WO2013099044A1 - Ion beam processing device and neutralizer - Google Patents

Ion beam processing device and neutralizer Download PDF

Info

Publication number
WO2013099044A1
WO2013099044A1 PCT/JP2012/002921 JP2012002921W WO2013099044A1 WO 2013099044 A1 WO2013099044 A1 WO 2013099044A1 JP 2012002921 W JP2012002921 W JP 2012002921W WO 2013099044 A1 WO2013099044 A1 WO 2013099044A1
Authority
WO
WIPO (PCT)
Prior art keywords
cathode
anode
plasma
neutralizer
ion beam
Prior art date
Application number
PCT/JP2012/002921
Other languages
French (fr)
Japanese (ja)
Inventor
翼 深石
行人 中川
公志 辻山
Original Assignee
キヤノンアネルバ株式会社
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by キヤノンアネルバ株式会社 filed Critical キヤノンアネルバ株式会社
Publication of WO2013099044A1 publication Critical patent/WO2013099044A1/en

Links

Images

Classifications

    • HELECTRICITY
    • H01ELECTRIC ELEMENTS
    • H01JELECTRIC DISCHARGE TUBES OR DISCHARGE LAMPS
    • H01J37/00Discharge tubes with provision for introducing objects or material to be exposed to the discharge, e.g. for the purpose of examination or processing thereof
    • H01J37/32Gas-filled discharge tubes
    • H01J37/32009Arrangements for generation of plasma specially adapted for examination or treatment of objects, e.g. plasma sources
    • H01J37/32422Arrangement for selecting ions or species in the plasma

Definitions

  • the present invention relates to an ion beam processing apparatus and a neutralizer, and more particularly to a neutralizer as an electron gun and an ion beam processing apparatus including the neutralizer.
  • ion beam etching using an ion beam for etching is widely used for processing a substrate to be processed.
  • An ion beam is formed by extracting positive ions from a plasma source using a plurality of electrodes. At this time, in order to prevent the substrate to be processed from being charged up, it is necessary to supply a negative charge corresponding to the charge amount of the extracted ion beam.
  • the negative charge is supplied by supplying electrons using a neutralizer (see Patent Document 1).
  • reference numeral 201 denotes an anode (anode)
  • reference numeral 202 denotes a cathode (cathode)
  • reference numeral 203 denotes an insulator for insulating the anode 201 and the cathode 202.
  • the cathode 202 has a cylindrical shape, and one end of the cathode 202 is open and the other end is closed. An opening formed at one end of the cathode 202 faces the anode 201.
  • the cathode 202 has a hollow portion 207 in which plasma is formed.
  • the cross-sectional shape of the hollow portion of the cathode 202 is generally circular, but it is sufficient that a space where plasma can be formed exists, such as a regular octagon or a regular hexagon.
  • the anode 201 and the cathode 202 are connected to a power source 206 in order to apply a predetermined voltage to each.
  • Reference numeral 204 denotes a gas introduction path for introducing discharge gas into the neutralizer
  • reference numeral 205 denotes a gas introduction control unit for controlling the flow rate and pressure of the discharge gas introduced into the gas introduction path 204. Yes, connected to a gas source (not shown).
  • Plasma is formed in the hollow portion 207 by introducing a discharge gas into the neutralizer through the gas introduction path 204 and applying a negative voltage to the cathode 202 by the power source 206. Further, when a positive voltage is applied to the anode 201 by the power source 206, electrons are extracted from the plasma from the opening of the anode 201 facing the hollow portion 207, and the ion beam is neutralized.
  • titanium is preferably used for the anode 201 in consideration of heat resistance
  • stainless steel is preferably used for the cathode 202 in consideration of processability and cost.
  • the vicinity of the opening of the cathode 202 is scraped (sputtered) by ions in the plasma.
  • the portion scraped from the cathode 202 by the plasma is deposited in the vicinity of the opening of the anode 201 inside the neutralizer, as shown in FIG.
  • the deposit 208 in the neutralizer falls on the substrate during processing to generate particles, resulting in product defects and a decrease in yield. Arise.
  • the gist of the present invention is that, in a neutralizer as an electron gun provided in an ion beam processing apparatus, the anode and the cathode are made of the same material or the same material.
  • a plasma forming chamber having an internal space, a processing chamber connected to the plasma forming chamber, power supply means for forming plasma in the plasma forming chamber, and the plasma forming chamber.
  • An ion beam processing apparatus comprising: extraction means for extracting ions from a formed plasma and irradiating an ion beam toward the processing chamber; and a neutralizer provided in the processing chamber and emitting electrons.
  • the neutralizer has opposed portions, a cathode in which plasma is generated in a space between the opposed portions, and an anode having an opening for extracting electrons from the plasma formed in the space And applying a positive voltage to the anode to extract the electrons from the plasma, and applying a voltage negative to the positive voltage to the cathode. It has a voltage application means for generating plasma and a gas introduction part for introducing a discharge gas into the space, and the anode and the cathode are made of a material having the same thermal expansion coefficient. And
  • a neutralizer having opposed portions, a cathode in which plasma is generated in a space between the opposed portions, and electrons from the plasma formed in the space.
  • An anode having an opening for extracting the positive electrode; and applying a positive voltage to the anode to extract the electrons from the plasma; and applying a negative voltage to the positive electrode to the cathode It has a voltage application means for generating and a gas introduction part for introducing a discharge gas into the space, and the anode and the cathode are made of a material having the same thermal expansion coefficient. .
  • the plasma generated in the neutralizer is etched at the cathode of the neutralizer, thereby reducing the deposits deposited on the anode of the neutralizer from the anode. it can. Therefore, by using the present invention, even when an ion beam is used for processing an electronic component, the generation of particles from the neutralizer is reduced and the yield is improved.
  • FIG. 1 shows a schematic diagram of an ion beam etching apparatus as an example of an ion beam processing apparatus using a neutralizer according to an embodiment of the present invention.
  • the ion beam etching apparatus 100 is configured such that high-frequency power supplied from the discharge power source 112 is supplied to the antenna 106 and plasma is formed in the plasma formation chamber 102 inside the bell jar 104.
  • the bell jar 104 includes a Faraday shield 118 on its inner wall.
  • FIG. 2 shows a hollow cathode type neutralizer 113 according to an embodiment of the present invention.
  • the basic structure of the neutralizer 113 according to this embodiment may be the same as that of the hollow cathode type neutralizer shown in FIGS.
  • the neutralizer 113 has a cylindrical shape having a hollow portion 17, and includes a cathode 12 having a circular cross section. Since the inner wall of the hollow cathode 12 is configured to form the hollow portion 17, the other portion of the inner wall is present at a position where any portion of the inner wall faces each other. That is, the space between the mutually facing portions of the inner wall of the cathode 12 becomes the hollow portion 17.
  • the voltage applied to the cathode 12 may be a negative voltage with respect to the positive voltage applied to the anode 11a as described above, and the positive voltage applied to the anode 11a.
  • the voltage may be lower than that. Therefore, the sign may be a negative voltage, or the sign may be a positive voltage but a voltage lower than the positive voltage applied to the anode.
  • the anode 11a and the cathode 12 of the neutralizer 113 are materials having the same thermal expansion coefficient.
  • the discharge gas when the discharge gas is introduced into the neutralizer 113 from the gas introduction path 14, the discharge gas is supplied to the plasma forming space (particularly, the hollow portion 17).
  • the plasma forming space when a predetermined voltage is applied from the power source 16 to the anode 11a and the cathode 12, plasma is generated in the plasma forming space, and electrons are attracted to the anode 11a from the plasma and neutralized through the opening 11b. The light is emitted to the outside of the vessel 113.
  • the cathode 12 (particularly in the vicinity of the opening 12a) is sputtered by the action of the plasma generated in the hollow part 17, and a part of the sputtered cathode 12 is applied to the anode 11a (particularly in the vicinity of the opening 11b). Deposits may form deposits 18.
  • the deposit 18 is formed by particles sputtered from the cathode 12, and therefore the anode 11a and the deposit The thermal expansion coefficient with 18 is also equal. For this reason, even if the anode 11a and the deposit 18 are heated by the plasma generated in the neutralizer 113, the amounts of thermal expansion are equal, and the stress generated at the interface between the anode 11a and the deposit 18 is greatly reduced. Is done. For this reason, even if the deposit 18 accumulates on the anode 11a, the deposit 18 hardly falls on the substrate 111, and particles can be reduced.
  • the term “particle” refers to a fine particle having a diameter of approximately 0.01 ⁇ m or more and 1 ⁇ m or less made of metal or a material containing metal.
  • titanium, molybdenum, tantalum or the like may be used.
  • titanium is preferable from the viewpoint of low sputtering rate, high discharge efficiency, and the like.
  • the neutralizer 113 is an electron gun that emits electrons for electrically neutralizing the ion beam emitted from the plasma forming chamber 102, and is obtained by being sputtered from the cathode 12. It is not an apparatus intended to emit elements (eg, sputtered particles, ions of the sputtered particles, deposits 18 etc.). In particular, it is not desirable to discharge the deposit 18 from the neutralizer 113. Conventionally, as described with reference to FIG. 4, the reason why the deposit 208 deposited on the anode 201 is released from the neutralizer is that the deposit 208 is peeled off from the anode.
  • the cathode 11 side portion of the anode 11a is made of a material having the same thermal expansion coefficient as that of the cathode 12a, and the other portions are made of materials other than the material having the same thermal expansion coefficient as that of the cathode 12. Also good.
  • the portion of the anode 11a facing the cathode 12 and the opening may be made of a material having the same thermal expansion coefficient as that of the cathode 12, and the portion of the anode 11a not facing the plasma may be made of another material.
  • a hollow cathode type neutralizer has been described, but the present invention is not limited to this form.
  • the plasma sputters the cathode. It is important to reduce the falling of the deposit formed on the anode by depositing the sputtered particles generated as a part of the cathode on the anode.
  • a flat plate electrode as an anode having an opening as an electron emission port of a neutralizer is provided.
  • Two flat plate electrodes as cathode electrodes for applying a negative voltage to the anode are arranged opposite to each other.
  • An anode electrode is provided on the side of the two cathode electrodes arranged opposite to each other.
  • the plasma may be generated in a space formed between the facing cathode electrodes, and electrons may be emitted from the plasma to the outside through the opening of the anode.
  • the cathode is two plate electrodes arranged opposite to each other as opposed portions of the cathode. Therefore, plasma is generated in the space between the two plate electrodes arranged opposite to each other by applying a predetermined voltage to the cathode.
  • the anode preferably faces a space where plasma is generated.
  • the hollow cathode type neutralizer 113 by applying the hollow cathode type neutralizer 113, it is possible to generate high-density plasma at a low voltage in the neutralizer 113 while making the inside of the processing chamber 101 a high vacuum. . That is, even if the pressure of the discharge gas in the neutralizer 113 is lowered, a sufficient amount of electrons can be emitted from the neutralizer 113. Therefore, a good process can be performed even for a process that requires a high vacuum process such as fine processing of the MRAM.
  • the processing chamber 101 and the plasma forming chamber 102 are exhausted by the exhaust pump 103.
  • the substrate 111 is placed on the substrate holder 110, and then Ar as a discharge gas is introduced into the plasma forming chamber 102 from the gas introduction unit 105 at 10 sccm.
  • plasma is formed in the plasma formation chamber 102 by applying 1 kW of power to the antenna 106. Thereafter, a voltage is applied to the grid 109.
  • the grid 109 has three electrodes. When viewed from the plasma forming chamber 102 side, a voltage of +200 V is applied to the first electrode, and a voltage of ⁇ 800 V is applied to the second electrode. The third electrode is grounded. An ion beam is extracted from the plasma forming chamber 102 to the processing chamber 101 from the grid 109.
  • the processing chamber 101 is evacuated to about 1.0 ⁇ 10 ⁇ 2 Pa by the exhaust pump 103.

Abstract

The invention provides an ion beam processing device and a neutralizer that are capable of reducing a fall of a deposit that has accumulated on an anode of the neutralizer due to sputtering of a cathode of the neutralizer caused by plasma generated in the neutralizer, said fall being from the anode. The ion beam processing device of one embodiment of the invention is provided with: a structure that irradiates the interior of a processing chamber with an ion beam generated in a plasma generation chamber; and a neutralizer that discharges electrons. The neutralizer is characterized by comprising the cathode, the anode, a voltage application means, and a gas supply section, and the anode and the cathode being formed from materials that have the same thermal expansion ratio. The cathode has mutually facing portions, and the plasma is generated in a space between the mutually facing portions. The anode has an opening for extracting electrons from the plasma formed in the space. The voltage application means is a means for applying a positive voltage to the anode and extracting electrons from the plasma, and applying a voltage that is negative relative to the positive voltage to the cathode and generating the plasma. The gas supply section is a section for supplying discharge gas to the space.

Description

イオンビーム処理装置および中和器Ion beam processing device and neutralizer
 本発明は、イオンビーム処理装置及び中和器に関し、より詳細には、電子銃としての中和器および該中和器を備えるイオンビーム処理装置に関する。 The present invention relates to an ion beam processing apparatus and a neutralizer, and more particularly to a neutralizer as an electron gun and an ion beam processing apparatus including the neutralizer.
 電子部品等の製造において、イオンビームによる種々の処理が適用されている。特にイオンビームをエッチングに用いたイオンビームエッチングは、被処理基板の加工等に広く利用されている。 In the manufacture of electronic parts, various treatments using ion beams are applied. In particular, ion beam etching using an ion beam for etching is widely used for processing a substrate to be processed.
 イオンビームはプラズマ源から複数の電極を用いて正イオンを引き出すことにより形成される。このとき被処理基板のチャージアップを防止するために、引き出したイオンビームの電荷量に応じた負の電荷を供給する必要がある。負の電荷の供給は中和器を用いて電子を供給することにより行われる(特許文献1参照)。 An ion beam is formed by extracting positive ions from a plasma source using a plurality of electrodes. At this time, in order to prevent the substrate to be processed from being charged up, it is necessary to supply a negative charge corresponding to the charge amount of the extracted ion beam. The negative charge is supplied by supplying electrons using a neutralizer (see Patent Document 1).
特開平4-351838号公報JP-A-4-351538
 中和器とは、イオンビーム処理装置内のイオンビームによる電荷を中和するために設置される電子発生装置であり、その構造例としては、図3に示すようなホローカソードタイプのものが挙げられる。ホローカソードタイプの中和器はフィラメントを用いた中和器と比べて寿命が長く、小さなプラズマ体積で大きな電流密度及び効率が得られる。なお、図3及び図4は本発明者が従来の中和器の課題を説明するために作成した図である。 The neutralizer is an electron generator installed to neutralize the electric charge generated by the ion beam in the ion beam processing apparatus, and an example of the structure is a hollow cathode type as shown in FIG. It is done. A hollow cathode type neutralizer has a longer life than a neutralizer using a filament, and a large current density and efficiency can be obtained with a small plasma volume. 3 and 4 are diagrams created by the present inventor for explaining the problems of the conventional neutralizer.
 図3において、符号201はアノード(陽極)、符号202はカソード(陰極)、符号203はアノード201とカソード202を絶縁するための絶縁体である。カソード202は筒形であり、カソード202の一端が開口しており、他端は閉塞している。上記カソード202の一端に形成された開口部は、アノード201に対向している。カソード202は内部にプラズマが形成される中空部207を有する。カソード202の中空部の断面形状は一般に円状であるが、正八角形や正六角形など、プラズマが形成できる空間が存在すれば良い。アノード201及びカソード202は各々に所定の電圧を印加するために電源206に接続されている。符号204は中和器内に放電用ガスを導入するためのガス導入路であり、符号205はガス導入路204に導入される放電用ガスの流量や圧力を制御するためのガス導入制御部であり、不図示のガス源に接続される。 In FIG. 3, reference numeral 201 denotes an anode (anode), reference numeral 202 denotes a cathode (cathode), and reference numeral 203 denotes an insulator for insulating the anode 201 and the cathode 202. The cathode 202 has a cylindrical shape, and one end of the cathode 202 is open and the other end is closed. An opening formed at one end of the cathode 202 faces the anode 201. The cathode 202 has a hollow portion 207 in which plasma is formed. The cross-sectional shape of the hollow portion of the cathode 202 is generally circular, but it is sufficient that a space where plasma can be formed exists, such as a regular octagon or a regular hexagon. The anode 201 and the cathode 202 are connected to a power source 206 in order to apply a predetermined voltage to each. Reference numeral 204 denotes a gas introduction path for introducing discharge gas into the neutralizer, and reference numeral 205 denotes a gas introduction control unit for controlling the flow rate and pressure of the discharge gas introduced into the gas introduction path 204. Yes, connected to a gas source (not shown).
 中和器内にガス導入路204を介して放電用ガスを導入し、電源206によりカソード202に負の電圧を印加することで、中空部207にプラズマが形成される。さらに電源206によりアノード201に正の電圧を印加することで、中空部207に対向したアノード201の開口部より上記プラズマから電子が引き出され、イオンビームの中和が行われる。
 アノード201には、例えば、耐熱性を考慮してチタンが、カソード202には加工容易性およびコストを考慮してステンレスが好適に用いられる。
Plasma is formed in the hollow portion 207 by introducing a discharge gas into the neutralizer through the gas introduction path 204 and applying a negative voltage to the cathode 202 by the power source 206. Further, when a positive voltage is applied to the anode 201 by the power source 206, electrons are extracted from the plasma from the opening of the anode 201 facing the hollow portion 207, and the ion beam is neutralized.
For example, titanium is preferably used for the anode 201 in consideration of heat resistance, and stainless steel is preferably used for the cathode 202 in consideration of processability and cost.
 上述したようなホローカソードタイプの中和器では、カソード202の開口部付近がプラズマ中のイオンによって削られていく(スパッタされる)。上記プラズマによりカソード202から削られた部分は、図4に示すように、中和器内部のアノード201の開口部付近に堆積し、堆積物208が形成される。このためイオンビームを電子部品の製造に用いる場合、中和器内の堆積物208が加工中に基板上に落下することでパーティクルが生じ、製品の不良が発生して歩留まりが低下するという問題が生じる。 In the hollow cathode type neutralizer as described above, the vicinity of the opening of the cathode 202 is scraped (sputtered) by ions in the plasma. The portion scraped from the cathode 202 by the plasma is deposited in the vicinity of the opening of the anode 201 inside the neutralizer, as shown in FIG. For this reason, when an ion beam is used in the manufacture of electronic components, the deposit 208 in the neutralizer falls on the substrate during processing to generate particles, resulting in product defects and a decrease in yield. Arise.
 本発明は、このような課題に鑑みてなされたものであり、その目的とするところは、中和器内に生成されたプラズマ中のイオンによって該中和器のカソードがスパッタされることにより該中和器のアノードに堆積した堆積物の該アノードからの落下を低減可能なイオンビーム処理装置および中和器を提供することにある。 The present invention has been made in view of such problems, and the object of the present invention is that the cathode of the neutralizer is sputtered by ions in the plasma generated in the neutralizer. An object of the present invention is to provide an ion beam processing apparatus and a neutralizer capable of reducing the fall of deposits deposited on the anode of the neutralizer from the anode.
 本発明は、イオンビーム処理装置に備えられた電子銃としての中和器において、アノードとカソードとが同一の熱膨張率を有する材料もしくは同一の材料であることをその要旨とする。 The gist of the present invention is that, in a neutralizer as an electron gun provided in an ion beam processing apparatus, the anode and the cathode are made of the same material or the same material.
 本発明の第1の態様は、内部空間を有するプラズマ形成室と、前記プラズマ形成室に連結した処理室と、前記プラズマ形成室にプラズマを形成するための電力供給手段と、前記プラズマ形成室に形成されたプラズマからイオンを引き出し、前記処理室に向けてイオンビームを照射するための引き出し手段と、前記処理室内に設けられ、電子を放出する中和器とを備えるイオンビーム処理装置であって、前記中和器は、対向した部分を有し、該対向された部分の間の空間においてプラズマが生成されるカソードと、前記空間に形成されるプラズマから電子を引き出すための開口部を有するアノードと、前記アノードに正の電圧を印加して前記プラズマから前記電子を引き出し、前記カソードに前記正の電圧に対して負となる電圧を印加して前記プラズマを生成するための電圧印加手段と、前記空間に放電用ガスを導入するためのガス導入部とを有し、前記アノードと前記カソードとが同一の熱膨張率を有する材料であることを特徴とする。 According to a first aspect of the present invention, there is provided a plasma forming chamber having an internal space, a processing chamber connected to the plasma forming chamber, power supply means for forming plasma in the plasma forming chamber, and the plasma forming chamber. An ion beam processing apparatus comprising: extraction means for extracting ions from a formed plasma and irradiating an ion beam toward the processing chamber; and a neutralizer provided in the processing chamber and emitting electrons. The neutralizer has opposed portions, a cathode in which plasma is generated in a space between the opposed portions, and an anode having an opening for extracting electrons from the plasma formed in the space And applying a positive voltage to the anode to extract the electrons from the plasma, and applying a voltage negative to the positive voltage to the cathode. It has a voltage application means for generating plasma and a gas introduction part for introducing a discharge gas into the space, and the anode and the cathode are made of a material having the same thermal expansion coefficient. And
 本発明の第2の態様は、中和器であって、対向した部分を有し、該対向された部分の間の空間においてプラズマが生成されるカソードと、前記空間に形成されるプラズマから電子を引き出すための開口部を有するアノードと、前記アノードに正の電圧を印加して前記プラズマから前記電子を引き出し、前記カソードに前記正の電圧に対して負となる電圧を印加して前記プラズマを生成するための電圧印加手段と、前記空間に放電用ガスを導入するためのガス導入部とを有し、前記アノードと前記カソードとが同一の熱膨張率を有する材料であることを特徴とする。 According to a second aspect of the present invention, there is provided a neutralizer having opposed portions, a cathode in which plasma is generated in a space between the opposed portions, and electrons from the plasma formed in the space. An anode having an opening for extracting the positive electrode; and applying a positive voltage to the anode to extract the electrons from the plasma; and applying a negative voltage to the positive electrode to the cathode It has a voltage application means for generating and a gas introduction part for introducing a discharge gas into the space, and the anode and the cathode are made of a material having the same thermal expansion coefficient. .
 本発明によれば、中和器内に生成されたプラズマにより該中和器のカソードがエッチングされることにより該中和器のアノードに堆積した堆積物の該アノードからの落下を低減することができる。よって、本発明を用いることで、電子部品の加工にイオンビームを用いた場合にも、中和器からのパーティクル発生が低減され、歩留まりが改善される。 According to the present invention, the plasma generated in the neutralizer is etched at the cathode of the neutralizer, thereby reducing the deposits deposited on the anode of the neutralizer from the anode. it can. Therefore, by using the present invention, even when an ion beam is used for processing an electronic component, the generation of particles from the neutralizer is reduced and the yield is improved.
本発明の一実施形態に係るイオンビーム処理装置の一例を説明するための図である。It is a figure for demonstrating an example of the ion beam processing apparatus which concerns on one Embodiment of this invention. 本発明の一実施形態に係る中和器を説明するための図である。It is a figure for demonstrating the neutralizer which concerns on one Embodiment of this invention. 従来の中和器を説明するための図である。It is a figure for demonstrating the conventional neutralizer. 従来の中和器の問題点を説明するための図である。It is a figure for demonstrating the problem of the conventional neutralizer.
 以下、図面を参照して本発明の実施の形態を説明する。なお、本発明は本実施形態に限定されず、その要旨を逸脱しない範囲において適宜変更可能である。また、以下で説明する図面において、同機能を有するものは同一符号を付け、その繰り返しの説明は省略することもある。 Hereinafter, embodiments of the present invention will be described with reference to the drawings. In addition, this invention is not limited to this embodiment, In the range which does not deviate from the summary, it can change suitably. In the drawings described below, components having the same function are denoted by the same reference numerals, and repeated description thereof may be omitted.
 本発明の一実施形態に係る中和器を用いたイオンビーム処理装置の一例としての、イオンビームエッチング装置の概略図を図1に示す。 FIG. 1 shows a schematic diagram of an ion beam etching apparatus as an example of an ion beam processing apparatus using a neutralizer according to an embodiment of the present invention.
 イオンビームエッチング装置100は、主にプラズマが形成されるプラズマ形成室102と、プラズマ形成室102と連結した処理室101とを備えている。プラズマ形成室102は、プラズマを形成するためのプラズマ形成手段として、放電容器としてのベルジャ104、ガス導入部105、ベルジャ104内に誘導磁界を発生するアンテナ106、アンテナ106に高周波電力(ソース電力)を供給する放電用電源112、放電用電源112とアンテナ106の間に設けられた整合器107、電磁コイル108を有している。また、プラズマ形成室102は、処理室101との境界に設置されたグリッド109を有している。すなわち、イオンビームエッチング装置100は、放電用電源112から供給された高周波電力がアンテナ106に供給され、ベルジャ104内部のプラズマ形成室102にプラズマが形成されるように構成されている。ベルジャ104はその内壁部にファラデーシールド118を備える。 The ion beam etching apparatus 100 includes a plasma forming chamber 102 in which mainly plasma is formed, and a processing chamber 101 connected to the plasma forming chamber 102. The plasma forming chamber 102 is a plasma forming means for forming plasma, a bell jar 104 as a discharge vessel, a gas introduction unit 105, an antenna 106 that generates an induced magnetic field in the bell jar 104, and a high frequency power (source power) to the antenna 106. A discharge power supply 112, a matching unit 107 provided between the discharge power supply 112 and the antenna 106, and an electromagnetic coil 108. In addition, the plasma formation chamber 102 has a grid 109 installed at the boundary with the processing chamber 101. That is, the ion beam etching apparatus 100 is configured such that high-frequency power supplied from the discharge power source 112 is supplied to the antenna 106 and plasma is formed in the plasma formation chamber 102 inside the bell jar 104. The bell jar 104 includes a Faraday shield 118 on its inner wall.
 処理室101には排気ポンプ103が設置されている。また、処理室101内には基板ホルダ110があり、基板111は基板ホルダ110により保持される。プラズマ形成室102にプラズマが形成された後、イオンビームエッチング装置100は、グリッド109に電圧を印加して、プラズマ形成室102内のイオンをビームとして引き出す。基板111は引き出されたイオンビームによりエッチングされる。イオンビームにより帯電した基板111は、中和器113から出射された電子により電気的に中和される。 An exhaust pump 103 is installed in the processing chamber 101. The processing chamber 101 has a substrate holder 110, and the substrate 111 is held by the substrate holder 110. After the plasma is formed in the plasma formation chamber 102, the ion beam etching apparatus 100 applies a voltage to the grid 109 to extract ions in the plasma formation chamber 102 as a beam. The substrate 111 is etched by the extracted ion beam. The substrate 111 charged by the ion beam is electrically neutralized by electrons emitted from the neutralizer 113.
 図2に本発明の一実施形態に係るホローカソードタイプの中和器113を示す。本実施形態に係る中和器113の基本的な構造は図3及び図4において示した、ホローカソードタイプの中和器と同様であっても良い。
 図2において、中和器113は、中空部17を有する筒状であって、その断面が円状のカソード12を備えている。中空状のカソード12の内壁が中空部17を形成するように構成されているので、該内壁においては、いずれの部分も対向する位置に上記内壁の他の部分が存在する。すなわち、カソード12の内壁の互いに対向した部分の間の空間が中空部17となる。該断面形状は、円状に限らず、正八角形状、正六角形状など、中空部17内にてプラズマが生成できればいずれの形状であっても良い。該カソード12の一方端は開口しており、他方端は閉塞している。すなわち、カソード12の一方端には、外部と中空部17とを連結する開口部12aが形成されている。中和器113は、開口部12aと対向して設けられ、開口部11bを有する板状のアノード11a、および該アノード11aと連結された筒状である基体11cをさらに備えている。該基体11cの一方端は開口されており、該開口部にアノード11aが配置されている。また、基体11cの内部には、カソード12がアノード11aと対向するように設けられている。なお、アノード11aと基体11cとは別個の部材であっても良いし、一体物であっても良い。
FIG. 2 shows a hollow cathode type neutralizer 113 according to an embodiment of the present invention. The basic structure of the neutralizer 113 according to this embodiment may be the same as that of the hollow cathode type neutralizer shown in FIGS.
In FIG. 2, the neutralizer 113 has a cylindrical shape having a hollow portion 17, and includes a cathode 12 having a circular cross section. Since the inner wall of the hollow cathode 12 is configured to form the hollow portion 17, the other portion of the inner wall is present at a position where any portion of the inner wall faces each other. That is, the space between the mutually facing portions of the inner wall of the cathode 12 becomes the hollow portion 17. The cross-sectional shape is not limited to a circular shape, and may be any shape such as a regular octagonal shape or a regular hexagonal shape as long as plasma can be generated in the hollow portion 17. One end of the cathode 12 is open and the other end is closed. That is, an opening 12 a that connects the outside and the hollow portion 17 is formed at one end of the cathode 12. The neutralizer 113 is further provided with a plate-like anode 11a provided opposite to the opening 12a and having an opening 11b, and a cylindrical base 11c connected to the anode 11a. One end of the substrate 11c is opened, and the anode 11a is disposed in the opening. Further, a cathode 12 is provided inside the base 11c so as to face the anode 11a. Note that the anode 11a and the base 11c may be separate members or may be integrated.
 上記基体11c内には、アノード11aと基体11c、およびカソード12とを絶縁するための絶縁体13が設けられている。また、中和器113は、該中和器113内に放電用ガスを導入するためのガス導入路14を備えている。すなわち、該ガス導入路14は、中和器113内における、アノード11aおよびカソード12への電圧印加によりプラズマが形成されるプラズマ形成空間(例えば、中空部17を含む、アノード11aとカソード12との間の空間)に放電用ガスを供給するように設けられている。該ガス導入部14は、マスフローコントローラ(MFC)およびバルブを有し、該ガス導入路14に導入される放電用ガスの流量や圧力を制御するためのガス導入制御部15に接続されている。 In the base body 11c, an insulator 13 for insulating the anode 11a, the base body 11c, and the cathode 12 is provided. The neutralizer 113 includes a gas introduction path 14 for introducing a discharge gas into the neutralizer 113. That is, the gas introduction path 14 is a plasma forming space (for example, including the hollow portion 17 between the anode 11a and the cathode 12 in which plasma is formed by applying a voltage to the anode 11a and the cathode 12 in the neutralizer 113. It is provided so as to supply the discharge gas to the space between them. The gas introduction unit 14 includes a mass flow controller (MFC) and a valve, and is connected to a gas introduction control unit 15 for controlling the flow rate and pressure of the discharge gas introduced into the gas introduction path 14.
 さらに、中和器113は、アノード11aには接地電圧に対して正の電圧を印加し、カソード12には該正の電圧に対して負となる電圧を印加する電源16をさらに備えている。本実施形態では、電源16によりカソード12に所定の電圧が印加されることにより、カソード12の対向する部分の間の空間としての中空部17においてプラズマが生成され、かつ電源16によりアノード11aに所定の電圧が印加されることにより、上記プラズマが維持されると共に、該プラズマから電子を引き出すことができる。アノード11aおよびカソード12は、上記プラズマから電子を開口部11bを介して外部に引き出すように設けられている。なお、本実施形態では、カソード12に印加される電圧は、上述のようにアノード11aに印加される正の電圧に対して負の電圧であれば良く、該アノード11aに印加される正の電圧よりも低い電圧であれば良い。よって、符号が負の電圧であっても良いし、符号が正の電圧であるがアノードに印加される正の電圧よりも低い電圧であっても良い。 Furthermore, the neutralizer 113 further includes a power source 16 that applies a positive voltage with respect to the ground voltage to the anode 11a, and applies a negative voltage to the cathode 12 with respect to the positive voltage. In the present embodiment, when a predetermined voltage is applied to the cathode 12 by the power supply 16, plasma is generated in the hollow portion 17 as a space between the opposed portions of the cathode 12, and the plasma is generated on the anode 11 a by the power supply 16. Is applied, the plasma is maintained and electrons can be extracted from the plasma. The anode 11a and the cathode 12 are provided so as to extract electrons from the plasma to the outside through the opening 11b. In the present embodiment, the voltage applied to the cathode 12 may be a negative voltage with respect to the positive voltage applied to the anode 11a as described above, and the positive voltage applied to the anode 11a. The voltage may be lower than that. Therefore, the sign may be a negative voltage, or the sign may be a positive voltage but a voltage lower than the positive voltage applied to the anode.
 本実施形態において、中和器113のアノード11aとカソード12とは同一の熱膨張率を有する材料である。 In this embodiment, the anode 11a and the cathode 12 of the neutralizer 113 are materials having the same thermal expansion coefficient.
 本実施形態では、このような構成により、ガス導入路14から放電用ガスを中和器113内に導入すると、該放電用ガスはプラズマ形成空間(特に、中空部17)に供給される。これと共に、電源16からアノード11aおよびカソード12に所定の電圧を印加すると、上記プラズマ形成空間内にプラズマが生成され、該プラズマから電子がアノード11aに引き寄せられて、開口部11bを介して中和器113の外部に出射される。このとき、中空部17内にて生成されたプラズマの作用によってカソード12(特に開口部12a付近)がスパッタされ、該スパッタされたカソード12の一部はアノード11a(特に、開口部11b付近)に堆積し、堆積物18を形成することがある。 In the present embodiment, with such a configuration, when the discharge gas is introduced into the neutralizer 113 from the gas introduction path 14, the discharge gas is supplied to the plasma forming space (particularly, the hollow portion 17). At the same time, when a predetermined voltage is applied from the power source 16 to the anode 11a and the cathode 12, plasma is generated in the plasma forming space, and electrons are attracted to the anode 11a from the plasma and neutralized through the opening 11b. The light is emitted to the outside of the vessel 113. At this time, the cathode 12 (particularly in the vicinity of the opening 12a) is sputtered by the action of the plasma generated in the hollow part 17, and a part of the sputtered cathode 12 is applied to the anode 11a (particularly in the vicinity of the opening 11b). Deposits may form deposits 18.
 しかしながら、本実施形態のようにアノード11aとカソード12とが同一の熱膨張率を有する材料である場合、堆積物18はカソード12からスパッタされた粒子により形成されているので、アノード11aと堆積物18との熱膨張率も等しくなる。このため、中和器113内に生成されたプラズマによってアノード11aと堆積物18とが熱されても互いの熱膨張量が等しく、アノード11aと堆積物18との界面に発生する応力が大きく低減される。このためアノード11aに堆積物18が堆積しても、基板111上への堆積物18の落下が生じ難く、パーティクルを低減することが可能となる。
 なお本明細書においてパーティクルとは、金属あるいは金属を含む材料からなり、その直径が概ね0.01ミクロン以上、1ミクロン以下の微粒子のことを言う。
However, when the anode 11a and the cathode 12 are materials having the same thermal expansion coefficient as in the present embodiment, the deposit 18 is formed by particles sputtered from the cathode 12, and therefore the anode 11a and the deposit The thermal expansion coefficient with 18 is also equal. For this reason, even if the anode 11a and the deposit 18 are heated by the plasma generated in the neutralizer 113, the amounts of thermal expansion are equal, and the stress generated at the interface between the anode 11a and the deposit 18 is greatly reduced. Is done. For this reason, even if the deposit 18 accumulates on the anode 11a, the deposit 18 hardly falls on the substrate 111, and particles can be reduced.
In the present specification, the term “particle” refers to a fine particle having a diameter of approximately 0.01 μm or more and 1 μm or less made of metal or a material containing metal.
 本実施形態では、アノード11aとカソード12とが同一の材料である場合はより一層のパーティクルの低減が可能となる。すなわち、アノード11aと堆積物18との材料が同一であることによって、アノード11aと堆積物18との間の密着性が向上するため、基板111上への堆積物18の落下の危険性をより一層低減させることが可能となる。 In this embodiment, when the anode 11a and the cathode 12 are made of the same material, it is possible to further reduce particles. That is, since the materials of the anode 11a and the deposit 18 are the same, the adhesion between the anode 11a and the deposit 18 is improved, so that the risk of the deposit 18 falling on the substrate 111 is further increased. This can be further reduced.
 アノード11aとカソード12とを同一の材料とする場合は、チタンやモリブデン、タンタルなどが用いれば良い。特にチタンは、低スパッタ率、高放電効率等の観点から見て好ましい。 When the anode 11a and the cathode 12 are made of the same material, titanium, molybdenum, tantalum or the like may be used. In particular, titanium is preferable from the viewpoint of low sputtering rate, high discharge efficiency, and the like.
 低スパッタ率の観点から、アノード11aとカソード12の材料として導電性のセラミクスを用いることもできる。特に炭化シリコン、チタニア、ジルコニア等の材料は導電性の付与が比較的容易であり、アノードおよびカソードとして用いることができる。 From the viewpoint of low sputtering rate, conductive ceramics can be used as the material of the anode 11a and the cathode 12. In particular, materials such as silicon carbide, titania, and zirconia are relatively easy to impart conductivity, and can be used as an anode and a cathode.
 本実施形態では、中和器113は、プラズマ形成室102から放出されたイオンビームを電気的に中和するための電子を放出する電子銃であり、カソード12からスパッタされることによって得られた要素(例えば、スパッタ粒子、該スパッタ粒子のイオン、堆積物18など)を放出することを目的とした装置ではない。特に、上記堆積物18を中和器113から放出することは望ましくない。従来では、図4にて説明したように中和器からアノード201に堆積した堆積物208が放出されてしまう原因は、堆積物208がアノードから剥がれ落ちることが挙げられる。これに対して、本実施形態では、アノード11aとカソード12とを同一の材料にするなどして、アノード11aの熱膨張率とカソード12の熱膨張率とを同一にしているので、温度変化によるアノード11aと堆積物18との熱膨張量をほぼ等しくすることができ、温度変化が原因でアノード11aから堆積物18が剥がれ落ちることを低減することができる。 In the present embodiment, the neutralizer 113 is an electron gun that emits electrons for electrically neutralizing the ion beam emitted from the plasma forming chamber 102, and is obtained by being sputtered from the cathode 12. It is not an apparatus intended to emit elements (eg, sputtered particles, ions of the sputtered particles, deposits 18 etc.). In particular, it is not desirable to discharge the deposit 18 from the neutralizer 113. Conventionally, as described with reference to FIG. 4, the reason why the deposit 208 deposited on the anode 201 is released from the neutralizer is that the deposit 208 is peeled off from the anode. In contrast, in the present embodiment, the anode 11a and the cathode 12 are made of the same material, for example, so that the thermal expansion coefficient of the anode 11a and the thermal expansion coefficient of the cathode 12 are the same. The amount of thermal expansion between the anode 11a and the deposit 18 can be made substantially equal, and the deposit 18 can be prevented from peeling off from the anode 11a due to the temperature change.
 なお、本実施形態では、アノード11aの、カソード12側の部分をカソード12aと同一の熱膨張率を有する材料とし、それ以外の部分をカソード12と同一の熱膨張率を有する材料以外の材料としても良い。本発明では、上述のように、温度変化があってもプラズマによって形成されたカソード12由来の堆積物18とアノード11aとの熱膨張量をほぼ等しくすることが本質である。よって、アノード11aにおいては、少なくともカソード12に面する部分が、カソード12と同一の熱膨張率を有する材料であれば良いのである。例えば、アノード11aのカソード12に面する部分および開口部をカソード12と同一の熱膨張率を有する材料にし、アノード11aのプラズマに面していない部分を他の材料にしても良い。 In the present embodiment, the cathode 11 side portion of the anode 11a is made of a material having the same thermal expansion coefficient as that of the cathode 12a, and the other portions are made of materials other than the material having the same thermal expansion coefficient as that of the cathode 12. Also good. In the present invention, as described above, it is essential to make the thermal expansion amounts of the deposit 18 derived from the cathode 12 and the anode 11a formed by the plasma substantially equal even if the temperature changes. Therefore, in the anode 11 a, at least the portion facing the cathode 12 may be a material having the same thermal expansion coefficient as that of the cathode 12. For example, the portion of the anode 11a facing the cathode 12 and the opening may be made of a material having the same thermal expansion coefficient as that of the cathode 12, and the portion of the anode 11a not facing the plasma may be made of another material.
 本実施形態では、ホローカソードタイプの中和器について説明したが、この形態に限定されない。本発明では、電子を外部に放出させるための開口部を有するアノードとカソードとを備える中和器内にて生成されたプラズマから電子を引き出して放出する中和器において、上記プラズマがカソードをスパッタして発生したカソードの一部としてのスパッタ粒子がアノードに堆積することにより該アノードに形成された堆積物の落下を低減することが重要である。例えば、中和器の電子放出口としての開口部を有するアノードとしての平板電極を設ける。該アノードに対して負の電圧を印加する2枚のカソード電極としての平板電極とを対向配置させる。上記対向配置された2枚のカソード電極の側方にアノード電極を設ける。そして、対向したカソード電極の間に形成された空間にプラズマを生成して、該プラズマから電子をアノードが有する開口部を介して外部に放出する形態であっても良い。この形態においては、カソードは、カソードの対向する部分としての2枚の対向配置された平板電極である。よって、カソードへの所定の電圧印加により、対向配置された2枚の平板電極の間の空間にプラズマが生成されることになる。上記アノードは、プラズマが生成される空間に臨むことが好ましい。 In this embodiment, a hollow cathode type neutralizer has been described, but the present invention is not limited to this form. In the present invention, in the neutralizer that draws and emits electrons from the plasma generated in the neutralizer having an anode having an opening for emitting electrons to the outside and a cathode, the plasma sputters the cathode. It is important to reduce the falling of the deposit formed on the anode by depositing the sputtered particles generated as a part of the cathode on the anode. For example, a flat plate electrode as an anode having an opening as an electron emission port of a neutralizer is provided. Two flat plate electrodes as cathode electrodes for applying a negative voltage to the anode are arranged opposite to each other. An anode electrode is provided on the side of the two cathode electrodes arranged opposite to each other. The plasma may be generated in a space formed between the facing cathode electrodes, and electrons may be emitted from the plasma to the outside through the opening of the anode. In this embodiment, the cathode is two plate electrodes arranged opposite to each other as opposed portions of the cathode. Therefore, plasma is generated in the space between the two plate electrodes arranged opposite to each other by applying a predetermined voltage to the cathode. The anode preferably faces a space where plasma is generated.
 ただし、本実施形態では、ホローカソードタイプの中和器113を適用することで、処理室101内を高真空にしつつ、中和器113内において低電圧で高密度のプラズマを生成することができる。すなわち、中和器113内の放電用ガスの圧力を低くしても、中和器113から十分な量の電子を放出することができる。従って、MRAMの微細加工といった高真空での処理が必要なものに対しても、良好な処理を行うことができる。 However, in the present embodiment, by applying the hollow cathode type neutralizer 113, it is possible to generate high-density plasma at a low voltage in the neutralizer 113 while making the inside of the processing chamber 101 a high vacuum. . That is, even if the pressure of the discharge gas in the neutralizer 113 is lowered, a sufficient amount of electrons can be emitted from the neutralizer 113. Therefore, a good process can be performed even for a process that requires a high vacuum process such as fine processing of the MRAM.
 (実施例)
 本実施形態に係る中和器113を用いて、イオンビームエッチングによって電子部品の加工を行う際の一例を以下に示す。
(Example)
An example of processing an electronic component by ion beam etching using the neutralizer 113 according to this embodiment will be described below.
 まず排気ポンプ103によって処理室101及びプラズマ形成室102を排気する。次に基板111を基板ホルダ110に載置し、次にプラズマ形成室102に放電用ガスとしてのArをガス導入部105から10sccmで導入する。 First, the processing chamber 101 and the plasma forming chamber 102 are exhausted by the exhaust pump 103. Next, the substrate 111 is placed on the substrate holder 110, and then Ar as a discharge gas is introduced into the plasma forming chamber 102 from the gas introduction unit 105 at 10 sccm.
 次に、アンテナ106に1kWの電力を印加することで、プラズマ形成室102にプラズマを形成する。その後、グリッド109に電圧を印加する。グリッド109は3枚の電極を有しており、プラズマ形成室102側から見て1枚目の電極には+200Vの電圧が、2枚目の電極には-800Vの電圧が印加されており、3枚目の電極は接地されている。グリッド109よりイオンビームがプラズマ形成室102から処理室101に引き出される。処理室101は排気ポンプ103により1.0×10-2Pa程度に排気される。 Next, plasma is formed in the plasma formation chamber 102 by applying 1 kW of power to the antenna 106. Thereafter, a voltage is applied to the grid 109. The grid 109 has three electrodes. When viewed from the plasma forming chamber 102 side, a voltage of +200 V is applied to the first electrode, and a voltage of −800 V is applied to the second electrode. The third electrode is grounded. An ion beam is extracted from the plasma forming chamber 102 to the processing chamber 101 from the grid 109. The processing chamber 101 is evacuated to about 1.0 × 10 −2 Pa by the exhaust pump 103.
 このとき、グリッド109より引き出されたイオンビームを中和すべく、中和器113より電子をイオンビームに対して供給する。中和器113のカソード12及びアノード11aは共にチタンである。まず放電用ガスが、ガス導入制御部15を通してガス導入路14から5sccmで中和器113の内部に導入される。放電用ガスとしてはArが用いられる。中和器113のカソード12にアノード11aに対する電位差が-200Vとなるように電圧を印加し、カソード12の中空部17にプラズマを形成する。アノード11aには接地電位に対して+24Vの電圧が印加され、主に中空部17に形成されたプラズマより電子が引き出され、開口部11bを介して基板111に向かって放出される。 At this time, electrons are supplied to the ion beam from the neutralizer 113 in order to neutralize the ion beam extracted from the grid 109. Both the cathode 12 and the anode 11a of the neutralizer 113 are titanium. First, the discharge gas is introduced into the neutralizer 113 through the gas introduction controller 15 from the gas introduction path 14 at 5 sccm. Ar is used as the discharge gas. A voltage is applied to the cathode 12 of the neutralizer 113 so that the potential difference with respect to the anode 11a becomes −200 V, and plasma is formed in the hollow portion 17 of the cathode 12. A voltage of + 24V is applied to the anode 11a with respect to the ground potential, and electrons are mainly extracted from the plasma formed in the hollow portion 17 and emitted toward the substrate 111 through the opening portion 11b.
 上述した実施例ではイオンビームエッチング装置を用いて説明したが、本実施形態に係る中和器はこれ以外のイオンビーム装置、例えば表面改質装置、イオンビームスパッタ装置、などにも適用可能である。また本実施形態に係る中和器を用いたイオンビーム処理装置は種々の電子部品の微細加工に適用可能である。 In the above-described examples, the ion beam etching apparatus has been described. However, the neutralizer according to the present embodiment can be applied to other ion beam apparatuses such as a surface modification apparatus and an ion beam sputtering apparatus. . Moreover, the ion beam processing apparatus using the neutralizer according to the present embodiment can be applied to fine processing of various electronic components.

Claims (8)

  1.  内部空間を有するプラズマ形成室と、
     前記プラズマ形成室に連結した処理室と、
     前記プラズマ形成室にプラズマを形成するための電力供給手段と、
     前記プラズマ形成室に形成されたプラズマからイオンを引き出し、前記処理室に向けてイオンビームを照射するための引き出し手段と、
     前記処理室内に設けられ、電子を放出する中和器と
     を備えるイオンビーム処理装置であって、
     前記中和器は、
     対向した部分を有し、該対向された部分の間の空間においてプラズマが生成されるカソードと、
     前記空間に形成されるプラズマから電子を引き出すための開口部を有するアノードと、
     前記アノードに正の電圧を印加して前記プラズマから前記電子を引き出し、前記カソードに前記正の電圧に対して負となる電圧を印加して前記プラズマを生成するための電圧印加手段と、
     前記空間に放電用ガスを導入するためのガス導入部とを有し、
     前記アノードと前記カソードとが同一の熱膨張率を有する材料であることを特徴とするイオンビーム処理装置。
    A plasma forming chamber having an internal space;
    A processing chamber connected to the plasma forming chamber;
    Power supply means for forming plasma in the plasma forming chamber;
    Extraction means for extracting ions from the plasma formed in the plasma forming chamber and irradiating an ion beam toward the processing chamber;
    An ion beam processing apparatus provided in the processing chamber and provided with a neutralizer that emits electrons,
    The neutralizer is
    A cathode having opposed portions, wherein plasma is generated in a space between the opposed portions;
    An anode having an opening for extracting electrons from plasma formed in the space;
    Voltage application means for applying a positive voltage to the anode to extract the electrons from the plasma, and applying a voltage negative to the positive voltage to the cathode to generate the plasma;
    A gas introduction part for introducing a discharge gas into the space;
    An ion beam processing apparatus, wherein the anode and the cathode are made of a material having the same thermal expansion coefficient.
  2.  前記カソードは、前記空間に対応する中空部を有し、一方端が開口されていることを特徴とする請求項1に記載のイオンビーム処理装置。 The ion beam processing apparatus according to claim 1, wherein the cathode has a hollow portion corresponding to the space, and one end thereof is opened.
  3.  前記アノードと前記カソードとが同一の材料であることを特徴とする請求項1に記載のイオンビーム処理装置。 The ion beam processing apparatus according to claim 1, wherein the anode and the cathode are made of the same material.
  4.  前記アノードと前記カソードとはチタンであることを特徴とする請求項3に記載のイオンビーム処理装置。 The ion beam processing apparatus according to claim 3, wherein the anode and the cathode are titanium.
  5.  対向した部分を有し、該対向された部分の間の空間においてプラズマが生成されるカソードと、
     前記空間に形成されるプラズマから電子を引き出すための開口部を有するアノードと、
     前記アノードに正の電圧を印加して前記プラズマから前記電子を引き出し、前記カソードに前記正の電圧に対して負となる電圧を印加して前記プラズマを生成するための電圧印加手段と、
     前記空間に放電用ガスを導入するためのガス導入部とを有し、
     前記アノードと前記カソードとが同一の熱膨張率を有する材料であることを特徴とする中和器。
    A cathode having opposed portions, wherein plasma is generated in a space between the opposed portions;
    An anode having an opening for extracting electrons from plasma formed in the space;
    Voltage application means for applying a positive voltage to the anode to extract the electrons from the plasma, and applying a voltage negative to the positive voltage to the cathode to generate the plasma;
    A gas introduction part for introducing a discharge gas into the space;
    The neutralizer characterized in that the anode and the cathode are made of a material having the same coefficient of thermal expansion.
  6.  前記カソードは、前記空間に対応する中空部を有し、一方端が開口されていることを特徴とする請求項5に記載の中和器。 The neutralizer according to claim 5, wherein the cathode has a hollow portion corresponding to the space, and one end is opened.
  7.  前記アノードと前記カソードとが同一の材料であることを特徴とする請求項5に記載の中和器。 The neutralizer according to claim 5, wherein the anode and the cathode are made of the same material.
  8.  前記アノードと前記カソードとはチタンであることを特徴とする請求項7に記載の中和器。
     

     
    The neutralizer according to claim 7, wherein the anode and the cathode are titanium.


PCT/JP2012/002921 2011-12-28 2012-04-27 Ion beam processing device and neutralizer WO2013099044A1 (en)

Applications Claiming Priority (2)

Application Number Priority Date Filing Date Title
JP2011287192A JP2015088218A (en) 2011-12-28 2011-12-28 Ion beam processing apparatus and neutralizer
JP2011-287192 2011-12-28

Publications (1)

Publication Number Publication Date
WO2013099044A1 true WO2013099044A1 (en) 2013-07-04

Family

ID=48696602

Family Applications (1)

Application Number Title Priority Date Filing Date
PCT/JP2012/002921 WO2013099044A1 (en) 2011-12-28 2012-04-27 Ion beam processing device and neutralizer

Country Status (2)

Country Link
JP (1) JP2015088218A (en)
WO (1) WO2013099044A1 (en)

Cited By (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078004A (en) * 2014-11-07 2017-08-18 应用材料公司 For having the apparatus and method of big width flexible base board using electron beam treatment
CN111734593A (en) * 2020-06-24 2020-10-02 电子科技大学 Ion neutralizer based on cold cathode
CN112908818A (en) * 2021-01-22 2021-06-04 中山市博顿光电科技有限公司 DC cathode neutralizer
CN112908817A (en) * 2021-01-22 2021-06-04 中山市博顿光电科技有限公司 Radio frequency cathode neutralizer

Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351838A (en) * 1991-05-28 1992-12-07 Hitachi Ltd Neutralization unit of ion beam device
JP2009217985A (en) * 2008-03-07 2009-09-24 Mitsui Eng & Shipbuild Co Ltd Ion source
JP2011204369A (en) * 2010-03-24 2011-10-13 Canon Anelva Corp Neutralizer and ion beam device with the same

Patent Citations (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH04351838A (en) * 1991-05-28 1992-12-07 Hitachi Ltd Neutralization unit of ion beam device
JP2009217985A (en) * 2008-03-07 2009-09-24 Mitsui Eng & Shipbuild Co Ltd Ion source
JP2011204369A (en) * 2010-03-24 2011-10-13 Canon Anelva Corp Neutralizer and ion beam device with the same

Cited By (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN107078004A (en) * 2014-11-07 2017-08-18 应用材料公司 For having the apparatus and method of big width flexible base board using electron beam treatment
CN111734593A (en) * 2020-06-24 2020-10-02 电子科技大学 Ion neutralizer based on cold cathode
CN112908818A (en) * 2021-01-22 2021-06-04 中山市博顿光电科技有限公司 DC cathode neutralizer
CN112908817A (en) * 2021-01-22 2021-06-04 中山市博顿光电科技有限公司 Radio frequency cathode neutralizer
CN112908817B (en) * 2021-01-22 2023-10-20 中山市博顿光电科技有限公司 Radio frequency cathode neutralizer

Also Published As

Publication number Publication date
JP2015088218A (en) 2015-05-07

Similar Documents

Publication Publication Date Title
US20090200158A1 (en) High power impulse magnetron sputtering vapour deposition
JP6652255B2 (en) Ion implantation system
JP2006506521A (en) High deposition rate sputtering
JP4945566B2 (en) Capacitively coupled magnetic neutral plasma sputtering system
TWI553132B (en) Arc deposition device and vacuum treatment device
JP2001028244A (en) Beam source
CN105655217A (en) Magnetron sputtering metal aluminum ion source of radio frequency bias voltage power supply
KR20070012275A (en) Device for improving plasma activity in pvd-reactors
KR101593544B1 (en) Sputtering device and sputtering method
WO2013099044A1 (en) Ion beam processing device and neutralizer
JP2016035925A (en) Plasma beam generating method and plasma source
JP4078084B2 (en) Ionized film forming method and apparatus
US11049697B2 (en) Single beam plasma source
TW201941240A (en) Plasma bridge neutralizer for ion beam etching
JP2007197840A (en) Ionized sputtering apparatus
JP2010090445A (en) Sputtering system and film deposition method
Rogov et al. A discharge cell that combines a magnetron and a hollow cathode for cleaning substrates and subsequent deposition of coatings
JP3073711B2 (en) Ion plating equipment
KR20040012264A (en) High effective magnetron sputtering apparatus
JP6104126B2 (en) Film forming apparatus and film forming method
RU2817406C1 (en) Fast atom source for uniform etching of flat dielectric substrates
JP5959409B2 (en) Film forming apparatus and method of operating film forming apparatus
RU2801364C1 (en) Method for generating solid state ion fluxes
JP4614220B2 (en) Sputtering apparatus and sputtering method
JPWO2010082345A1 (en) Silicon dot forming method and silicon dot forming apparatus

Legal Events

Date Code Title Description
121 Ep: the epo has been informed by wipo that ep was designated in this application

Ref document number: 12861180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: DE

122 Ep: pct application non-entry in european phase

Ref document number: 12861180

Country of ref document: EP

Kind code of ref document: A1

NENP Non-entry into the national phase

Ref country code: JP