JP5141622B2 - Greenhouse heating equipment - Google Patents

Greenhouse heating equipment Download PDF

Info

Publication number
JP5141622B2
JP5141622B2 JP2009083253A JP2009083253A JP5141622B2 JP 5141622 B2 JP5141622 B2 JP 5141622B2 JP 2009083253 A JP2009083253 A JP 2009083253A JP 2009083253 A JP2009083253 A JP 2009083253A JP 5141622 B2 JP5141622 B2 JP 5141622B2
Authority
JP
Japan
Prior art keywords
seedling
pipe
heating
hot water
flow rate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009083253A
Other languages
Japanese (ja)
Other versions
JP2010233477A (en
Inventor
次郎 中田
雄三 大野
崇博 大越
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Iseki and Co Ltd
Original Assignee
Iseki and Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Iseki and Co Ltd filed Critical Iseki and Co Ltd
Priority to JP2009083253A priority Critical patent/JP5141622B2/en
Publication of JP2010233477A publication Critical patent/JP2010233477A/en
Application granted granted Critical
Publication of JP5141622B2 publication Critical patent/JP5141622B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02ATECHNOLOGIES FOR ADAPTATION TO CLIMATE CHANGE
    • Y02A40/00Adaptation technologies in agriculture, forestry, livestock or agroalimentary production
    • Y02A40/10Adaptation technologies in agriculture, forestry, livestock or agroalimentary production in agriculture
    • Y02A40/25Greenhouse technology, e.g. cooling systems therefor
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02BCLIMATE CHANGE MITIGATION TECHNOLOGIES RELATED TO BUILDINGS, e.g. HOUSING, HOUSE APPLIANCES OR RELATED END-USER APPLICATIONS
    • Y02B30/00Energy efficient heating, ventilation or air conditioning [HVAC]
    • Y02B30/18Domestic hot-water supply systems using recuperated or waste heat
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P60/00Technologies relating to agriculture, livestock or agroalimentary industries
    • Y02P60/14Measures for saving energy, e.g. in green houses

Landscapes

  • Greenhouses (AREA)
  • Domestic Hot-Water Supply Systems And Details Of Heating Systems (AREA)

Description

この発明は、温室の暖房設備に関し、植物の栽培の技術分野に属する。   The present invention relates to a heating facility for a greenhouse and belongs to the technical field of plant cultivation.

化石燃料を燃焼させた熱を利用して温水を加温するボイラーである第一加温装置と、化石燃料以外から発生する熱を利用して温水を加温する太陽熱温水器である第二加温装置と、第一加温装置及び第二加温装置に温水を供給する加温管と、加温管により加温された温水をポンプへ供給するための第一供給管と、ポンプからの温水を温室内の暖房用管へ供給するための第二供給管と、暖房用管から加温管へ温水を戻すための戻り管を設け、加温管、第一供給管、第二供給管、暖房用管及び戻り管を経由する温水の循環経路を構成した温室の暖房設備が知られている(特許文献1参照)。   The first heating device, which is a boiler that heats hot water using heat generated by burning fossil fuel, and the second heating device, which is a solar water heater that heats hot water using heat generated from other than fossil fuel. A heating device, a heating tube for supplying warm water to the first heating device and the second heating device, a first supply tube for supplying warm water heated by the heating tube to the pump, and from the pump A second supply pipe for supplying hot water to the heating pipe in the greenhouse and a return pipe for returning the hot water from the heating pipe to the heating pipe are provided. The heating pipe, the first supply pipe, and the second supply pipe There is known a heating facility for a greenhouse that constitutes a circulation path of hot water via a heating pipe and a return pipe (see Patent Document 1).

特開2008−220217号公報JP 2008-220217 A

本発明は、二酸化炭素の増加による地球温暖化等の環境問題に鑑み、植物の残渣やおがくず等の製材副産物を圧縮成形した木質ペレットを燃料としたボイラー等の化石燃料以外の燃料を燃焼させた熱を利用して加温する加温装置を利用し、該加温装置を利用して温室を効率良く暖房できる温室の暖房設備を得ることにより、省エネルギー化を図ることを課題とする。   In view of environmental problems such as global warming due to an increase in carbon dioxide, the present invention burns fuels other than fossil fuels such as boilers using wood pellets obtained by compression-molding lumber by-products such as plant residues and sawdust. It is an object of the present invention to save energy by using a heating device that heats using heat and obtaining a heating facility for the greenhouse that can efficiently heat the greenhouse using the heating device.

上記課題を解決するために、次のような技術的手段を講じた。
すなわち、化石燃料を燃焼させた熱を利用して温水を加温する第一加温装置(131)と、化石燃料以外の燃料を燃焼させた熱を利用して温水を加温する第二加温装置(132)と、第一加温装置(131)及び第二加温装置(132)に温水を供給する加温管(133)と、加温管(133)により加温された温水をポンプ(134)へ供給するための第一供給管(135)と、ポンプ(134)からの温水を温室内の暖房用管(137)へ供給するための第二供給管(136)と、暖房用管(137)から加温管(133)へ温水を戻すための戻り管(138)を設け、加温管(133)、第一供給管(135)、第二供給管(136)、暖房用管(137)及び戻り管(138)を経由する温水の循環経路を構成すると共に、第一供給管(135)と戻り管(138)を繋ぐバイパス管(172)を設け、加温管(133)を経由せずにバイパス管(172)、第一供給管(135)、第二供給管(136)、暖房用管(137)及び戻り管(138)を経由する温水の循環経路を構成し、バイパス管(172)と第一供給管(135)の接続部には、加温管(133)側から合流する流量の割合とバイパス管(172)側から合流する流量の割合を調節する流量割合調節可能な切替弁(173)を設け、第二供給管(136)を流れる温水の温度を検出する温水温度センサ(175)を設け、該温水温度センサ(175)により検出される温水の温度と設定される温水の目標温度の差が大きいほど加温管(133)側から合流する流量の割合が多くなるように設定される加温管(133)側からの設定流量割合に基づいて切替弁(173)を制御すると共に、前記加温管(133)側からの設定流量割合が所定の割合よりも大きく設定されるときは第一加温装置(131)及び第二加温装置(132)を共に燃焼運転し、前記加温管(133)側からの設定流量割合が所定の割合よりも小さく設定されるときは第二加温装置(132)のみを燃焼運転して第一加温装置(131)の燃焼運転を停止させる制御装置を設けた温室の暖房設備とした。
In order to solve the above problems, the following technical measures were taken.
That is, a first heating device (131) that heats hot water using heat generated by burning fossil fuel, and a second heater that heats hot water using heat generated by burning fuel other than fossil fuel. A warming device (132), a warming tube (133) for supplying warm water to the first warming device (131) and the second warming device (132), and warm water heated by the warming tube (133) A first supply pipe (135) for supplying to the pump (134), a second supply pipe (136) for supplying hot water from the pump (134) to a heating pipe (137) in the greenhouse, and heating A return pipe (138) for returning hot water from the work pipe (137) to the heating pipe (133) is provided, and the heating pipe (133), the first supply pipe (135), the second supply pipe (136), and the heating The hot water circulation path via the pipe (137) and the return pipe (138) is constructed, and the first supply The bypass pipe (172) connecting the (135) and the return pipe (138) is provided, and the bypass pipe (172), the first supply pipe (135), and the second supply pipe (136) are not passed through the heating pipe (133). ), A circulation path of hot water passing through the heating pipe (137) and the return pipe (138), and the heating pipe (133) is connected to the connection between the bypass pipe (172) and the first supply pipe (135). A flow rate ratio adjustable switching valve (173) is provided to adjust the ratio of the flow rate from the side and the flow rate from the bypass pipe (172) side, and the temperature of the hot water flowing through the second supply pipe (136) is detected. The ratio of the flow rate which joins from the heating pipe (133) side is provided, so that the difference of the temperature of the warm water detected by the warm water temperature sensor (175) and the target temperature of the set warm water is large. Is set to increase The switching valve (173) is controlled based on the set flow rate ratio from the pipe (133) side, and when the set flow rate ratio from the heating pipe (133) side is set larger than a predetermined ratio, the first When both the warming device (131) and the second warming device (132) are combusted and the set flow rate ratio from the warming pipe (133) side is set smaller than a predetermined rate, the second warming is performed. A greenhouse heating facility provided with a control device for stopping the combustion operation of the first heating device (131) by performing the combustion operation of only the device (132).

従って、第二供給管(136)を流れる温水の温度が高くなって、該温水の温度と温水の目標温度の差が小さくなると、切替弁(173)が作動して加温管(133)側から合流する流量の割合が少なくなると共にバイパス管(172)側から合流する流量の割合が多くなり、第一加温装置(131)又は第二加温装置(132)で加温される温水が第二供給管(136)ひいては暖房用管(137)に供給される量を抑え、熱量を無駄に消費しないようにし、省エネルギー化が図れる。第二供給管(136)を流れる温水の温度が低くなって、該温水の温度と温水の目標温度の差が大きくなると、切替弁(173)が作動して加温管(133)側から合流する流量の割合が多くなると共にバイパス管(172)側から合流する流量の割合が少なくなり、第一加温装置(131)又は第二加温装置(132)で加温される温水が第二供給管(136)ひいては暖房用管(137)に多量に供給されるようにし、温室を能率良く暖房できる。また、加温管(133)側からの設定流量割合が所定の割合よりも小さく設定されるときは第二加温装置(132)のみを燃焼運転して第一加温装置(131)の燃焼運転を停止させ、限りある資源である化石燃料の消費を抑え、省エネルギー化が図れる。そして、加温管(133)側からの設定流量割合が所定の割合よりも大きく設定されるときは第一加温装置(131)及び第二加温装置(132)を共に燃焼運転し、温水の加温量を増大させて温室を能率良く暖房できる。   Therefore, when the temperature of the hot water flowing through the second supply pipe (136) is increased and the difference between the temperature of the hot water and the target temperature of the hot water is reduced, the switching valve (173) is activated and the heating pipe (133) side is reached. The ratio of the flow rate that merges from the first pipe becomes smaller and the percentage of the flow volume that merges from the bypass pipe (172) side increases, so that the warm water heated by the first heating device (131) or the second heating device (132) is reduced. The amount of energy supplied to the second supply pipe (136) and thus the heating pipe (137) can be suppressed so as not to waste heat, thereby saving energy. When the temperature of the hot water flowing through the second supply pipe (136) is lowered and the difference between the temperature of the hot water and the target temperature of the hot water is increased, the switching valve (173) is activated to join from the heating pipe (133) side. The ratio of the flow rate to be increased and the ratio of the flow rate to be merged from the bypass pipe (172) side are decreased, and the warm water heated by the first heating device (131) or the second heating device (132) is second. The greenhouse can be efficiently heated by supplying a large amount to the supply pipe (136) and thus the heating pipe (137). Further, when the set flow rate ratio from the heating pipe (133) side is set to be smaller than the predetermined ratio, only the second heating device (132) is burned and the first heating device (131) burns. It is possible to stop the operation, reduce the consumption of fossil fuel, which is a limited resource, and save energy. When the set flow rate ratio from the heating pipe (133) side is set to be larger than a predetermined ratio, both the first heating device (131) and the second heating device (132) are combusted and operated. The greenhouse can be heated efficiently by increasing the amount of heating.

よって、化石燃料以外の燃料を燃焼させた熱を利用して加温する加温装置を利用して温室を効率良く暖房できると共に、省エネルギー化が図れる。   Therefore, it is possible to efficiently heat the greenhouse using a heating device that heats using heat obtained by burning fuel other than fossil fuel, and energy saving can be achieved.

栽培施設を判り易く示す平面図Top view showing cultivation facilities in an easy-to-understand manner 養液供給装置の養液移送系統を判り易く示す図Diagram showing the nutrient solution transfer system of the nutrient solution supply device in an easy-to-understand manner 通風管を示す図Figure showing a ventilating pipe 暖房設備を判り易く示す図Easy-to-understand illustration of heating equipment 接木苗製造装置の要部を示す側面図Side view showing the main parts of grafting seedling production equipment 接木苗製造装置の要部を示す平面図Plan view showing the main part of the grafted seedling production device 台木前処理部、穂木前処理部及び接着処理部を示す平面図Plan view showing rootstock pretreatment unit, hogi pretreatment unit and adhesion treatment unit 台木切断装置を示す側面図Side view showing rootstock cutting device 穂木切断装置を示す側面図Side view showing Hogi cutting device 一部省略した取込部を示す平面図である。It is a top view which shows the taking-in part which a part of was omitted. 接木苗製造装置の要部拡大による平面図である。It is a top view by the principal part expansion of the grafting seedling production apparatus. 接木苗製造装置の要部拡大による側面図である。It is a side view by the principal part expansion of the grafting seedling production apparatus. 把持ハンドの拡大側面図である。It is an enlarged side view of a holding hand. 上段と中段の把持状態のハンド機構平面図(a)(b)である。It is a hand mechanism top view (a) (b) of the grasping state of the upper stage and the middle stage. カッタ機構の作動状態平面図(a)とそのB一B線断面図(b)である。It is the operation state top view (a) of the cutter mechanism, and its B-1B sectional view (b). 第一の持上げ具の動作平面図である。It is an operation | movement top view of a 1st lifting tool. 第一の持上げ具の動作側面図である。It is an operation | movement side view of a 1st lifting tool. 第一の持上げ具の起立動作の正面図である。It is a front view of standing operation of the 1st lifting tool. 第一及び第二の持上げ具を示す平面図である。It is a top view which shows the 1st and 2nd lifting tool. 異なる第二の持上げ具を示す平面図である。It is a top view which shows a different 2nd lifting tool. 中段ハンド機構のハンド先端部を示す平面図である。It is a top view which shows the hand front-end | tip part of a middle stage hand mechanism. 穂木苗の取込動作の動作手順図である。It is an operation | movement procedure figure of taking-in operation of a Hogi seedling. 把持ハンドの準備状態(a)と把持状態(b)の動作平面図である。It is an operation | movement top view of the preparation state (a) of a holding | grip hand, and a holding state (b). 苗分離具を示すハンド機構の平面図である。It is a top view of the hand mechanism which shows a seedling separator. 移送行程における方向修正動作の平面図である。It is a top view of direction correction operation | movement in a transfer process. 整列保持手段の要部平面図である。It is a principal part top view of an alignment holding means. 整列保持手段の要部側面図(a)とそのB一B線断面図(b)である。It is the principal part side view (a) of the alignment holding | maintenance means, and its B 1B sectional view (b). 整列保持手段の受渡し動作の前後を示す側面図(a)(b)である。It is a side view (a) and (b) which shows the front and back of the delivery operation | movement of an alignment holding means. 穂木苗の受渡し動作の動作手順図である。It is an operation | movement procedure diagram of the delivery operation | movement of a Hogi seedling. 第一の整列動作の前後の平面図(a)(b)である。It is a top view (a) (b) before and behind a 1st alignment operation | movement. 第二の整列動作の前後の平面図(a)(b)である。It is a top view (a) (b) before and behind a 2nd alignment operation | movement. 主整列部材及び副整列部材の整列動作の前後の平面図(a)(b)である。It is a top view (a) (b) before and behind the alignment operation | movement of the main alignment member and a subalignment member. 操作パネルを示す図である。It is a figure which shows an operation panel. 異なる副整列部材を示す側面図である。It is a side view which shows a different subalignment member. 異なる副整列部材を示す平面図である。It is a top view which shows a different subalignment member. 異なる副整列部材を示す平面図である。It is a top view which shows a different subalignment member. 異なるハンド機構のハンド先端部を示す平面図である。It is a top view which shows the hand front-end | tip part of a different hand mechanism.

この発明の実施の一形態を、以下に説明する。
図1は栽培施設の一例を示すものであり、この栽培施設は、暖房機や加湿機等により温度及び湿度等の室内環境が管理される温室である栽培室101と、該栽培室101に隣接する出荷室102とを備えている。前記栽培室101内の中央には作業者又は作業移動車となる作業台車103あるいは防除作業車等が通過できるメイン通路104を設けており、このメイン通路104は、路面がコンクリートで構成されたコンクリート通路である。メイン通路104の両側の側方位置には、栽培条となる栽培ベッド105を多数列配置した作物を栽培するための栽培スペース106を構成している。尚、前記栽培ベッド105はロックウールで形成され、出荷室102内の養液供給装置107から各栽培ベッド105へ養液が供給される構成となっている。また、メイン通路104の両端には開閉扉を備える栽培室101への出入り口108を設け、一方の出入り口108を介して隣接する出荷室102へ行き来できる構成となっている。尚、他方の出入り口108は、栽培施設の屋外から出入りできる構成となっている。そして、作業移動車をメイン通路104から各栽培条(各栽培ベッド105)の間のサブ通路109に移動させ、該サブ通路109で栽培条(栽培ベッド105)に沿って作業移動車103を移動させながら栽培条に対する各種作業を行うことができる。
One embodiment of the present invention will be described below.
FIG. 1 shows an example of a cultivation facility. This cultivation facility is adjacent to the cultivation room 101, which is a greenhouse in which the indoor environment such as temperature and humidity is managed by a heater, a humidifier, and the like. And a shipping room 102. In the center of the cultivation room 101, there is provided a main passage 104 through which an operator or work cart 103 serving as a work vehicle or a control work vehicle can pass, and the main passage 104 is concrete whose road surface is made of concrete. It is a passage. In the lateral positions on both sides of the main passage 104, a cultivation space 106 for cultivating a crop in which a large number of cultivation beds 105 serving as cultivation strips are arranged is configured. The cultivation bed 105 is formed of rock wool and is configured such that the nutrient solution is supplied from the nutrient solution supply device 107 in the shipping chamber 102 to each cultivation bed 105. In addition, an entrance 108 to the cultivation room 101 having an opening / closing door is provided at both ends of the main passage 104 so that the main passage 104 can come and go to the adjacent shipping room 102 via one entrance 108. In addition, the other doorway 108 becomes a structure which can enter / exit from the outdoors of a cultivation facility. Then, the work moving vehicle is moved from the main passage 104 to the sub passage 109 between the cultivation strips (each cultivation bed 105), and the work moving vehicle 103 is moved along the cultivation passage (cultivation bed 105) in the sub passage 109. Various operations can be performed on the cultivation strips.

前記出荷室102内には、前述した養液供給装置107と、収穫されたトマト等の収穫物(果実)を重量や大きさあるいは等級別に選別する選別装置110とを備えている。尚、該選別装置110が、栽培された作物を出荷前に処理する前処理装置となる。選別装置110は、収穫物を搬送して選別する選別コンベア111と、該選別コンベア111の両側の側方に設けられた各階級毎の収穫物収容部112とを備えて構成され、選別コンベア111から各収穫物収容部112へ収穫物を供給して各階級に選別する構成となっている。尚、前記選別コンベア111は、平面視でL字状に屈曲した構成となっている。また、各々の収穫物収容部112には収穫物を収容する収容箱を設けて、この収容箱ごとに収穫物を出荷すればよい。   The shipping chamber 102 includes the nutrient solution supply device 107 described above and a sorting device 110 that sorts harvested fruits (fruits) such as tomatoes by weight, size, or grade. The sorting device 110 serves as a pre-processing device that processes cultivated crops before shipment. The sorting device 110 is configured to include a sorting conveyor 111 that transports and sorts the harvested products, and a harvested storage unit 112 for each class provided on both sides of the sorting conveyor 111. The harvested product is supplied to the harvested product storage unit 112 and sorted into each class. The sorting conveyor 111 is bent in an L shape in plan view. In addition, each harvest storage unit 112 may be provided with a storage box for storing the harvest, and the harvest may be shipped for each storage box.

栽培過程において、サブ通路109で葉取り作業(例えば、ミニトマトの場合では、1枝に3枚の葉がある状態が良くて、それ以上に葉がついた場合は取り除く)や芽欠き作業をしたとき、葉や芽の重量が多い場合は、果実が生育する環境ではなくて、葉や茎が生育する環境になっているのが原因であるから、栽培室(温室)101の環境を下記のようにすることが望ましい。
1.温度を上げる。
2.昼と夜の温度差を5度くらいに大きくする。
3.養液温度を上げる。
4.湿度を下げる。
5.養液のEC値を上げる。
6.灌水回数を少なくして栽培ベッド5を乾燥ぎみにする。
すると、葉や茎が生育する環境から果実が生育する環境になり、収穫が増える。
In the cultivation process, leaf removal work (for example, in the case of cherry tomatoes, it is good that there are three leaves on one branch and if there are more leaves) or bud-cutting work When the weight of the leaves and buds is large, it is not the environment where the fruits grow, but the environment where the leaves and stems grow. It is desirable to do as follows.
1. Increase the temperature.
2. Increase the temperature difference between day and night to about 5 degrees.
3. Increase the nutrient solution temperature.
4). Reduce humidity.
5). Increase EC value of nutrient solution.
6). Reduce the number of irrigations to make the cultivation bed 5 dry.
Then, from the environment where leaves and stems grow to the environment where fruits grow, the harvest increases.

また、サブ通路109で腐れ果取り作業(生育せずに腐ってしまった果実を取り除く)をしたとき、腐れ果の重量が多い場合は、栽培室101の環境を下記のようにすることが望ましい。
1.天井部に設けた遮光カーテンを閉めて遮光時間を長くする。
2.養液のEC値を下げる。
3.養液の灌水回数を多くする。若しくは、1回の養液供給量を増やす。
4.カルシウムを葉面に散布する。若しくは、養液中のカルシウム濃度を上げる。
5.湿度を上げる。
すると、腐れ果の発生が少なくなって、収穫が増える。
In addition, when the rot is removed in the sub-passage 109 (removes the rotted fruit without growing), it is desirable that the environment of the cultivation room 101 is as follows when the weight of the rot is large. .
1. Close the blackout curtain on the ceiling to lengthen the blackout time.
2. Decrease EC value of nutrient solution.
3. Increase the frequency of irrigation of nutrient solution. Alternatively, the amount of nutrient solution supplied at one time is increased.
4). Spread calcium on the leaves. Or, increase the calcium concentration in the nutrient solution.
5). Increase humidity.
As a result, the production of rots decreases and the yield increases.

ところで、養液供給装置107は、図2に示すように、養液を貯留する第一タンク141並びに第二タンク142、硝酸を貯留する酸タンク143及び原水を貯留する原水タンク144を備え、これらのタンク141,142,143,144内に貯留する液が各主開閉バルブ145,146,147,148を介して混合装置149に供給され、該混合装置149で混合される構成となっている。尚、前記第一タンク141と第二タンク142とは、互いに肥料成分の異なる養液を貯留している。第一タンク141、第二タンク142並びに酸タンク143から混合装置149への供給経路(供給パイプ150,151,152)において、前記各主開閉バルブ145,146,147の供給上手側には、各々混合前のフィルター153,154,155を設けている。更に、該混合前フィルター153,154,155の供給上手側には、各々副開閉バルブ156,157,158を設けている。混合装置149で混合された養液は、養液ポンプ159及び混合後のフィルター160を介して給液パイプ161により栽培室101内の各栽培ベッド105へ供給される。   By the way, as shown in FIG. 2, the nutrient solution supply apparatus 107 includes a first tank 141 and a second tank 142 that store nutrient solutions, an acid tank 143 that stores nitric acid, and a raw water tank 144 that stores raw water. The liquid stored in the tanks 141, 142, 143, and 144 is supplied to the mixing device 149 via the main opening / closing valves 145, 146, 147, and 148 and mixed by the mixing device 149. The first tank 141 and the second tank 142 store nutrient solutions having different fertilizer components. In the supply path (supply pipes 150, 151, 152) from the first tank 141, the second tank 142, and the acid tank 143 to the mixing device 149, Filters 153, 154, and 155 before mixing are provided. Further, sub-opening / closing valves 156, 157, and 158 are provided on the upper supply side of the pre-mixing filters 153, 154, and 155, respectively. The nutrient solution mixed by the mixing device 149 is supplied to each cultivation bed 105 in the cultivation room 101 through the nutrient solution pump 159 and the mixed filter 160 through the liquid supply pipe 161.

そして、酸タンク143からの供給経路(供給パイプ152)において、副開閉バルブ158及び混合前フィルター155より供給下手側で主開閉バルブ147より供給上手側には、分岐パイプ162(分岐経路)を接続している。この分岐パイプ162(分岐経路)は、第一タンク141及び第二タンク142からの供給経路(供給パイプ150,151)における副開閉バルブ156,157及び混合前フィルター153,154より供給下手側で主開閉バルブ145,146より供給上手側の各々の位置に接続され、酸タンク143内の硝酸を第一タンク141及び第二タンク142からの供給経路(供給パイプ150,151)へ供給可能に構成している。尚、前記分岐パイプ162の中途部には、電磁式の分岐用の開閉バルブ163を設けている。第一タンク141及び第二タンク142からの供給パイプ150,151において、分岐パイプ162の接続部より供給下手側で主開閉バルブ145,146より供給上手側には、供給パイプ150,151内の流量を検出する流量センサ164,165を各々設けている。また、養液ポンプ159及び混合後のフィルター160より供給下手側には栽培室101内の各栽培ベッド105すなわち給液パイプ161へ液を供給せずに排出するための排出パイプ166を接続しており、該排出パイプ166に設けた電磁式の排出用の開閉バルブ167により、養液ポンプ159から吐出する液を給液パイプ161へ供給する給液状態と排出パイプ166を介して外部に排出する排出状態とに切替可能に構成している。   In the supply path (supply pipe 152) from the acid tank 143, a branch pipe 162 (branch path) is connected on the supply lower side than the sub open / close valve 158 and the pre-mixing filter 155 and on the supply upper side from the main open / close valve 147. doing. This branch pipe 162 (branch path) is mainly provided on the lower supply side than the auxiliary opening / closing valves 156 and 157 and the pre-mixing filters 153 and 154 in the supply path (supply pipes 150 and 151) from the first tank 141 and the second tank 142. Connected to each position on the supply side from the opening / closing valves 145 and 146, the nitric acid in the acid tank 143 can be supplied to the supply paths (supply pipes 150 and 151) from the first tank 141 and the second tank 142. ing. An electromagnetic branch opening / closing valve 163 is provided in the middle of the branch pipe 162. In the supply pipes 150 and 151 from the first tank 141 and the second tank 142, the flow rates in the supply pipes 150 and 151 are on the supply lower side than the connection part of the branch pipe 162 and on the supply upper side from the main opening / closing valves 145 and 146. Flow rate sensors 164 and 165 for detecting the above are provided. Further, a discharge pipe 166 for discharging without supplying liquid to each cultivation bed 105 in the cultivation room 101, that is, the liquid supply pipe 161 is connected to the lower side of the supply from the nutrient solution pump 159 and the mixed filter 160. In addition, an electromagnetic discharge opening / closing valve 167 provided in the discharge pipe 166 discharges the liquid discharged from the nutrient solution pump 159 to the liquid supply pipe 161 and discharges the liquid through the discharge pipe 166 to the outside. It can be switched to the discharge state.

従って、栽培室101内の各栽培ベッド105へ養液を供給する通常状態では、分岐用開閉バルブ163及び排出用開閉バルブ167を閉じ、混合装置149で混合された養液を給液パイプ161へ供給する。この養液供給時に、各々の流量センサ164,165により第一タンク141及び第二タンク142からの供給パイプ150,151内の流量を逐次検出する。そして、養液供給時の供給パイプ150,151内の流量が所定値以下になった場合は、栽培室101内の各栽培ベッド105への養液供給を停止しているときに、制御装置により自動的に分岐用開閉バルブ163及び排出用開閉バルブ167を開いて養液ポンプ159を駆動し、酸タンク143内の硝酸を分岐パイプ162を介して第一タンク141及び第二タンク142からの供給パイプ150,151へ供給し、該硝酸を排出パイプ166を介して外部に排出する。このとき、第一タンク141及び第二タンク142からの供給パイプ150,151において各々の副開閉バルブ156,157を自動的に閉じ、前記供給パイプ150,151に供給される硝酸が該供給パイプ150,151を逆流して第一タンク141及び第二タンク142へ供給されないようにしている。よって、第一タンク141及び第二タンク142からの供給パイプ150,151において、養液中の不溶解物や不純物が詰まるおそれがあるが、流量センサ164,165により供給パイプ150,151内の詰まりを検出すると自動的に該供給パイプ150,151内へ洗浄液となる硝酸を注入して該供給パイプ150,151を自動洗浄することができ、従来のように供給パイプを分解して該パイプ内を洗浄するようなメンテナンスの手間が省けて作業能率が向上する。また、洗浄液(硝酸)は、排出パイプ166を介して外部に排出され、栽培ベッド105に直接供給されないので、上記の洗浄により植物の成育を阻害することがない。   Therefore, in the normal state in which the nutrient solution is supplied to each cultivation bed 105 in the cultivation room 101, the branch opening / closing valve 163 and the discharge opening / closing valve 167 are closed, and the nutrient solution mixed by the mixing device 149 is supplied to the fluid supply pipe 161. Supply. When supplying the nutrient solution, the flow rates in the supply pipes 150 and 151 from the first tank 141 and the second tank 142 are sequentially detected by the flow rate sensors 164 and 165, respectively. And when the flow volume in supply pipe 150,151 at the time of nutrient solution supply becomes below a predetermined value, when the nutrient solution supply to each cultivation bed 105 in cultivation room 101 is stopped, by a control device The branch opening / closing valve 163 and the discharge opening / closing valve 167 are automatically opened to drive the nutrient solution pump 159, and nitric acid in the acid tank 143 is supplied from the first tank 141 and the second tank 142 via the branch pipe 162. The nitric acid is supplied to the pipes 150 and 151 and discharged to the outside through the discharge pipe 166. At this time, the auxiliary open / close valves 156 and 157 are automatically closed in the supply pipes 150 and 151 from the first tank 141 and the second tank 142, and the nitric acid supplied to the supply pipes 150 and 151 is supplied to the supply pipe 150. , 151 are prevented from flowing back to be supplied to the first tank 141 and the second tank 142. Therefore, the supply pipes 150 and 151 from the first tank 141 and the second tank 142 may be clogged with insoluble substances and impurities in the nutrient solution, but the supply pipes 150 and 151 are clogged by the flow rate sensors 164 and 165. Can be automatically injected into the supply pipes 150 and 151 to automatically clean the supply pipes 150 and 151, and the supply pipes can be disassembled as in the prior art. Maintenance efficiency such as cleaning is eliminated and work efficiency is improved. Further, since the cleaning liquid (nitric acid) is discharged to the outside through the discharge pipe 166 and is not supplied directly to the cultivation bed 105, the above-described cleaning does not inhibit the growth of the plant.

また、養液ポンプ159の供給下手側で混合後のフィルター160の供給上手側には、養液ポンプ159から吐出される養液を分岐して養液ポンプ159の供給上手側で混合装置149の供給下手側に戻す循環経路(循環パイプ168)を接続している。この循環経路(循環パイプ168)には電磁式の戻り用の開閉バルブ169を設けており、混合後フィルター160の供給下手側に設けた圧力センサ170により給液パイプ161への養液供給における圧力変動が大きいことを検出すると、制御装置により自動的に前記戻り用の開閉バルブ169を開いて養液を循環経路(循環パイプ168)を介して循環させ、給液パイプ161内の圧力を安定させる構成となっている。これにより、養液ポンプ159起動時やエアがみ等によるウォーターハンマー現象を防止すると共に、養液ポンプ159供給下手側の配管(給液パイプ161)の破損を防止できる。従来は、ポンプ起動時やエアがみ等によるウォーターハンマー現象が発生して栽培室内の各栽培ベッドへの養液供給量が不適正になったり、ポンプ供給下手側の地下に埋設される配管(給液パイプ)が破損するおそれがある。また、前記循環経路(循環パイプ168)には循環される養液の温度を検出する温度センサ171を設けており、該温度センサ171により養液の温度が所定値以上に上昇したことを検出すると、制御装置により強制的に養液ポンプ159を停止させて循環パイプ168で養液を循環させないようにして養液の温度低下を促すように構成している。これにより、養液の熱で配管内のバルブやパッキン等の構造物が溶解して破損するようなことを防止できる。従来、給液パイプ内の養液の圧力調整のために、栽培室内の各栽培ベッドへ養液を供給する給液パイプを介する長い循環経路を設けて該循環経路の養液の戻り経路部分に圧力調整バルブを設けたものがあるが、循環により養液の温度が上昇すると、養液の熱で配管内のバルブやパッキン等の構造物が溶解して破損したり養液の熱で栽培作物に悪影響を与えたりするおそれがある。   In addition, the nutrient solution discharged from the nutrient solution pump 159 is branched to the superior supply side of the filter 160 after mixing on the lower supply side of the nutrient solution pump 159, and the mixing device 149 is connected to the upper supply side of the nutrient solution pump 159. A circulation path (circulation pipe 168) returning to the lower supply side is connected. This circulation path (circulation pipe 168) is provided with an electromagnetic return on-off valve 169, and the pressure in supplying nutrient solution to the liquid supply pipe 161 by the pressure sensor 170 provided on the lower supply side of the filter 160 after mixing. When it is detected that the fluctuation is large, the control device automatically opens the return on-off valve 169 to circulate the nutrient solution through the circulation path (circulation pipe 168) and stabilize the pressure in the liquid supply pipe 161. It has a configuration. As a result, it is possible to prevent the water hammer phenomenon due to the start of the nutrient solution pump 159 or air stagnation, etc., and to prevent the piping (feed solution pipe 161) on the lower supply side of the nutrient solution pump 159. Conventionally, a water hammer phenomenon due to pump start-up or air scooping has occurred, resulting in an inappropriate amount of nutrient solution supplied to each cultivation bed in the cultivation room, or pipes buried underground on the pump supply lower side ( (Liquid supply pipe) may be damaged. The circulation path (circulation pipe 168) is provided with a temperature sensor 171 for detecting the temperature of the nutrient solution to be circulated, and when the temperature sensor 171 detects that the temperature of the nutrient solution has risen to a predetermined value or more. The nutrient solution pump 159 is forcibly stopped by the control device so that the nutrient solution is not circulated by the circulation pipe 168 so that the temperature of the nutrient solution is lowered. Thereby, it can prevent that structures, such as a valve in a piping, packing, etc. melt | dissolve with the heat | fever of nutrient solution, and are damaged. Conventionally, in order to adjust the pressure of the nutrient solution in the liquid supply pipe, a long circulation path is provided through the liquid supply pipe for supplying the nutrient solution to each cultivation bed in the cultivation room, and the nutrient solution return path portion of the circulation path is provided. Some pressure control valves are provided, but if the temperature of the nutrient solution rises due to circulation, the structure of the pipes, packing, etc. in the piping will be damaged by the heat of the nutrient solution, or it will be cultivated by the heat of the nutrient solution. May be adversely affected.

また、栽培ベッド105からの排液は、原水タンク144に回収され、栽培ベッド105への給液に再利用される。栽培室101内には原水タンク144を通る通風管127を設け、ファン128の駆動により通風管127内に通風する。これにより、栽培室101内の空気が積極的に温度の低い原水タンク144に当たって結露し、栽培室101内の空気を簡易的に除湿できると共に、後述する暖房設備により暖房された栽培室101内の空気で原水タンク144内の原水及び養液を昇温させることができる。尚、結露した水は、通風管127に設けた排水口129を介して栽培室101外へ排出される。よって、後述する天窓制御における天窓130が開く頻度又は天窓130の開度を低く抑えることができるので、栽培室101内の室温低下を抑えることができ、暖房設備の暖房の負荷を抑えて省エネルギー化が図れる。   Further, the drained liquid from the cultivation bed 105 is collected in the raw water tank 144 and reused for supplying liquid to the cultivation bed 105. In the cultivation room 101, a ventilation pipe 127 that passes through the raw water tank 144 is provided, and the fan 128 is driven to ventilate the ventilation pipe 127. Thereby, the air in the cultivation room 101 positively hits the raw water tank 144 having a low temperature and is dewed, so that the air in the cultivation room 101 can be easily dehumidified, and the inside of the cultivation room 101 heated by the heating equipment described later. The raw water and nutrient solution in the raw water tank 144 can be heated with air. The condensed water is discharged out of the cultivation room 101 through a drain port 129 provided in the ventilation pipe 127. Therefore, since the frequency which the skylight 130 in the skylight control mentioned later or the opening degree of the skylight 130 can be restrained low, the room temperature fall in the cultivation room 101 can be restrained, and the load of the heating of heating equipment can be restrained and energy-saving. Can be planned.

この栽培室101の暖房設備について説明すると、化石燃料である重油又は灯油等の石油を燃焼させた熱を利用して温水を加温する石油ボイラーである第一加温装置131と、化石燃料以外の燃料である植物の残渣やおがくず等の製材副産物を圧縮成形した木質ペレット等を燃焼させた熱を利用して温水を加温する木質ペレットボイラーである第二加温装置132と、第一加温装置131及び第二加温装置132に温水を供給する加温管133と、加温管133により加温された温水をポンプ134へ供給するための第一供給管135と、ポンプ134からの温水を温室内の暖房用管137へ供給するための第二供給管136と、暖房用管137から加温管133へ温水を戻すための戻り管138を設け、加温管133、第一供給管135、第二供給管136、暖房用管137及び戻り管138を経由する温水の循環経路を構成している。尚、第一加温装置131、第二加温装置132及び加温管133は栽培室101外の管理室125内に配置され、第一加温装置131及び第二加温装置132が加温管133に沿って直列状に配置され、暖房用管137は栽培室101内の各サブ通路109に沿って配置されている。また、第一供給管135と戻り管138を繋ぐバイパス管172を設け、加温管133を経由せずにバイパス管172、第一供給管135、第二供給管136、暖房用管137及び戻り管138を経由する温水の循環経路を構成し、バイパス管172と第一供給管135の接続部には、加温管133側から合流する流量の割合とバイパス管172側から合流する流量の割合を調節する流量割合調節可能な切替弁(三方弁)173を設けている。尚、第二供給管136には、該第二供給管136を流れる温水の温度を検出する温水温度センサ175を設けている。栽培室101には、栽培室101内の室温を検出する室温センサ174と、栽培室101内の湿度を検出する湿度センサ176を設けている。   The heating equipment of the cultivation room 101 will be described. The first heating device 131, which is an oil boiler that heats hot water using the heat of burning oil such as heavy oil or kerosene that is fossil fuel, and other than fossil fuel A second heating device 132, which is a wood pellet boiler that heats hot water using the heat of burning wood pellets, etc., compression-molded with wood residue and other by-products such as plant residues and sawdust, A heating pipe 133 for supplying warm water to the heating apparatus 131 and the second heating apparatus 132; a first supply pipe 135 for supplying warm water heated by the heating pipe 133 to the pump 134; A second supply pipe 136 for supplying hot water to the heating pipe 137 in the greenhouse and a return pipe 138 for returning the hot water from the heating pipe 137 to the heating pipe 133 are provided, and the heating pipe 133 and the first supply are provided. Tube 135, Second feed pipe 136 constitutes a circulation path of the hot water through the heating pipe 137 and return pipe 138. In addition, the 1st heating apparatus 131, the 2nd heating apparatus 132, and the heating pipe 133 are arrange | positioned in the management room 125 outside the cultivation room 101, and the 1st heating apparatus 131 and the 2nd heating apparatus 132 are heated. Arranged in series along the pipe 133, the heating pipe 137 is arranged along each sub-passage 109 in the cultivation room 101. Further, a bypass pipe 172 connecting the first supply pipe 135 and the return pipe 138 is provided, and the bypass pipe 172, the first supply pipe 135, the second supply pipe 136, the heating pipe 137, and the return pipe are not passed through the heating pipe 133. The circulation path of the hot water passing through the pipe 138 is configured, and the ratio of the flow rate that merges from the heating pipe 133 side and the ratio of the flow rate that merges from the bypass pipe 172 side at the connection part of the bypass pipe 172 and the first supply pipe 135 A switching valve (three-way valve) 173 capable of adjusting the flow rate ratio is provided. The second supply pipe 136 is provided with a hot water temperature sensor 175 that detects the temperature of the hot water flowing through the second supply pipe 136. The cultivation room 101 is provided with a room temperature sensor 174 for detecting the room temperature in the cultivation room 101 and a humidity sensor 176 for detecting the humidity in the cultivation room 101.

栽培室101の環境を制御する制御部(コントローラ)126は、栽培室101外の管理室125内に配置され、温水温度センサ175、室温センサ174及び湿度センサ176の検出値を入力し、第一加温装置131、第二加温装置132、ポンプ134、切替弁173及び栽培室101の天窓130を開閉する天窓開閉モータ177へ作動信号を出力する。また、例えば昼間は高めに夜間は低めにというように一日の時間帯に応じて目標室温を演算して設定すると共に、設定される目標温度に対応して目標温度が高いほど低くなるように目標湿度を演算して設定する。尚、目標温度及び目標湿度は、上述の一日の時間帯に基づく設定方法以外に、作物の栽培過程や季節等に基づいて設定値を変更したり、作業者が一定の設定値に設定したりしてもよい。そして、目標湿度よりも湿度センサ176で検出される検出湿度が高くなると、天窓開閉モータ177を作動させ、天窓130を開く(天窓制御)。尚、目標湿度と検出湿度の差が大きくなるにつれて天窓130の開度が比例して大きくなるよう、天窓開閉モータ177が作動する。また、目標室温よりも室温センサ174で検出される検出室温が低いとき、目標室温に基づいて第二供給管136を流れる温水の目標温度を演算する。尚、目標室温が高くなるにつれて一次関数的に(目標室温に拘らず目標室温の一定の変化量に対する前記目標温度の変化割合が同一となる演算式に基づいて)前記目標温度が高く設定される。更に、温水温度センサ175により検出される温水の検出温度が目標温度よりも低いと、検出温度と目標温度の差が大きくなるにつれて一次関数的に(前記差に比例して)加温管133側から合流する流量の割合が多くなるように加温管133側からの設定流量割合が演算されて設定される。従って、目標室温よりも室温センサ174で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、検出温度と目標温度の差が大きいほど、加温管133側から合流する流量の割合が多くなるように設定される加温管133側からの設定流量割合に基づいて切替弁173が作動する。また、前記加温管133側からの設定流量割合が予め設定される第一の所定の割合(0%)以下のとき、第一加温装置131及び第二加温装置132の燃焼運転を共に停止させる。目標室温よりも室温センサ174で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、加温管133側からの設定流量割合が予め設定される第一の所定の割合(0%)を超過し予め設定される第二の所定の割合(100%)未満のとき、第二加温装置132のみを燃焼運転して第一加温装置131の燃焼運転を停止させる。目標室温よりも室温センサ174で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低いとき、加温管133側からの設定流量割合が予め設定される第二の所定の割合(100%)以上のとき、第一加温装置131及び第二加温装置132を共に燃焼運転する。尚、前述した割合とは、第二供給管136を流れる合流した合流量に対する加温管133側からの流量の割合である。尚、室温センサ174で検出される検出室温や温水温度センサ175により検出される温水の検出温度に関係なく、常にポンプ134を作動させる。   A control unit (controller) 126 that controls the environment of the cultivation room 101 is disposed in the management room 125 outside the cultivation room 101, and inputs detection values of the hot water temperature sensor 175, the room temperature sensor 174, and the humidity sensor 176. An operation signal is output to the heating device 131, the second heating device 132, the pump 134, the switching valve 173, and the skylight opening / closing motor 177 that opens and closes the skylight 130 of the cultivation room 101. In addition, for example, the target room temperature is calculated and set according to the time zone of the day, such as higher in the daytime and lower in the nighttime, and the lower the target temperature, the higher the target temperature corresponding to the set target temperature. Calculate and set the target humidity. In addition to the setting method based on the above-mentioned daily time zone, the target temperature and target humidity may be changed based on the cultivation process, season, etc. of the crop, or may be set to a constant setting value by the operator. Or you may. When the detected humidity detected by the humidity sensor 176 becomes higher than the target humidity, the skylight opening / closing motor 177 is operated to open the skylight 130 (skylight control). The skylight opening / closing motor 177 operates so that the opening degree of the skylight 130 increases proportionally as the difference between the target humidity and the detected humidity increases. When the detected room temperature detected by the room temperature sensor 174 is lower than the target room temperature, the target temperature of the hot water flowing through the second supply pipe 136 is calculated based on the target room temperature. As the target room temperature increases, the target temperature is set higher as a linear function (based on an arithmetic expression in which the rate of change of the target temperature with respect to a constant amount of change in the target room temperature is the same regardless of the target room temperature). . Further, when the detected temperature of the hot water detected by the hot water temperature sensor 175 is lower than the target temperature, the heating tube 133 side is linearly proportional to the difference between the detected temperature and the target temperature (in proportion to the difference). The set flow rate ratio from the heating tube 133 side is calculated and set so that the ratio of the flow rate to be merged from is increased. Therefore, when the detected room temperature detected by the room temperature sensor 174 is lower than the target room temperature and the detected temperature of the hot water is lower than the target temperature, the larger the difference between the detected temperature and the target temperature, the larger the flow rate that merges from the heating tube 133 side. The switching valve 173 operates based on the set flow rate ratio from the heating tube 133 side that is set so as to increase the ratio. Further, when the set flow rate ratio from the heating tube 133 side is equal to or lower than a first predetermined ratio (0%) set in advance, both the first heating device 131 and the second heating device 132 are operated for combustion. Stop. When the detected room temperature detected by the room temperature sensor 174 is lower than the target room temperature and the detected temperature of the hot water is lower than the target temperature, a set flow rate ratio from the heating tube 133 side is preset as a first predetermined ratio ( 0%) and less than a predetermined second predetermined ratio (100%), only the second heating device 132 is operated for combustion, and the combustion operation of the first heating device 131 is stopped. When the detected room temperature detected by the room temperature sensor 174 is lower than the target room temperature and the detected temperature of the hot water is lower than the target temperature, a set flow rate ratio from the heating tube 133 side is preset to a second predetermined ratio ( 100%) or more, both the first heating device 131 and the second heating device 132 are operated for combustion. In addition, the ratio mentioned above is a ratio of the flow volume from the heating pipe 133 side with respect to the combined flow volume which flows through the 2nd supply pipe | tube 136. FIG. The pump 134 is always operated regardless of the detected room temperature detected by the room temperature sensor 174 and the detected temperature of the hot water detected by the hot water temperature sensor 175.

従って、第二供給管136を流れる温水の温度が高くなって、該温水の検出温度と温水の目標温度の差が小さくなると、切替弁173が作動して加温管133側から合流する流量の割合が少なくなると共にバイパス管172側から合流する流量の割合が多くなり、第一加温装置131又は第二加温装置132で加温される温水が第二供給管136ひいては暖房用管137に供給される量を抑え、熱量を無駄に消費しないようにし、省エネルギー化が図れる。第二供給管136を流れる温水の温度が低くなって、該温水の検出温度と温水の目標温度の差が大きくなると、切替弁173が作動して加温管133側から合流する流量の割合が多くなると共にバイパス管172側から合流する流量の割合が少なくなり、第一加温装置131又は第二加温装置132で加温される温水が第二供給管136ひいては暖房用管137に多量に供給されるようにし、栽培室(温室)101を能率良く暖房できる。また、加温管133側からの設定流量割合が第二の所定の割合よりも小さく設定されるときは第二加温装置132のみを燃焼運転して第一加温装置131の燃焼運転を停止させ、限りある資源である化石燃料の消費を抑え、省エネルギー化が図れる。そして、加温管133側からの設定流量割合が所定の割合よりも大きく設定されるときは第一加温装置131及び第二加温装置132を共に燃焼運転し、温水の加温量を増大させて栽培室(温室)101を能率良く暖房できる。尚、目標湿度よりも湿度センサ176で検出される検出湿度が高くなって天窓130を開けば、栽培室101内の室温が低下するが、それにより目標室温よりも室温センサ174で検出される検出室温が低く且つ温水の検出温度が目標温度よりも低くなれば、前述と同様に暖房制御する。   Accordingly, when the temperature of the hot water flowing through the second supply pipe 136 is increased and the difference between the detected temperature of the hot water and the target temperature of the hot water is reduced, the switching valve 173 is activated and the flow rate of the flow that joins from the heating pipe 133 side is increased. As the ratio decreases, the ratio of the flow rate that merges from the bypass pipe 172 side increases, and the hot water heated by the first heating device 131 or the second heating device 132 is supplied to the second supply pipe 136 and thus the heating pipe 137. Energy consumption can be reduced by suppressing the amount of supply and avoiding wasteful consumption of heat. When the temperature of the hot water flowing through the second supply pipe 136 is lowered and the difference between the detected temperature of the hot water and the target temperature of the hot water is increased, the ratio of the flow rate at which the switching valve 173 is activated to join from the heating pipe 133 side is As the flow rate increases, the proportion of the flow rate that flows from the bypass pipe 172 side decreases, and a large amount of hot water heated by the first heating device 131 or the second heating device 132 is supplied to the second supply pipe 136 and thus the heating pipe 137. As a result, the cultivation room (greenhouse) 101 can be efficiently heated. Further, when the set flow rate ratio from the heating tube 133 side is set to be smaller than the second predetermined ratio, only the second heating device 132 is operated for combustion and the combustion operation of the first heating device 131 is stopped. Energy consumption can be reduced by reducing the consumption of fossil fuels, which are limited resources. When the set flow rate ratio from the heating tube 133 side is set to be larger than a predetermined ratio, both the first heating device 131 and the second heating device 132 are combusted to increase the amount of warm water. The cultivation room (greenhouse) 101 can be efficiently heated. In addition, if the detection humidity detected by the humidity sensor 176 becomes higher than the target humidity and the skylight 130 is opened, the room temperature in the cultivation room 101 is lowered. Accordingly, the detection detected by the room temperature sensor 174 is lower than the target room temperature. If the room temperature is low and the detected temperature of the hot water is lower than the target temperature, the heating control is performed as described above.

よって、化石燃料以外の燃料(廃棄物や副産物等)を燃焼させた熱を利用して加温する加温装置を利用して温室を効率良く暖房できると共に、省エネルギー化が図れる。
この栽培施設で栽培するための苗は、次に説明する接木苗製造装置1により接木苗として製造することができる。
Therefore, it is possible to efficiently heat the greenhouse using a heating device that heats the fuel other than fossil fuels (waste, byproducts, etc.) burned, and to save energy.
The seedling for cultivating in this cultivation facility can be manufactured as a grafted seedling by the grafted seedling manufacturing apparatus 1 described below.

接木苗製造装置1は、台木と穂木を接ぎ木する接木ロボット本体laを中心にその左側(図5の上側)に不図示の台木取込部(取込部)、同右側(図5の下側)に穂木取込部(取込部)2が配置され、接木ロボット本体laには、その前面の左右に台木取込部または穂木取込部2から台木、穂木としての苗をそれぞれ受ける台木前処理部(前処理部)3、穂木前処理部(前処理部)4、中央には、台木前処理部3または穂木前処理部4から受けた台木と穂木を接着する接着処理部7、この接着された接木苗を下方から送出する接木苗送出部8を配置して左右を略対称に構成し、穂木取込部2の手前側には操作パネルlpを設けたものである。   The graft seedling production apparatus 1 is centered on a graft robot main body la for grafting a rootstock and a hogi, and a rootstock take-in portion (take-in portion) (not shown) on the left side (upper side in FIG. 5) and the right side (FIG. 5). On the left side of the front surface of the grafting robot main body la from the rootstock taking-in part or the Hogi taking-in part 2 to the rootstock, hogi Rootstock pretreatment unit (pretreatment unit) 3 and Hogi pretreatment unit (pretreatment unit) 4 that receive the seedlings respectively as received from the rootstock pretreatment unit 3 or Hogi pretreatment unit 4 in the center A bonding processing unit 7 for bonding the rootstock and the hogi, and a grafting seedling sending unit 8 for sending the bonded grafted seedling from below are arranged so as to be substantially symmetrical, and the front side of the hogi taking-in unit 2 Is provided with an operation panel lp.

台木前処理部3は、空気圧で作動する台木側のロータリーアクチュエータ60の駆動により回転作動する台木搬送アーム61を備え、該台木搬送アーム61により台木取込部からの台木苗を把持し、台木搬送アーム61が90度回転して台木苗を切断位置62に搬送し、その後台木搬送アーム61が更に90度回転して台木苗を接合位置63に搬送する。切断位置で台木切断装置64により台木苗を切断し、双子葉の片葉を切り落とす。尚、切断装置64で切断して切り落とすはずの切除部分が搬送する苗に付着して搬送されることがあるが、切断位置62から接合位置63への搬送経路上には、前記切除部分を取り除くための樹脂製のブラシ65を設けると共に、台木搬送アーム61にはエアを吹き付けるエアノズル66を設け、切除部分を確実に落として、接木苗の接合を適正に行えるようにしている。   The rootstock preprocessing unit 3 includes a rootstock transport arm 61 that is rotated by driving a root actuator 60 that is pneumatically operated, and the rootstock seedling from the rootstock take-in section is driven by the rootstock transport arm 61. The rootstock transport arm 61 rotates 90 degrees to transport the rootstock seedling to the cutting position 62, and then the rootstock transport arm 61 further rotates 90 degrees to transport the rootstock seedling to the joining position 63. The rootstock seedling is cut by the rootstock cutting device 64 at the cutting position, and one leaf of the dicotyledon is cut off. The excision portion that should be cut off by the cutting device 64 may adhere to the seedling to be transported, but the excision portion is removed on the transport path from the cutting position 62 to the joining position 63. A resin brush 65 is provided, and an air nozzle 66 that blows air is provided on the rootstock transport arm 61 so that the excised portion is reliably dropped so that the grafted seedlings can be joined appropriately.

穂木前処理部4は、空気圧で作動する穂木側のロータリーアクチュエータ67の駆動により回転作動する穂木搬送アーム68を備え、該穂木搬送アーム68により穂木取込部2からの穂木苗を把持し、穂木搬送アーム68が90度回転して穂木苗を切断位置69に搬送し、その後穂木搬送アーム68が更に90度回転して穂木苗を接合位置63に搬送する。切断位置69で穂木切断装置70により穂木苗を切断し、胚軸の下側部を切り落とす。尚、切断装置69で切断して切り落とすはずの切除部分が搬送する苗に付着して搬送されることがあるが、切断位置69から接合位置63への搬送経路上には、前記切除部分を取り除くための樹脂製のブラシ71とエアを吹き付けるエアノズル72を設け、切除部分を確実に落として、接木苗の接合を適正に行えるようにしている。   The hotwood pre-processing unit 4 includes a hotwood transfer arm 68 that is rotated by driving the rotary actuator 67 of the hotwood side that is operated by air pressure. Grasping the seedlings, the spike transfer arm 68 is rotated 90 degrees to transfer the spike seedlings to the cutting position 69, and then the spike transfer arm 68 is further rotated 90 degrees to transfer the spike seedlings to the joining position 63. . At the cutting position 69, the hogi seedling is cut by the hogi cutting device 70, and the lower part of the hypocotyl is cut off. In addition, although the excision part which should be cut off by the cutting device 69 may adhere to the seedling to be transported, the excision part is removed on the transport path from the cutting position 69 to the joining position 63. Therefore, a resin brush 71 and an air nozzle 72 for blowing air are provided to reliably drop the cut portion so that the grafted seedlings can be joined appropriately.

接着処理部7は、接木苗の接合用のクリップを一つずつ繰り出すクリップフィーダ73と、台木苗及び穂木苗が接合位置63に到達した状態で該クリップフィーダ73で繰り出されるクリップを一つずつ供給して台木苗及び穂木苗を固定するクリップ供給装置74を備えている。尚、台木搬送アーム61及び穂木搬送アーム68が接合位置63に到達したとき、台木苗と穂木苗の各々の切断面が合致して苗を接合した状態となる。   The adhesion processing unit 7 feeds one clip for feeding the grafted seedlings one by one, and one clip fed by the clip feeder 73 with the rootstock seedling and the seedling seedling reaching the joining position 63. A clip supply device 74 is provided to supply the rootstock seedlings and the hogi seedlings one by one. Note that when the rootstock transport arm 61 and the hotwood transport arm 68 reach the joining position 63, the cutting surfaces of the rootstock seedling and the hogi seedling are matched to join the seedling.

台木搬送アーム61による台木苗の切断位置62への搬送及び穂木搬送アーム68による穂木苗の切断位置69への搬送作動は、台木搬送アーム61及び穂木搬送アーム68がそれぞれの苗を共に把持するのに伴って同期して作動を開始するが、穂木側の速度調整装置(流量制御弁)を作動させて穂木側のロータリーアクチュエータ67へのエア流量を少なくして穂木搬送アーム68の作動速度を台木搬送アーム61の作動速度よりも若干遅くして、穂木搬送アーム68が切断位置69に到達するタイミングを台木搬送アーム61が切断位置62に到達するタイミングよりも遅らせる。そして、穂木搬送アーム68が切断位置69に到達したことを穂木側のローリングアクチュエータ67に設けた穂木側の回転位置検出センサ(リードスイッチ)により検出すると、台木切断装置64及び穂木切断装置70が切断動作を開始する。これにより、台木搬送アーム61及び穂木搬送アーム68が各々切断位置62,69に確実に到達した状態で各々の切断装置64,70を作動させることができ、適正に苗を切断することができると共に、台木側の切断位置検出用の回転位置検出センサ(リードスイッチ)を省略できてコストダウンが図れる。また、台木苗よりも軽い穂木苗をゆっくりと搬送させることにより、穂木苗のバランスが崩れて該苗の姿勢が悪化し、穂木苗における切断位置が不適正になって接木苗の接合状態が悪くなる不具合を防止できる。従来は、台木搬送アームと穂木搬送アームを同じ作動速度で作動させるようにしていたので、台木側と穂木側のエアホースの長さや屈曲度合や傷み具合の相違等により、台木搬送アームと穂木搬送アームの内の一方の作動速度が遅くなると、作動速度が速い側で切断位置に到達することを検出するようにしたとき、作動速度が遅い側が切断位置に到達する前に切断装置が作動して、苗の切断が不適正となるおそれがある。   The transporting operation of the rootstock seedling to the cutting position 62 by the rootstock transport arm 61 and the transporting operation to the cutting position 69 of the seedling by the stock transporting arm 68 are performed by the rootstock transporting arm 61 and the transporting arm 68 respectively. The operation starts synchronously with the holding of the seedlings together, but the speed adjustment device (flow rate control valve) on the ear is operated to reduce the air flow to the rotary actuator 67 on the ear and reduce the ear. The operation speed of the tree transport arm 68 is slightly slower than the operation speed of the root transport arm 61, and the timing at which the stock transport arm 68 reaches the cutting position 69 is the timing at which the root transport arm 61 reaches the cutting position 62. Than later. Then, when it is detected by the rotation position detection sensor (reed switch) on the hogi side that the hogi transport arm 68 has reached the cutting position 69, the root cutting machine 64 and the hogi are detected. The cutting device 70 starts a cutting operation. Accordingly, the cutting devices 64 and 70 can be operated in a state where the rootstock transport arm 61 and the hotwood transport arm 68 have surely reached the cutting positions 62 and 69, respectively. In addition, the rotational position detection sensor (reed switch) for detecting the cutting position on the rootstock side can be omitted, and the cost can be reduced. In addition, by slowly transporting the seedlings that are lighter than the rootstock seedlings, the balance of the seedlings is lost and the posture of the seedlings deteriorates. It is possible to prevent a problem that the bonding state is deteriorated. Conventionally, the rootstock transport arm and the hogi transport arm were operated at the same operating speed, so depending on the length of the air hose on the rootstock side and the hogi side, the degree of bending, the degree of damage, etc. When the operating speed of one of the arm and hogi transport arm slows down, when it is detected that the cutting speed reaches the cutting position on the fast operating speed side, the cutting is performed before the slow operating speed reaches the cutting position. There is a risk that the device will operate and cutting of the seedlings will be inappropriate.

同様に、台木搬送アーム61による台木苗の接合位置62への搬送及び穂木搬送アーム68による穂木苗の接合位置69への搬送作動は、台木切断装置64及び穂木切断装置70の切断動作の完了に伴って同期して作動を開始するが、台木側の速度調整装置(流量制御弁)を作動させて台木側のロータリーアクチュエータ60へのエア流量を少なくして台木搬送アーム61の作動速度を穂木搬送アーム68の作動速度よりも若干遅くして、台木搬送アーム61が接合位置62に到達するタイミングを穂木搬送アーム68が切断位置69に到達するタイミングよりも遅らせる。そして、台木搬送アーム61が切断位置62に到達したことを台木側のローリングアクチュエータ60に設けた台木側の回転位置検出センサ(リードスイッチ)により検出すると、クリップ供給装置74がクリップ供給動作を開始する。これにより、台木苗及び穂木苗が各々接合位置63に確実に到達した状態でクリップを供給することができ、台木苗と穂木苗を適正に固定することができて接木苗の接合率の向上が図れると共に、穂木側の接合位置検出用の回転位置検出センサ(リードスイッチ)を省略できてコストダウンが図れる。また、片葉切断した状態の台木苗をゆっくりと搬送させることにより、台木苗のバランスが崩れて該苗の姿勢が悪化し、接木苗の接合状態が悪くなる不具合を防止できる。   Similarly, the transport operation of the rootstock seeds to the joining position 62 by the rootstock transport arm 61 and the transporting operation of the seedling seedlings to the joint position 69 by the stock transporting arm 68 are carried out by the rootstock cutting device 64 and the stock cutting device 70. The operation is started in synchronization with the completion of the cutting operation of the timber. However, the speed adjustment device (flow rate control valve) on the rootstock side is activated to reduce the air flow rate to the rotary actuator 60 on the rootstock side, and the rootstock The operation speed of the transfer arm 61 is slightly slower than the operation speed of the hotwood transfer arm 68, and the timing at which the rootstock transfer arm 61 reaches the joining position 62 is determined from the timing at which the transfer wood transfer arm 68 reaches the cutting position 69. Also delay. Then, when it is detected by the rotation side detection sensor (reed switch) on the rootstock side that the rootstock transport arm 61 has reached the cutting position 62, the clip supply device 74 performs the clip supply operation. To start. As a result, the clip can be supplied in a state where the rootstock seedling and the seedling seedling have reached the joining position 63, and the rootstock seedling and the seedling seedling can be properly fixed. The rate can be improved, and the rotational position detection sensor (reed switch) for detecting the joining position on the hogi side can be omitted, thereby reducing the cost. In addition, by slowly transporting the rootstock seedling in a state where one leaf has been cut, the balance of the rootstock seedling is lost, the posture of the seedling is deteriorated, and a problem that the joined state of the grafted seedling is deteriorated can be prevented.

台木切断装置64は、切断刃75と、切断する側の子葉の葉柄を支える葉柄支え具76と、残す側の子葉を上側から押さえる子葉押さえ具77を備える。切断刃75と葉柄支え具76は、空気圧で作動する前後移動用シリンダ78により移動して、切断位置62にある台木苗に近づき、葉柄支え具76が葉柄に接触して保持する(図8(2)参照)。尚、前後移動シリンダ78は台木苗側が高位となるよう傾斜しており、切断刃75と葉柄支え具76が下側寄りの位置から台木苗に近づいて苗の子葉に干渉しないように構成している。その後、空気圧で作動する子葉押さえ用ロータリーアクチュエータ79により子葉押さえ具77が下側に回動し、子葉押さえ具77の先端部に設けた子葉押さえローラ80により子葉を上側から押さえる(図8(3)参照)。その状態で、空気圧で作動する切断用シリンダ81により斜め上方向に直線移動軌跡で切断刃75を移動させ、苗の胚軸及び片葉を切断して切り落とす(図8(4)参照)。苗を切断すると、前後移動シリンダ78により切断刃75及び葉柄支え具76を台木苗から退避させ(図8(5)参照)、その後、子葉押さえ具77を上側へ回動して元の位置に戻すと共に、切断用シリンダ81により切断刃75を斜め下方向に移動させて元の位置に戻す(図8(1)参照)。   The rootstock cutting device 64 includes a cutting blade 75, a petiole supporter 76 that supports the petiole on the cutting side, and a cotyledon presser 77 that presses the remaining cotyledon from above. The cutting blade 75 and the petiole support 76 are moved by a back-and-forth moving cylinder 78 operated by air pressure, approach the rootstock seedling at the cutting position 62, and the petiole support 76 contacts and holds the petiole (FIG. 8). (See (2)). The forward / backward movement cylinder 78 is inclined so that the rootstock seedling side is at a high position, and the cutting blade 75 and the petiole support 76 are configured to approach the rootstock seedling from the lower side and do not interfere with the cotyledon of the seedling. doing. Thereafter, the cotyledon pressing tool 77 is rotated downward by the cotyledon pressing rotary actuator 79 that is operated by air pressure, and the cotyledon is pressed from above by the cotyledon pressing roller 80 provided at the tip of the cotyledon pressing tool 77 (FIG. 8 (3 )reference). In this state, the cutting blade 75 is moved along a linear movement locus obliquely upward by a cutting cylinder 81 that is operated by air pressure, and the embryonic axis and one leaf of the seedling are cut and cut off (see FIG. 8 (4)). When the seedling is cut, the cutting blade 75 and the petiole support 76 are retracted from the rootstock seedling by the forward / backward moving cylinder 78 (see FIG. 8 (5)), and then the cotyledon presser 77 is rotated upward to return to the original position. At the same time, the cutting blade 75 is moved obliquely downward by the cutting cylinder 81 to return to the original position (see FIG. 8A).

よって、直線移動軌跡で苗を切断するので、切断面が平面状となり、接木苗の接合率の向上が図れると共に、残す側の子葉の付け根をできるだけ切除しないようにでき、接木苗の成育を良好に維持できる。従来は、切断刃を回転移動軌跡で移動させて苗を切断するので、切断面が曲面状となって接木苗の接合率向上を阻害し、残す側の子葉の付け根を抉り取るように切断して接木苗の成育を阻害するおそれがある。また、葉柄支え具76と子葉押さえ具77により適正な位置で苗を切断することができ、更に、切断用シリンダ81の取付角度を調節することにより、回転移動軌跡で苗を切断する構成と比較して切断角度を容易に調節できる。   Therefore, since the seedlings are cut along a linear movement trajectory, the cutting surface becomes flat, the jointing rate of the grafted seedlings can be improved, and the root of the remaining cotyledon can be cut off as much as possible, and the growth of the grafted seedlings is good Can be maintained. Conventionally, the cutting blade is moved along a rotational movement trajectory to cut the seedling, so that the cutting surface becomes curved and hinders the improvement of the jointing rate of the grafted seedling and cuts so that the root of the remaining cotyledon is scooped up. May hinder the growth of grafted seedlings. Further, the seedling can be cut at an appropriate position by the petiole support 76 and the cotyledon presser 77, and further, by adjusting the mounting angle of the cutting cylinder 81, the seedling is cut by a rotational movement trajectory. Thus, the cutting angle can be easily adjusted.

穂木切断装置70は、切断刃82と、切り落とす側(下側部)の胚軸を支える胚軸支え具83を備える。切断刃82と胚軸支え具83は、空気圧で作動する前後移動用シリンダ84により移動して、切断位置69にある穂木苗に近づき、胚軸支え具83が胚軸に接触して保持する(図9(2)参照)。尚、前後移動シリンダ84は穂木苗側が高位となるよう傾斜しており、切断刃82と胚軸支え具83が下側寄りの位置から穂木苗に近づいて苗の子葉に干渉しないように構成している。尚、穂木苗に近づいた状態で、切断刃82は、子葉の裏側(下側)に位置する。そして、空気圧で作動する切断用シリンダ85により斜め下方向に直線移動軌跡で切断刃82を移動させ、苗の胚軸の下側部を切断して切り落とす(図9(3)参照)。苗を切断すると、前後移動シリンダ84により切断刃82及び胚軸支え具83を穂木苗から退避させ(図9(4)参照)、切断用シリンダ85により切断刃82を斜め上方向に移動させて元の位置に戻す(図9(1)参照)。   The hogi cutting device 70 includes a cutting blade 82 and a hypocotyl support 83 that supports the hypocotyl (lower side) hypocotyl. The cutting blade 82 and the hypocotyl support 83 are moved by the forward / backward movement cylinder 84 that is operated by air pressure, approach the seedlings at the cutting position 69, and the hypocotyl support 83 is held in contact with the hypocotyl. (See FIG. 9 (2)). Note that the forward / backward movement cylinder 84 is inclined so that the hogi seedling side becomes higher, so that the cutting blade 82 and the hypocotyl support 83 approach the hogi seedling from the lower position and do not interfere with the cotyledons of the seedling. It is composed. In addition, the cutting blade 82 is located in the back side (lower side) of a cotyledon in the state which approached the hogi seedling. Then, the cutting blade 82 is moved in a diagonally downward trajectory by the cutting cylinder 85 operated by air pressure, and the lower part of the embryonic axis of the seedling is cut and cut off (see FIG. 9 (3)). When the seedling is cut, the cutting blade 82 and the hypocotyl support 83 are retracted from the hogi seedling by the forward / backward moving cylinder 84 (see FIG. 9 (4)), and the cutting blade 82 is moved obliquely upward by the cutting cylinder 85. To return to the original position (see FIG. 9A).

よって、直線移動軌跡で苗を切断するので、切断面が平面状となり、接木苗の接合率の向上が図れると共に、穂木苗に近づいた状態で、切断刃82は子葉の裏側(下側)に位置するので子葉を切除しないようにでき、接木苗の成育を良好に維持できる。従来は、切断刃を回転移動軌跡で移動させて苗を切断するので、切断面が曲面状となって接木苗の接合率向上を阻害し、子葉が大きくて垂れ下がるような苗では切断刃が子葉に接触して子葉を切除したり子葉に傷を付けるおそれがあり、接木苗の成育を阻害するおそれがある。また、胚軸支え具83により適正な位置で苗を切断することができ、更に、切断用シリンダ85の取付角度を調節することにより、回転移動軌跡で苗を切断する構成と比較して切断角度を容易に調節できる。しかも、穂木搬送ハンド68と胚軸支え具83の中間位置で切断刃82が苗を切断するので、苗の切断位置が安定する。   Therefore, since the seedling is cut along a linear movement trajectory, the cutting surface becomes flat and the jointing ratio of the grafted seedling can be improved, and the cutting blade 82 is on the back side (lower side) of the cotyledon while approaching the seedling. Therefore, the cotyledons can be prevented from being removed, and the growth of grafted seedlings can be maintained well. Conventionally, the cutting blade is moved along a rotational movement trajectory to cut the seedling. Therefore, the cutting surface becomes a curved surface and hinders the improvement of the jointing ratio of the grafted seedling. There is a risk that the cotyledon may be excised or damaged, and the growth of the grafted seedling may be hindered. Further, the seedling can be cut at an appropriate position by the hypocotyl support 83, and further, by adjusting the mounting angle of the cutting cylinder 85, the cutting angle is compared with the configuration in which the seedling is cut by a rotational movement locus. Can be adjusted easily. In addition, since the cutting blade 82 cuts the seedling at an intermediate position between the scrub carrier hand 68 and the hypocotyl support 83, the cutting position of the seedling is stabilized.

尚、台木切断装置64の切断刃75と穂木切断装置70の切断刃82は、平面視で互いに接合位置63側ほど苗から離れるように斜めに配置され、切断する苗に対し前進角を有して移動して苗を切断する。これにより、苗の切断抵抗を抑えて苗の切断を円滑に行えると共に、接木苗を固定するクリップの把持部における先端側(接合位置における前側(切断位置側))から各々の苗を切断することになるので、切断時に苗の切断位置が位置ずれし易い切断終端がクリップの把持部における奥側(接合位置63における後側(切断位置62,69と反対側))となるが、クリップの把持部における奥側で苗の保持精度が高まるため、接木苗の接合率向上が図れる。   Note that the cutting blade 75 of the rootstock cutting device 64 and the cutting blade 82 of the hogi cutting device 70 are arranged obliquely so as to be separated from the seedlings toward the joint position 63 side in a plan view, and have a forward angle with respect to the seedling to be cut. Move and cut the seedlings. Thus, cutting of the seedlings can be performed smoothly while suppressing cutting resistance of the seedlings, and each seedling is cut from the tip side (the front side at the joining position (cutting position side)) of the clip holding portion for fixing the grafted seedlings. Therefore, the cutting end where the cutting position of the seedling is likely to be displaced at the time of cutting is the back side (the rear side at the joining position 63 (the side opposite to the cutting positions 62 and 69)) of the clip. Since the holding accuracy of the seedlings is increased on the back side in the part, the joining rate of the grafted seedlings can be improved.

尚、前記台木取込部及び穂木取込部は互いに左右対称で同様の構成であるので、以下は、穂木取込部2について説明する。
穂木取込側については、穂木取込部2は、接木ロボット本体laの側方で苗ポットに育成した多数の穂木苗(苗)Wを格子配列したセルトレイを順次搬入移送する搬入機構11と、この搬入機構11上の穂木苗Wに対して進退機構12bにより進退動作可能に穂木苗Wを穂木として個々の把持しつつ胚軸をカットして把持動作する把持ハンド12と、この把持ハンド12を左右方向に横移動可能に支持する移送機構13と、その移送行程上に配した方向修正部材14等から構成する。また、穂木取込部2と穂木前処理部4との間の穂木受渡し位置(受渡し位置)Rには、穂木取込部2から移送された穂木苗Wを一時的に保持する受渡保持機構15を設ける。
In addition, since the said rootstock taking-in part and the hogi taking-in part are bilaterally symmetrical and are the same structures, the following is demonstrated about the hogi taking-in part 2. FIG.
As for the hogi take-in side, the hogi take-in part 2 is a carry-in mechanism for successively carrying in and transferring a cell tray in which a large number of hogi seedlings (seedlings) W grown in a seedling pot on the side of the grafting robot body la are arranged in a grid. 11 and a gripping hand 12 that performs a gripping operation by cutting the hypocotyl while individually gripping the seedling W as a spikelet so that it can be advanced and retracted by the advance / retreat mechanism 12b with respect to the seedling W on the carry-in mechanism 11. The gripping hand 12 is composed of a transfer mechanism 13 that supports the gripping hand 12 so as to be laterally movable in the left-right direction, a direction correcting member 14 arranged on the transfer stroke, and the like. In addition, the hogi seedling W transferred from the hogi taking-in section 2 is temporarily held at the hogi delivery position (delivery position) R between the hogi taking-in section 2 and the hogi preprocessing section 4. A delivery holding mechanism 15 is provided.

詳細には、上記搬入機構11は、接木ロボット本体laの側方に沿って移送動作するべルトコンベヤ等により構成し、横一列の苗が取り出される度にセルトレイの配列ピッチで順次移送動作することにより、穂木苗Wを所定位置に搬入する。移送機構13は、接木苗製造装置1の片側位置で搬入機構11を横断して受渡保持機構15までの範囲で把持ハンド12を左右に位置制御可能に構成し、セルトレイの横一列の苗において受渡保持機構15側から苗を取り出すべく、把持ハンド12が受渡保持機構15へ苗を供給した後に次に取り出す苗(苗があるセル)の左右位置に順次左右移動する構成となっている。この移送機構13による移送行程に干渉するように、棒状部材または回動抵抗を抑えた縦軸ローラによる方向修正部材14を下垂状に配置する。この方向修正部材14は、移送機構13の左右移送経路の終端の直前位置で、受渡保持機構15に対向する位置より若干搬入機構11側に配置されている。また、受渡保持機構15には、把持ハンド12から受けた穂木苗Wを保持した際にその子葉展開方向を規制する整列部材16を設ける。これら受渡保持機構15と整列部材16とにより整列保持手段を形成する。   Specifically, the carry-in mechanism 11 is configured by a belt conveyor or the like that moves along the side of the graft robot body la, and each time the seedlings in a horizontal row are taken out, the transfer mechanism 11 sequentially moves at the cell tray arrangement pitch. The Hogi seedling W is carried into a predetermined position. The transfer mechanism 13 is configured so that the position of the gripping hand 12 can be controlled from side to side in the range from the carrying mechanism 11 to the delivery holding mechanism 15 at one side of the graft seedling production apparatus 1, and delivered in a row of seedlings on the cell tray. In order to take out the seedling from the holding mechanism 15 side, the gripping hand 12 supplies the seedling to the delivery holding mechanism 15 and then sequentially moves left and right to the left and right positions of the seedling to be taken out (cell with the seedling). In order to interfere with the transfer process by the transfer mechanism 13, a rod-shaped member or a direction correcting member 14 using a vertical axis roller with reduced rotation resistance is disposed in a drooping manner. The direction correcting member 14 is disposed slightly closer to the carry-in mechanism 11 than the position facing the delivery holding mechanism 15 at a position immediately before the end of the left-right transfer path of the transfer mechanism 13. In addition, the delivery holding mechanism 15 is provided with an alignment member 16 that regulates the cotyledon deployment direction when the hogi seedling W received from the gripping hand 12 is held. The delivery holding mechanism 15 and the alignment member 16 form an alignment holding means.

次に、穂木取込部2の把持ハンド12について詳細に説明する。
把持ハンド12は、拡大側面図を図13に示すように、穂木苗Wの胚軸Aの上段部と中段部を把持する上段のハンド機構21と中段のハンド機構22およびその下方に開閉動作により穂木苗Wの胚軸Aの下段部を切断するカッタ機構23を三段重ねに進退機構12bにより一体に進退動作可能に配置し、その側方に独立して上下動作可能に持上げ具24を備えて構成する。また、把持した胚軸Aの近傍で子葉Lと干渉しうる位置に回り止め用の棒状のストッパ25をカッタ機構23から立設する。
Next, the gripping hand 12 of the hogi taking-in unit 2 will be described in detail.
As shown in FIG. 13, an enlarged side view of the gripping hand 12 opens and closes the upper hand mechanism 21 and the middle hand mechanism 22 that grip the upper and middle stages of the hypocotyl A of the hogi seedling W and the lower hand mechanism 22. The cutter mechanism 23 for cutting the lower part of the hypocotyl A of the hogi seedling W is arranged in a three-tiered manner so that it can be moved forward and backward integrally by the advance / retreat mechanism 12b, and the lifting tool 24 can be moved up and down independently on its side. It comprises and comprises. Further, a rod-like stopper 25 for preventing rotation is set up from the cutter mechanism 23 at a position where it can interfere with the cotyledon L in the vicinity of the grasped hypocotyl A.

上段のハンド機構21は、把持状態の平面図を示す図14(a)のように、左右の開閉アーム21a,21aの先端の把持位置に穂木苗の肥軸Aの径寸法より大きく左右方向の切欠Bを形成して穂木苗の胚軸Aを遊嵌保持可能に構成し、その隙間限度設定用の調節ボルト21bを設ける。中段のハンド機構22は、その把持状態の平面図を示す図14(b)のように、左右の開閉アーム22a,22aのその先端の把持位置に穂木苗の肥軸Aの径寸法より大きく前後方向の切欠Cを形成して穂木苗の胚軸Aを遊嵌保持可能に構成する。これら両ハンド機構21,22により、穂木苗の把持位置精度を確保しつつ、穂木苗がその胚軸線で回動可能に把持する。   As shown in FIG. 14 (a) showing a plan view of the gripping state, the upper hand mechanism 21 has a gripping position at the tip of the left and right open / close arms 21a, 21a that is larger than the diameter dimension of the fertilizer shaft A of the safling seedling. Is formed so that the hypocotyl A of the seedling can be freely fitted and held, and an adjustment bolt 21b for setting the clearance limit is provided. As shown in FIG. 14 (b) showing a plan view of the gripping state of the middle stage, the middle hand mechanism 22 is larger than the diameter dimension of the safing seedling fertilizer shaft A at the gripping position at the tip of the left and right open / close arms 22a, 22a. A notch C in the front-rear direction is formed so that the hypocotyl A of the hogi seedling can be held loosely. The both hand mechanisms 21 and 22 hold the hogi seedling so that it can rotate around its embryo axis while ensuring the accuracy of the holding position of the hogi seedling.

カッタ機構23は、その作動状態平面図(a)とそのB−B線断面図(b)を図15に示すように、左右の開閉アーム23a,23aの先端部に穂木苗の胚軸Aを切断する刃23bを形成し、かつ、切断後の胚軸Aの移動を拘束するように外周縁を高く形成する。   The cutter mechanism 23 has an operation state plan view (a) and a BB sectional view (b) thereof as shown in FIG. And the peripheral edge is formed high so as to constrain movement of the hypocotyl A after cutting.

上記の両ハンド機構21,22とカッタ機構23は、穂木苗を穂木としてその根側を切断しつつその胚軸を回動可能に緩く把持する遊嵌把持機構を形成する。
前記持上げ具24は、第一の持上げ具41と第二の持上げ具42とを備えて構成される。前記第一の持上げ具41は、穂木苗Wの根元位置まで前下がりに傾斜するとともに、受渡保持機構15側すなわち苗を取り出すために把持ハンド12が左右移動してくる側となる同穂木苗Wの側方から背後に達するように先端部41tを屈曲したロッドにより形成される。先端部41tとその基部に屈曲して延びる側部41sを略直角に設定することにより、図18の起立動作の正面図に示すように、持上げ具41の上行動作により倒れた胚軸Aを起立することができる。持上げ具41の支持部41bは、穂木苗に対する位置関係に合わせて前後位置と高さ位置を調節可能に構成する。
Both the hand mechanisms 21 and 22 and the cutter mechanism 23 form a loose-fitting gripping mechanism that loosely grips the hypocotyl so that it can be rotated while cutting the root side of the saplings as a spikelet.
The lifting tool 24 includes a first lifting tool 41 and a second lifting tool 42. The first lifting tool 41 is inclined forward and downward to the root position of the hogi seedling W, and is the same as the delivery holding mechanism 15 side, that is, the side on which the gripping hand 12 moves left and right to take out the seedling. It is formed by a rod having a tip 41t bent so as to reach the back from the side of the seedling W. By setting the distal end portion 41t and the side portion 41s that bends and extends to the base portion thereof at a substantially right angle, as shown in the front view of the standing motion of FIG. can do. The support part 41b of the lifting tool 41 is configured so that the front-rear position and the height position can be adjusted in accordance with the positional relationship with respect to the hogi seedling.

また、苗Wに対して前記第一の持上げ具41と左右反対側に第二の持上げ具42を設けている。この第二の持上げ具42は、受渡保持機構15とは反対側で苗を取り出すために把持ハンド12が左右移動する側となる苗の側方に位置するべく屈曲したロッドにより形成され、前後移動シリンダ43により進退動作可能に設けられている。苗の側方に位置する第二の持上げ具42の先端部42aは、前記第一の持上げ具41の先端部41tと同様に水平で、第一の持上げ具41の先端部41tより若干高位で且つ前後移動シリンダ43により突出させた状態で平面視で交差するように設けられている。従って、第一の持上げ具41の上行動作で第二の持上げ具42が共に上動し、苗の左右両側方及び後方の三方から苗を持ち上げて直立させることができ、把持ハンド12による穂木苗の把持を適正に行える。特に、セルのピッチが狭いセルトレイにおいて、第二の持上げ具42により把持ハンド12が左右移動した側の隣接苗側に苗が傾いたまま把持ハンド12で把持して移送するようなことを防止でき、苗が隣接苗と絡んだまま把持ハンド12で移送されて苗の把持姿勢が不適正になるようなことを防止できる。また、一方の持上げ具41の上下動機構で他方の持上げ具42も上下動させる構成としたので、この上下動機構の簡素化が図れる。また、第二の持上げ具42を平面視で中途部が把持ハンド12側(隣接苗から離れる側)に突出するように屈曲させた構成としているので、該第二の持上げ具42に干渉しないように把持ハンド12の開閉量を所定に維持できると共に、第二の持上げ具42が隣接苗と干渉しにくくなり、苗取り出しの円滑化が図れる。尚、第二の持上げ具42は、図20に示すように平面視で斜めの部分を設けて構成してもよい。   Further, a second lifting tool 42 is provided on the opposite side to the first lifting tool 41 with respect to the seedling W. This second lifting tool 42 is formed by a rod bent so as to be positioned on the side of the seedling on the side opposite to the delivery holding mechanism 15 so as to take out the seedling on the side where the gripping hand 12 moves left and right. The cylinder 43 is provided so as to be able to advance and retract. The tip 42a of the second lifting tool 42 located on the side of the seedling is horizontal, like the tip 41t of the first lifting tool 41, and slightly higher than the tip 41t of the first lifting tool 41. And it is provided so that it may cross | intersect by planar view in the state protruded by the back-and-forth movement cylinder 43. Accordingly, the ascending movement of the first lifting tool 41 causes the second lifting tool 42 to move upward, so that the seedling can be lifted upright from both the left and right sides and the rear side of the seedling. The seedling can be properly gripped. In particular, in a cell tray with a narrow cell pitch, it is possible to prevent the seedling hand 12 from being gripped and transferred to the adjacent seedling side on the side where the gripping hand 12 has moved left and right by the second lifting tool 42 while being transferred. Further, it is possible to prevent the seedling from being transferred by the gripping hand 12 while being entangled with the adjacent seedling and the gripping posture of the seedling becoming inappropriate. Further, since the other lifting tool 42 is also moved up and down by the vertical movement mechanism of one lifting tool 41, the vertical movement mechanism can be simplified. In addition, since the second lifting tool 42 is bent so that the midway part protrudes toward the gripping hand 12 (side away from the adjacent seedling) in plan view, it does not interfere with the second lifting tool 42. In addition, the opening / closing amount of the gripping hand 12 can be maintained at a predetermined level, and the second lifting tool 42 is less likely to interfere with adjacent seedlings, thereby facilitating seedling removal. The second lifting tool 42 may be configured by providing an oblique portion in plan view as shown in FIG.

上記の持上げ具24では三方から苗を持ち上げる構成であるので、残りの一方側(把持ハンド12側)に倒れる苗を直立させることはできない。そこで、搬入機構11のセルトレイ上には、該セルトレイの左右幅にわたる倒れ規制具44を設けている。この倒れ規制具44は、セル内の培土を荒らしたり搬入機構11によるセルトレイの搬送抵抗になったりしないように回転自在のローラで構成され、把持ハンド12で取り出す苗の把持ハンド12側で適確に作用するようにセルの上方に位置する。   Since the lifting tool 24 is configured to lift the seedling from three directions, the seedling that falls to the other side (the gripping hand 12 side) cannot be erected. Therefore, on the cell tray of the carry-in mechanism 11, a tilt restricting tool 44 is provided over the left and right width of the cell tray. The fall restricting tool 44 is composed of a rotatable roller so as not to roughen the culture medium in the cell or become a resistance to transporting the cell tray by the carry-in mechanism 11, and is appropriate on the grasping hand 12 side of the seedling to be taken out by the grasping hand 12. It is located above the cell to act on.

また、把持ハンド12の両ハンド機構21,22に各々において、左右一対の開閉アーム21a,22aのうち受渡保持機構15側(右側)に位置する一方の開閉アーム21a,22aには、受渡保持機構15と左右反対側(左側、他方の開閉アーム21a,22a側)に延びる苗分離具45を固着して設けている。この苗分離具45は、棒材で構成され、左右方向(左側)に延びる基部45aと該基部45aから前側に屈曲して延びる先端部45bとを備え、開閉アーム21a,22aより若干上位に配置されている。苗分離具45の先端部45bは、一対の開閉アーム21a,22aが開いた状態では、前記他方の開閉アーム21a,22aの上方に位置し、略前後真直方向で若干把持方向内側に向かって延び左右の開閉アーム21a,22aの角度に対して把持方向内側に向く角度となる。一方、一対の開閉アーム21a,22aが閉じた状態では、他方の開閉アーム21a,22aより把持方向外側(左側)に位置し、先端へいくほど把持方向外側となる外向きの角度となる。従って、セルトレイの苗を把持するべく進退機構12bにより把持ハンド12が前進するときは、一対の開閉アーム21a,22aが開き、苗分離具45の先端部45bは把持しようとする苗に干渉しないように当該苗と隣接苗との間に挿入される。そして、一対の開閉アーム21a,22aを閉じると、苗分離具45の先端部45bは隣接苗側(左側)に回動して移動し、把持する苗と隣接苗とを離して苗の絡みを解くようになっている。   Further, in each of the hand mechanisms 21 and 22 of the gripping hand 12, one of the pair of left and right opening and closing arms 21a and 22a has one opening and closing arm 21a and 22a positioned on the delivery holding mechanism 15 side (right side). 15 and a seedling separating tool 45 extending to the left and right opposite side (left side, the other opening / closing arm 21a, 22a side). This seedling separating tool 45 is composed of a bar, and includes a base portion 45a extending in the left-right direction (left side) and a distal end portion 45b extending bent from the base portion 45a to the front side, and is disposed slightly above the open / close arms 21a, 22a. Has been. The tip 45b of the seedling separating tool 45 is located above the other opening / closing arm 21a, 22a in a state where the pair of opening / closing arms 21a, 22a are open, and extends slightly inward in the gripping direction in a substantially front-rear straight direction. The angle is toward the inside in the gripping direction with respect to the angle of the left and right opening / closing arms 21a, 22a. On the other hand, when the pair of opening / closing arms 21a, 22a is closed, the opening angle is located on the outer side (left side) of the other opening / closing arms 21a, 22a, and the outward angle becomes the outer side of the holding direction toward the tip. Accordingly, when the grasping hand 12 moves forward by the advance / retreat mechanism 12b to grasp the seedlings on the cell tray, the pair of opening / closing arms 21a and 22a are opened so that the tip 45b of the seedling separating tool 45 does not interfere with the seedling to be grasped. Is inserted between the seedling and the adjacent seedling. When the pair of open / close arms 21a and 22a are closed, the tip 45b of the seedling separating tool 45 rotates and moves to the adjacent seedling side (left side), and the seedling to be gripped is separated from the adjacent seedling to entangle the seedling. It comes to solve.

上記構成の把持ハンド12による穂木苗の取込動作は、図22の動作手順図に従って行う。
まず、図23(a)の準備状態の動作平面図に示すように、後退位置で上段のハンド機構21と中段のハンド機構22およびカッタ機構23を開状態に準備(S1)した上で、接木苗製造装置1の外側方向への移送機構13の横移動により、搬入機構11上の穂木苗Wの側方から第一の持上げ具41の先端部41tを穂木苗Wの背面位置に挿し入れ、その後前後移動シリンダ43を伸長し第二の持上げ具42を前側に突出させて平面視で先端部が苗の側方に位置させると共に第一の持上げ具41の先端部41tと交差させ、第一の持上げ具41及び第二の持上げ具42の上行動作(S2)により穂木苗Wの倒れを修正する。尚、持上げ具24は、上行動作(S2)前において、カッタ機構23の略同じ高さに位置する。これにより、カッタ機構23をセルの上面に近づけることができて該カッタ機構23が苗の根元を切断でき、冬期に育苗されるような胚軸が短い苗でもハンド機構21,22で苗を適正に取り出すことができる。
The operation for taking up the saplings by the gripping hand 12 having the above-described configuration is performed according to the operation procedure diagram of FIG.
First, as shown in the operation plan view of the prepared state in FIG. 23A, the upper hand mechanism 21, the middle hand mechanism 22 and the cutter mechanism 23 are prepared in the open state at the retracted position (S1), and then the grafting is performed. By the lateral movement of the transfer mechanism 13 in the outward direction of the seedling production apparatus 1, the tip 41 t of the first lifting tool 41 is inserted into the back position of the hogi seedling W from the side of the hogi seedling W on the carry-in mechanism 11. After that, the front and rear moving cylinder 43 is extended to project the second lifting tool 42 to the front side so that the front end portion is located on the side of the seedling in plan view and intersects the front end portion 41t of the first lifting tool 41, The fall of the hogi seedling W is corrected by the ascending operation (S2) of the first lifting tool 41 and the second lifting tool 42. The lifting tool 24 is positioned at substantially the same height as the cutter mechanism 23 before the ascending operation (S2). As a result, the cutter mechanism 23 can be brought close to the upper surface of the cell, the cutter mechanism 23 can cut the root of the seedling, and even with a seedling with a short hypocotyl that is nurtured in winter, the hand mechanisms 21 and 22 can properly Can be taken out.

次いで、図23(b)の把持状態の動作平面図に示すように、ハンド機構21,22およびカッタ機構23を前進(S3)した上で両ハンド機構21,22を閉じる(S4)ことによりハンド機構21,22の先端の切欠B、Cに穂木苗Wの胚軸Aが遊嵌保持され、その後にカッタ機構23を閉じる(S5)ことにより、胚軸Aの下段部が切断されて穂木苗Wは回動可能に同カッタ機構23により下端が支持される。ここで、ハンド機構21,22およびカッタ機構23を後退(S6)した上で接木苗製造装置1の中心方向に横移動(S7)することにより、搬入機構11から穂木苗を個別に取込むことができる。尚、S6におけるハンド機構21,22およびカッタ機構23の後退距離すなわち進退機構12bによる進退作動ストロークは、S6の行程によりセルトレイから取り出すべく把持する苗が隣接苗と完全に干渉しない長さに設定されている。   Next, as shown in the operation plan view in the gripping state of FIG. 23B, the hand mechanisms 21 and 22 and the cutter mechanism 23 are advanced (S3), and then both hand mechanisms 21 and 22 are closed (S4). The hypocotyl A of the hogi seedling W is loosely held in the notches B and C at the tips of the mechanisms 21 and 22, and then the cutter mechanism 23 is closed (S5), whereby the lower stage of the hypocotyl A is cut and the ear The lower end of the seedling W is supported by the cutter mechanism 23 so as to be rotatable. Here, the hand mechanisms 21 and 22 and the cutter mechanism 23 are retracted (S6) and then laterally moved (S7) in the center direction of the grafted seedling production apparatus 1, thereby individually picking up the seedlings from the carry-in mechanism 11. be able to. Note that the retreat distance of the hand mechanisms 21, 22 and the cutter mechanism 23 in S6, that is, the advance / retreat operation stroke by the advance / retreat mechanism 12b, is set to such a length that the seedling to be taken out from the cell tray does not completely interfere with the adjacent seedling in the process of S6. ing.

また、移送機構13による移送行程においては、図25の方向修正動作の平面図に示すように、穂木苗を把持した把持ハンド12が把持位置Bから受渡し位置Cまで横移動する際に、その移送行程に干渉するように配置した方向修正部材14の近傍を通過することにより、穂木苗Wの子葉展開方向が移送方向に対して大きく傾斜していると子葉が方向修正部材14と干渉することにより子葉展開方向が略移送方向に揃うように穂木苗が回動される。このとき、穂木苗が過大に回動されても、受渡保持機構15と対向する位置に設けた山形で平板状に構成される整列部材となる副整列部材46に苗の子葉が当たってその回動範囲が規制される。この副整列部材46は、上下位置を調節可能に設けられ、移送機構13で移送されてくる苗の胚軸Aや子葉が直接当たることで苗の姿勢又は子葉展開方向がかえって不適正にならないようにでき、苗の大きさや種類に応じて位置調節できる。   Further, in the transfer process by the transfer mechanism 13, as shown in the plan view of the direction correcting operation in FIG. 25, when the gripping hand 12 that grips the hogi seedling moves laterally from the gripping position B to the delivery position C, The cotyledon interferes with the direction correcting member 14 when passing through the vicinity of the direction correcting member 14 disposed so as to interfere with the transfer process and the cotyledon deployment direction of the hogi seedling W is greatly inclined with respect to the transfer direction. Thus, the hogi seedling is rotated so that the cotyledon unfolding direction is substantially aligned with the transfer direction. At this time, even if the hogi seedling is excessively rotated, the cotyledon of the seedling hits the sub-alignment member 46 that is an angled plate-shaped alignment member provided at a position facing the delivery holding mechanism 15 and The rotation range is restricted. The sub-alignment member 46 is provided so that its vertical position can be adjusted, so that the posture of the seedling or the cotyledon deployment direction does not become incorrect due to direct contact with the hypocotyl A or the cotyledon of the seedling transferred by the transfer mechanism 13. The position can be adjusted according to the size and type of the seedling.

前記移送機構13は、コンプレッサからの空気圧により摺動するエアシリンダにより把持ハンド12を横移動させる構成であり、前記シリンダに備えるストロークセンサにより把持ハンド12が搬入機構11及び該搬入機構11上のセルトレイの上方から離れて方向修正部材14の直前位置まで到達したことを検出すると、シリンダへ供給するエアの流量が少なく制御されて移送速度が減速され、移送終端部での移送速度が低速となる構成となっている。この移送速度が減速される位置は、取り出す苗(苗があるセル)の左右位置となる移送始端位置に拘らず同じ位置に設定されている。尚、把持ハンド12が次の苗を把持するべく受渡保持機構15の受渡し位置から搬入機構11上のセルトレイ側へ移動する戻り行程では、通常の速い移送速度で把持ハンド12が横移動する。持上げ具24は、移送機構13の移送速度が移送終端部で減速されるまでの間、持上げ状態に上昇したままであり、苗の移送で他の苗と干渉する等して該苗の姿勢が悪化するようなことを防止している。尚、移送機構13の移送速度が減速するのと同時にカッタ機構23より下位に下降し、苗受渡し行程において邪魔にならないようにしている。   The transfer mechanism 13 is configured such that the gripping hand 12 is laterally moved by an air cylinder that slides by air pressure from a compressor, and the gripping hand 12 is moved into a loading mechanism 11 and a cell tray on the loading mechanism 11 by a stroke sensor provided in the cylinder. If it is detected that the position has reached the position immediately before the direction correcting member 14 from above, the flow rate of air supplied to the cylinder is controlled to be reduced, the transfer speed is reduced, and the transfer speed at the transfer end portion is reduced. It has become. The position where the transfer speed is decelerated is set to the same position regardless of the transfer start end position which is the left and right position of the seedling to be taken out (cell where the seedling is located). In the return stroke in which the gripping hand 12 moves from the delivery position of the delivery holding mechanism 15 to the cell tray side on the carry-in mechanism 11 to grip the next seedling, the gripping hand 12 moves laterally at a normal fast transfer speed. The lifting tool 24 remains in the lifted state until the transfer speed of the transfer mechanism 13 is decelerated at the transfer end portion, and the posture of the seedling is increased by interfering with other seedlings by transferring the seedlings. It prevents things from getting worse. At the same time as the transfer speed of the transfer mechanism 13 is reduced, the transfer mechanism 13 is lowered below the cutter mechanism 23 so as not to interfere with the seedling delivery process.

尚、把持ハンド12が苗を取り出して上昇した状態で異常停止やオペレータによる中断操作等の停止状態となった後、リセット操作をすると、把持ハンド12が移送機構13により元の原点位置である受渡し位置Rに戻ろうとするが、把持ハンド12が上昇している状態であるので受渡し保持機構15に干渉することになってしまう。そこで、把持ハンド12が下降位置にあることを検出するセンサを設けており、リセット操作をしたときに、該センサにより把持ハンド12が下降位置にあることを検出したときのみ、移送機構13により把持ハンド12を受渡し位置Rに横移動させる構成となっている。   When the gripping hand 12 is in a stopped state such as an abnormal stop or an interruption operation by the operator after the seedling is taken out and raised, when the reset operation is performed, the gripping hand 12 is transferred by the transfer mechanism 13 to the original origin position. Although it tries to return to the position R, it will interfere with the delivery holding mechanism 15 because the gripping hand 12 is in a raised state. Therefore, a sensor for detecting that the gripping hand 12 is in the lowered position is provided, and when the reset operation is performed, the gripping hand 12 is gripped by the transfer mechanism 13 only when the gripping hand 12 is detected in the lowered position. The hand 12 is laterally moved to the delivery position R.

次に、受渡し位置Rに構成される受渡保持機構15と整列部材とによる整列保持手段について説明する。
受渡保持機構15は把持ハンド12の進出位置で穂木苗を受けるべく、進出動作する把持ハンド12に対向して配置される。その構成は、要部平面図を図26に、要部側面図(a)とそのB一B線断面図(b)を図27に示すように、受けた穂木苗の胚軸Aの上段部を把持する上段ハンド機構31と、その下方で胚軸Aの中段部を把持する中段ハンド機構32と、両ハンド機構31、32の中間高さ位置で胚軸Aの過大な進入を規制するストッパ33と、これらを一体に高さ位置を調節する昇降機構34とを受渡し位置Rに備える。
Next, the alignment holding means using the delivery holding mechanism 15 configured at the delivery position R and the alignment member will be described.
The delivery holding mechanism 15 is arranged to face the gripping hand 12 that moves forward so as to receive the seedlings at the advanced position of the gripping hand 12. As shown in FIG. 26, the main part plan view is shown in FIG. 26, and the main part side view (a) and the B-B cross-sectional view (b) thereof are shown in FIG. An upper hand mechanism 31 that grips the head part, a middle hand mechanism 32 that grips the middle stage part of the hypocotyl A below, and an excessive height of the hypocotyl A at the intermediate height position between the hand mechanisms 31 and 32 are regulated. The delivery position R includes a stopper 33 and a lifting mechanism 34 that adjusts the height position of the stopper 33 and the stopper 33.

前記中段ハンド機構32は、下動シリンダ(下動機構)により苗を把持した状態で下降動作する構成となっている。これにより、把持した苗の胚軸Aを苗の上部にある子葉展開基部が上段ハンド機構31の上面に当接するまで下側へ引き下げ、苗の上下位置が所定位置となるように位置決めする。尚、上段ハンド機構31の把持力は中段ハンド機構32の把持力より小さく設定されており、中段ハンド機構32で苗の胚軸Aを引き下げるとき、胚軸Aが上段ハンド機構31内を滑って引き下げられる。また、中段ハンド機構32の下動途中で苗の子葉展開基部が上段ハンド機構31に当接して所定位置で支持された後の中段ハンド機構32の下動端までの下動では、苗が所定位置に保持されたままで苗の胚軸Aが中段ハンド機構32内を滑るようになっている。中段ハンド機構32の把持面は、一対のハンド32aの各々に前後2個の弾性体(スポンジ)47を固着して構成され、前記弾性体(スポンジ)47により苗の胚軸A位置を中心とする4方向から苗の胚軸Aを押圧して把持する構成となっている。この弾性体(スポンジ)47により、中段ハンド機構32の把持力を大きく設定できると共に、太い胚軸Aでは把持面の面積が大きくなり細い胚軸Aでは把持面の面積が小さくなるため、苗の大きさ(胚軸Aの太さ)に応じて中段ハンド機構32の把持力が設定され、該中段ハンド機構32による苗の引き下げを適正に行える。   The middle hand mechanism 32 is configured to move downward while holding a seedling by a downward movement cylinder (downward movement mechanism). As a result, the hypocotyl A of the grasped seedling is lowered downward until the cotyledon deployment base at the top of the seedling comes into contact with the upper surface of the upper stage hand mechanism 31, so that the vertical position of the seedling becomes a predetermined position. Note that the gripping force of the upper hand mechanism 31 is set to be smaller than the gripping force of the middle hand mechanism 32. When the embryonic axis A of the seedling is pulled down by the middle hand mechanism 32, the hypocotyl A slides in the upper hand mechanism 31. Be lowered. Further, in the downward movement of the middle stage hand mechanism 32 to the lower end of the middle hand mechanism 32 after the cotyledon unfolding base of the seedling abuts against the upper stage hand mechanism 31 and is supported at a predetermined position while the middle stage hand mechanism 32 is moving downward, the seedling is predetermined. The hypocotyl A of the seedling slides in the middle stage hand mechanism 32 while being held in position. The grip surface of the middle stage hand mechanism 32 is configured by fixing two front and rear elastic bodies (sponges) 47 to each of the pair of hands 32a, and the elastic body (sponge) 47 is used to center the position of the embryonic axis A of the seedling. It is the structure which presses and holds the embryonic axis A of the seedling from four directions. With this elastic body (sponge) 47, the gripping force of the middle stage hand mechanism 32 can be set large, and the area of the gripping surface is large for the thick hypocotyl A and the area of the gripping surface is small for the thin hypocotyl A. The gripping force of the middle stage hand mechanism 32 is set according to the size (thickness of the hypocotyl A), and the seedling can be appropriately pulled down by the middle stage hand mechanism 32.

受渡保持機構15の上方で穂木苗の子葉を受ける位置に整列部材となる主整列部材16を配置する。主整列部材16は、双葉状の子葉展開方向を規制する平板状の部材であり、その中心位置に上下に延びる突条によるガイド部35を形成する。このガイド部35は受けた穂木苗の子葉を左右に振り分けるために、断面形状が山形でその表面を平滑に低摩擦に形成する。   A main alignment member 16 serving as an alignment member is disposed at a position where the cotyledon of the hogi seedling is received above the delivery holding mechanism 15. The main alignment member 16 is a flat plate-like member that regulates the expansion direction of the cotyledonous cotyledons, and forms a guide portion 35 with a ridge extending vertically at the center position. In order to distribute the cotyledons of the received seedlings to the left and right, the guide part 35 has a mountain shape in cross section and forms the surface smoothly and with low friction.

上記構成の整列保持手段における受渡し動作は、把持ハンド12の進出動作によって受渡保持機構15に穂木苗Wを渡す際に、穂木苗Wの子葉L,Lが主整列部材16に押し付けられるとともに、ガイド部35により子葉L,Lが左右に振り分けられて子葉展開軸線が主整列部材16に沿うように整列される。   In the delivery operation of the alignment holding means having the above-described configuration, the cotyledons L and L of the hotwood seedling W are pressed against the main alignment member 16 when the hotwood seedling W is delivered to the delivery holding mechanism 15 by the advance operation of the gripping hand 12. The cotyledons L and L are distributed to the left and right by the guide portion 35 so that the cotyledon deployment axis is aligned along the main alignment member 16.

上記受渡し動作を図29の動作手順図に従って詳細に説明すると、搬入機構11から穂木苗を取込み、その胚軸を把持した把持ハンド12を受渡保持機構15の正面に位置を合わせた後、まず、図30(a)(b)の第一の整列動作の前後の平面図に示すように、カッタ機構23を含めて把持ハンド12を閉じた状態、すなわち、胚軸Aの下端をカッタ機構23上に受けつつ中段のハンド機構22の把持を緩めた状態で進退機構12bの進退動作により受渡保持機構15の位置まで往復する(S11)ことにより主整列部材16を介して子葉展開方向が整列される。   The above delivery operation will be described in detail with reference to the operation procedure diagram of FIG. 29. After picking up the hogi seedling from the carry-in mechanism 11 and aligning the gripping hand 12 gripping the hypocotyl with the front of the delivery holding mechanism 15, 30A and 30B, the gripping hand 12 including the cutter mechanism 23 is closed, that is, the lower end of the hypocotyl A is the cutter mechanism 23 as shown in the plan views before and after the first alignment operation. The cotyledon deployment direction is aligned via the main alignment member 16 by reciprocating to the position of the delivery holding mechanism 15 by the advance / retreat operation of the advance / retreat mechanism 12b with the grip of the middle stage hand mechanism 22 loosened while being received (S11). The

次いで、図31(a)(b)の第二の整列動作の前後の平面図に示すように、カッタ機構23を開く(S12)ことにより把持ハンド12のハンド機構21に子葉L,Lを受けて穂木苗Wの高さ位置を合わせる。この状態で進退機構12bの進退動作により受渡保持機構15の位置まで往復する(S13)ことにより、主整列部材16に子葉が当たって子葉展開方向が整列される。   Next, as shown in the plan views before and after the second alignment operation in FIGS. 31A and 31B, the cutter mechanism 23 is opened (S12), whereby the hand mechanism 21 of the gripping hand 12 receives the cotyledons L and L. Adjust the height of the seedling W. By reciprocating to the position of the delivery holding mechanism 15 by the advance / retreat operation of the advance / retreat mechanism 12b in this state (S13), the cotyledon strikes the main alignment member 16 and the cotyledon deployment direction is aligned.

上記のように進退機構12bの進退動作で把持ハンド12が往復すると、図32(a)の整列動作の前後の平面図に示すように、把持ハンド12の進出位置の主整列部材16と合わせて把持ハンド12側となる後退位置にも同様の副整列部材46を対向配置しているので、把持ハンド12の1往復につき苗の子葉が整列部材に2回接当することになり、進退動作により能率の良い整列動作が可能となる。尚、前記進退機構12bには、進退用シリンダと、把持ハンド12で把持された苗が主整列部材16に当たる位置に前記進退用シリンダが伸長したことを検出する伸長位置センサと、把持ハンド12で把持された苗が副整列部材46に当たる位置すなわち移送機構13で苗を移送するとき等の通常位置に前記進退用シリンダが収縮したことを検出する収縮位置センサとを備えている。従って、前記伸長位置センサと収縮位置センサとが交互に検出するべく進退用シリンダの伸縮作動を繰り返すことにより、把持ハンド12が往復作動する。   When the gripping hand 12 is reciprocated by the forward / backward movement of the advance / retreat mechanism 12b as described above, as shown in the plan view before and after the alignment operation of FIG. Since the similar sub-alignment member 46 is also disposed opposite to the retracted position on the gripping hand 12 side, the cotyledon of the seedling comes into contact with the alignment member twice for each reciprocation of the gripping hand 12. An efficient alignment operation is possible. The advancing / retreating mechanism 12b includes an advancing / retreating cylinder, an extension position sensor for detecting that the advancing / retreating cylinder is extended to a position where the seedling grasped by the grasping hand 12 hits the main alignment member 16, and a grasping hand 12. A contraction position sensor for detecting that the advance / retreat cylinder contracts to a normal position such as when the gripped seedling hits the sub-alignment member 46, that is, when the seedling is transferred by the transfer mechanism 13. Therefore, the gripping hand 12 is reciprocated by repeating the expansion and contraction operation of the advancing / retreating cylinder so that the extension position sensor and the contraction position sensor are alternately detected.

尚、図面では、副整列部材46を所望の子葉の整列方向と同一方向としたものについて示したが、前記整列方向に対して方向修正部材14で修正する前の子葉方向側に若干斜めに構成してもよい。これにより、主整列部材16に子葉を当てて整列させる前に、副整列部材46により段階的に所望の子葉方向に近づけることができ、無理に子葉の向きを修正しようとすることにより苗が損傷するようなことを防止でき、子葉の向きの修正を円滑に且つ安定しておこなうことができる。また、副整列部材46のガイド部35を無くしてもよい。これにより、苗が横移動して前記ガイド部35に当たることにより損傷するようなことを防止できると共に、苗の横移動で平板状の副整列部材46にならって子葉の向きを円滑に修正することができる。   In the drawing, the sub-alignment member 46 is shown in the same direction as the desired cotyledon alignment direction. However, the sub-alignment member 46 is slightly inclined toward the cotyledon direction before correction by the direction correction member 14 with respect to the alignment direction. May be. This allows the sub-alignment member 46 to gradually approach the desired cotyledon direction before applying the cotyledons to the main alignment member 16 and aligning the cotyledons, forcibly damages the seedling. Thus, the orientation of the cotyledons can be corrected smoothly and stably. Further, the guide portion 35 of the sub-alignment member 46 may be eliminated. Accordingly, it is possible to prevent the seedling from being laterally moved and hitting the guide portion 35, and to prevent the seedling from being damaged, and to smoothly correct the orientation of the cotyledon according to the flat sub-alignment member 46 by the lateral movement of the seedling. Can do.

整列動作の後、把持ハンド12を受渡保持機構15まで進出(S14)した上でカッタ機構23を閉じる(S15)ことにより、胚軸Aが所定位置で切断されて長さが揃えられる。この時、胚軸Aの曲がりがあっても、両ハンド機構31、32の中間高さ位置のストッパ33が胚軸Aの過大な進入を規制することから、胚軸Aを確実に切断することができる。   After the alignment operation, the grasping hand 12 is advanced to the delivery holding mechanism 15 (S14), and then the cutter mechanism 23 is closed (S15), whereby the hypocotyl A is cut at a predetermined position and the lengths are aligned. At this time, even if the hypocotyl A is bent, the stopper 33 at the intermediate height position between the hand mechanisms 31 and 32 restricts excessive entry of the hypocotyl A, so that the hypocotyl A can be cut reliably. Can do.

胚軸Aの切断の後にカッタ機構23を開くとともに穂木苗Wを受けた受渡保持機構15の両ハンド機構31、32を閉じ(S16)、次いで、把持ハンド12の上下のハンド機構21,22を開くとともに受側の受渡保持機構15の中段ハンド機構32の下動により苗を引き下げて所定の保持高さに合わせ(S17)、その後、把持ハンド12を後退(S18)する。   After cutting the hypocotyl A, the cutter mechanism 23 is opened and both hand mechanisms 31, 32 of the delivery holding mechanism 15 that has received the hogi seedling W are closed (S16), and then the upper and lower hand mechanisms 21, 22 of the gripping hand 12 Is opened and the seedling is lowered by the downward movement of the middle hand mechanism 32 of the delivery holding mechanism 15 on the receiving side to the predetermined holding height (S17), and then the gripping hand 12 is retracted (S18).

このようにして受渡しの終了後に、把持ハンド12を搬入機構11側に戻すことにより、次の穂木苗についての取込みが可能となる。この一連の動作の繰返しにより、搬入機構11から穂木苗を順次取込んで接木ロボット本体1aにより接木処理することができる。尚、苗受渡し行程において、持上げ具24は、苗の受け渡しの邪魔にならないようにカッタ機構23より下位に下降している。   In this way, after the delivery is completed, the grip hand 12 is returned to the carry-in mechanism 11 side, so that the next hogi seedling can be taken up. By repeating this series of operations, the seedlings can be sequentially taken from the carry-in mechanism 11 and grafted by the grafting robot body 1a. In the seedling delivery process, the lifting tool 24 is lowered below the cutter mechanism 23 so as not to obstruct the seedling delivery.

ところで、苗取込部2の作動を制御する操作パネル1pには、苗取込部2の電源の入切を行う電源スイッチ48と、作動モードを設定するモードスイッチ49と、搬入機構11で搬入するセルトレイの種類を設定するトレイ選択スイッチ50と、作動を開始させるスタートスイッチ51と、作動を停止させるストップスイッチ52と、各作動部を初期状態に復帰させるリセットスイッチ53と、セルトレイ上の苗位置及びセルトレイの苗列の数を任意に設定できる設定変更部54とを設けている。前記モードスイッチ49は、前記スタートスイッチ51の操作での作動域を選択する作動域選択手段であり、ストップスイッチ52を操作するまで連続的に順次苗を前処理部3へ供給するべく作動する自動位置と、1株の苗を前処理部3へ供給するまで作動する手動位置と、前記S1〜S7並びにS11〜S18の各作動行程ごとに作動するステップ位置とに切替操作できる。前記トレイ選択スイッチ50は、把持ハンド12が苗を取り出す左右方向の位置及び搬入機構11の搬送ピッチを切り替えて設定する設定切替手段であり、72穴セルトレイ用の72穴位置と、128穴セルトレイ用の128穴位置と、前記設定変更部54により任意に設定する手動設定位置(MS)とに切替操作できる。尚、前記72穴セルトレイとはセルが縦12列、横6列設けられたセルトレイであり、前記128穴セルトレイとはセルが縦16列、横8列設けられたセルトレイである。従って、これらのセルトレイの種類によってセルの配列ピッチが異なるため、各セルトレイに応じて前記トレイ選択スイッチ50により切り替える構成となっている。把持ハンド12はセルトレイの横一列の苗を受渡保持機構15側から順次取り出すが、この苗取出回数を操作パネル1p内の制御装置でカウントし、トレイ選択スイッチ50の設定に基づく横一列の回数になると、搬入機構11によりセルトレイを搬送する。これにより、横一列の苗を全て取り出したことを判断するために、把持ハンド12が取り出す苗の左右位置を確認するべく、制御装置(PLC)から移送機構13のエアシリンダへ左右位置の確認命令出力を行って該エアシリンダからの入力で判断するのに比較して、制御のスピードが向上し、作業能率の向上が図れる。   By the way, the operation panel 1p for controlling the operation of the seedling taking-in unit 2 is carried in by the power switch 48 for turning on / off the power of the seedling taking-in unit 2, the mode switch 49 for setting the operation mode, and the carrying-in mechanism 11 A tray selection switch 50 for setting the type of the cell tray to be operated, a start switch 51 for starting the operation, a stop switch 52 for stopping the operation, a reset switch 53 for returning each operation unit to the initial state, and a seedling position on the cell tray A setting changing unit 54 that can arbitrarily set the number of seedling rows in the cell tray is provided. The mode switch 49 is an operation region selection means for selecting an operation region in the operation of the start switch 51, and is automatically operated so as to continuously supply seedlings to the pretreatment unit 3 successively until the stop switch 52 is operated. It is possible to switch between a position, a manual position that operates until one seedling is supplied to the pretreatment unit 3, and a step position that operates for each of the operation steps S1 to S7 and S11 to S18. The tray selection switch 50 is a setting switching means for switching and setting the horizontal position where the gripping hand 12 takes out the seedling and the transport pitch of the carry-in mechanism 11, and the 72-hole position for the 72-hole cell tray and the 128-hole cell tray The 128 hole position and a manual setting position (MS) arbitrarily set by the setting changing unit 54 can be switched. The 72-hole cell tray is a cell tray in which cells are provided in 12 rows and 6 rows, and the 128-hole cell tray is a cell tray in which cells are provided 16 rows and 8 rows. Therefore, since the cell arrangement pitch varies depending on the type of the cell tray, the tray selection switch 50 is used to switch the cell tray according to each cell tray. The gripping hand 12 sequentially takes out the seedlings in the horizontal row of the cell tray from the delivery holding mechanism 15 side. The number of seedlings is counted by the control device in the operation panel 1p, and the number of horizontal seedlings based on the setting of the tray selection switch 50 is obtained. Then, the cell tray is transported by the carry-in mechanism 11. Accordingly, in order to determine that all the seedlings in the horizontal row have been taken out, in order to check the left and right positions of the seedlings taken out by the gripping hand 12, a confirmation command for the left and right positions from the control device (PLC) to the air cylinder of the transfer mechanism 13 The speed of control is improved and the working efficiency can be improved as compared with the case where the determination is made based on the input from the air cylinder.

また、接木ロボット本体laには、該接木ロボット本体la、台木取込部及び穂木取込部2からなる接木苗製造装置1の全体を一括で制御する制御装置を備える制御パネル55を設けている。この制御パネル55に、接木ロボット本体la、台木取込部及び穂木取込部2の作動の入切を行える切替スイッチ等の作動切替手段を設けている。この作動切替手段により、接木ロボット本体la、台木取込部及び穂木取込部2のうち、全部を作動させたり一部を作動させたりすることができ、様々な作業形態で接木苗製造作業が行える。例えば、胚軸長が短い場合に苗接合のための切断位置の精度を要する台木を人手で台木前処理部3へ精度良く供給したいとき、接木ロボット本体la及び穂木取込部2を作動させて台木取込部の作動を停止させることができる。あるいは、苗をセルトレイで育苗しなかった場合にその苗の取込部2を停止させて人手で苗供給したり、苗の接合を人手で行いたいときに取込部2を作動させて接木ロボット本体laの作動を停止させたりできる。尚、台木、穂木共に人手で供給したいときは、接木ロボット本体laのみを作動させればよい。   Further, the grafting robot main body la is provided with a control panel 55 including a control device that collectively controls the grafting seedling manufacturing apparatus 1 including the grafting robot main body la, the rootstock capturing unit, and the hogi capturing unit 2. ing. The control panel 55 is provided with operation switching means such as a change-over switch that can turn on / off the operations of the grafting robot main body la, the rootstock taking section, and the hogi taking section 2. By this operation switching means, it is possible to operate all or part of the grafting robot main body la, rootstock capturing part and hogi capturing part 2, and manufacture grafted seedlings in various work forms. Work can be done. For example, when it is desired to supply a rootstock that requires accuracy of the cutting position for seedling joining to the rootstock pretreatment unit 3 with high accuracy when the hypocotyl length is short, the grafting robot main body la and the hogi capturing unit 2 are The operation of the rootstock take-in section can be stopped by operating. Alternatively, when the seedling is not grown in the cell tray, the seedling capturing unit 2 is stopped and the seedling is manually supplied, or when it is desired to join the seedling manually, the capturing unit 2 is operated to graft the robot. The operation of the main body la can be stopped. When both rootstock and hogi are supplied manually, only the grafting robot main body la needs to be operated.

以上により、この接木苗製造装置1において、各苗を1株づつ供給する苗供給装置となる取込部2は、受けた苗の根側を切断しつつ苗の胚軸を回動可能に緩く保持可能な把持ハンド12による遊嵌保持機構と、この遊嵌保持機構を支持して横方向に移送動作する移送機構13と、この移送機構13における移送終端部で苗の子葉と干渉することによってその子葉展開方向を移送方向に合わせるための方向修正部材14及び副整列部材46とを設け、前記移送機構13は、移送終端部での移送速度が低速となるよう前記方向修正部材14に苗の子葉が干渉する直前で移送速度が減速される構成としている。   As described above, in the grafted seedling production apparatus 1, the take-in unit 2 serving as a seedling supply apparatus that supplies each seedling one by one loosens the seedling so that the embryonic axis of the seedling can be rotated while cutting the root side of the received seedling. By the loose fitting holding mechanism by the holding hand 12 that can be held, the transfer mechanism 13 that supports the loose fitting holding mechanism and moves in the lateral direction, and by interfering with the cotyledons of the seedlings at the transfer end portion in the transfer mechanism 13 A direction correction member 14 and a sub-alignment member 46 for adjusting the cotyledon deployment direction to the transfer direction are provided, and the transfer mechanism 13 causes the direction correction member 14 to transfer seedlings so that the transfer speed at the transfer end portion is low. The transfer speed is reduced immediately before the cotyledon interferes.

従って、前記遊嵌把持機構は、双葉状の展開子葉を有する苗を受けると、これを穂木または台木としてその根側を切断しつつ胚軸を回動可能に緩く把持し、この苗は遊嵌把持機構を支持する移送機構13により移送されるが、この移送速度は方向修正部材14に苗の子葉が干渉する直前で減速されて移送行程の終端部で低速となり、該移送行程の終端部で方向修正部材14及び副整列部材46が苗の子葉と干渉することによってその子葉展開方向が移送方向に揃えられ、この方向規制された苗が前処理部3,4と接着処理部7とにより台木または穂木と接着されて接木苗が製造される。   Therefore, when the loose-fitting gripping mechanism receives a seedling having a bicotyledonous cotyledon, this loosely grips the hypocotyl while turning the root side of the seedling as a hogi or rootstock, It is transferred by the transfer mechanism 13 that supports the loose-fitting gripping mechanism. This transfer speed is decelerated immediately before the cotyledon of the seedling interferes with the direction correcting member 14 and becomes low at the end of the transfer process, and the end of the transfer process. When the direction correcting member 14 and the sub-alignment member 46 interfere with the cotyledons of the seedlings, the cotyledon unfolding direction is aligned with the transfer direction, and the seedlings restricted in this direction are treated with the pretreatment units 3 and 4 and the adhesion processing unit 7. Is bonded to rootstock or hogi to produce grafted seedlings.

よって、移送機構13の移送行程上で方向修正部材14及び副整列部材46が苗の子葉と干渉することによってその子葉展開方向が移送方向に揃えられるが、移送機構13により遅い速度で方向修正部材14に苗の子葉が干渉することになり、方向修正部材14に苗の子葉が勢いよく当たって苗の胚軸が回転し過ぎるようなことが抑えられ、前処理部3,4へ苗を適正な向きで精度良く安定して供給できる。従って、上記接木苗製造装置により、苗はその配置方向を規制されつつ受渡し位置まで移送されることから、以降の前処理部3,4と接着処理部7とによる接ぎ木処理精度が確保されて煩わしい人手作業を要することなく能率良く接木処理するごとができる。また、移送機構13の移送速度が移送終端部の直前で減速される構成とし、次の苗を取りにいく移送機構13の戻り行程と移送機構13による苗の移送経路の大部分(減速されるまでの大部分)とでは把持ハンド12が高速で移送されるため、接木苗製造における作業能率が向上する。   Therefore, the direction correction member 14 and the sub-alignment member 46 interfere with the cotyledon of the seedling on the transfer stroke of the transfer mechanism 13 so that the cotyledon deployment direction is aligned with the transfer direction. 14, the cotyledon of the seedling interferes, and the cotyledon of the seedling strikes the direction correcting member 14 and the hypocotyl of the seedling is prevented from rotating excessively. Can be supplied accurately and stably in any orientation. Therefore, since the seedling is transferred to the delivery position while the arrangement direction is regulated by the grafting seedling production apparatus, accuracy of grafting processing by the subsequent pretreatment units 3 and 4 and the adhesion processing unit 7 is ensured, which is troublesome. Every time grafting is done efficiently without the need for manual work. Further, the transfer speed of the transfer mechanism 13 is decelerated immediately before the end of transfer, and the return stroke of the transfer mechanism 13 for picking up the next seedling and most of the transfer path of the seedling by the transfer mechanism 13 (decelerates). In most cases, the gripping hand 12 is transferred at a high speed, so that the work efficiency in grafting seedling production is improved.

また、方向修正部材14及び副整列部材46を移送機構13による移送終端部に設けているので、方向修正部材14及び副整列部材46で苗の子葉展開方向を修正した後、移送機構13による苗の横方向への移送で苗の子葉展開方向がずれるようなことがなく、苗の子葉展開方向を精度良く揃えることができる。   Further, since the direction correcting member 14 and the sub-alignment member 46 are provided at the transfer end portion by the transfer mechanism 13, after correcting the cotyledon deployment direction of the seedling with the direction correction member 14 and the sub-alignment member 46, The cotyledon deployment direction of the seedlings can be aligned with high accuracy without shifting the cotyledon deployment direction of the seedlings in the lateral direction.

尚、図34乃至図36に示すように、前記副整列部材46を、移送機構13の移送方向(左右方向)へ向く平面状の板材で構成してもよい。このとき、移送機構13の移送終端部に移送された苗の胚軸からの距離lが苗の子葉の長さaより短くて子葉の幅bの2分の1と同等かそれより長くなるように副整列部材46の位置を設定すると、前後方向に向く子葉のみが副整列部材46に当たって子葉の向きを所望の左右方向へ向く状態に修正できる。尚、図36に示すように、この副整列部材46の平面状の板材を移送機構13の移送上手側(左側)ほど苗から離れる側(後側)となるように若干斜めに配置すると、移送機構13で移送される苗が副整列部材46の端部にひっかかるようなことを防止でき、苗を円滑に移送することができる。   As shown in FIGS. 34 to 36, the sub-alignment member 46 may be formed of a flat plate material facing in the transfer direction (left-right direction) of the transfer mechanism 13. At this time, the distance l from the hypocotyl of the seedling transferred to the transfer terminal portion of the transfer mechanism 13 is shorter than the cotyledon length a of the seedling and equal to or longer than one half of the cotyledon width b. When the position of the sub-alignment member 46 is set, only the cotyledon facing in the front-rear direction hits the sub-alignment member 46 so that the orientation of the cotyledon can be corrected to the desired left-right direction. As shown in FIG. 36, when the flat plate member of the sub-alignment member 46 is arranged slightly obliquely so that it is on the side closer to the transfer side (left side) of the transfer mechanism 13 and farther from the seedling (rear side), It is possible to prevent the seedling transferred by the mechanism 13 from being caught on the end of the sub-alignment member 46, and the seedling can be transferred smoothly.

尚、上述では苗の子葉展開方向を精度良く揃えるためにローラで構成される方向修正部材14と板材で構成される副整列部材46とを共に設けた構成としたが、何れか一方のみを設けて苗の子葉展開方向を変更する構成としてもよい。尚、副整列部材46のみを設けた場合は、該副整列部材46が苗の子葉と干渉してその子葉展開方向を移送方向に合わせる方向修正部材となる。   In the above description, in order to align the cotyledon unfolding direction of the seedling with high accuracy, the direction correcting member 14 composed of a roller and the sub-alignment member 46 composed of a plate material are provided together, but only one of them is provided. It is good also as a structure which changes the cotyledon expansion | deployment direction of a seedling. When only the sub-alignment member 46 is provided, the sub-alignment member 46 interferes with the cotyledon of the seedling and becomes a direction correcting member that matches the cotyledon deployment direction with the transfer direction.

また、上述では主整列部材16と副整列部材46とを対向して複数設けた構成としたが、例えば主整列部材16のみを設ける等、一方の整列部材を設けた構成としてもよい。このとき、把持ハンド12の1往復につき苗の子葉が整列部材16に半分の1回しか接当しないので、把持ハンド12を2倍の4往復作動させて苗の子葉が整列部材16に4回接当させる構成とすればよい。このように把持ハンド12を進退機構12bにより複数回往復作動させる際、伸長位置センサが検出するまで進退用シリンダを伸長させて苗を整列部材16へ接当させるが、戻り行程では、収縮位置センサが検出する手前で進退用シリンダの収縮作動を停止させるべく、タイマにより所定時間だけ進退用シリンダを作動させて停止し、再度進退用シリンダを伸長させて2回目以降の苗の整列部材16への接当を行わせる構成とすることができる。これにより、進退用シリンダの収縮作動及び再度苗を整列部材16に当てるべく進退用シリンダを伸長させる伸長作動において、これらの作動距離並びに作動時間を短縮することができ、所定回数の苗の整列動作に対してこの整列行程の時間短縮が図れ、苗供給作業ひいては接木苗製造作業の作業能率向上が図れる。   In the above description, a plurality of main alignment members 16 and sub-alignment members 46 are provided to face each other. However, for example, only one main alignment member 16 may be provided. At this time, since the cotyledon of the seedling contacts with the alignment member 16 only once for one reciprocation of the gripping hand 12, the gripping hand 12 is operated twice as much as four reciprocations so that the cotyledon of the seedling contacts the alignment member 16 four times. What is necessary is just to make it the structure made to contact. In this way, when the gripping hand 12 is reciprocated a plurality of times by the advance / retreat mechanism 12b, the advance / retreat cylinder is extended until the extension position sensor detects it, and the seedling is brought into contact with the alignment member 16, but in the return stroke, the contraction position sensor In order to stop the contraction operation of the advancing / retreating cylinder just before detecting by the timer, the advancing / retreating cylinder is operated and stopped for a predetermined time by a timer, and the advancing / retreating cylinder is extended again to apply the seedling to the alignment member 16 for the second and subsequent times. It can be set as the structure which performs a contact. As a result, in the contracting operation of the advancing / retreating cylinder and the extending operation for extending the advancing / retreating cylinder so that the seedling is again applied to the alignment member 16, these working distances and operating times can be shortened, and the seedling aligning operation a predetermined number of times. On the other hand, the time required for the alignment process can be shortened, and the work efficiency of the seedling supply work and the grafted seedling production work can be improved.

図37に示すように、把持ハンド12のハンド機構21,22における左右一方の開閉アーム21a,22aのみの把持面を、該開閉アーム21a,22aが閉じた状態で平面視で斜めになるように設定してもよい。これにより、断面が楕円形状である胚軸Aを把持するとき、該楕円形状の長軸が前後方向に向くように胚軸Aの向きが修正され、該楕円形状の短軸方向に広がる子葉を左右方向に向けることができる。従って、この把持ハンド12が、苗の子葉展開方向を移送方向に合わせるための方向修正部材の一種となる。また、左右一対の開閉アーム21a,22aを閉じた後、該左右一対の開閉アーム21a,22aを互いに前後逆方向に摺動させて苗の胚軸Aの回転を促し、断面の楕円形状の長軸が前後方向に向くように胚軸Aの向きを修正することも考えられる。この場合は、胚軸Aがスムーズに回転できるように、左右一対の開閉アーム21a,22aの把持面を前後方向に向く平面とすることが望ましい。   As shown in FIG. 37, the grip surfaces of only the left and right open / close arms 21a, 22a of the hand mechanisms 21, 22 of the grip hand 12 are inclined in a plan view with the open / close arms 21a, 22a being closed. It may be set. Thereby, when gripping the hypocotyl A having an elliptical cross section, the orientation of the hypocotyl A is corrected so that the major axis of the ellipse is directed in the front-rear direction, and the cotyledon that extends in the minor axis direction of the ellipse Can be directed left and right. Therefore, the gripping hand 12 is a kind of direction correcting member for adjusting the cotyledon unfolding direction of the seedling to the transfer direction. In addition, after closing the pair of left and right open / close arms 21a and 22a, the pair of left and right open / close arms 21a and 22a are slid in the forward and backward directions to promote the rotation of the embryonic axis A of the seedling, It is also conceivable to correct the orientation of the hypocotyl A so that the axis is directed in the front-rear direction. In this case, it is desirable that the gripping surfaces of the pair of left and right opening / closing arms 21a and 22a be flat surfaces facing in the front-rear direction so that the hypocotyl A can rotate smoothly.

尚、苗を育苗するべくセルトレイのセルに播種する際、所望の方向に苗の子葉が展開するように予め播種される種子の向きを設定すれば、取込部2で苗の子葉展開方向を揃える作業が円滑に行える。具体的には、楕円形の種子の長径方向がセルトレイの長手方向(前後方向)に向くように種子の向きを揃えて播種すれば、育苗される苗の子葉展開方向はセルトレイの長手方向(前後方向)になり、何れの苗も方向修正部材14又は副整列部材46で苗の胚軸を約90度回転させて子葉展開方向を揃えることになり、苗の子葉が方向修正部材14又は副整列部材46に確実に当たって修正されるため、苗の子葉展開方向が精度良く適正に修正できる。あるいは、楕円形の種子の長径方向がセルトレイの短手方向(左右方向)に向くように種子の向きを揃えて播種し、育苗される苗の子葉展開方向をセルトレイの短手方向(左右方向)へ向け、方向修正部材14又は副整列部材46による苗の胚軸の回転角度を小さくし、子葉展開方向の修正の円滑化を図ることもできる。いずれにしても、育苗される苗の子葉展開方向を所望の向きに設定できるので、取込部2で苗の子葉展開方向を揃える作業が円滑に行えるのである。尚、所望の方向に播種する手段としては、播種機の種子整列板を振動させて長径方向が所定の方向に向くように種子を揃え、その種子を種子吸着ノズルにより吸着する等して種子の向きが勝手に変わらないようにセルトレイへ播種することが考えられる。   In addition, when sowing seedlings in the cell of the cell tray for raising seedlings, if the orientation of the seeds to be seeded in advance is set so that the cotyledons of seedlings develop in a desired direction, the take-out part 2 sets the cotyledon development direction of the seedlings. Alignment work can be done smoothly. Specifically, if the seeds are sown so that the major axis direction of the oval seed faces the longitudinal direction (front-rear direction) of the cell tray, the cotyledon development direction of the seedling to be nurtured is the longitudinal direction of the cell tray (front-rear direction). Any seedling is rotated by about 90 degrees with the direction correcting member 14 or the sub-alignment member 46 to align the cotyledon deployment direction, and the cotyledon of the seedling is aligned with the direction correcting member 14 or the sub-alignment. Since the contact with the member 46 is surely corrected, the cotyledon deployment direction of the seedling can be corrected appropriately with high accuracy. Alternatively, the seeds are sown so that the major axis direction of the oval seeds faces the short direction (left and right direction) of the cell tray, and the cotyledon deployment direction of the seedling to be nurtured is the short direction (left and right direction) of the cell tray. Further, the rotation angle of the embryonic axis of the seedling by the direction correcting member 14 or the sub-alignment member 46 can be reduced to facilitate the correction of the cotyledon deployment direction. In any case, the cotyledon deployment direction of the seedling to be nurtured can be set to a desired direction, so that the operation of aligning the cotyledon deployment direction of the seedling can be smoothly performed in the take-in part 2. As a means for sowing in a desired direction, the seed alignment plate of the sowing machine is vibrated to align the seeds so that the major axis direction is in a predetermined direction, and the seeds are adsorbed by a seed adsorption nozzle. It may be possible to sow the cell tray so that the orientation does not change.

101:栽培室(温室)、126:制御部(コントローラ)、131:第一加温装置、132:第二加温装置、133:加温管、134:ポンプ、135:第一供給管、136:第二供給管、137:暖房用管、138:戻り管、172:バイパス管、173:切替弁、175:温水温度センサ   101: cultivation room (greenhouse), 126: control unit (controller), 131: first heating device, 132: second heating device, 133: heating tube, 134: pump, 135: first supply tube, 136 : Second supply pipe, 137: heating pipe, 138: return pipe, 172: bypass pipe, 173: switching valve, 175: hot water temperature sensor

Claims (1)

化石燃料を燃焼させた熱を利用して温水を加温する第一加温装置(131)と、化石燃料以外の燃料を燃焼させた熱を利用して温水を加温する第二加温装置(132)と、第一加温装置(131)及び第二加温装置(132)に温水を供給する加温管(133)と、加温管(133)により加温された温水をポンプ(134)へ供給するための第一供給管(135)と、ポンプ(134)からの温水を温室内の暖房用管(137)へ供給するための第二供給管(136)と、暖房用管(137)から加温管(133)へ温水を戻すための戻り管(138)を設け、加温管(133)、第一供給管(135)、第二供給管(136)、暖房用管(137)及び戻り管(138)を経由する温水の循環経路を構成すると共に、第一供給管(135)と戻り管(138)を繋ぐバイパス管(172)を設け、加温管(133)を経由せずにバイパス管(172)、第一供給管(135)、第二供給管(136)、暖房用管(137)及び戻り管(138)を経由する温水の循環経路を構成し、バイパス管(172)と第一供給管(135)の接続部には、加温管(133)側から合流する流量の割合とバイパス管(172)側から合流する流量の割合を調節する流量割合調節可能な切替弁(173)を設け、第二供給管(136)を流れる温水の温度を検出する温水温度センサ(175)を設け、該温水温度センサ(175)により検出される温水の温度と設定される温水の目標温度の差が大きいほど加温管(133)側から合流する流量の割合が多くなるように設定される加温管(133)側からの設定流量割合に基づいて切替弁(173)を制御すると共に、前記加温管(133)側からの設定流量割合が所定の割合よりも大きく設定されるときは第一加温装置(131)及び第二加温装置(132)を共に燃焼運転し、前記加温管(133)側からの設定流量割合が所定の割合よりも小さく設定されるときは第二加温装置(132)のみを燃焼運転して第一加温装置(131)の燃焼運転を停止させる制御装置を設けた温室の暖房設備。   A first warming device (131) that warms hot water using heat generated by burning fossil fuel, and a second warming device that heats warm water using heat generated by burning fuel other than fossil fuel (132), a heating tube (133) for supplying warm water to the first heating device (131) and the second heating device (132), and hot water heated by the heating tube (133) are pumped ( 134), a second supply pipe (136) for supplying hot water from the pump (134) to a heating pipe (137) in the greenhouse, and a heating pipe A return pipe (138) for returning warm water from (137) to the heating pipe (133) is provided, the heating pipe (133), the first supply pipe (135), the second supply pipe (136), and the heating pipe (137) and a return pipe (138), a hot water circulation path is formed, and the first supply pipe (135 A bypass pipe (172) connecting the return pipe (138) to the bypass pipe (172), the first supply pipe (135), the second supply pipe (136), and the heating pipe without passing through the heating pipe (133). A circulation path of warm water passing through the pipe (137) and the return pipe (138) is formed, and the connecting portion between the bypass pipe (172) and the first supply pipe (135) is joined from the heating pipe (133) side. A flow rate adjustable switch valve (173) for adjusting the flow rate ratio and the flow rate ratio from the bypass pipe (172) side to detect the temperature of the hot water flowing through the second supply pipe (136) A sensor (175) is provided, and the larger the difference between the temperature of the hot water detected by the hot water temperature sensor (175) and the target temperature of the set hot water, the greater the proportion of the flow rate that joins from the heating pipe (133) side. The heating tube (13 ) Controls the switching valve (173) based on the set flow rate ratio from the side, and the first heating device when the set flow rate ratio from the heating pipe (133) side is set to be larger than a predetermined rate. (131) and the second heating device (132) are both combusted and when the set flow rate ratio from the heating pipe (133) side is set smaller than a predetermined rate, the second heating device (132 ) Only for the heating operation of the greenhouse provided with a control device for stopping the combustion operation of the first heating device (131).
JP2009083253A 2009-03-30 2009-03-30 Greenhouse heating equipment Expired - Fee Related JP5141622B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2009083253A JP5141622B2 (en) 2009-03-30 2009-03-30 Greenhouse heating equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2009083253A JP5141622B2 (en) 2009-03-30 2009-03-30 Greenhouse heating equipment

Publications (2)

Publication Number Publication Date
JP2010233477A JP2010233477A (en) 2010-10-21
JP5141622B2 true JP5141622B2 (en) 2013-02-13

Family

ID=43088446

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009083253A Expired - Fee Related JP5141622B2 (en) 2009-03-30 2009-03-30 Greenhouse heating equipment

Country Status (1)

Country Link
JP (1) JP5141622B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP7026477B2 (en) * 2016-10-20 2022-02-28 株式会社桂精機製作所 Integrated environmental control system for horticultural house and house heating method
JP7218843B2 (en) * 2019-08-05 2023-02-07 スナオ電気株式会社 greenhouse heating system

Family Cites Families (9)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6032842Y2 (en) * 1980-05-27 1985-10-01 大阪瓦斯株式会社 Heating device using solid fuel
JPS6184409U (en) * 1984-11-06 1986-06-03
JP2586096B2 (en) * 1988-04-18 1997-02-26 井関農機株式会社 Hot water heating system
JPH02106509U (en) * 1989-02-13 1990-08-24
JPH0866127A (en) * 1994-08-30 1996-03-12 Iseki & Co Ltd Controller for hot water feeder
JP2000262160A (en) * 1999-03-16 2000-09-26 Nepon Inc Adjustment of heat source water temperature for heating horticultural greenhouse
JP4622090B2 (en) * 2000-11-21 2011-02-02 井関農機株式会社 House snow melting equipment
JP2008220217A (en) * 2007-03-09 2008-09-25 Yanmar Co Ltd Greenhouse warming system
JP3148663U (en) * 2008-11-17 2009-02-26 有限会社久万重機サービス Hot water reactor for wood fuel

Also Published As

Publication number Publication date
JP2010233477A (en) 2010-10-21

Similar Documents

Publication Publication Date Title
JP2011200196A (en) Pollinating robot
CA2839505C (en) System for the cultivation of plants
CN100407889C (en) Planting establishment
JP5939057B2 (en) Cultivation facility
JP2007300867A (en) Seeding method
KR101376234B1 (en) Apparatus for transplant of cultivation-port including removal unit at miss transplanting port
JP2014008015A5 (en)
JP5141622B2 (en) Greenhouse heating equipment
JP5704329B2 (en) Grafting clip
JP2009178071A (en) Liquid-spraying device
CN115299232B (en) Intelligent integrated water and fertilizer irrigation method
CN108377895A (en) One plant growth culture systems
CN208300585U (en) One plant growth culture systems
JP2022525558A (en) Cultivation tower alignment mechanism
JP2011172522A (en) Greenhouse shading device
JP6079177B2 (en) Graft seedling production equipment
JP6079667B2 (en) Graft seedling production equipment
JP5509844B2 (en) Graft seedling production equipment
JP2013179850A (en) Device for producing grafted seedling
JP5703635B2 (en) Graft seedling production equipment
JP4929712B2 (en) Graft seedling production equipment
JP5768686B2 (en) Stacking equipment
KR101293754B1 (en) Apparatus for transplant of cultivation-port
KR20130064176A (en) Device for grafting with enhanced efficiency
JP2015119653A5 (en)

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110622

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20121015

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141622

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees