in a continuous manner with the plasma generation chamber, and a substrate installation portion for installing a silicon dot formation target substrate, and the substrate installation portion of the plasma generation chamber Preparing a negative ion extraction electrode device provided in an opening facing the surface;
    Installing a silicon dot formation target substrate in the substrate installation portion;
    A gas containing silicon is contained in the plasma generation chamber while exhausting the plasma generation chamber and the silicon dot formation chamber to maintain the plasma generation chamber at the plasma generation pressure and maintaining the silicon dot formation chamber at the silicon dot formation pressure. Introducing and generating plasma from the gas by the plasma generator,
    A first negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber. Irradiating with an ion energy of 1 to form nuclei for silicon dot growth on the silicon dot formation target substrate;
    Following the nucleation, a second negative ion extraction voltage is applied to the negative ion extraction electrode device to extract negative ions including silicon in the plasma to the silicon dot formation chamber, and a second substrate is formed on the silicon dot formation target substrate. A silicon dot forming method comprising: irradiating with ion energy to grow silicon dots on the silicon dot formation target substrate based on the nuclei.
  14.  前記シリコンを含む負イオンの前記シリコンドット形成対象基体への照射において、前記第1のイオンエネルギは、前記プラズマのプラズマ電位がP〔V〕とすると、P〔eV〕以上とし、前記第2のイオンエネルギは2keV以下とする請求の範囲第13項記載のシリコンドット形成方法。 In the irradiation of the silicon dot formation target substrate with negative ions including silicon, the first ion energy is set to P [eV] or more when the plasma potential of the plasma is P [V]. The silicon dot forming method according to claim 13, wherein the ion energy is 2 keV or less.
  15.  前記プラズマ生成室内の中間部に電子捕捉磁場を形成し、該プラズマ生成室の該電子捕捉磁場形成領域より一方の側を前記プラズマ生成装置を備えた第1プラズマ室とするとともに他方の側を前記負イオン引出し電極装置を設けた第2プラズマ室とし、該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高める請求の範囲第13項又は第14項記載のシリコンドット形成方法。 An electron trapping magnetic field is formed in an intermediate portion of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber provided with the plasma generating device and the other side is the A second plasma chamber provided with a negative ion extraction electrode device is used, a plasma is generated from the gas containing silicon in the first plasma chamber, and one of the electrons in the plasma generated in the first plasma chamber by the electron trapping magnetic field is generated. The movement of the part to the second plasma chamber is suppressed, and the action of electrons having a lower energy than the electrons that have entered the second plasma chamber and are suppressed to move to the second plasma chamber 15. The method for forming a silicon dot according to claim 13, wherein the concentration of negative ions containing silicon is increased.
  16.  前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットを予め設け、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加し、該プラズマ中の正イオンを該ターゲットに接触させることで、該プラズマ中のシリコンを含む負イオンの濃度を高める請求の範囲第13項又は第14項記載のシリコンドット形成方法。 The plasma generation chamber is preliminarily provided with a conductive target on which at least one material selected from cesium, rubidium, potassium and barium is deposited, and plasma generation from the silicon-containing gas by the plasma generation apparatus in the plasma generation chamber 15. The concentration of negative ions including silicon in the plasma is increased by applying a negative voltage to the conductive target and bringing positive ions in the plasma into contact with the target. The silicon dot formation method of description.
  17.  前記セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットは、該物質堆積前の導電性ターゲットを前記プラズマ生成室内に設け、該物質堆積前の導電性ターゲットにセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を導いて該物質を堆積させることで得る請求の範囲第16項記載のシリコンドット形成方法。 The conductive target on which at least one material selected from the cesium, rubidium, potassium, and barium is deposited is provided in the plasma generation chamber with the conductive target before the material deposition, and the conductive target before the material deposition is provided on the conductive target. 17. The method of forming a silicon dot according to claim 16, which is obtained by guiding vapor of at least one substance selected from cesium, rubidium, potassium and barium to deposit the substance.
  18.  前記プラズマ生成装置を周期的にオンオフさせ、前記負イオン引出し電極装置への前記シリコンを含む負イオン引出しのための電圧印加を、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行う請求の範囲第13項から第17項のいずれかに記載のシリコンドット形成方法。 The plasma generator is periodically turned on and off, and voltage application for negative ion extraction including the silicon to the negative ion extraction electrode device is performed after a predetermined period has elapsed since the plasma generation device was turned off. 18. The method for forming silicon dots according to claim 13, which is performed during a period until the generation device is turned on again.
  19.  プラズマ生成装置を備えたプラズマ生成室と、
     該プラズマ生成室に連設され、シリコンドット形成対象基体を設置するための基体設置部を配置したシリコンドット形成室と、
     該プラズマ生成室の該基体設置部に臨む開口部に設けられた負イオン引出し電極装置と、
     該プラズマ生成室内にシリコンを含むガスを導入するガス導入装置と、
     該プラズマ生成室内及び該シリコンドット形成室内から排気する排気装置と、
     該負イオン引出し電極装置にシリコンを含む負イオンを引き出す電圧を印加するための負イオン引出し電源装置とを備えており、
     前記プラズマ生成装置は、前記ガス導入装置により前記プラズマ生成室内へ導入される前記ガスからシリコンを含む負イオンを含むプラズマを生成させる装置であり、
     前記負イオン引出し電源装置は、前記負イオン引出し電極装置に、前記シリコンドット形成室の基体設置部に設置されるシリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第1のイオンエネルギで照射してシリコンドット成長のもとになる核を形成するための第1の負イオン引出し電圧の印加及び該シリコンドット形成対象基体へ前記プラズマ中のシリコンを含む負イオンを第2のイオンエネルギで照射して該核をもとにシリコンドットを成長させるための第2の負イオン引出し電圧の印加を行う電源装置であるシリコンドット形成装置。
    A plasma generation chamber equipped with a plasma generation device;
    A silicon dot forming chamber which is connected to the plasma generation chamber and in which a substrate setting portion for setting a silicon dot forming target substrate is disposed;
    A negative ion extraction electrode device provided in an opening facing the substrate installation portion of the plasma generation chamber;
    A gas introduction device for introducing a gas containing silicon into the plasma generation chamber;
    An exhaust device for exhausting air from the plasma generation chamber and the silicon dot formation chamber;
    A negative ion extraction power supply device for applying a voltage for extracting negative ions including silicon to the negative ion extraction electrode device;
    The plasma generation device is a device that generates plasma containing negative ions including silicon from the gas introduced into the plasma generation chamber by the gas introduction device,
    The negative ion extraction power supply device causes the negative ion extraction electrode device to supply negative ions including silicon in the plasma to a silicon dot formation target substrate installed in a substrate installation portion of the silicon dot formation chamber with a first ion energy. Application of a first negative ion extraction voltage to form nuclei that cause silicon dot growth by irradiation with negative ions containing silicon in the plasma to the silicon dot formation target substrate. A silicon dot forming apparatus, which is a power supply device for applying a second negative ion extraction voltage for growing silicon dots based on the nuclei by irradiation with the nuclei.
  20.  前記シリコンを含む負イオンの前記シリコンドット形成対象基体への照射において、前記第1のイオンエネルギは、前記プラズマのプラズマ電位がP〔V〕とすると、P〔eV〕以上であり、前記第2のイオンエネルギは2keV以下である請求の範囲第19項記載のシリコンドット形成装置。 In the irradiation of the silicon dot formation target substrate with negative ions including silicon, the first ion energy is equal to or higher than P [eV] when the plasma potential of the plasma is P [V]. 21. The silicon dot forming apparatus according to claim 19, wherein the ion energy of is not more than 2 keV.
  21.  前記プラズマ生成室内の中間部に電子捕捉磁場を形成するための磁場形成装置を備え、該プラズマ生成室の電子捕捉磁場形成領域より一方の側が前記プラズマ生成装置を備えた第1プラズマ室とされるとともに他方の側が前記負イオン引出し電極装置を有する第2プラズマ室とされ、該プラズマ生成装置により該第1プラズマ室内で前記シリコンを含むガスからプラズマを発生させ、前記磁場形成装置で形成される電子捕捉磁場により該第1プラズマ室に生成したプラズマ中の電子の一部の該第2プラズマ室への移動を抑制し、該第2プラズマ室内へ到来する、該第2プラズマ室への移動を抑制された電子より低エネルギの電子の作用により該第2プラズマ室内のシリコンを含む負イオンの濃度を高めることができる請求の範囲第19項又は第20項記載のシリコンドット形成装置。 A magnetic field forming device for forming an electron trapping magnetic field is provided in an intermediate portion of the plasma generating chamber, and one side of the plasma generating chamber from the electron trapping magnetic field forming region is a first plasma chamber having the plasma generating device. In addition, the other side is a second plasma chamber having the negative ion extraction electrode device, and plasma is generated from the gas containing silicon in the first plasma chamber by the plasma generation device, and electrons are formed by the magnetic field forming device. The movement of some of the electrons in the plasma generated in the first plasma chamber by the trapped magnetic field to the second plasma chamber is suppressed, and the movement to the second plasma chamber that arrives in the second plasma chamber is suppressed. 20. The concentration of negative ions containing silicon in the second plasma chamber can be increased by the action of electrons having lower energy than the generated electrons. Silicon dot forming apparatus of paragraph 20, wherein.
  22.  前記プラズマ生成室内にセシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質を堆積させた導電性ターゲットが予め設けられており、該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において該導電性ターゲットに負電圧を印加する負バイアス電源装置が設けられている請求の範囲第19項又は第20項記載のシリコンドット形成装置。 A conductive target in which at least one material selected from cesium, rubidium, potassium, and barium is deposited is provided in advance in the plasma generation chamber, and the silicon generation gas from the plasma generation apparatus in the plasma generation chamber is provided. 21. The silicon dot forming apparatus according to claim 19 or 20, further comprising a negative bias power supply device that applies a negative voltage to the conductive target in generating plasma.
  23.  前記プラズマ生成室内に設置された導電性ターゲットと、
     セシウム、ルビジウム、カリウム及びバリウムから選ばれた少なくとも一種の物質の蒸気を生成して該導電性ターゲットに導き該ターゲットに該物質を堆積させる物質堆積装置と、
     該プラズマ生成室内における前記プラズマ生成装置による前記シリコンを含むガスからのプラズマ生成において、該物質堆積装置により該物質が堆積した該導電性ターゲットに負電圧を印加する負バイアス電源装置とを備えた請求の範囲第19項又は第20項記載のシリコンドット形成装置。
    A conductive target installed in the plasma generation chamber;
    A material deposition apparatus for generating a vapor of at least one material selected from cesium, rubidium, potassium and barium, leading to the conductive target, and depositing the material on the target;
    And a negative bias power supply device for applying a negative voltage to the conductive target on which the material is deposited by the material deposition device in plasma generation from the gas containing silicon by the plasma generation device in the plasma generation chamber. 21. The silicon dot forming device according to item 19 or 20 above.
  24.  前記プラズマ生成装置が周期的にオンオフされ、前記負イオン引出し電源装置による前記負イオン引出し電極装置へのシリコンを含む負イオンの引出し電圧の印加が、該プラズマ生成装置がオフに切り替わってから所定期間経過後から該プラズマ生成装置が再びオンされるまでの期間中に行われるように、前記プラズマ生成装置及び前記負イオン引出し電源装置を制御する制御部を備えている請求の範囲第19項から第23項のいずれかに記載のシリコンドット形成装置。 The plasma generator is periodically turned on and off, and the application of a negative ion extraction voltage including silicon to the negative ion extraction electrode device by the negative ion extraction power supply device is a predetermined period after the plasma generation device is turned off. 20. A control unit that controls the plasma generation device and the negative ion extraction power supply device so as to be performed during a period from when the plasma generation device is turned on again after the elapse of time. 24. The silicon dot forming apparatus according to any one of items 23.
  25.  低プラズマ電位のプラズマの生成装置を備えるとともに内部にシリコンドット形成対象基体を設置する基体設置部が設けられたプラズマ生成室及びイオンビームを該基体設置部に設置されるシリコンドット形成対象基体に照射するイオンビーム照射装置を準備すること、
     該基体設置部にシリコンドット形成対象基体を設置すること、
     該プラズマ生成室内から排気してプラズマ生成室内をシリコンドット形成圧に維持しつつ該プラズマ生成室内にシリコンを含むガスを導入し、前記低プラズマ電位プラズマ生成装置により該ガスから低プラズマ電位プラズマを発生させること、
     該プラズマに前記基体設置部に設置したシリコンドット形成対象基体をさらすとともに前記イオンビーム照射装置から該シリコンドット形成対象基体にイオンビームを照射することを含み、
     該イオンビームの照射は、該シリコンドット形成対象基体にシリコンドットのもとになる核を形成するための第1のイオンエネルギによるイオンビーム照射と、その後の、該核をもとにシリコンドットを成長させるための第2のイオンエネルギによるイオンビーム照射とで行って該シリコンドット形成対象基体にシリコンドットを形成するシリコンドット形成方法。
    A plasma generation chamber provided with a low-plasma-potential plasma generation device and having a substrate installation portion for installing a silicon dot formation target substrate therein and an ion beam irradiated to the silicon dot formation target substrate installed in the substrate installation portion Preparing an ion beam irradiation device to perform,
    Installing a silicon dot formation target substrate in the substrate installation portion;
    A gas containing silicon is introduced into the plasma generation chamber while evacuating the plasma generation chamber while maintaining the plasma generation chamber at the silicon dot formation pressure, and the low plasma potential plasma is generated from the gas by the low plasma potential plasma generation device. Letting
    Exposing the silicon dot formation target substrate placed in the base placement portion to the plasma and irradiating the silicon dot formation target substrate from the ion beam irradiation apparatus to the silicon dot formation target,
    The ion beam irradiation is performed by irradiating an ion beam with a first ion energy for forming a nucleus that becomes a silicon dot on the silicon dot formation target substrate, and then applying a silicon dot based on the nucleus. A silicon dot forming method for forming silicon dots on the silicon dot formation target substrate by performing ion beam irradiation with second ion energy for growth.
  26.  前記イオンビーム照射において、前記シリコンドット形成対象基体にイオンビームを照射するときの前記第1のイオンエネルギは、前記プラズマのプラズ電位がP〔V〕とすると、P〔eV〕以上とし、前記第2のイオンエネルギは2keV以下とする請求の範囲第25項記載のシリコンドット形成方法。 In the ion beam irradiation, the first ion energy when the silicon dot formation target substrate is irradiated with the ion beam is set to P [eV] or more when the plasma plasma potential is P [V]. 26. The method of forming a silicon dot according to claim 25, wherein the ion energy of 2 is 2 keV or less.
  27.  前記イオンビームのイオン種として、不活性ガス、反応性ガス及びシリコンを含むガスのうち少なくとも一種のガスから発生させたイオンを用いる請求の範囲第25項又は第26項に記載のシリコンドット形成方法。 27. The silicon dot forming method according to claim 25 or 26, wherein ions generated from at least one of an inert gas, a reactive gas, and a gas containing silicon are used as ion species of the ion beam. .
  28.  前記低プラズマ電位プラズマのプラズマ電位を50V以下とする請求の範囲第25項、第26項又は第27項に記載のシリコンドット形成方法。 28. The silicon dot forming method according to claim 25, 26 or 27, wherein the plasma potential of the low plasma potential plasma is 50 V or less.
  29.  前記低プラズマ電位プラズマのプラズマ密度を1×1011イオン個/cm以上とする請求の範囲第25項から第28項のいずれかに記載のシリコンドット形成方法。 29. The silicon dot forming method according to any one of claims 25 to 28, wherein a plasma density of the low plasma potential plasma is set to 1 × 10 11 ions / cm 3 or more.
  30.  前記低プラズマ電位プラズマから前記シリコンドット形成対象基体に到達するシリコン原子数に対する前記イオンビーム照射装置から該基体に到達するイオン数の割合(イオン数/シリコン原子数)を0.01~10とする請求の範囲第25項から第29項のいずれかに記載のシリコンドット形成方法。 The ratio of the number of ions that reach the substrate from the ion beam irradiation apparatus to the number of silicon atoms that reach the silicon dot formation target substrate from the low plasma potential plasma (number of ions / number of silicon atoms) is 0.01-10. 30. The method of forming a silicon dot according to any one of claims 25 to 29.
  31.  前記低プラズマ電位のプラズマの生成装置は誘導結合型プラズマ生成装置である請求の範囲第25項から第30項のいずれかに記載のシリコンドット形成方法。 31. The silicon dot forming method according to claim 25, wherein the low plasma potential plasma generating apparatus is an inductively coupled plasma generating apparatus.
PCT/JP2009/050630 2009-01-19 2009-01-19 Silicon-dot forming method, and silicon-dot forming apparatus WO2010082345A1 (en)

Priority Applications (2)

Application Number Priority Date Filing Date Title
JP2010546524A JPWO2010082345A1 (en) 2009-01-19 2009-01-19 Silicon dot forming method and silicon dot forming apparatus
PCT/JP2009/050630 WO2010082345A1 (en) 2009-01-19 2009-01-19 Silicon-dot forming method, and silicon-dot forming apparatus

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
PCT/JP2009/050630 WO2010082345A1 (en) 2009-01-19 2009-01-19 Silicon-dot forming method, and silicon-dot forming apparatus

Publications (1)

Publication Number Publication Date
WO2010082345A1 true WO2010082345A1 (en) 2010-07-22

Family

ID=42339613

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2009/050630 WO2010082345A1 (en) 2009-01-19 2009-01-19 Silicon-dot forming method, and silicon-dot forming apparatus

Country Status (2)

Country Link
JP (1) JPWO2010082345A1 (en)
WO (1) WO2010082345A1 (en)

Cited By (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060688A (en) * 2014-09-22 2016-04-25 株式会社Sumco METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC WAFER
JP2020145205A (en) * 2020-05-18 2020-09-10 住友重機械工業株式会社 Negative ion generation device

Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291048A (en) * 1992-07-02 1994-10-18 Nissin Electric Co Ltd Thin-film formation method
JPH06314660A (en) * 1993-03-04 1994-11-08 Mitsubishi Electric Corp Method and apparatus for forming thin film
JP2002030449A (en) * 2000-07-12 2002-01-31 Nissin Electric Co Ltd Crystalline silicon film, and method of and system for depositing crystalline silicon film
JP2004289026A (en) * 2003-03-24 2004-10-14 Toshio Goto Method for forming film
JP2007517136A (en) * 2003-12-23 2007-06-28 コミツサリア タ レネルジー アトミーク Organized growth of nanostructures
JP2007532781A (en) * 2004-04-14 2007-11-15 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Coating and method and apparatus for manufacturing the same

Patent Citations (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH06291048A (en) * 1992-07-02 1994-10-18 Nissin Electric Co Ltd Thin-film formation method
JPH06314660A (en) * 1993-03-04 1994-11-08 Mitsubishi Electric Corp Method and apparatus for forming thin film
JP2002030449A (en) * 2000-07-12 2002-01-31 Nissin Electric Co Ltd Crystalline silicon film, and method of and system for depositing crystalline silicon film
JP2004289026A (en) * 2003-03-24 2004-10-14 Toshio Goto Method for forming film
JP2007517136A (en) * 2003-12-23 2007-06-28 コミツサリア タ レネルジー アトミーク Organized growth of nanostructures
JP2007532781A (en) * 2004-04-14 2007-11-15 ネーデルランドセ オルガニサティエ フォール トエゲパストナトールヴェテンシャッペリク オンデルゾエク ティエヌオー Coating and method and apparatus for manufacturing the same

Non-Patent Citations (1)

* Cited by examiner, † Cited by third party
Title
JAE-HYUN SHIM ET AL.: "Characterization of hydrogenated nanocrystalline silicon thin films prepared with various negative direct current biases", J. MATER. RES., vol. 23, no. 3, March 2008 (2008-03-01), pages 790 - 797 *

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP2016060688A (en) * 2014-09-22 2016-04-25 株式会社Sumco METHOD FOR MANUFACTURING SINGLE CRYSTAL SiC WAFER
JP2020145205A (en) * 2020-05-18 2020-09-10 住友重機械工業株式会社 Negative ion generation device
JP7023319B2 (en) 2020-05-18 2022-02-21 住友重機械工業株式会社 Negative ion generator
JP2022078057A (en) * 2020-05-18 2022-05-24 住友重機械工業株式会社 Negative ion generation device

Also Published As

Publication number Publication date
JPWO2010082345A1 (en) 2012-06-28

Similar Documents

Publication Publication Date Title
JP2648235B2 (en) Ion gun
US5039376A (en) Method and apparatus for the plasma etching, substrate cleaning, or deposition of materials by D.C. glow discharge
JP4825846B2 (en) Carbon nanotube production equipment
JP7440528B2 (en) Ion source with biased extraction plate
SG193943A1 (en) E-beam enhanced decoupled source for semiconductor processing
CA2894942A1 (en) Plasma source
JP2003073814A (en) Film forming apparatus
JP2000054125A (en) Surface treating method and device therefor
WO2010082345A1 (en) Silicon-dot forming method, and silicon-dot forming apparatus
JP2000068227A (en) Method for processing surface and device thereof
JP2004353066A (en) Plasma source and plasma treatment system
US6858838B2 (en) Neutral particle beam processing apparatus
US8778465B2 (en) Ion-assisted direct growth of porous materials
WO2013099044A1 (en) Ion beam processing device and neutralizer
KR101032836B1 (en) Atmospheric Pressure Glow discharges Plasma device by DC pulse power
JP2014137901A (en) Ion implanter and operation method of ion implanter
EP2840163B1 (en) Deposition device and deposition method
WO2012142038A1 (en) E-beam enhanced decoupled source for semiconductor processing
JPS61177728A (en) Apparatus for irradiation with low-energy ionized particle
JP4032504B2 (en) Sputtering equipment
KR20210114072A (en) A substrate processing tool capable of temporally and/or spatially modulating one or more plasmas
KR20040025587A (en) Plasma source
JP6104126B2 (en) Film forming apparatus and film forming method
JPH11273894A (en) Thin film forming device
JPH10195640A (en) Film forming apparatus and ion source

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 09838313

Country of ref document: EP

Kind code of ref document: A1

WWE Wipo information: entry into national phase

Ref document number: 2010546524

Country of ref document: JP

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 09838313

Country of ref document: EP

Kind code of ref document: A1