JP5141281B2 - 燃料電池用電極集成体の製造方法 - Google Patents

燃料電池用電極集成体の製造方法 Download PDF

Info

Publication number
JP5141281B2
JP5141281B2 JP2008030425A JP2008030425A JP5141281B2 JP 5141281 B2 JP5141281 B2 JP 5141281B2 JP 2008030425 A JP2008030425 A JP 2008030425A JP 2008030425 A JP2008030425 A JP 2008030425A JP 5141281 B2 JP5141281 B2 JP 5141281B2
Authority
JP
Japan
Prior art keywords
gasket
electrolyte membrane
anode
electrode assembly
gaskets
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008030425A
Other languages
English (en)
Other versions
JP2009193700A (ja
Inventor
祐治 阪上
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Nissan Motor Co Ltd
Original Assignee
Nissan Motor Co Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Nissan Motor Co Ltd filed Critical Nissan Motor Co Ltd
Priority to JP2008030425A priority Critical patent/JP5141281B2/ja
Publication of JP2009193700A publication Critical patent/JP2009193700A/ja
Application granted granted Critical
Publication of JP5141281B2 publication Critical patent/JP5141281B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/30Hydrogen technology
    • Y02E60/50Fuel cells
    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02PCLIMATE CHANGE MITIGATION TECHNOLOGIES IN THE PRODUCTION OR PROCESSING OF GOODS
    • Y02P70/00Climate change mitigation technologies in the production process for final industrial or consumer products
    • Y02P70/50Manufacturing or production processes characterised by the final manufactured product

Landscapes

  • Fuel Cell (AREA)

Description

本発明は燃料電池用電極集成体の製造方法関する
燃料電池のスタック部は、セルを形成する電極集成体およびセパレータが順次積重ねられて構成されている。電極集成体は、膜電極接合体およびガス拡散層が一体化されたユニット組立体(アセンブリ)であり、膜電極接合体は、アノード側ガスケットとカソード側ガスケットによって挟まれた電解質膜を有する(例えば、特許文献1および2参照。)。
特開平5−242897号公報 特開平5−21077号公報
しかし、電解質膜、アノード側ガスケットおよびカソード側ガスケットは、10〜150μm程度の薄いフィルム状部材からなり、ハンドリング性が悪いため、積層の際における位置決め精度を確保することが困難である。そのため、ズレを生じても製品(燃料電池)に不具合が生じないように、余裕を持たせたサイズに設定されており、その分、発電に利用される面積が小さくなるため、良好な電池出力を得ることが困難である。
本発明は、上記従来技術に伴う課題を解決するためになされたものであり、電池出力を向上させ得る燃料電池用電極集成体製造方法、提供することを目的とする。
上記目的を達成するための本発明一様相は、電解質膜、前記電解質膜のアノード側およびカソード側に配置されるアノード側ガスケットおよびカソード側ガスケット、前記電解質膜のアノード側およびカソード側に配置されるアノード側ガス拡散層およびカソード側ガス拡散層、前記アノード側ガス拡散層の周囲を取り囲むように配置される第2のアノード側ガスケット、および、前記カソード側ガス拡散層の周囲を取り囲むように配置される第2のカソード側ガスケットを有する燃料電池用電極集成体の製造方法である。当該製造方法においては、1枚のガスケット材を二つ折りにすることで、前記アノード側ガスケットおよび前記カソード側ガスケットを一体的に形成し、前記電解質膜を、前記ガスケット材の折曲げ部に突き当てて位置決めし、1枚の第2のガスケット材を二つ折りにすることで、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットを一体的に形成し、前記ガスケット材の折曲げ部を、前記第2のガスケット材の折曲げ部に突き当てて位置決めする。そして、前記ガスケット材は、二つ折りにされた後、かつ、前記電解質膜が突き当てられて位置決めされる前に、前記アノード側ガスケットおよび前記カソード側ガスケットの形状に成形される。
上記目的を達成するための本発明の別の一様相は、前記第2のガスケット材は、二つ折りにされた後、かつ、前記ガスケット材の折曲げ部が突き当てられて位置決めされる前に、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットの形状に成形される。
本発明の一様相および別の一様相によれば、アノード側ガスケットおよびカソード側ガスケットは、1枚のガスケット材を二つ折りにすることで一体的に形成されるため、アノード側ガスケットとカソード側ガスケットの間の位置決め精度を容易に確保することができる。また、アノード側ガスケットおよびカソード側ガスケットに対する電解質膜の位置決めは、電解質膜をガスケット材の折曲げ部に突き当てることによって達成されるため、その位置決め精度を容易に確保し、かつ、アノード側ガスケット、電解質膜およびカソード側ガスケットを個々に位置決めする場合に比較し、位置決め回数を削減することができる。したがって、電極集成体におけるアノード側ガスケット、電解質膜およびカソード側ガスケットのズレの発生を抑制し、その分、発電に利用される面積を増加させることで、当該電極集成体を備えた燃料電池の電池出力を向上させることが可能である。さらに、第2のアノード側ガスケットおよび第2のカソード側ガスケットは、1枚の第2のガスケット材を二つ折りにすることで一体的に形成されるため、第2のアノード側ガスケットと第2のカソード側ガスケットの間の位置決め精度を容易に確保することができる。また、第2のアノード側ガスケットおよび第2のカソード側ガスケットに対する、アノード側ガスケット、電解質膜およびカソード側ガスケットの位置決めは、ガスケット材の折曲げ部を第2のガスケット材の折曲げ部に突き当てることによって達成されるため、その位置決め精度を容易に確保し、かつ、第2のアノード側ガスケット、アノード側ガスケット、電解質膜、カソード側ガスケット、第2のカソード側ガスケットを個々に位置決めする場合に比較し、位置決め回数を削減することができる。したがって、第2のアノード側ガスケット、アノード側ガスケット、電解質膜、カソード側ガスケット、第2のカソード側ガスケットのズレの発生を抑制し、その分、発電に利用される面積をさらに増加させることが可能である。つまり、電池出力を向上させ得る燃料電池用電極集成体の製造方法を提供することができる。
そして、本発明の一様相によれば、特に、前記ガスケット材は、二つ折りにされた後、かつ、前記電解質膜が突き当てられて位置決めされる前に、前記アノード側ガスケットおよび前記カソード側ガスケットの形状に成形される。したがって、二つ折りにされる際、ガスケット材は、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができる。
また、本発明の別の一様相によれば、特に、前記第2のガスケット材は、二つ折りにされた後、かつ、前記ガスケット材の折曲げ部が突き当てられて位置決めされる前に、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットの形状に成形される。したがって、二つ折りにされる際、第2のガスケット材は、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができる。
以下、本発明の実施の形態を、図面を参照しつつ説明する。図1は、本発明の実施の形態に係る燃料電池を説明するための斜視図である。
燃料電池10は、複数のセルが積層されたスタック部20を有しており、電源として利用される。電源の用途は、例えば、定置用、携帯電話などの民生用携帯機器用、非常用、レジャーや工事用電源などの屋外用、搭載スペースが限定される自動車などの移動体用である。特に、移動体用電源は、比較的長時間の運転停止後に高い出力電圧が要求されるため、適用が好ましい。
スタック部20の両側には、集電板30,40、絶縁板50,60およびエンドプレート70,80が配置される。集電板30,40は、緻密質カーボンや銅板などガス不透過な導電性部材から形成され、また、スタック部20で生じた起電力を出力するための出力端子35,45が設けられている。絶縁板50,60は、ゴムや樹脂等の絶縁性部材から形成される。
エンドプレート70,80は、剛性を備えた材料、例えば鋼などの金属材料から形成される。エンドプレート70は、燃料ガス(例えば、水素)、酸化剤ガス(例えば、酸素)および冷媒(例えば、冷却水)を流通させるために、燃料ガス導入口71、燃料ガス排出口72、酸化剤ガス導入口74、酸化剤ガス排出口75、冷媒導入口77、および冷媒排出口78を有する。
スタック部20、集電板30,40、絶縁板50,60およびエンドプレート70,80の四隅には、タイロッド90が挿通される貫通孔が配置される。タイロッド90は、その端部に形成される雄ねじ部に、ナットが螺合され、燃料電池10を締結する。スタック形成のための荷重は、セルの積層方向に作用し、セルを押し圧状態に保持する。
タイロッド90は、剛性を備えた材料、例えば、鋼などの金属材料から形成され、また、セル同士の電気的短絡を防止するため、絶縁処理された表面部を有する。タイロッド90の設置本数は、4本(四隅)に限定されない。タイロッド90の締結機構は、螺合に限定されず、他の手段を適用することも可能である。また、燃料電池10の締結機構は、内部を延長するタイロッド90を利用する形態に限定されず、外部を延長するテンションロッドを利用することも可能である。
図2は、図1に示されるスタック部を説明するための断面図、図3および図4は、図2に示される電極集成体を説明するための平面図および断面図、図5は、図2に示されるアノード用のセパレータを説明するための平面図、図6は、図2に示されるカソード用のセパレータを説明するための平面図である。
スタック部20は、セルを形成する電極集成体100、セパレータ150,170が、順次積重ねられて構成される。電極集成体100、セパレータ150およびセパレータ170の間における外周縁部には、シール材(不図示)が配置される。
電極集成体100は、膜電極接合体(MEA:membrane electrode assembly)、ガス拡散層(カソード側およびアノード側ガス拡散層)130,135、内側ガスケット(カソード側ガスケットおよびアノード側ガスケット)120,122および外側ガスケット(第2のカソード側ガスケットおよび第2のアノード側ガスケット)125,127が一体化された略矩形のユニット組立体(アセンブリ)であり、セパレータ150,170と略同一形状である。電極集成体100は、開口部140およびマニホールド部141,142,144,145,147,148を有する。開口部140の内側領域は、発電に利用される部位である。マニホールド部141,142、マニホールド部144,145およびマニホールド部147,148は、燃料ガス用、酸化剤ガス用および冷媒用に適用される。
膜電極接合体は、電解質膜110と、電解質膜110を挟んで配置されるカソード触媒層114およびアノード触媒層116とを有する。電解質膜110は、固体高分子材料、例えば、フッ素系樹脂により形成されたプロトン伝導性のイオン交換膜であり、湿潤状態で良好な電気伝導性を呈する。
カソード触媒層114は、ガス拡散層130に隣接している。アノード触媒層116は、ガス拡散層135に隣接している。カソード触媒層114およびアノード触媒層116は、導電性担体に触媒成分が担持されてなる電極触媒と、高分子電解質とを含んでいる。電極触媒の導電性担体は、触媒成分を所望の分散状態で担持するための比表面積、および、集電体として十分な電子導電性を有しておれば、特に限定されないが、主成分がカーボン粒子であることが好ましい。
カソード触媒層114に適用される触媒成分は、酸素の還元反応に触媒作用を有するものであれば、特に限定されない。アノード触媒層116に適用される触媒成分は、水素の酸化反応に触媒作用を有するものであれば、特に限定されない。
触媒成分は、例えば、白金、ルテニウム、イリジウム、ロジウム、パラジウム、オスミウム、タングステン、鉛、鉄、クロム、コバルト、ニッケル、マンガン、バナジウム、モリブデン、ガリウム、アルミニウム等の金属、及びそれらの合金等などから選択される。触媒活性、一酸化炭素等に対する耐被毒性、耐熱性などを向上させるために、少なくとも白金を含むものが好ましい。カソード触媒層およびアノード触媒層に適用される触媒成分は、同一である必要はなく、適宜選択することが可能である。
電極触媒の高分子電解質は、少なくとも高いプロトン伝導性を有する部材であれば、特に限定されず、例えば、ポリマー骨格の全部又は一部にフッ素原子を含むフッ素系電解質や、ポリマー骨格にフッ素原子を含まない炭化水素系電解質が適用可能である。
ガス拡散層130,135は、充分なガス拡散性および導電性を有する部材、例えば、炭素繊維からなる糸で織成したカーボンクロスや、カーボンペーパ、あるいはカーボンフェルトから形成される。
内側ガスケット120,122は、複数の開口部を有する略矩形状枠構造体であり、接着材層123を介し、電解質膜110に接合されている。前記開口部は、内側領域が発電に利用される部位である開口部140に対応する開口部、および、燃料ガス用、酸化剤ガス用および冷媒用に適用されるマニホールド部141,142,144,145,147,148に対応する開口部を含んでいる。内側ガスケット120,122は、例えば、20μm厚のフィルム状ポリエチレンナフタレート(PEN)からなる1枚のガスケット材を二つ折りにすることで、一体的に形成されており、電解質膜110が、内側ガスケット120,122の連結部(ガスケット材の折曲げ部)121に突き当てて位置決めされている。
内側ガスケット120,122は、上記のように、1枚のガスケット材を二つ折りにすることで一体的に形成されているため、内側ガスケット120と内側ガスケット122との間の位置決め精度が確保されている。また、内側ガスケット120,122に対する電解質膜110の位置決めは、電解質膜110を、内側ガスケット120,122の連結部121に突き当てることによって達成されているため、その位置決め精度が確保されている。また、内側ガスケット120、電解質膜110および内側ガスケット122のズレの発生が抑制されているため、その分、電極集成体100における内側領域が発電に利用される部位である開口部140のサイズ(発電に利用される面積)を増加させ、当該電極集成体100を備えた燃料電池の電池出力を向上させることが可能である。
接着材層123は、例えば、10μm厚であり、内側ガスケット120,122の内面に配置されている。接着材層123は、ガスケット材の一方の表面に、例えば、熱可塑性エラストマーをベースとするホットメルト系接着材を塗布し、当該表面が内側に位置するように、ガスケット材を二つ折りにすることで、形成されている。
外側ガスケット125,127は、複数の開口部を有する略矩形状枠構造体であり、ガス拡散層130,135を取り囲むように配置され、接着材層128を介し、内側ガスケット120,122に接合されている。前記開口部は、内側領域が発電に利用される部位である開口部140に対応する開口部、および、燃料ガス用、酸化剤ガス用および冷媒用に適用されるマニホールド部141,142,144,145,147,148に対応する開口部を含んでいる。
外側ガスケット125,127は、例えば、100μm厚のフィルム状ポリエチレンナフタレート(PEN)からなる1枚のガスケット材(第2のガスケット材)を二つ折りにすることで、一体的に形成されている。また、外側ガスケット125,127の連結部(第2のガスケット材の折曲げ部)126には、内側ガスケット120,122の連結部121が突き当てられて、位置決めされている。
外側ガスケット125,127は、上記のように、1枚の第2のガスケット材を二つ折りにすることで一体的に形成されているため、外側ガスケット125と外側ガスケット127の間の位置決め精度が確保されている。また、外側ガスケット125,127に対する、内側ガスケット120、電解質膜110および内側ガスケット122の位置決めは、電解質膜110が接合された内側ガスケット120,122の連結部121を、外側ガスケット125,127の連結部126に突き当てることによって達成されているため、その位置決め精度が確保されている。したがって、電極集成体100における外側ガスケット125、内側ガスケット120、電解質膜110および内側ガスケット122および外側ガスケット127のズレの発生が抑制されているため、その分、電極集成体100の開口部140のサイズをさらに増加させることが可能である。
なお、内側ガスケット120,122および外側ガスケット125,127は、ポリエチレンナフタレート(PEN)から形成される形態に限定されず、燃料ガスや酸化剤ガスに対して不透過性を有する他のガス不透過材料を、適応することが可能である。他のガス不透過材料は、例えば、ポリエチレンテレフタレート(PET)、ポリテトラフルオロエチレン(PTFE)、ポリフッ化ビニリデン(PVDF)である。
接着材層123、128は、熱可塑性エラストマーをベースとするホットメルト系接着材から形成される形態に限定されず、良好な耐熱性(100℃以上)および耐酸性を有する接着材、例えば、非晶性のポリオレフィン樹脂をベースとするゴム系ホットメルト接着材や、アクリル樹脂をベースとするアクリル系ホットメルト接着材を適用したり、アクリル系接着材、ポリエステル、ポリオレフィン等のオレフィン系接着材を適用したりすることも可能である。なお、ホットメルト系接着材は、接着のしやすさ、正確な接着位置及び長時間接着力を有しているため、好ましい。
次に、セパレータ150,170を説明する。
セパレータ150は、略矩形状であり、別のセルのセパレータ170に隣接しており、マニホールド部161,162,164,165,167,168および凹凸部169を有し、ガス拡散層130に相対して配置される。マニホールド部161,162、マニホールド部164,165およびマニホールド部167,168は、燃料ガス用、酸化剤ガス用および冷媒用に適用される。
ガス拡散層130に相対する凹凸部169の内面と、ガス拡散層130の表面により形成される空間S1は、酸化剤ガスを流通させるための流路を構成し、マニホールド部164,165を経由し、エンドプレート70に配置される酸化剤ガス導入口74および酸化剤ガス排出口75に、接続されている。つまり、凹凸部169の内面は、酸化剤ガスを流通させるための流路溝を構成する。
セパレータ170は、基本形状に関してはセパレータ150と略同一であり、かつ、別のセルのセパレータ150に隣接しており、マニホールド部181,182,184,185,187,188、および凹凸部189を有し、ガス拡散層135に相対して配置される。マニホールド部181,182、マニホールド部184,185およびマニホールド部187,188は、燃料ガス用、酸化剤ガス用および冷媒用に適用される。
ガス拡散層135に相対する凹凸部189の内面と、ガス拡散層135の表面により形成される空間S2は、燃料ガスを流通させるための流路を構成し、マニホールド部181,182を経由し、エンドプレート70に配置される燃料ガス導入口71および燃料ガス排出口72に、接続されている。つまり、凹凸部169の内面は、燃料ガスを流通させるための流路溝を構成する。
凹凸部189の外面と、隣接する別のセルのセパレータ150の外面により形成される空間S3は、冷媒を流通させるための流路を構成し、マニホールド部187,188を経由し、エンドプレート70に配置される冷媒導入口77および冷媒排出口78に、接続されている。つまり、凹凸部169の外面は、冷媒を流通させるための流路溝を構成する。なお、凹凸部169,189の形状および配置は、ガスの拡散性、圧力損失、生成水の排出性、冷却性能等を考慮し、適宜設定される。
セパレータ150,170は、適当な導電性、強度および耐食性を有し、粉末状のカーボン材を有する成形材料や、金属材料から形成される。
成形材料は、カーボン材(例えば、70〜90wt%)およびバインダー樹脂(例えば、10〜30wt%)を有する粉末状の混合物である。カーボン材は、例えば、天然黒鉛、人造黒鉛、膨張黒鉛である。バインダー樹脂は、例えば、フェノール樹脂やメラミン樹脂やポリアミド樹脂などの熱硬化性樹脂や、ポリプロピレン等などの熱可塑性樹脂である。フェノール樹脂は、経済性、作業性、成形性、物性(耐酸性、耐熱性、流体不透過性)などに優れており、好ましい。成形材料は、粉末状の形態で直接利用することに限定されず、シート状の予備成形体の形態やビレット状の予備成形体の集成体の形態で、適用することも可能である。
金属材料は、例えば、ステンレス鋼鈑である。ステンレス鋼鈑は、複雑な機械加工を施しやすくかつ導電性が良好である点で好ましい。ステンレス鋼板は、必要に応じて、耐食性のコーティングを施すことも可能である。また、アルミニウム板や、クラッド材を適用することも可能である。
図7は、本発明の実施の形態に係る電極集成体の製造方法を説明するための工程図である。
本製造方法は、内側ガスケット折曲げ工程、内側ガスケット成形工程、電解質膜配置工程、サブアセンブリ接合工程、外側ガスケット折曲げ工程、外側ガスケット成形工程、サブアセンブリ配置工程、ガス拡散層配置工程およびアセンブリ接合工程を有する。
図8および図9は、図7に示される内側ガスケット折曲げ工程を説明するための平面図および断面図である。
内側ガスケット折曲げ工程においては、1枚のガスケット材を二つ折りにすることで、内側ガスケット120,122が一体的に形成される。この際、内側ガスケット120,122の連結部(ガスケット材の折曲げ部)121は、横方向の側面(短辺)に位置しており、ガスケットの長手方向の側面(長辺)を位置決めピン200,202に当接させて、位置決めしながら、短辺側の端面が重ねられる。したがって、内側ガスケット120と内側ガスケット122との間の位置決め精度が確保されている。
ガスケット材は、例えば、20μm厚のフィルム状ポリエチレンナフタレートからなる。また、ガスケット材の一方の表面には、接着材層123が予め形成されており、ガスケット材の二つ折りによって、内側に位置することとなる。接着材層123は、例えば、10μm厚の熱可塑性エラストマーをベースとするホットメルト系接着材の塗布によって形成される。
図10および図11は、図7に示される内側ガスケット成形工程を説明するための平面図および断面図である。
内側ガスケット成形工程においては、二つ折りにされたガスケット材が、打抜きによって、所定の内側ガスケット形状に成形される。これにより、例えば、複数の開口部140A,141A,142A,144A,145A,147A,148Aが形成される。開口部140Aは、内側領域が発電に利用される部位である開口部140に対応しており、カソード触媒層114およびアノード触媒層116を露出させるために使用される。開口部141A,142A,144A,145A,147A,148Aは、燃料ガス用、酸化剤ガス用および冷媒用に適用されるマニホールド部141,142,144,145,147,148に対応している。
また、二つ折りにされる際、ガスケット材は、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができる。さらに、打抜きの際、接着材層123が内側に位置するため、重ね合せ面のズレの発生が抑制される。なお、内側ガスケット成形は、打抜きに限定されず、例えば、レーザー切断を適用することも可能である。
図12および図13図は、図7に示される電解質膜配置工程を説明するための平面図および断面図である。
電解質膜配置工程においては、電解質膜110が、内側ガスケット120,122の間に配置(挿入)されて、未接合状態のサブアセンブリ105が形成される。この際、電解質膜110および内側ガスケット120,122の長手方向の側面を、位置決めピン200,202に当接させ、かつ、電解質膜110の端面を、内側ガスケット120,122の連結部(ガスケット材の折曲げ部)121に突き当てることで、位置決めされる。
つまり、内側ガスケット120,122に対する電解質膜110の位置決めは、電解質膜110を内側ガスケット120,122の連結部121に突き当てることによって達成されるため、その位置決め精度を容易に確保し、かつ、内側ガスケット120,電解質膜110および内側ガスケット122を個々に位置決めする場合に比較し、位置決め回数を削減することができる。なお、電解質膜110には、カソード触媒層114およびアノード触媒層116が予め配置されている。
図14は、図7に示されるサブアセンブリ接合工程を説明するための断面図である。
サブアセンブリ105に配置される接着材層123は、ホットメルト系接着材からなるため、接合には、ホットプレスが適用される。当該ホットプレスは、下型210、上型212および加圧機構230を有する。
下型210は、基部220に固定式に配置され、サブアセンブリ105が載置される押圧面と、内部に配置される加熱装置を有する。上型212は、下型210に対して近接離間自在に配置され、サブアセンブリ105の上面に相対する押圧面と、内部に配置される加熱装置を有する。下型210および上型212の加熱装置は、例えば、カートリッジヒータからなり、下型210および上型212を加熱することで、サブアセンブリ105に配置される接着材層123を昇温させ、所定温度に保持するために使用される。なお、加熱装置は、下型210および上型212の一方のみに、設けることも可能である。
加圧機構230は、例えば、油圧シリンダ装置を有しており、下型210に対して上型212を近接させ、下型210の押圧面に載置されるサブアセンブリ105を押圧することで、サブアセンブリ105に配置される接着材層123を加圧し、所定圧力下で保持するために使用される。
サブアセンブリ接合工程においては、まず、サブアセンブリ105が下型210の押圧面に配置される。この際、下型210および上型212は予熱されていることが好ましい。その後、加圧機構230が稼働され、上型212が下型210に向かって降下する。
上型212の押圧面は、下型210の押圧面に載置されるサブアセンブリ105の上面と当接し、サブアセンブリ105を押圧する。押圧条件は、例えば、0.5MPaである。一方、下型210および上型212の内部に配置される加熱装置は、下型210および上型212を加熱することで、サブアセンブリ105に配置される接着材層123を昇温させ、所定温度に到達させる。所定温度は、例えば、130℃である。
そして、サブアセンブリ105は、例えば、1分程度保持される。これにより、接着材層123は、良好な接着機能を発揮し、サブアセンブリ105を構成する内側ガスケット120、電解質膜110および内側ガスケット122を接合し、サブアセンブリ105を一体化する。
なお、押圧条件および温度条件は、上記例に限定されず、接着材層123の構成に応じ、適宜変更することが可能である。また、サブアセンブリ接合は、ホットプレスを適用する形態に限定されず、例えば、ホットローラを適用することも可能である。
図15および図16図は、図7に示される外側ガスケット折曲げ工程を説明するための平面図および断面図である。
外側ガスケット折曲げ工程においては、1枚のガスケット材を二つ折りにすることで、外側ガスケット125,127が一体的に形成される。この際、外側ガスケット125,127の連結部(ガスケット材の折曲げ部)126は、横方向の側面(短辺)に位置しており、ガスケットの長手方向の側面(長辺)を位置決めピン200,202に当接させて、位置決めしながら、短辺側の端面が重ねられる。したがって、外側ガスケット125と外側ガスケット127との間の位置決め精度が確保されている。
ガスケット材は、例えば、100μm厚のフィルム状ポリエチレンナフタレートからなる。また、ガスケット材の一方の表面には、接着材層128が予め形成されており、ガスケット材の二つ折りによって、内側に位置することとなる。接着材層128は、例えば、10μm厚の熱可塑性エラストマーをベースとするホットメルト系接着材の塗布によって形成される。
図17および図18図は、図7に示される外側ガスケット成形工程を説明するための平面図および断面図である。
外側ガスケット成形工程においては、二つ折りにされたガスケット材が、打抜きによって、所定の内側ガスケット形状に成形される。これにより、例えば、複数の開口部140B,141B,142B,144B,145B,147B,148Bが形成される。開口部140Bは、内側領域が発電に利用される部位である開口部140に対応しており、カソード触媒層114およびアノード触媒層116を露出させるために使用される。カソード触媒層114およびアノード触媒層116を露出させるために使用される。開口部141B,142B,144B,145B,147B,148Bは、燃料ガス用、酸化剤ガス用および冷媒用に適用されるマニホールド部141,142,144,145,147,148に対応している。
また、二つ折りにされる際、ガスケット材は、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができる。さらに、打抜きの際、接着材層123が内側に位置するため、重ね合せ面のズレの発生が抑制される。なお、外側ガスケット成形は、打抜きに限定されず、例えば、レーザー切断を適用することも可能である。
図19および図20は、図7に示されるサブアセンブリ配置工程を説明するための平面図および断面図である。
サブアセンブリ配置工程においては、一体化されたサブアセンブリ105が、外側ガスケット125,127の間に配置(挿入)される。この際、サブアセンブリ105および外側ガスケット125,127の長手方向の側面を位置決めピン200,202に当接させ、かつ、内側ガスケット120,122の連結部(サブアセンブリ105の端面)121を、外側ガスケット125,127の連結部(ガスケット材の折曲げ部)126に突き当てることで、位置決めされる。
つまり、外側ガスケット125,127に対するサブアセンブリ105の位置決めは、サブアセンブリ105を外側ガスケット125,127の連結部126に突き当てることによって達成される。そのため、位置決め精度を容易に確保し、かつ、外側ガスケット125、内側ガスケット120、電解質膜110、内側ガスケット122および外側ガスケット125を個々に位置決めする場合に比較し、位置決め回数を削減することができる。
また、サブアセンブリ105において、電解質膜110が内側ガスケット120,122に接合(一体化)されているため、突き当てて位置決めされる際、内側ガスケット120、電解質膜110および内側ガスケット122のズレの発生が抑制され、位置決め精度が確保される。
図21は、図7に示されるガス拡散層配置工程を説明するための断面図である。
ガス拡散層配置工程においては、ガス拡散層130,135が接合されて、未接合状態の電極集成体(アセンブリ)100が形成される。この際、ガス拡散層130,135は、外側ガスケット125,127の開口部140Bおよび内側ガスケット120,122の開口部140Aを利用して、電解質膜110に配置されるカソード触媒層114およびアノード触媒層116に相対するように配置される。なお、ガス拡散層配置工程は、サブアセンブリ配置工程の前に配置することも可能である。この場合、例えば、外側ガスケット125,127の間に配置(挿入)される前のサブアセンブリ105に、ガス拡散層130,135を配置する。
図22は、図7に示されるアセンブリ接合工程を説明するための断面図である。
サブアセンブリ105と外側ガスケット125,127の間に配置される接着材層128は、ホットメルト系接着材からなるため、サブアセンブリ接合工程と同様に、接合には、ホットプレスが適用される。
アセンブリ接合工程においては、まず、未接合状態の電極集成体100が下型210の押圧面に配置される。この際、下型210および上型212は予熱されていることが好ましい。その後、加圧機構230が稼働され、上型212が下型210に向かって降下する。
上型212の押圧面は、下型210の押圧面に載置される電極集成体100の上面と当接し、電極集成体100を押圧する。押圧条件は、例えば、0.5MPaである。一方、下型210および上型212の内部に配置される加熱装置は、下型210および上型212を加熱することで、内側ガスケット120,122と外側ガスケット125,127の間に配置される接着材層128を昇温させ、所定温度に到達させる。所定温度は、例えば、130℃である。
そして、電極集成体100は、例えば、1分程度保持される。これにより、接着材層128は、良好な接着機能を発揮し、外側ガスケット125,127と内側ガスケット120,122を接合する。内側ガスケット120,122は、電解質膜110と既に一体化されているため、これにより、電極集成体100は一体化される。
図23は、本発明の実施の形態に係る変形例1を説明するための平面図である。
ガスケット材の折曲げ部121(126)は、ガスケットの長手方向の側面(長辺)に位置させることも可能である。この場合、横方向の側面(短辺)を位置決めピン200,202に当接させて、位置決めしながら、長辺側の端面が重ねられる。
図24は、本発明の実施の形態に係る変形例2を説明するための断面図である。
外側ガスケット125,127は、1枚のガスケット材を二つ折りにすることで一体的に形成される形態に限定されず、必要に応じて別体とすることも可能である。
以上のように、本実施の形態に係る電極集成体100おいては、内側ガスケット120,122は、1枚のガスケット材を二つ折りにすることで一体的に形成されているため、内側ガスケット120と内側ガスケット122の間の位置決め精度が確保されている。また、内側ガスケット120,122に対する電解質膜110の位置決めは、電解質膜110を内側ガスケット120,122の連結部121に突き当てることによって達成されているため、その位置決め精度が確保されている。したがって、電極集成体100における内側ガスケット122、電解質膜110および内側ガスケット120のズレの発生が抑制されているため、その分、電極集成体100の開口部140のサイズを増加させ、当該電極集成体100を備えた燃料電池の電池出力を向上させることが可能である。つまり、電池出力を向上させ得る燃料電池用電極集成体および良好な電池出力を有する燃料電池を提供することができる。
本実施の形態に係る製造方法においては、1枚のガスケット材を二つ折りにすることで、内側ガスケット120,122を一体的に形成し、電解質膜110を、内側ガスケット120,122の連結部121に突き当てて位置決めしている。つまり、内側ガスケット120,122は、1枚のガスケット材を二つ折りにすることで一体的に形成されるため、内側ガスケット120と内側ガスケット122の間の位置決め精度を容易に確保することができる。また、内側ガスケット120,122に対する電解質膜110の位置決めは、電解質膜110を内側ガスケット120,122の連結部121に突き当てることによって達成されるため、その位置決め精度を容易に確保し、かつ、内側ガスケット120、内側ガスケット122、電解質膜110および内側ガスケット122を個々に位置決めする場合に比較し、位置決め回数を削減することができる。したがって、電極集成体100における内側ガスケット122、電解質膜110および内側ガスケット120のズレの発生を抑制し、その分、電極集成体100の開口部140のサイズを増加させることで、当該電極集成体100を備えた燃料電池の電池出力を向上させることが可能である。つまり、電池出力を向上させ得る燃料電池用電極集成体の製造方法を提供することができる。
また、外側ガスケット125,127も、1枚のガスケット材を二つ折りにすることで一体的に形成されているため、外側ガスケット125と外側ガスケット127の間の位置決め精度が確保されている。さらに、外側ガスケット125,127に対するサブアセンブリ105の位置決めは、内側ガスケット120,122の連結部121を外側ガスケット125,127の連結部126に突き当てることによって達成されているため、その位置決め精度が確保されている。したがって、外側ガスケット125、サブアセンブリ105および外側ガスケット127のズレの発生が抑制されているため、その分、電極集成体100の開口部140のサイズをさらに増加させることが可能である。
さらに、本実施の形態に係る製造方法においては、内側ガスケット120,122を形成するガスケット材は、二つ折りにされた後、かつ、電解質膜110が突き当てられて位置決めされる前に内側ガスケット120,122の形状に成形される。したがって、ガスケット材は、二つ折りにされる際、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができ、かつ、打抜きの際、接着材層123が内側に位置するため、重ね合せ面のズレの発生が抑制される。
外側ガスケット125,127を形成するガスケット材も、二つ折りにされた後、かつ、内側ガスケット120,122の連結部121が突き当てられて位置決めされる前に外側ガスケット125,127の形状に成形される。したがって、ガスケット材は、二つ折りにされる際、未成形であり、十分な剛性を有するため、ハンドリング性が良好であり、二つ折りの精度を容易に確保することができ、かつ、打抜きの際、接着材層128が内側に位置するため、重ね合せ面のズレの発生が抑制される。
電解質膜110は、内側ガスケット120,122の連結部121に突き当てて位置決めされた後、かつ、内側ガスケット120,122の連結部121が外側ガスケット125,127の連結部126に突き当てて位置決めされる前に、内側ガスケット120,122に接合される。この場合、電解質膜110が内側ガスケット120,122に接合(一体化)された状態で、内側ガスケット120,122の連結部121が、外側ガスケット125,127の連結部126に突き当てて位置決めされるため、内側ガスケット122、電解質膜110および内側ガスケット120のズレの発生が抑制され、位置決め精度が確保される。
また、本実施の形態においては、膜電極接合体、内側ガスケット120,122、外側ガスケット125,127およびガス拡散層130,135、内側ガスケット120,122および外側ガスケット125,127が接合されており、電極集成体100が一体化されている。したがって、電極集成体100、セパレータ150,170が、順次積重ねてスタック部20を形成する際のズレの発生が抑制される。
また、接着材層123、128は、ホットメルト系接着材から形成されており、接着のしやすさ、正確な接着位置及び長時間接着力を有しており、好ましい。
なお、本発明は、上述した実施の形態に限定されるものではなく、特許請求の範囲の範囲内で種々改変することができる。例えば、燃料電池は、固体高分子型に限定されず、アルカリ型燃料電池、リン酸型燃料電池に代表される酸型電解質の燃料電池、ダイレクトメタノール燃料電池、マイクロ燃料電池に、適用可能である。
本発明の実施の形態に係る燃料電池を説明するための斜視図である。 図1に示されるスタック部を説明するための断面図である。 図2に示される電極集成体を説明するための平面図である。 図2に示される電極集成体を説明するための断面図である。 図2に示されるアノード用のセパレータを説明するための平面図である。 図2に示されるカソード用のセパレータを説明するための平面図である。 本発明の実施の形態に係る電極集成体の製造方法を説明するための工程図である。 図7に示される内側ガスケット折曲げ工程を説明するための平面図である。 図7に示される内側ガスケット折曲げ工程を説明するための断面図である。 図7に示される内側ガスケット成形工程を説明するための平面図である。 図7に示される内側ガスケット成形工程を説明するための断面図である。 図7に示される電解質膜配置工程を説明するための平面図である。 図7に示される電解質膜配置工程を説明するための断面図である。 図7に示されるサブアセンブリ接合工程を説明するための断面図である。 図7に示される外側ガスケット折曲げ工程を説明するための平面図である。 図7に示される外側ガスケット折曲げ工程を説明するための断面図である。 図7に示される外側ガスケット成形工程を説明するための平面図である。 図7に示される外側ガスケット成形工程を説明するための断面図である。 図7に示されるサブアセンブリ配置工程を説明するための平面図である。 図7に示されるサブアセンブリ配置工程を説明するための断面図である。 図7に示されるガス拡散層配置工程を説明するための断面図である。 図7に示されるアセンブリ接合工程を説明するための断面図である。 本発明の実施の形態に係る変形例1を説明するための平面図である。 本発明の実施の形態に係る変形例2を説明するための断面図である。
符号の説明
10 燃料電池、
20 スタック部、
30,40 集電板、
35,45 出力端子、
50,60 絶縁板、
70,80 エンドプレート、
71 燃料ガス導入口、
72 燃料ガス排出口、
74 酸化剤ガス導入口、
75 酸化剤ガス排出口、
77 冷媒導入口、
78 冷媒排出口、
90 タイロッド、
100 電極集成体、
105 サブアセンブリ、
110 電解質膜、
114 カソード触媒層、
116 アノード触媒層、
120,122 内側ガスケット(カソード側およびアノード側ガスケット)、
121 連結部(ガスケット材の折曲げ部)、
123 接着材層、
125,127 外側ガスケット(第2のカソード側およびアノード側ガスケット)、
126 連結部(第2のガスケット材の折曲げ部)、
128 接着材層、
130,135 ガス拡散層(カソード側およびアノード側ガス拡散層)、
140 開口部、
140A,141A,142A,144A,145A,147A,148A 開口部、
140B,141B,142B,144B,145B,147B,148B 開口部、
141,142,144,145,147,148 マニホールド部、
150 セパレータ、
161,162,164,165,167,168 マニホールド部、
169 凹凸部、
169,189 凹凸部、
170 セパレータ、
181,182,184,185,187,188 マニホールド部、
189 凹凸部、
200,202 位置決めピン、
210 下型、
212 上型、
220 基部、
230 加圧機構、
S1,S2,S3 空間。

Claims (2)

  1. 電解質膜、
    前記電解質膜のアノード側およびカソード側に配置されるアノード側ガスケットおよびカソード側ガスケット、
    前記電解質膜のアノード側およびカソード側に配置されるアノード側ガス拡散層およびカソード側ガス拡散層、
    前記アノード側ガス拡散層の周囲を取り囲むように配置される第2のアノード側ガスケット、および、
    前記カソード側ガス拡散層の周囲を取り囲むように配置される第2のカソード側ガスケットを有する燃料電池用電極集成体の製造方法であって、
    1枚のガスケット材を二つ折りにすることで、前記アノード側ガスケットおよび前記カソード側ガスケットを一体的に形成し、
    前記電解質膜を、前記ガスケット材の折曲げ部に突き当てて位置決めし、
    1枚の第2のガスケット材を二つ折りにすることで、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットを一体的に形成し、
    前記ガスケット材の折曲げ部を、前記第2のガスケット材の折曲げ部に突き当てて位置決めし、
    前記ガスケット材は、二つ折りにされた後、かつ、前記電解質膜が突き当てられて位置決めされる前に、前記アノード側ガスケットおよび前記カソード側ガスケットの形状に成形されることを特徴とする燃料電池用電極集成体の製造方法。
  2. 電解質膜、
    前記電解質膜のアノード側およびカソード側に配置されるアノード側ガスケットおよびカソード側ガスケット、
    前記電解質膜のアノード側およびカソード側に配置されるアノード側ガス拡散層およびカソード側ガス拡散層、
    前記アノード側ガス拡散層の周囲を取り囲むように配置される第2のアノード側ガスケット、および、
    前記カソード側ガス拡散層の周囲を取り囲むように配置される第2のカソード側ガスケットを有する燃料電池用電極集成体の製造方法であって、
    1枚のガスケット材を二つ折りにすることで、前記アノード側ガスケットおよび前記カソード側ガスケットを一体的に形成し、
    前記電解質膜を、前記ガスケット材の折曲げ部に突き当てて位置決めし、
    1枚の第2のガスケット材を二つ折りにすることで、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットを一体的に形成し、
    前記ガスケット材の折曲げ部を、前記第2のガスケット材の折曲げ部に突き当てて位置決めし、
    前記第2のガスケット材は、二つ折りにされた後、かつ、前記ガスケット材の折曲げ部が突き当てられて位置決めされる前に、前記第2のアノード側ガスケットおよび前記第2のカソード側ガスケットの形状に成形されることを特徴とする燃料電池用電極集成体の製造方法。
JP2008030425A 2008-02-12 2008-02-12 燃料電池用電極集成体の製造方法 Expired - Fee Related JP5141281B2 (ja)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008030425A JP5141281B2 (ja) 2008-02-12 2008-02-12 燃料電池用電極集成体の製造方法

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2008030425A JP5141281B2 (ja) 2008-02-12 2008-02-12 燃料電池用電極集成体の製造方法

Publications (2)

Publication Number Publication Date
JP2009193700A JP2009193700A (ja) 2009-08-27
JP5141281B2 true JP5141281B2 (ja) 2013-02-13

Family

ID=41075565

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008030425A Expired - Fee Related JP5141281B2 (ja) 2008-02-12 2008-02-12 燃料電池用電極集成体の製造方法

Country Status (1)

Country Link
JP (1) JP5141281B2 (ja)

Families Citing this family (4)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
FR2995145B1 (fr) * 2012-09-03 2014-12-26 Commissariat Energie Atomique Procede de fabrication d'une pile a combustible incluant un assemblage electrode/membrane
JP6131669B2 (ja) * 2013-03-27 2017-05-24 凸版印刷株式会社 膜電極接合体及びその製造方法
KR101755506B1 (ko) * 2015-12-02 2017-07-07 현대자동차 주식회사 연료 전지용 부품 및 이의 제조 방법
CN114976163B (zh) * 2022-08-03 2022-09-30 江苏氢导智能装备有限公司 五合一成型设备及五合一成型方法

Family Cites Families (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH10172587A (ja) * 1996-12-06 1998-06-26 Toshiba Corp 固体高分子型燃料電池
JPH11204122A (ja) * 1998-01-19 1999-07-30 Toshiba Corp 固体高分子電解質型燃料電池
JP4889168B2 (ja) * 2001-08-23 2012-03-07 大阪瓦斯株式会社 固体高分子型燃料電池のセル及び固体高分子型燃料電池
JP2006147256A (ja) * 2004-11-17 2006-06-08 Nissan Motor Co Ltd 燃料電池単セル及びその製造方法
CN101336493B (zh) * 2006-02-09 2010-12-08 卡尔弗罗伊登柏格两合公司 气体扩散单元

Also Published As

Publication number Publication date
JP2009193700A (ja) 2009-08-27

Similar Documents

Publication Publication Date Title
US10658683B2 (en) Method for producing electrolyte membrane electrode assembly for fuel cells
US11038190B2 (en) Membrane electrode assembly, fuel cell comprising assembly of this type and motor vehicle comprising said fuel cell
JP5855540B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体
JP2017139218A (ja) 燃料電池スタックの製造方法及び燃料電池用金属セパレータの製造方法
JP5564623B1 (ja) 固体高分子電解質型燃料電池、および電解質膜−電極−枠接合体
US9130206B2 (en) Method for manufacturing resin-framed membrane electrode assembly for fuel cell
JP2010514100A (ja) ガスケットを組み込んだガス拡散層
JP5643146B2 (ja) 燃料電池
US20160006045A1 (en) Bipolar Plate for Fuel Cell, Fuel Cell and Method for Producing the Bipolar Plate
JP6618762B2 (ja) 燃料電池用樹脂枠付き電解質膜・電極構造体及びその製造方法
JP5141281B2 (ja) 燃料電池用電極集成体の製造方法
JP2009199877A (ja) 燃料電池および燃料電池の製造方法
US20210098799A1 (en) Fuel-cell unit cell
JP5076681B2 (ja) 燃料電池の組立装置および組立方法,この組立方法によって組み立てた燃料電池
JP5664457B2 (ja) 燃料電池用セパレータプレート、燃料電池用セパレータ、燃料電池及び燃料電池用セパレータプレートの製造方法
JP3847311B2 (ja) 燃料電池セルの製造方法及び製造設備
JP6144650B2 (ja) 燃料電池の製造方法
JP2017068908A (ja) 樹脂枠付き電解質膜・電極構造体の製造方法
JP2006196328A (ja) 電池セルの製造方法及び製造設備
JP2010225484A (ja) 燃料電池、および、燃料電池の製造方法
JP2018133342A (ja) 燃料電池
JP2019139993A (ja) 燃料電池モジュールおよびその製造方法
CN116368648A (zh) 用于电化学电池的膜片电极单元和用于制造膜片电极单元的方法
CN112310432A (zh) 带框的电解质膜-电极结构体及其制造方法以及燃料电池
JP2016225274A (ja) 接合体とその接合体を用いた燃料電池、ならびに、その分解方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20110127

A871 Explanation of circumstances concerning accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A871

Effective date: 20110908

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120215

A975 Report on accelerated examination

Free format text: JAPANESE INTERMEDIATE CODE: A971005

Effective date: 20120215

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120228

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120426

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120724

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120919

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121105

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151130

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Ref document number: 5141281

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

LAPS Cancellation because of no payment of annual fees