JP5139769B2 - Grinding equipment - Google Patents

Grinding equipment Download PDF

Info

Publication number
JP5139769B2
JP5139769B2 JP2007281908A JP2007281908A JP5139769B2 JP 5139769 B2 JP5139769 B2 JP 5139769B2 JP 2007281908 A JP2007281908 A JP 2007281908A JP 2007281908 A JP2007281908 A JP 2007281908A JP 5139769 B2 JP5139769 B2 JP 5139769B2
Authority
JP
Japan
Prior art keywords
thickness
grinding
workpiece
chuck table
contact type
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2007281908A
Other languages
Japanese (ja)
Other versions
JP2009107069A (en
Inventor
壮祐 熊谷
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Disco Corp
Original Assignee
Disco Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Disco Corp filed Critical Disco Corp
Priority to JP2007281908A priority Critical patent/JP5139769B2/en
Publication of JP2009107069A publication Critical patent/JP2009107069A/en
Application granted granted Critical
Publication of JP5139769B2 publication Critical patent/JP5139769B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Length Measuring Devices With Unspecified Measuring Means (AREA)
  • Constituent Portions Of Griding Lathes, Driving, Sensing And Control (AREA)
  • Grinding Of Cylindrical And Plane Surfaces (AREA)
  • Mechanical Treatment Of Semiconductor (AREA)
  • Length Measuring Devices By Optical Means (AREA)

Description

本発明は、半導体ウエーハ等の被加工物を所定の厚さに研削する研削装置に関する。   The present invention relates to a grinding apparatus for grinding a workpiece such as a semiconductor wafer to a predetermined thickness.

例えば、半導体デバイス製造工程においては、略円板形状であるウエーハの表面に格子状に形成されたストリート(分割予定ライン)によって区画された複数の領域にIC、LSI等のデバイスを形成し、該デバイスが形成された各領域を分割予定ラインに沿って分割することにより個々のデバイスを製造している。なお、ウエーハは、一般に個々のチップに分割する前にその裏面を研削装置によって研削して所定の厚さに形成されている。   For example, in a semiconductor device manufacturing process, devices such as ICs and LSIs are formed in a plurality of regions partitioned by streets (division lines) formed in a lattice shape on the surface of a wafer having a substantially disk shape, Individual devices are manufactured by dividing each region in which devices are formed along a predetermined division line. The wafer is generally formed to have a predetermined thickness by grinding the back surface of the wafer with a grinding device before dividing into individual chips.

ウエーハの厚みを検出する方法としては、表面高さを検出する計測用の接触針をウエーハを保持するチャックテーブルの保持面に接触させてチャックテーブルの保持面の高さ位置HIを求め、次にチャックテーブルの保持面に保持されたウエーハの研削面(上面)に接触針を接触させてウエーハの上面の高さ位置H2を検出しつつ、H2−HIを演算してウエーハの厚みTを求めている。(例えば、特許文献1参照)。
特許第2993821号公報
As a method of detecting the thickness of the wafer, the height contact position HI of the chuck table holding surface is obtained by bringing a measuring contact needle for detecting the surface height into contact with the holding surface of the chuck table holding the wafer. While contacting the contact surface with the grinding surface (upper surface) of the wafer held on the holding surface of the chuck table and detecting the height position H2 of the upper surface of the wafer, H2-HI is calculated to obtain the thickness T of the wafer. Yes. (For example, refer to Patent Document 1).
Japanese Patent No. 2993821

而して、上述したウエーハの厚みを検出する方法においては、計測用の接触針をウエーハの被研削面に接触させるために、被研削面にリング状の傷がつきウエーハの品質を低下させるという問題がある。特に、ウエーハを形成するインゴットから切り出されたウエーハの表面および裏面を研削して、表面にデバイスを形成する基素ウエーハを研削する場合には、上記リング状の傷がその後に実施する鏡面加工に悪影響を及ぼす原因となる。   Thus, in the above-described method for detecting the thickness of the wafer, the contact needle for measurement is brought into contact with the surface to be ground of the wafer, so that the surface to be ground is ring-shaped and the quality of the wafer is reduced. There's a problem. In particular, when the substrate wafer that forms the device on the front surface is ground by grinding the front and back surfaces of the wafer cut out from the ingot forming the wafer, the ring-shaped scratches are used for the subsequent mirror surface processing. Causes adverse effects.

本発明は上記事実に鑑みてなされたものであり、その主たる技術課題は、被加工物の被研削面に傷を付けることなく所定の厚さに研削することができる研削装置を提供することにある。   This invention is made | formed in view of the said fact, The main technical subject is to provide the grinding apparatus which can grind to predetermined thickness, without scratching the grinding surface of a workpiece. is there.

上記主たる技術課題を解決するため、本発明によれば、被加工物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された被加工物の上面を研削する研削手段と、該チャックテーブルに保持された被加工物の厚みを計測する接触式の厚み計測器と、該チャックテーブルに保持された被加工物の厚みを計測する非接触式の厚み計測器と、該接触式の厚み計測器と該非接触式の厚み計測器からの検出信号に基づいて該研削手段を制御する制御手段と、を具備する研削装置において、
制御手段は、該接触式の厚み計測器によって該チャックテーブルに保持された被加工物の加工前の厚み(T1)を計測する第1の加工前の厚み計測工程と、該非接触式の厚み計測器によって該チャックテーブルに保持された被加工物の加工前の厚み(T2)を計測する第2の加工前の厚み計測工程と、該第1の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T1)と該第2の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T2)に基づいて該非接触式の厚み計測器による計測値を補正する補正値(T1/T2)を求める補正値演算工程と、該非接触式の厚み計測器を作動してチャックテーブルの保持面に保持された被加工物の厚みを計測しつつ該研削手段を作動して該チャックテーブルの保持面に保持された被加工物を研削する研削工程と、該非接触式の厚み計測器によって計測された被加工物の厚み(T0)に該補正値(T1/T2)を乗算した値が所定値に達したら該研削手段による研削を終了する研削終了工程を実行する、
ことを特徴とする研削装置が提供される。
In order to solve the above main technical problem, according to the present invention, a chuck table having a holding surface for holding a workpiece, a grinding means for grinding an upper surface of the workpiece held on the chuck table, and the chuck A contact-type thickness measuring instrument for measuring the thickness of the workpiece held on the table, a non-contact type thickness measuring instrument for measuring the thickness of the workpiece held on the chuck table, and the contact-type thickness In a grinding apparatus comprising a measuring instrument and a control means for controlling the grinding means based on a detection signal from the non-contact type thickness measuring instrument,
The control means includes a first thickness measuring step before processing for measuring a thickness (T1) before processing of the workpiece held on the chuck table by the contact type thickness measuring instrument, and the non-contact type thickness measurement. A thickness measurement step before the processing of the workpiece held on the chuck table by the instrument, a thickness measurement step before the second processing, and a workpiece measured by the thickness measurement step before the first processing The measured value by the non-contact type thickness meter is corrected based on the thickness (T1) before processing the workpiece and the thickness (T2) before processing of the workpiece measured by the thickness measurement process before the second processing. A correction value calculation step for obtaining a correction value (T1 / T2) to be operated, and the grinding means is operated while measuring the thickness of the workpiece held on the holding surface of the chuck table by operating the non-contact type thickness measuring instrument. To grind the work piece held on the holding surface of the chuck table. Grinding by the grinding means ends when a value obtained by multiplying the thickness (T0) of the workpiece measured by the non-contact type thickness measuring instrument by the correction value (T1 / T2) reaches a predetermined value. Execute grinding end process,
A grinding device is provided.

上記非接触式の厚み計測器は、被加工物に対して透過性を有する波長のレーザー光線を照射する発光手段と、該発光手段から被加工物に照射されたレーザー光線の反射光を受光する受光手段とを具備し、被加工物に照射されたレーザー光線における被加工物の表面で反射された反射光の位置と被加工物の裏面で反射された反射光の位置の間隔を計測して被加工物の厚みを求める。   The non-contact type thickness measuring instrument includes a light emitting unit that irradiates a laser beam having a wavelength that is transmissive to the workpiece, and a light receiving unit that receives the reflected light of the laser beam irradiated to the workpiece from the light emitting unit. The workpiece is measured by measuring the distance between the position of the reflected light reflected by the surface of the workpiece and the position of the reflected light reflected by the back surface of the workpiece in the laser beam applied to the workpiece. Find the thickness of

本発明による研削装置においては、非接触式の厚み計測器によって被加工物の厚み(T0)を計測しているので、被加工物の被研削面に傷がつくことはない。そして、非接触式の厚み計測器によって計測された被加工物の厚み(T0)は、接触式の厚み計測器によって計測された被加工物の加工前の厚み(T1)と非接触式の厚み計測器によって計測された被加工物の加工前の厚み(T2)に基づいて求められた非接触式の厚み計測器による計測値の補正値(T1/T2)によって補正されるので、被加工物の材質によって屈折率が異なっても被加工物の正確な厚み(T)に研削することができる。   In the grinding apparatus according to the present invention, since the thickness (T0) of the workpiece is measured by the non-contact type thickness measuring instrument, the surface to be ground of the workpiece is not damaged. The workpiece thickness (T0) measured by the non-contact type thickness measuring instrument is equal to the thickness (T1) of the workpiece before processing measured by the contact-type thickness measuring instrument and the non-contact type thickness. The workpiece is corrected by the correction value (T1 / T2) of the measured value obtained by the non-contact type thickness measuring device obtained based on the thickness (T2) of the workpiece measured by the measuring instrument. Even if the refractive index differs depending on the material, the workpiece can be ground to an accurate thickness (T).

以下、本発明による研削方法および研削装置の好適な実施形態について、添付図面を参照して更に詳細に説明する。
図1には、本発明に従って構成された研削装置1の斜視図が示されている。図1に示す研削装置1は、全体を番号2で示す装置ハウジングを具備している。この装置ハウジング2は、細長く延在する直方体形状の主部21と、該主部21の後端部(図1において右上端)に設けられ実質上鉛直に上方に延びる直立壁22とを有している。直立壁22の前面には、上下方向に延びる一対の案内レール221、221が設けられている。この一対の案内レール221、221に研削手段としての研削ユニット3が上下方向に移動可能に装着されている。
Hereinafter, preferred embodiments of a grinding method and a grinding apparatus according to the present invention will be described in more detail with reference to the accompanying drawings.
FIG. 1 shows a perspective view of a grinding apparatus 1 constructed according to the present invention. A grinding apparatus 1 shown in FIG. 1 includes an apparatus housing generally indicated by numeral 2. This device housing 2 has a rectangular parallelepiped main portion 21 that extends long and an upright wall 22 that is provided at the rear end portion (upper right end in FIG. 1) of the main portion 21 and extends substantially vertically upward. ing. A pair of guide rails 221 and 221 extending in the vertical direction are provided on the front surface of the upright wall 22. A grinding unit 3 as grinding means is mounted on the pair of guide rails 221 and 221 so as to be movable in the vertical direction.

研削ユニット3は、移動基台31と該移動基台31に装着されたスピンドルユニット4を具備している。移動基台31は、後面両側に上下方向に延びる一対の脚部311、311が設けられており、この一対の脚部311、311に上記一対の案内レール221、221と摺動可能に係合する被案内溝312、312が形成されている。このように直立壁22に設けられた一対の案内レール221、221に摺動可能に装着された移動基台31の前面には前方に突出した支持部313が設けられている。この支持部313に研削手段としてのスピンドルユニット4が取り付けられる。   The grinding unit 3 includes a moving base 31 and a spindle unit 4 mounted on the moving base 31. The movable base 31 is provided with a pair of legs 311 and 311 extending in the vertical direction on both sides of the rear surface. The pair of legs 311 and 311 is slidably engaged with the pair of guide rails 221 and 221. Guided grooves 312 and 312 are formed. As described above, a support portion 313 protruding forward is provided on the front surface of the movable base 31 slidably mounted on the pair of guide rails 221 and 221 provided on the upright wall 22. A spindle unit 4 as a grinding means is attached to the support portion 313.

研削手段としてのスピンドルユニット4は、支持部313に装着されたスピンドルハウジング41と、該スピンドルハウジング41に回転自在に配設された回転スピンドル42と、該回転スピンドル42を回転駆動するための駆動源としてのサーボモータ43とを具備している。スピンドルハウジング41に回転可能に支持された回転スピンドル42は、一端部(図1において下端部)がスピンドルハウジング41の下端から突出して配設されており、その一端(図1において下端)にホイールマウント44が設けられている。そして、このホイールマウント44の下面に研削ホイール5が取り付けられる。この研削ホイール5は、環状の砥石基台51と、該砥石基台51の下面に装着された研削砥石52からなる複数のセグメントとによって構成されており、砥石基台51が締結ネジ53によってホイールマウント44に装着される。上記サーボモータ43は、後述する制御手段10によって制御される。   The spindle unit 4 as grinding means includes a spindle housing 41 mounted on a support portion 313, a rotating spindle 42 rotatably disposed on the spindle housing 41, and a drive source for driving the rotating spindle 42 to rotate. As a servo motor 43. One end (lower end in FIG. 1) of the rotary spindle 42 rotatably supported by the spindle housing 41 is disposed so as to protrude from the lower end of the spindle housing 41, and a wheel mount is mounted on one end (lower end in FIG. 1). 44 is provided. The grinding wheel 5 is attached to the lower surface of the wheel mount 44. The grinding wheel 5 includes an annular grindstone base 51 and a plurality of segments made of a grinding grindstone 52 mounted on the lower surface of the grindstone base 51. Mounted on the mount 44. The servo motor 43 is controlled by the control means 10 described later.

図示の研削装置1は、上記研削ユニット3を上記一対の案内レール221、221に沿って上下方向(後述するチャックテーブルの保持面に対して垂直な方向)に移動せしめる研削ユニット送り機構6を備えている。この研削ユニット送り機構6は、直立壁22の前側に配設され実質上鉛直に延びる雄ねじロッド61を具備している。この雄ねじロッド61は、その上端部および下端部が直立壁22に取り付けられた軸受部材62および63によって回転自在に支持されている。上側の軸受部材62には雄ねじロッド61を回転駆動するための駆動源としてのパルスモータ64が配設されており、このパルスモータ64の出力軸が雄ねじロッド61に伝動連結されている。移動基台31の後面にはその幅方向中央部から後方に突出する連結部(図示していない)も形成されており、この連結部には鉛直方向に延びる貫通雌ねじ穴(図示していない)が形成されており、この雌ねじ穴に上記雄ねじロッド61が螺合せしめられている。従って、パルスモータ64が正転すると移動基台31即ち研磨ユニット3が下降即ち前進せしめられ、パルスモータ64が逆転すると移動基台31即ち研削ユニット3が上昇即ち後退せしめられる。なお、パルスモータ64は、後述する制御手段10によって制御される。   The illustrated grinding apparatus 1 includes a grinding unit feed mechanism 6 that moves the grinding unit 3 in the vertical direction (a direction perpendicular to a holding surface of a chuck table described later) along the pair of guide rails 221 and 221. ing. The grinding unit feed mechanism 6 includes a male screw rod 61 disposed on the front side of the upright wall 22 and extending substantially vertically. The male threaded rod 61 is rotatably supported by bearing members 62 and 63 whose upper end and lower end are attached to the upright wall 22. The upper bearing member 62 is provided with a pulse motor 64 as a drive source for rotationally driving the male screw rod 61, and the output shaft of the pulse motor 64 is connected to the male screw rod 61 by transmission. A connecting portion (not shown) that protrudes rearward from the center portion in the width direction is also formed on the rear surface of the movable base 31, and a through female screw hole (not shown) that extends in the vertical direction is formed in this connecting portion. The male screw rod 61 is screwed into the female screw hole. Accordingly, when the pulse motor 64 is rotated forward, the moving base 31, that is, the polishing unit 3 is lowered or advanced, and when the pulse motor 64 is reversed, the movable base 31, that is, the grinding unit 3 is raised or retracted. The pulse motor 64 is controlled by the control means 10 described later.

上記ハウジング2の主部21にはチャックテーブル機構7が配設されている。チャックテーブル機構7は、チャックテーブル71と、該チャックテーブル71の周囲を覆うカバー部材72と、該カバー部材72の前後に配設された蛇腹手段73および74を具備している。チャックテーブル71は、図示しない回転駆動手段によって回転せしめられるようになっており、その上面(保持面)に被加工物であるウエーハを図示しない吸引手段を作動することにより吸引保持するように構成されている。また、チャックテーブル71は、図示しないチャックテーブル移動手段によって図1に示す被加工物載置域70aと上記スピンドルユニット4を構成する研削ホイール5と対向する研削域70bとの間で移動せしめられる。蛇腹手段73および74はキャンパス布の如き適宜の材料から形成することができる。蛇腹手段73の前端は主部21の前面壁に固定され、後端はカバー部材72の前端面に固定されている。蛇腹手段74の前端はカバー部材72の後端面に固定され、後端は装置ハウジング2の直立壁22の前面に固定されている。チャックテーブル71が矢印71aで示す方向に移動せしめられる際には蛇腹手段73が伸張されて蛇腹手段74が収縮され、チャックテーブル71が矢印71bで示す方向に移動せしめられる際には蛇腹手段73が収縮されて蛇腹手段74が伸張せしめられる。   A chuck table mechanism 7 is disposed in the main portion 21 of the housing 2. The chuck table mechanism 7 includes a chuck table 71, a cover member 72 that covers the periphery of the chuck table 71, and bellows means 73 and 74 disposed before and after the cover member 72. The chuck table 71 is configured to be rotated by a rotation driving unit (not shown), and is configured to suck and hold a wafer as a workpiece on its upper surface (holding surface) by operating a suction unit (not shown). ing. Further, the chuck table 71 is moved between a workpiece placement area 70a shown in FIG. 1 and a grinding area 70b facing the grinding wheel 5 constituting the spindle unit 4 by a chuck table moving means (not shown). The bellows means 73 and 74 can be formed from any suitable material such as campus cloth. The front end of the bellows means 73 is fixed to the front wall of the main portion 21, and the rear end is fixed to the front end surface of the cover member 72. The front end of the bellows means 74 is fixed to the rear end surface of the cover member 72, and the rear end is fixed to the front surface of the upright wall 22 of the apparatus housing 2. When the chuck table 71 is moved in the direction indicated by the arrow 71a, the bellows means 73 is expanded and the bellows means 74 is contracted. When the chuck table 71 is moved in the direction indicated by the arrow 71b, the bellows means 73 is By being contracted, the bellows means 74 is extended.

図示の研削装置1は、上記カバー部材72に配設されチャックテーブル71に保持された後述する被加工物の厚みを測定する接触式の厚み計測器8を具備している。この非接触式の厚み計測器8は、一般に用いられている厚み計測器でよく、計測用の接触針81を備え、該計測用の接触針81を被計測物の表面に接触させることにより被加工物の表面の高さ位置信号を後述する制御手段10に出力する。   The illustrated grinding apparatus 1 includes a contact-type thickness measuring instrument 8 that measures the thickness of a workpiece, which will be described later, disposed on the cover member 72 and held on the chuck table 71. This non-contact type thickness measuring instrument 8 may be a commonly used thickness measuring instrument, which includes a measuring contact needle 81, and is brought into contact with the surface of the object to be measured by bringing the measuring contact needle 81 into contact therewith. The height position signal of the surface of the workpiece is output to the control means 10 described later.

図示の研削装置1は、上記カバー部材72に配設されチャックテーブル71に保持された被加工物の厚みを測定する非接触式の厚み計測器9を具備している。この非接触式の厚み計測器9は、図2に示すように上記カバー部材72に配設された計測ケース91を具備している。この計測ケース91は、垂直に立設された支持部911と、支持部911の上端から水平に伸びる該水平部912と、該水平部912の端部から下方に延びる計測部913とからなっており、支持部911が上記カバー部材72に回動可能に支持されている。なお、支持部911は、図示しない回動駆動手段によって回動せしめられるように構成されている。従って、計測ケース91は、図示しない回動駆動手段によって支持部911を回動することにより、計測部913が支持部911を中心として揺動せしめられる。   The illustrated grinding apparatus 1 includes a non-contact type thickness measuring instrument 9 that measures the thickness of a workpiece disposed on the cover member 72 and held on the chuck table 71. The non-contact type thickness measuring instrument 9 includes a measuring case 91 disposed on the cover member 72 as shown in FIG. The measurement case 91 includes a support portion 911 erected vertically, the horizontal portion 912 extending horizontally from the upper end of the support portion 911, and a measurement portion 913 extending downward from the end portion of the horizontal portion 912. The support portion 911 is rotatably supported by the cover member 72. The support portion 911 is configured to be rotated by a rotation driving unit (not shown). Therefore, the measurement case 913 is swung around the support portion 911 by rotating the support portion 911 by a rotation driving unit (not shown).

上記計測ケース91の計測部913の下端には、外周部が下方に突出する環状のカバー部913aが形成されている。このように形成された計測ケース91の計測部913には、発光手段92と、該発光手段92によって照射された光を受光する受光手段93が配設されているとともに、下面に透明版94が配設されている。発光手段92は、図3に示すようにレーザーダイオード(LD)921と集光レンズ922を具備している。レーザーダイオード(LD)921は、後述する被加工物に対して透過性を有する波長、例えば1100nmの波長を有するレーザー光線を発振する。このレーザーダイオード(LD)921から発振されたレーザー光線は、集光レンズ922によって集光され、図3に示すように透明版94を通して上記チャックテーブル71上に保持される被加工物としての基素ウエーハWに所定の入射角θをもって照射する。基素ウエーハWに照射されたレーザー光線は、図3に示すように基素ウエーハWの上面で反射するとともに、基素ウエーハWを透過した光が基素ウエーハWの下面で反射する。   At the lower end of the measurement part 913 of the measurement case 91, an annular cover part 913a whose outer peripheral part protrudes downward is formed. The measuring part 913 of the measuring case 91 formed in this way is provided with a light emitting means 92 and a light receiving means 93 for receiving the light emitted by the light emitting means 92, and a transparent plate 94 is provided on the lower surface. It is arranged. The light emitting means 92 includes a laser diode (LD) 921 and a condenser lens 922 as shown in FIG. The laser diode (LD) 921 oscillates a laser beam having a wavelength that is transparent to a workpiece to be described later, for example, a wavelength of 1100 nm. The laser beam oscillated from the laser diode (LD) 921 is condensed by a condenser lens 922 and, as shown in FIG. 3, a basic wafer as a workpiece to be held on the chuck table 71 through a transparent plate 94. W is irradiated with a predetermined incident angle θ. As shown in FIG. 3, the laser beam applied to the base wafer W is reflected by the upper surface of the base wafer W, and the light transmitted through the base wafer W is reflected by the lower surface of the base wafer W.

上記受光手段93は、図示の実施形態においてはCCDラインセンサー931を具備しており、上記発光手段92から照射されたレーザー光線が基素ウエーハWで正反射する位置に配設されている。受光手段93を構成するCCDラインセンサー931は、その検出信号を制御手段10に送る。   The light receiving means 93 includes a CCD line sensor 931 in the illustrated embodiment, and is disposed at a position where the laser beam emitted from the light emitting means 92 is regularly reflected by the base wafer W. The CCD line sensor 931 constituting the light receiving means 93 sends the detection signal to the control means 10.

図2に示すように上記計測ケース91には計測部913の下面に開口する流体通路914が設けられており、この流体通路914が流体供給手段95に接続されている。この流体供給手段95は、例えば純水を送給する純水送給手段951と、該純水送給手段951と上記流体通路914とを接続する配管952に配設された電磁開閉弁953とからなっている。上記制御手段10は、発光素子921や電磁開閉弁953を制御するとともに、CCDラインセンサー931からの受信信号および上記接触式の厚み計測器8からの検出信号に基いて上記研削手段としてのスピンドルユニット4のパルスモータ64やサーボモータ43等を制御する。   As shown in FIG. 2, the measurement case 91 is provided with a fluid passage 914 that opens to the lower surface of the measurement section 913, and the fluid passage 914 is connected to the fluid supply means 95. The fluid supply means 95 includes, for example, pure water supply means 951 for supplying pure water, and an electromagnetic on-off valve 953 disposed in a pipe 952 connecting the pure water supply means 951 and the fluid passage 914. It is made up of. The control means 10 controls the light emitting element 921 and the electromagnetic on-off valve 953, and a spindle unit as the grinding means based on the received signal from the CCD line sensor 931 and the detection signal from the contact-type thickness measuring device 8. 4 pulse motor 64, servo motor 43 and the like are controlled.

ここで、上述した非接触式の厚み計測器9を構成する発光手段92と受光手段93の作用について、図3を参照して説明する。
発光手段92から基素ウエーハWに照射されたレーザー光線は、被加工物Wの上面で反射するとともに、基素ウエーハWを透過した光が基素ウエーハWの下面で反射する。この基素ウエーハWの上面で反射した光と、基素ウエーハWの下面で反射した光を受光手段93のCCDラインセンサー931によって受光し、その間隔(L)と入射角θに基づいて被加工物Wの厚みとして求めることができる。しかるに、基素ウエーハWはその材質によって屈折率が異なるため、基素ウエーハWの厚みを正確に計測することが困難である。従って、基素ウエーハWの厚みを正確に計測するには後述するように補正する。
Here, the operation of the light emitting means 92 and the light receiving means 93 constituting the non-contact type thickness measuring instrument 9 will be described with reference to FIG.
The laser beam applied to the basic wafer W from the light emitting means 92 is reflected on the upper surface of the workpiece W, and the light transmitted through the basic wafer W is reflected on the lower surface of the basic wafer W. The light reflected by the upper surface of the basic wafer W and the light reflected by the lower surface of the basic wafer W are received by the CCD line sensor 931 of the light receiving means 93 and processed based on the interval (L) and the incident angle θ. It can be determined as the thickness of the object W. However, since the refractive index of the basic wafer W differs depending on the material, it is difficult to accurately measure the thickness of the basic wafer W. Accordingly, in order to accurately measure the thickness of the base wafer W, correction is made as described later.

図示の研削装置1は以上のように構成されており、以下、上記研削装置1を用いてウエーハを形成するインゴットから切り出された基素ウエーハWを所定の厚さに研削する研削方法について説明する。
基素ウエーハWは、図1に示す記研磨装置1における被加工物載置域70aに位置付けられているチャックテーブル71上に載置され、図示しない吸引手段を作動することによってチャックテーブル71上に吸引保持される。チャックテーブル71上に基素ウエーハWを吸引保持したならば、制御手段10は上記接触式の厚み計測器8を作動してチャックテーブル71に保持された基素ウエーハWの加工前の厚み(T1)を計測する第1の加工前の厚み計測工程を実施する。
The illustrated grinding apparatus 1 is configured as described above, and a grinding method for grinding the base wafer W cut out from the ingot forming the wafer to the predetermined thickness using the grinding apparatus 1 will be described below. .
The base wafer W is placed on the chuck table 71 positioned in the workpiece placement area 70a in the polishing apparatus 1 shown in FIG. 1, and the suction means (not shown) is operated to act on the chuck table 71. Suction hold. If the base wafer W is sucked and held on the chuck table 71, the control means 10 operates the contact-type thickness measuring instrument 8 to activate the thickness (T1) of the base wafer W held on the chuck table 71 before processing. ) To measure a thickness measurement step before the first processing.

第1の加工前の厚み計測工程は、図4の(a)に示すように接触式の厚み計測器8の計測用の接触針81をチャックテーブル71の上面に接触させ、その高さ位置信号(H1)を制御手段10に送る。なお、このチャックテーブル71の高さ位置の計測は、吸着テーブル714上に基素ウエーハWを保持する前に、チャックテーブル71の上面である保持面に接触式の厚み計測器8の計測用の接触針81を接触させて実施してもよい。次に、図4の(b)に示すように接触式の厚み計測器8の計測用の接触針81をチャックテーブル71の上面に保持された基素ウエーハWの上面に接触させ、その高さ位置信号(H2)を制御手段10に送る。制御手段10は、接触式の厚み計測器8から送られた上記高さ位置信号(H1)および高さ位置信号(H2)に基いて、チャックテーブル71の上面に保持された基素ウエーハWの上面の高さ位置(H2)からチャックテーブル71の上面の高さ位置(H1)を減算して基素ウエーハWの厚み(T1)(T1=H2−H1)を求める。このようにして求めた基素ウエーハWの厚み(T1)は、制御手段10のメモリーに格納される。   In the thickness measurement step before the first processing, as shown in FIG. 4A, the contact needle 81 for measurement of the contact-type thickness measuring instrument 8 is brought into contact with the upper surface of the chuck table 71, and its height position signal is measured. (H1) is sent to the control means 10. Note that the height position of the chuck table 71 is measured by the contact-type thickness measuring instrument 8 on the holding surface which is the upper surface of the chuck table 71 before the base wafer W is held on the suction table 714. You may carry out by making the contact needle 81 contact. Next, as shown in FIG. 4 (b), the contact needle 81 for measurement of the contact-type thickness measuring device 8 is brought into contact with the upper surface of the base wafer W held on the upper surface of the chuck table 71, and the height thereof is reached. A position signal (H2) is sent to the control means 10. Based on the height position signal (H 1) and the height position signal (H 2) sent from the contact-type thickness measuring device 8, the control means 10 controls the basic wafer W held on the upper surface of the chuck table 71. By subtracting the height position (H1) of the upper surface of the chuck table 71 from the height position (H2) of the upper surface, the thickness (T1) (T1 = H2−H1) of the base wafer W is obtained. The thickness (T1) of the base wafer W thus obtained is stored in the memory of the control means 10.

次に、制御手段10は、上記非接触式の厚み計測器9を作動してチャックテーブル71に保持された基素ウエーハWの加工前の厚み(T2)を計測する第2の加工前の厚み計測工程を実施する。即ち、制御手段10は図3に示すように、図示しない回動駆動手段を作動し非接触式の厚み計測器9の計測ケース91を構成する支持部911を回動して、計測部913をチャックテーブル71上に保持された基素ウエーハWの上方に位置付け、発光手段92および受光手段93を作動する。そして、制御手段10は、発光手段92から照射されたレーザー光線が基素ウエーハWの上面で反射し受光手段93としてのCCDラインセンサー931に受光された位置と、基素ウエーハWの下面で反射した光をCCDラインセンサー931に受光された位置との間隔(L)と入射角θに基づいて基素ウエーハWの加工前の厚み(T2)(T2=(cosθ/sin2θ)×L)を求める。   Next, the control means 10 operates the non-contact type thickness measuring instrument 9 to measure the thickness (T2) before processing of the base wafer W held on the chuck table 71 before the second processing thickness. Perform the measurement process. That is, as shown in FIG. 3, the control means 10 operates a rotation driving means (not shown) to rotate the support portion 911 that constitutes the measurement case 91 of the non-contact type thickness measuring instrument 9, thereby causing the measurement portion 913 to move. Positioned above the base wafer W held on the chuck table 71, the light emitting means 92 and the light receiving means 93 are operated. The control means 10 reflects the laser beam emitted from the light emitting means 92 on the upper surface of the base wafer W and received by the CCD line sensor 931 as the light receiving means 93 and on the lower face of the base wafer W. Based on the distance (L) between the position where the light is received by the CCD line sensor 931 and the incident angle θ, the thickness (T2) (T2 = (cosθ / sin2θ) × L) of the base wafer W before processing is obtained.

上記第2の加工前の厚み計測工程によって求められた基素ウエーハWの加工前の厚み(T2)は、上述したように基素ウエーハWの材質によって屈折率が異なるため、基素ウエーハWの正確な厚みとはいえない。即ち、基素ウエーハWの材質固有の屈折率を上記厚み(T2)の計算式に乗じることにより基素ウエーハWの正確な厚みを求めることができるが、基素ウエーハWの正確な屈折率を知ることが困難であるため、便宜的に屈折率を1として厚みを求めているので、上記厚み(T2)は基素ウエーハWの正確な厚みとはいえない。そこで、制御手段10は、上記第1の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T1)と第2の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T2)に基づいて非接触式の厚み計測器9による計測値を補正する補正値(T1/T2)を求める補正値演算工程を実施する。このようにして求めた補正値(T1/T2)は、制御手段10のメモリーに格納される。   Since the thickness (T2) before processing of the basic wafer W obtained by the thickness measurement step before the second processing differs depending on the material of the basic wafer W as described above, It is not an accurate thickness. That is, by multiplying the refractive index specific to the material of the basic wafer W by the above formula for calculating the thickness (T2), the accurate thickness of the basic wafer W can be obtained. Since it is difficult to know, the thickness is obtained with a refractive index of 1 for convenience. Therefore, the thickness (T2) cannot be said to be an accurate thickness of the basic wafer W. Therefore, the control means 10 determines the thickness (T1) before processing of the workpiece measured by the thickness measurement step before the first processing and the workpiece measured by the thickness measurement step before the second processing. A correction value calculation step for obtaining a correction value (T1 / T2) for correcting the measurement value by the non-contact type thickness measuring instrument 9 based on the thickness (T2) before processing is performed. The correction value (T1 / T2) obtained in this way is stored in the memory of the control means 10.

上述したように非接触式の厚み計測器9による計測値を補正する補正値(T1/T2)求め、この補正値(T1/T2)によって非接触式の厚み計測器9が計測した厚みを補正することにより、基素ウエーハWの正確な厚みを求めることが可能となる。次に、制御手段10は、非接触式の厚み計測器9を作動してチャックテーブル71の上面(保持面)に保持された基素ウエーハWの厚みを計測しつつ研削手段を作動してチャックテーブル71の上面(保持面)に保持された基素ウエーハWを研削する研削工程を実施する。即ち、制御手段10は基素ウエーハWを保持したチャックテーブル71の図示しない移動手段を作動し、チャックテーブル71を図1において矢印71aで示す方向に移動して研削域70bに位置付け、図5に示すように研削ホイール5の複数の研削砥石52の外周縁がチャックテーブル71の回転中心を通過するように位置付ける。   As described above, the correction value (T1 / T2) for correcting the measurement value by the non-contact type thickness measuring instrument 9 is obtained, and the thickness measured by the non-contact type thickness measuring instrument 9 is corrected by this correction value (T1 / T2). By doing so, it is possible to obtain an accurate thickness of the base wafer W. Next, the control means 10 operates the grinding means while operating the non-contact type thickness measuring instrument 9 to measure the thickness of the base wafer W held on the upper surface (holding surface) of the chuck table 71 to thereby chuck the chuck. A grinding step of grinding the base wafer W held on the upper surface (holding surface) of the table 71 is performed. That is, the control means 10 operates a moving means (not shown) of the chuck table 71 that holds the base wafer W, moves the chuck table 71 in the direction indicated by the arrow 71a in FIG. 1, and positions it in the grinding zone 70b. As shown, the outer peripheral edges of the plurality of grinding wheels 52 of the grinding wheel 5 are positioned so as to pass through the center of rotation of the chuck table 71.

このように研削ホイール5とチャックテーブル71に保持された基素ウエーハWが所定の位置関係にセットされ、非接触式の厚み計測器9の計測ケース91を構成する計測部913を上述した計測位置に位置付けたならば、制御手段10は図示しない回転駆動手段を駆動してチャックテーブル71を図5において矢印Aで示す方向に例えば300rpmの回転速度で回転するとともに、上記サーボモータ43を駆動して研削ホイール5を矢印Bで示す方向に例えば6000rpmの回転速度で回転する。そして、制御手段9は、研削ユニット送り機構6のパルスモータ64を正転駆動し研削ホイール5を下降(研削送り)して複数の研削砥石52を基素ウエーハWの上面である被研削面に所定の圧力で押圧する。この結果、基素ウエーハWのである被研削面が研削される(研削工程)。   In this way, the basic wafer W held on the grinding wheel 5 and the chuck table 71 is set in a predetermined positional relationship, and the measurement position of the measurement unit 913 constituting the measurement case 91 of the non-contact type thickness measuring instrument 9 is described above. Then, the control means 10 drives a rotation driving means (not shown) to rotate the chuck table 71 in the direction indicated by arrow A in FIG. 5 at a rotational speed of, for example, 300 rpm, and drives the servo motor 43. The grinding wheel 5 is rotated in the direction indicated by the arrow B at a rotational speed of, for example, 6000 rpm. Then, the control means 9 drives the pulse motor 64 of the grinding unit feed mechanism 6 in the forward direction to move down the grinding wheel 5 (grind feed), so that a plurality of grinding wheels 52 are placed on the surface to be ground, which is the upper surface of the basic wafer W. Press with a predetermined pressure. As a result, the surface to be ground, which is the base wafer W, is ground (grinding step).

上記研削工程においては、非接触式の厚み計測器9によって基素ウエーハWの厚み(T0)が測定されている。なお、基素ウエーハWの厚み(T0)を計測している際には、制御手段10は純水送給手段951の電磁開閉弁953が附勢(ONして開路する。この結果、純水送給手段951から純水が配管952および流体通路914を介して計測部913の下面と基素ウエーハWの上面(被研削面)との間に供給される。このように計測部913の下面と基素ウエーハWの上面(被研削面)との間に純水を供給することにより、研削によって発生するコンタミの影響を排除することができる。   In the grinding step, the thickness (T0) of the base wafer W is measured by the non-contact type thickness measuring instrument 9. When measuring the thickness (T0) of the base wafer W, the control means 10 energizes (turns on and opens the electromagnetic on-off valve 953 of the pure water supply means 951. As a result, the pure water is opened. Pure water is supplied from the feeding means 951 through the pipe 952 and the fluid passage 914 between the lower surface of the measuring unit 913 and the upper surface (surface to be ground) of the base wafer W. Thus, the lower surface of the measuring unit 913 By supplying pure water between the substrate and the upper surface (surface to be ground) of the base wafer W, the influence of contamination generated by grinding can be eliminated.

非接触式の厚み計測器9によって計測される基素ウエーハWの厚み(T0)は、上述した発光手段92から照射されたレーザー光線が基素ウエーハWの上面で反射し受光手段93としてのCCDラインセンサー931に受光された位置と、基素ウエーハWの下面で反射した光がCCDラインセンサー931に受光された位置との間隔(L)と入射角θに基づいて算出される。即ち、基素ウエーハWの厚み(T0)は、(T0=(cosθ/sin2θ)×L)となる。しかるに、非接触式の厚み計測器9によって計測される基素ウエーハWの厚み(T0)は、上述したように基素ウエーハWの屈折率によって異なるので、基素ウエーハWの正確な厚みとはいえない。そこで、制御手段10は基素ウエーハWの厚み(T0)に上記補正値(T1/T2)を乗算して基素ウエーハWの厚み(T)(T=T0×(T1/T2))を求める。そして、制御手段10は、基素ウエーハWの厚み(T)(T=T0×(T1/T2))が所定値に達したら、研削ユニット送り機構6のパルスモータ64を逆転駆動し研削ホイール5を上昇せしめる(切削終了工程)。この結果、研削ホイール5による研削作用は終了する。   The thickness (T0) of the basic wafer W measured by the non-contact type thickness measuring instrument 9 is such that the laser beam emitted from the light emitting means 92 is reflected by the upper surface of the basic wafer W and the CCD line as the light receiving means 93 is obtained. It is calculated based on the distance (L) between the position received by the sensor 931 and the position where the light reflected by the lower surface of the base wafer W is received by the CCD line sensor 931 and the incident angle θ. That is, the thickness (T0) of the base wafer W is (T0 = (cosθ / sin2θ) × L). However, since the thickness (T0) of the basic wafer W measured by the non-contact type thickness measuring instrument 9 varies depending on the refractive index of the basic wafer W as described above, what is the accurate thickness of the basic wafer W? I can't say that. Therefore, the control means 10 multiplies the thickness (T0) of the base wafer W by the correction value (T1 / T2) to obtain the thickness (T) of the base wafer W (T = T0 × (T1 / T2)). . When the thickness (T) (T = T0 × (T1 / T2)) of the base wafer W reaches a predetermined value, the control means 10 drives the pulse motor 64 of the grinding unit feed mechanism 6 in the reverse direction to drive the grinding wheel 5 Is raised (cutting end process). As a result, the grinding action by the grinding wheel 5 ends.

以上のように、研削工程においては非接触式の厚み計測器9によって基素ウエーハWの厚み(T0)を計測しているので、基素ウエーハWの被研削面に傷がつくことはない。そして、非接触式の厚み計測器9によって計測された基素ウエーハWの厚み(T0)は、上記補正値(T1/T2)によって補正されるので、基素ウエーハWの材質によって屈折率が異なっても基素ウエーハWの正確な厚み(T)に研削することができる。   As described above, since the thickness (T0) of the base wafer W is measured by the non-contact type thickness measuring instrument 9 in the grinding process, the ground surface of the base wafer W is not damaged. Since the thickness (T0) of the base wafer W measured by the non-contact type thickness measuring instrument 9 is corrected by the correction value (T1 / T2), the refractive index varies depending on the material of the base wafer W. However, it can be ground to an accurate thickness (T) of the base wafer W.

次に、上記非接触式の厚み計測器9に替えて非接触式の研削量計測器を用いた例について、図6を参照して説明する。なお、非接触式の研削量計測器以外は上記研削装置1を構成する各部材と同一である。
図6に示す非接触式の研削量計測器9aは、上記計測ケース91を構成する計測部913に配設され上記基素ウエーハWに対して透過性を有する波長、例えば1100nmの波長を有するレーザー光線を発振する発光手段としてのレーザーダイオード(LD)91aと、該レーザーダイオード(LD)91aから発振されたレーザー光線を図において下方に分光するビームスプリッター92aと、該ビームスプリッター92aによって分光されたレーザー光線を集光してチャックテーブル71に保持された基素ウエーハWに向けて照射する集光レンズ93aと、該集光レンズ93aから照射されたレーザー光線が基素ウエーハWの上面および下面で反射した反射光を上記ビームスプリッター92aを介して受光する干渉カウンタ94aとからなっており、該干渉カウンタ94aによってカウントされた干渉数を上記制御手段10に送る。
Next, an example in which a non-contact type grinding amount measuring device is used in place of the non-contact type thickness measuring device 9 will be described with reference to FIG. The members other than the non-contact type grinding amount measuring device are the same as the members constituting the grinding device 1.
A non-contact type grinding amount measuring instrument 9a shown in FIG. 6 is a laser beam that is disposed in the measuring unit 913 constituting the measuring case 91 and has a wavelength that is transmissive to the base wafer W, for example, a wavelength of 1100 nm. A laser diode (LD) 91a as a light emitting means for oscillating a laser beam, a beam splitter 92a for splitting the laser beam oscillated from the laser diode (LD) 91a downward in the figure, and a laser beam split by the beam splitter 92a. A condensing lens 93a that irradiates and irradiates the base wafer W held on the chuck table 71, and a reflected light reflected from the upper and lower surfaces of the base wafer W by the laser beam irradiated from the condensing lens 93a. An interference counter 94a for receiving light through the beam splitter 92a. The number of interferences counted by 94a is sent to the control means 10.

図6に示す非接触式の研削量計測器9aは以上のように構成されており、以下その作用について説明する。
レーザーダイオード(LD)91aから発振されたレーザー光線は、ビームスプリッター92aによって分光され、集光レンズ93aによって集光されてチャックテーブル71に保持された基素ウエーハWに照射される。基素ウエーハWに照射されたレーザー光線は、基素ウエーハWの上面および下面で反射し、集光レンズ93aおよびビームスプリッター92aを介して干渉カウンタ94aに到達する。ここで、干渉カウンタ94aに到達する反射光について説明する。基素ウエーハWが研削されずに上面の高さ位置が変化しない場合には、基素ウエーハWの上面と下面で反射した反射光の光波は同一周期で推移する。一方、基素ウエーハWが研削され上面の高さ位置が変化すると、基素ウエーハWの上面と下面で反射した反射光の光波は次第に周期がずれてくる。図示の実施形態においては、レーザーダイオード(LD)91aから発振されるレーザー光線は波長(α)が1100nmに設定されているので、基素ウエーハWが1100nm研削される都度、基素ウエーハWの上面で反射した反射光の光波と基素ウエーハWの下面で反射した反射光の光波が干渉することになる。従って、この干渉回数(n)を干渉カウンタ94aによってカウントし、干渉回数(n)に波長(α)を乗算することにより研削量(n×α)を求めることができる。
The non-contact type grinding amount measuring instrument 9a shown in FIG. 6 is configured as described above, and the operation thereof will be described below.
A laser beam oscillated from a laser diode (LD) 91 a is split by a beam splitter 92 a, condensed by a condensing lens 93 a, and applied to a base wafer W held on a chuck table 71. The laser beam applied to the basic wafer W is reflected by the upper and lower surfaces of the basic wafer W, and reaches the interference counter 94a via the condenser lens 93a and the beam splitter 92a. Here, the reflected light reaching the interference counter 94a will be described. When the base wafer W is not ground and the height position of the upper surface does not change, the light waves of the reflected light reflected by the upper and lower surfaces of the base wafer W change in the same period. On the other hand, when the base wafer W is ground and the height position of the upper surface changes, the light waves of the reflected light reflected by the upper and lower surfaces of the base wafer W gradually shift in period. In the illustrated embodiment, since the wavelength (α) of the laser beam oscillated from the laser diode (LD) 91a is set to 1100 nm, each time the basic wafer W is ground by 1100 nm, the upper surface of the basic wafer W is The light wave of the reflected light reflected and the light wave of the reflected light reflected on the lower surface of the base wafer W interfere with each other. Accordingly, the number of times of interference (n) is counted by the interference counter 94a, and the amount of grinding (n × α) can be obtained by multiplying the number of times of interference (n) by the wavelength (α).

図6に示す非接触式の研削量計測器9aを備えた上記研削装置1を用いてウエーハを形成するインゴットから切り出された基素ウエーハWを所定の厚さに研削する研削方法について説明する。
上記接触式の厚み計測器8を作動してチャックテーブル71に保持された基素ウエーハWの加工前の厚み(T1)を計測する加工前の厚み計測工程は、上述した実施形態の第1の加工前の厚み計測工程と同様に実施する。
A grinding method for grinding the base wafer W cut out from the ingot forming the wafer to a predetermined thickness using the grinding apparatus 1 provided with the non-contact type grinding amount measuring device 9a shown in FIG. 6 will be described.
The thickness measuring step before processing for measuring the thickness (T1) before processing of the base wafer W held on the chuck table 71 by operating the contact-type thickness measuring instrument 8 is the first thickness measuring step of the above-described embodiment. It carries out similarly to the thickness measurement process before a process.

次に、研削手段を作動してチャックテーブル71の上面(保持面)に保持された基素ウエーハWを研削する研削工程を上述した実施形態と同様実施する。
この研削工程においては、非接触式の研削量計測器9aによって上述したように研削量(n×α)を求めている。この研削量(n×α)を求めることにより、上記加工前の厚み計測工程によって計測された基素ウエーハWの加工前の厚み(T1)から研削量(n×α)を減算することにより、現在の基素ウエーハWの厚み(T)を求める(T=T1−(n×α))ことができる。そして、現在の基素ウエーハWの厚み(T)(T=T1−(n×α))が 所定値に達したら、制御手段10は研削ユニット送り機構6のパルスモータ64を逆転駆動し研削ホイール5を上昇せしめる(切削終了工程)。この結果、研削ホイール5による研削作用は終了する。なお、基素ウエーハWの厚みを計測している際には、制御手段10は純水送給手段951の電磁開閉弁953が附勢(ONして開路する。この結果、純水送給手段951から配管952および純水が流体通路914を介して計測部913の下面と基素ウエーハWの上面(被研削面)との間に供給される。このように研削工程においては非接触式の研削量計測器9aによって基素ウエーハWの上面(被研削面)を計測して研削量(n×α)を求め、加工前の厚み計測工程によって計測された基素ウエーハWの加工前の厚み(T1)から研削量(n×α)を減算することにより、現在の基素ウエーハWの厚み(T)(T=T1−(n×α))を求めることができるので、基素ウエーハWの被研削面に傷がつくことはない。
Next, the grinding step of operating the grinding means to grind the base wafer W held on the upper surface (holding surface) of the chuck table 71 is performed in the same manner as in the above-described embodiment.
In this grinding step, the grinding amount (n × α) is obtained by the non-contact type grinding amount measuring instrument 9a as described above. By obtaining this grinding amount (n × α), by subtracting the grinding amount (n × α) from the thickness (T1) before processing of the base wafer W measured by the thickness measuring step before processing, The thickness (T) of the current basic wafer W can be obtained (T = T1− (n × α)). When the current thickness (T) of the basic wafer W (T = T1− (n × α)) reaches a predetermined value, the control means 10 drives the pulse motor 64 of the grinding unit feed mechanism 6 in reverse to drive the grinding wheel. Raise 5 (cutting end process). As a result, the grinding action by the grinding wheel 5 ends. When measuring the thickness of the base wafer W, the control means 10 energizes (turns on and opens the electromagnetic on-off valve 953 of the pure water feeding means 951. As a result, the pure water feeding means. A pipe 952 and pure water are supplied from 951 between the lower surface of the measuring unit 913 and the upper surface (surface to be ground) of the base wafer W via the fluid passage 914. Thus, in the grinding process, a non-contact type is supplied. The grinding amount measuring device 9a measures the upper surface (surface to be ground) of the basic wafer W to obtain the grinding amount (n × α), and the thickness of the basic wafer W before processing measured by the thickness measuring step before processing. By subtracting the grinding amount (n × α) from (T1), the current thickness (T) (T = T1− (n × α)) of the basic wafer W can be obtained. The surface to be ground is not damaged.

次に、上記図6に示す非接触式の研削量計測器9aに替えて他の非接触式の研削量計測器を用いた例について、図7を参照して説明する。なお、非接触式の研削量計測器以外は上記研削装置1を構成する各部材と同一である。
図7に示す非接触式の研削量計測器9bは、上記計測ケース91を構成する計測部913に配設され上記基素ウエーハWに対して非透過性を有する波長、例えば650nmの波長を有するレーザー光線を発振する発光手段としてのレーザーダイオード(LD)91bと、該レーザーダイオード(LD)91bから発振されたレーザー光線を図7において下方と右方に分光するビームスプリッター92bと、該ビームスプリッター92bによって図7において下方に分光されたレーザー光線を集光してチャックテーブル71に保持された基素ウエーハWに向けて照射する集光レンズ93bと、ビームスプリッター92bによって図7において右方に分光されたレーザー光線を反射するミラー94bと、該集光レンズ93bから照射されたレーザー光線が基素ウエーハWの上面で反射した反射光を上記ビームスプリッター92bを介して受光するとともに上記反射するミラー94bによって反射された反射光を上記ビームスプリッター92bを介して受光する干渉カウンタ95bとからなっており、該干渉カウンタ95bによってカウントされた干渉数を上記制御手段10に送る。
Next, an example in which another non-contact type grinding amount measuring device is used instead of the non-contact type grinding amount measuring device 9a shown in FIG. 6 will be described with reference to FIG. The members other than the non-contact type grinding amount measuring device are the same as the members constituting the grinding device 1.
A non-contact type grinding amount measuring instrument 9b shown in FIG. 7 is disposed in the measurement unit 913 constituting the measurement case 91 and has a wavelength that is non-transparent to the base wafer W, for example, a wavelength of 650 nm. A laser diode (LD) 91b as a light emitting means for oscillating a laser beam, a beam splitter 92b for splitting the laser beam oscillated from the laser diode (LD) 91b downward and to the right in FIG. 7, and the beam splitter 92b 7, the condensing lens 93b that condenses the laser beam dispersed downward and irradiates the base wafer W held on the chuck table 71, and the laser beam dispersed rightward in FIG. 7 by the beam splitter 92b. The reflecting mirror 94b and the laser beam irradiated from the condenser lens 93b are the basic wafer W. And an interference counter 95b that receives the reflected light reflected by the upper surface of the light beam through the beam splitter 92b and receives the reflected light reflected by the reflecting mirror 94b through the beam splitter 92b. The number of interferences counted by the counter 95b is sent to the control means 10.

図7に示す非接触式の研削量計測器9bは以上のように構成されており、以下その作用について説明する。
レーザーダイオード(LD)91bから発振されたレーザー光線は、ビームスプリッター92aによって図7において下方に分光され、集光レンズ93bによって集光されてチャックテーブル71に保持された基素ウエーハWに照射される。基素ウエーハWに照射されたレーザー光線は、基素ウエーハWの上面で反射し、集光レンズ93bおよびビームスプリッター92bを介して干渉カウンタ95bに到達する。一方、ビームスプリッター92bによって図7において右方に分光されたレーザー光線は、ミラー94bによって反射され、その反射光がビームスプリッター92bを介して干渉カウンタ95bに到達する。ここで、干渉カウンタ95bに到達する上記2つの反射光について説明する。基素ウエーハWが研削されずに上面の高さ位置が変化しない場合には、基素ウエーハWの上面で反射した反射光とミラー94bによって反射された反射光の光波は同一周期で推移する。一方、基素ウエーハWが研削され上面の高さ位置が変化すると、基素ウエーハWの上面で反射した反射光の光波は次第に周期がずれてくる。図示の実施形態においては、レーザーダイオード(LD)91bから発振されるレーザー光線は波長(α)が650nmに設定されているので、基素ウエーハWが650n m研削される都度、基素ウエーハWの上面で反射した反射光の光波とミラー94bによって反射された反射光の光波が干渉することになる。従って、この干渉回数(n)を干渉カウンタ95bによってカウントし、干渉回数(n)に波長(α)を乗算することにより研削量(n×α)を求めることができる。
The non-contact type grinding amount measuring instrument 9b shown in FIG. 7 is configured as described above, and the operation thereof will be described below.
The laser beam oscillated from the laser diode (LD) 91b is split downward in FIG. 7 by the beam splitter 92a, condensed by the condenser lens 93b, and applied to the base wafer W held on the chuck table 71. The laser beam applied to the base wafer W is reflected by the upper surface of the base wafer W and reaches the interference counter 95b via the condenser lens 93b and the beam splitter 92b. On the other hand, the laser beam dispersed rightward in FIG. 7 by the beam splitter 92b is reflected by the mirror 94b, and the reflected light reaches the interference counter 95b via the beam splitter 92b. Here, the two reflected lights reaching the interference counter 95b will be described. When the base wafer W is not ground and the height position of the upper surface does not change, the reflected light reflected by the upper surface of the basic wafer W and the light wave of the reflected light reflected by the mirror 94b change in the same period. On the other hand, when the base wafer W is ground and the height position of the upper surface changes, the light wave of the reflected light reflected by the upper surface of the base wafer W gradually shifts in period. In the illustrated embodiment, the wavelength (α) of the laser beam oscillated from the laser diode (LD) 91b is set to 650 nm. Therefore, each time the basic wafer W is ground by 650 nm, the upper surface of the basic wafer W is The light wave of the reflected light reflected by the light beam interferes with the light wave of the reflected light reflected by the mirror 94b. Therefore, the number of interferences (n) is counted by the interference counter 95b, and the grinding amount (n × α) can be obtained by multiplying the number of interferences (n) by the wavelength (α).

図7に示す非接触式の研削量計測器9bを備えた上記研削装置1を用いてウエーハを形成するインゴットから切り出された基素ウエーハWを所定の厚さに研削する研削方法について説明する。
上記接触式の厚み計測器8を作動してチャックテーブル71に保持された基素ウエーハWの加工前の厚み(T1)を計測する加工前の厚み計測工程は、上述した実施形態の第1の加工前の厚み計測工程と同様に実施する。
A grinding method for grinding the base wafer W cut out from the ingot forming the wafer to a predetermined thickness using the grinding apparatus 1 provided with the non-contact grinding amount measuring device 9b shown in FIG. 7 will be described.
The thickness measuring step before processing for measuring the thickness (T1) before processing of the base wafer W held on the chuck table 71 by operating the contact-type thickness measuring instrument 8 is the first thickness measuring step of the above-described embodiment. It carries out similarly to the thickness measurement process before a process.

次に、研削手段を作動してチャックテーブル71の上面(保持面)に保持された基素ウエーハWを研削する研削工程を上述した実施形態と同様実施する。
この研削工程においては、非接触式の研削量計測器9bによって上述したように研削量(n×α)を求めている。この研削量(n×α)を求めることにより、上記加工前の厚み計測工程によって計測された基素ウエーハWの加工前の厚み(T1)から研削量(n×α)を減算することにより、現在の基素ウエーハWの厚み(T)(T=T1−(n×α))を求めることができる。そして、現在の基素ウエーハWの厚み(T)(T=T1−(n×α))が所定値に達したら、制御手段10は研削ユニット送り機構6のパルスモータ64を逆転駆動し研削ホイール5を上昇せしめる(切削終了工程)。この結果、研削ホイール5による研削作用は終了する。なお、基素ウエーハWの厚みを計測している際には、制御手段10は純水送給手段951の電磁開閉弁953が附勢(ONして開路する。この結果、純水送給手段951から配管952および純水が流体通路914を介して計測部913の下面と基素ウエーハWの上面(被研削面)との間に供給される。このように研削工程においては非接触式の研削量計測器9bによって基素ウエーハWの上面(被研削面)を計測して研削量(n×α)を求め、加工前の厚み計測工程によって計測された基素ウエーハWの加工前の厚み(T1)から研削量(n×α)を減算することにより、現在の基素ウエーハWの厚み(T)を求める(T=T1−(n×α))ことができるので、基素ウエーハWの被研削面に傷がつくことはない。
Next, the grinding step of operating the grinding means to grind the base wafer W held on the upper surface (holding surface) of the chuck table 71 is performed in the same manner as in the above-described embodiment.
In this grinding process, the grinding amount (n × α) is obtained by the non-contact type grinding amount measuring instrument 9b as described above. By obtaining this grinding amount (n × α), by subtracting the grinding amount (n × α) from the thickness (T1) before processing of the base wafer W measured by the thickness measuring step before processing, The thickness (T) (T = T1− (n × α)) of the current basic wafer W can be obtained. When the current thickness (T) of the basic wafer W (T = T1− (n × α)) reaches a predetermined value, the control means 10 drives the pulse motor 64 of the grinding unit feed mechanism 6 in reverse to drive the grinding wheel. Raise 5 (cutting end process). As a result, the grinding action by the grinding wheel 5 ends. When measuring the thickness of the base wafer W, the control means 10 energizes (turns on and opens the electromagnetic on-off valve 953 of the pure water feeding means 951. As a result, the pure water feeding means. A pipe 952 and pure water are supplied from 951 between the lower surface of the measuring unit 913 and the upper surface (surface to be ground) of the base wafer W via the fluid passage 914. Thus, in the grinding process, a non-contact type is supplied. The grinding amount measuring device 9b measures the upper surface (surface to be ground) of the basic wafer W to obtain the grinding amount (n × α), and the thickness before processing of the basic wafer W measured by the thickness measuring step before processing. By subtracting the grinding amount (n × α) from (T1), the current thickness (T) of the basic wafer W can be obtained (T = T1− (n × α)). The surface to be ground is not damaged.

本発明に従って構成された研削装置の斜視図。1 is a perspective view of a grinding apparatus constructed according to the present invention. 図1に示す研削装置に装備される非接触式の厚み計測器の構成ブロック図。FIG. 2 is a configuration block diagram of a non-contact type thickness measuring instrument equipped in the grinding apparatus shown in FIG. 1. 図2に示す非接触式の厚み計測器の計測部を拡大して示す断面図。Sectional drawing which expands and shows the measurement part of the non-contact-type thickness measuring device shown in FIG. 図1に示す研削装置に装備される接触式の厚み計測器を用いて実施する第1の加工前の厚み計測工程の説明図。Explanatory drawing of the thickness measurement process before the 1st process implemented using the contact-type thickness measuring device with which the grinding apparatus shown in FIG. 1 is equipped. 図1に示す研削装置を用いて実施する研削工程の説明図。Explanatory drawing of the grinding process implemented using the grinding apparatus shown in FIG. 図1に示す研削装置に装備ざれる非接触式の研削量計測器の一実施形態を示す構成ブロック図。The block diagram which shows one Embodiment of the non-contact-type grinding amount measuring device with which the grinding apparatus shown in FIG. 1 is equipped. 図1に示す研削装置に装備ざれる非接触式の研削量計測器の他の実施形態を示す構成ブロック図。The block diagram which shows other embodiment of the non-contact-type grinding amount measuring device with which the grinding apparatus shown in FIG. 1 is equipped.

符号の説明Explanation of symbols

2:装置ハウジング
3:研削ユニット
31:移動基台
4:スピンドルユニット
41:スピンドルハウジング
42:回転スピンドル
43:サーボモータ
44:ホイールマウント
5:研削ホイール
51:砥石基台
52:研削砥石
6:研削ユニット送り機構
64:パルスモータ
7:チャックテーブル機構
71:チャックテーブル
8:接触式の厚み計測器
81:計測用の接触針
9:非接触式の厚み計測器
91:計測ケース
92:発光手段
921:レーザーダイオード(LD)
922:集光レンズ
93:受光手段
931:CCDラインセンサー
94:透明版
95:流体供給手段
951:純水送給手段
953:電磁開閉弁
10:制御手段
2: Equipment housing 3: Grinding unit 31: Moving base 4: Spindle unit 41: Spindle housing 42: Rotary spindle 43: Servo motor 44: Wheel mount 5: Grinding wheel 51: Grinding wheel base 52: Grinding wheel 6: Grinding unit Feed mechanism 64: Pulse motor 7: Chuck table mechanism 71: Chuck table 8: Contact-type thickness measuring instrument 81: Contact needle for measurement 9: Non-contact-type thickness measuring instrument 91: Measurement case 92: Light emitting means 921: Laser Diode (LD)
922: Condensing lens 93: Light receiving means 931: CCD line sensor 94: Transparent plate 95: Fluid supply means 951: Pure water supply means 953: Electromagnetic switching valve 10: Control means

Claims (2)

被加工物を保持する保持面を有するチャックテーブルと、該チャックテーブルに保持された被加工物の上面を研削する研削手段と、該チャックテーブルに保持された被加工物の厚みを計測する接触式の厚み計測器と、該チャックテーブルに保持された被加工物の厚みを計測する非接触式の厚み計測器と、該接触式の厚み計測器と該非接触式の厚み計測器からの検出信号に基づいて該研削手段を制御する制御手段と、を具備する研削装置において、
制御手段は、該接触式の厚み計測器によって該チャックテーブルに保持された被加工物の加工前の厚み(T1)を計測する第1の加工前の厚み計測工程と、該非接触式の厚み計測器によって該チャックテーブルに保持された被加工物の加工前の厚み(T2)を計測する第2の加工前の厚み計測工程と、該第1の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T1)と該第2の加工前の厚み計測工程によって計測された被加工物の加工前の厚み(T2)に基づいて該非接触式の厚み計測器による計測値を補正する補正値(T1/T2)を求める補正値演算工程と、該非接触式の厚み計測器を作動してチャックテーブルの保持面に保持された被加工物の厚みを計測しつつ該研削手段を作動して該チャックテーブルの保持面に保持された被加工物を研削する研削工程と、該非接触式の厚み計測器によって計測された被加工物の厚み(T0)に該補正値(T1/T2)を乗算した値が所定値に達したら該研削手段による研削を終了する研削終了工程を実行する、
ことを特徴とする研削装置。
A chuck table having a holding surface for holding the workpiece, a grinding means for grinding an upper surface of the workpiece held on the chuck table, and a contact type for measuring the thickness of the workpiece held on the chuck table Thickness measurement device, a non-contact type thickness measurement device that measures the thickness of the workpiece held on the chuck table, and detection signals from the contact type thickness measurement device and the non-contact type thickness measurement device. A control device for controlling the grinding means based on the grinding device,
The control means includes a first thickness measurement step before processing for measuring a thickness (T1) before processing of the workpiece held on the chuck table by the contact type thickness measuring instrument, and the non-contact type thickness measurement. A thickness measurement step before processing of the workpiece (T2) before being processed held by the chuck table on the chuck table, and a workpiece measured by the thickness measurement step before the first processing Based on the thickness (T1) before processing of the workpiece and the thickness (T2) before processing of the workpiece measured by the thickness measuring step before the second processing, the measurement value by the non-contact type thickness measuring device is corrected. A correction value calculating step for obtaining a correction value (T1 / T2) to be performed, and operating the grinding means while measuring the thickness of the workpiece held on the holding surface of the chuck table by operating the non-contact type thickness measuring instrument On the holding surface of the chuck table A value obtained by multiplying the correction value (T1 / T2) by the grinding step of grinding the workpiece to be held and the thickness (T0) of the workpiece measured by the non-contact type thickness measuring instrument reaches a predetermined value. Then, a grinding end process for ending grinding by the grinding means is performed.
A grinding apparatus characterized by that.
該非接触式の厚み計測器は、被加工物に対して透過性を有する波長のレーザー光線を照射する発光手段と、該発光手段から被加工物に照射されたレーザー光線の反射光を受光する受光手段とを具備し、該受光手段が被加工物に照射されたレーザー光線における被加工物の表面で反射された反射光の位置と被加工物の裏面で反射された反射光の位置の間隔を計測して被加工物の厚みを求める、請求項1記載の研削装置。   The non-contact type thickness measuring device includes: a light emitting unit that irradiates a laser beam having a wavelength that is transmissive to the workpiece; and a light receiving unit that receives reflected light of the laser beam irradiated to the workpiece from the light emitting unit. And the light receiving means measures the distance between the position of the reflected light reflected from the surface of the workpiece in the laser beam irradiated to the workpiece and the position of the reflected light reflected from the back surface of the workpiece. The grinding apparatus according to claim 1, wherein the thickness of the workpiece is obtained.
JP2007281908A 2007-10-30 2007-10-30 Grinding equipment Active JP5139769B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007281908A JP5139769B2 (en) 2007-10-30 2007-10-30 Grinding equipment

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007281908A JP5139769B2 (en) 2007-10-30 2007-10-30 Grinding equipment

Publications (2)

Publication Number Publication Date
JP2009107069A JP2009107069A (en) 2009-05-21
JP5139769B2 true JP5139769B2 (en) 2013-02-06

Family

ID=40776151

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007281908A Active JP5139769B2 (en) 2007-10-30 2007-10-30 Grinding equipment

Country Status (1)

Country Link
JP (1) JP5139769B2 (en)

Families Citing this family (5)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP5731134B2 (en) * 2010-05-20 2015-06-10 株式会社ディスコ Grinding equipment
JP2012021916A (en) * 2010-07-15 2012-02-02 Disco Abrasive Syst Ltd Thickness detector and grinder
JP2012132776A (en) * 2010-12-21 2012-07-12 Disco Abrasive Syst Ltd Measuring device
JP5752961B2 (en) * 2011-03-11 2015-07-22 株式会社ディスコ Measuring device
CN103770004A (en) * 2012-10-23 2014-05-07 台州中睿自动化设备有限公司 Novel grinder in-process measuring instrument

Family Cites Families (6)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS54183373U (en) * 1978-06-15 1979-12-26
JPH02170008A (en) * 1988-12-23 1990-06-29 Sumitomo Electric Ind Ltd Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure
JPH08162432A (en) * 1994-11-30 1996-06-21 Ricoh Co Ltd Polishing method of semiconductor substrate, polishing equipment and polished wafer
JP2005340679A (en) * 2004-05-31 2005-12-08 Matsushita Electric Ind Co Ltd Polishing equipment, polishing end detecting method, and manufacturing method of semiconductor device
JP2006313883A (en) * 2005-04-04 2006-11-16 Shin Etsu Handotai Co Ltd Bonded wafer, manufacturing method therefor, and plane grinding apparatus
JP2007123687A (en) * 2005-10-31 2007-05-17 Tokyo Seimitsu Co Ltd Grinding method for underside of semiconductor wafer and grinding apparatus for semiconductor wafer

Also Published As

Publication number Publication date
JP2009107069A (en) 2009-05-21

Similar Documents

Publication Publication Date Title
JP2009113149A (en) Grinder
JP6148075B2 (en) Laser processing equipment
US9791411B2 (en) Processing apparatus including a three-dimensional interferometric imager
TWI584899B (en) Laser processing device and laser processing method (2)
JP5459484B2 (en) Dicing apparatus and dicing method
KR102240331B1 (en) Machining apparatus
TWI652748B (en) Height position detecting device
JP5139769B2 (en) Grinding equipment
TWI637143B (en) Bump detection device
JP5583981B2 (en) Laser processing method
KR20130121719A (en) Laser machining apparatus and laser machining method
TWI748082B (en) Laser processing method
JP2009050944A (en) Substrate thickness measuring method and substrate processing device
JP2011122894A (en) Apparatus for measuring workpiece held at chuck table and laser beam machine
KR20180119124A (en) Laser processing method
JP5902490B2 (en) Laser beam spot shape detection method and spot shape detection device
JP2011082354A (en) Processing device
JP5495869B2 (en) How to check laser processing groove
JP5420890B2 (en) Device for measuring the height position of the workpiece held on the chuck table
JP5122854B2 (en) Device grinding method
JP2015088515A (en) Processing device
JP6224462B2 (en) Method for detecting operating characteristics of machining feed mechanism in laser machining apparatus and laser machining apparatus
JP2012134333A (en) Method for measurement
JP2015225909A (en) Processing method of wafer
JP6262593B2 (en) Grinding equipment

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100927

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120731

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120731

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120927

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121116

R150 Certificate of patent or registration of utility model

Ref document number: 5139769

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151122

Year of fee payment: 3

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250