JPH02170008A - Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure - Google Patents

Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure

Info

Publication number
JPH02170008A
JPH02170008A JP32643288A JP32643288A JPH02170008A JP H02170008 A JPH02170008 A JP H02170008A JP 32643288 A JP32643288 A JP 32643288A JP 32643288 A JP32643288 A JP 32643288A JP H02170008 A JPH02170008 A JP H02170008A
Authority
JP
Japan
Prior art keywords
thin film
thickness
light
film
sample
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Pending
Application number
JP32643288A
Other languages
Japanese (ja)
Inventor
Masahiro Nakagawa
中川 正広
Futatsu Shirakawa
白川 二
Toshihiko Takebe
武部 敏彦
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Sumitomo Electric Industries Ltd
Original Assignee
Sumitomo Electric Industries Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Sumitomo Electric Industries Ltd filed Critical Sumitomo Electric Industries Ltd
Priority to JP32643288A priority Critical patent/JPH02170008A/en
Publication of JPH02170008A publication Critical patent/JPH02170008A/en
Pending legal-status Critical Current

Links

Abstract

PURPOSE:To easily measure the film thickness of heterojunction of any combination of materials without breaking a sample by irradiating an epitaxial thin film slantingly with laser light, detecting reflected light from each junction surface, and finding the film thickness of a thin film from the interval of the reflected light. CONSTITUTION:A sample wafer 2 which has an epitaxial grown thin film is mounted on an XYZ stage 5 and a thin light beam is made incident slantingly on the surface of the sample wafer 2 from a laser light oscillator 6. The reflected light of the incident light 1 from the wafer 2 is plural reflected light beams reflected by the top layer of the sample 2 and the heterojunction surfaces of respective thin films and the respective reflected light beams 3 are guided to a photodetector 4, whose output is led to a computer 7 and converted into a digital value, which is analyzed to find the thickness of each thin film. Thus, the sample is not broken and the reflection is caused on each junction surface, so the thickness values of the plural thin films are found at a time and the time required for the measurement is shortened.

Description

【発明の詳細な説明】 (1)技術分野 この発明は、半導体のヘテロ接合部の膜厚測定法に関す
る。
DETAILED DESCRIPTION OF THE INVENTION (1) Technical Field The present invention relates to a method for measuring the thickness of a semiconductor heterojunction.

発光ダイオード、半導体レーザなどの半導体素子に於て
は、ヘテロ接合がしばしば用いられる。
Heterojunctions are often used in semiconductor devices such as light emitting diodes and semiconductor lasers.

これはGaAs層とA、dGaAs層とを組合わせたも
のである事がある。或は、InP層と、I nGaPA
s層とを接合したものである事もある。
This may be a combination of GaAs and A,dGaAs layers. Or InP layer and InGaPA
It may also be a bonded layer with an s layer.

さらに、GaAs層をSi基板、或はSi薄膜の上に成
長させた場合がある。
Furthermore, a GaAs layer may be grown on a Si substrate or a Si thin film.

結晶を構成する元素が異なるのでヘテロ接合という。It is called a heterojunction because the elements that make up the crystal are different.

pn接合の場合は、ホスト元素が同一であるから、化学
的、光学的な物性は、接合の両側で殆ど変わらない。
In the case of a pn junction, since the host element is the same, the chemical and optical properties are almost the same on both sides of the junction.

しかし、ヘテロ接合の場合は、ホスト元素の構成が異な
るから、化学的、光学的な物性が変化する。
However, in the case of a heterojunction, the composition of the host elements is different, so the chemical and optical properties change.

ヘテロ接合は、液相エピタキシー、気相エピタキシー、
分子線エピタキシー、有機金属熱分解法など、エピタキ
シー技術によって作られる。膜の厚さは、主に成長時間
の長さによってコントロールでれる。
Heterojunctions can be made using liquid phase epitaxy, gas phase epitaxy,
It is made using epitaxy techniques such as molecular beam epitaxy and organometallic pyrolysis. The thickness of the film can be controlled primarily by the length of the growth time.

ヘテロ接合で区切られた薄膜の厚さを、成長後に測定す
る方法として、既にいくつかのものがある。
There are already several methods for measuring the thickness of thin films separated by heterojunctions after growth.

(イ)従来技術 従来技術として、例えば次のようなものがある。(b) Conventional technology Examples of conventional techniques include the following.

例えば、GaAs/AlGaAs半導体ヘテロ薄膜エピ
タキシャルウェハのGaAs層の膜厚を測定する場合、
ウェハの表面にレジストパターンを形成し、GaAsと
A、dGaAsに対してエツチング速度が極端に違うC
Cl2F2のような反応性ガスを用いてドライエツチン
グする(RIE)。レジストによって覆われていない部
分がエツチングされるが、二つの層に対し、エツチング
速度が異なるから、階段状にエツチングされる。階段の
高さを測定すれば、GaAs層の厚さが分る。
For example, when measuring the thickness of the GaAs layer of a GaAs/AlGaAs semiconductor hetero thin film epitaxial wafer,
A resist pattern is formed on the surface of the wafer, and the etching speed is extremely different for GaAs, A, and dGaAs.
Dry etching (RIE) using a reactive gas such as Cl2F2. The portions not covered by the resist are etched, but because the etching speeds for the two layers are different, the etching occurs in a stepwise manner. By measuring the height of the stairs, the thickness of the GaAs layer can be determined.

これを、ここでは選択エツチング法と仮に呼ぶことにす
る。
This will be tentatively called the selective etching method here.

あるいは、ウェハの一部を襞間し、薄膜層の断面を出し
、走査型電子顕微鏡(SEM)によって断面を観察する
、という方法もある。これは観察するのであるから、厚
みだけでなく薄膜の凹凸や分布などもよく分る。
Alternatively, there is a method in which a part of the wafer is folded, a cross section of the thin film layer is taken out, and the cross section is observed using a scanning electron microscope (SEM). Since this is done through observation, it is possible to clearly see not only the thickness but also the unevenness and distribution of the thin film.

さらに、ウェハの一部を、一定の斜め角で削り、薄膜の
境界を露出させ、顕微鏡で境界間の水平方向の長さを求
める。これに斜角θの正接tanθを乗算すると厚みが
求められる。
Furthermore, a part of the wafer is shaved at a certain oblique angle to expose the boundaries of the thin film, and the horizontal length between the boundaries is determined using a microscope. The thickness is obtained by multiplying this by the tangent tan θ of the oblique angle θ.

(つ)発明が解決しようとする問題点 これらの方法で、ヘテロ接合しているエピタキシャル薄
膜の膜厚を測定できるが、いずれも破壊検査である、と
いう欠点がある。ウエノ・の全体が破壊される事もあり
、一部のみが破壊される事もある。少なくとも膜厚測定
する部分は破壊きれてしまう。これでは、製品となるべ
きものを直接測定する事ができない。
(1) Problems to be Solved by the Invention These methods can measure the thickness of an epitaxial thin film in a heterojunction, but they all have the disadvantage of being destructive tests. Sometimes the whole Ueno is destroyed, sometimes only a part of it is destroyed. At least the part where the film thickness is to be measured is destroyed. This makes it impossible to directly measure what should become a product.

選択エツチング法は、表面の薄膜の厚みしか測定するこ
とができない。2層目、3層目の薄膜の厚みはこれでは
分らない。さらにヘテロ接合の両側の物質に対して、エ
ツチング速さの著しく違う反応性ガスが常に存在するわ
けではない。特殊なヘテロ接合にしか使用できない。
The selective etching method can only measure the thickness of a thin film on the surface. The thickness of the second and third thin films cannot be determined with this method. Furthermore, there are not always reactive gases that etch significantly different rates for the materials on either side of the heterojunction. Can only be used for special heterojunctions.

でらに、これらの方法は簡便に行なう事ができない。試
料のエツチング、襞間なと前処理が必要であり、しかも
顕微鏡観察しなければならないからである。
Furthermore, these methods are not easy to perform. This is because pretreatment such as etching and interfolding of the sample is required, and furthermore, microscopic observation is required.

短い時間で、多くのウェハを、多くの測定点について厚
み測定する、というような事ができない。
It is not possible to measure the thickness of many wafers at many measurement points in a short period of time.

eつ  目       的 試料を破壊する事なく、どのような材料の組合わせのヘ
テロ接合であっても適用でき、簡便であるヘテロ薄膜の
膜厚測定方法を提供する事が本発明の目的である。
Purpose It is an object of the present invention to provide a simple method for measuring the thickness of a hetero thin film that can be applied to any combination of materials for heterojunctions without destroying the sample.

け)構 成 本発明は、エピタキシャル薄膜にレーザ光を斜め方向か
ら当て、各接合面からの反射光を検出し、反射光の間隔
から、薄膜の膜厚を求めるものである。
(k) Structure The present invention applies a laser beam to an epitaxial thin film from an oblique direction, detects reflected light from each bonding surface, and determines the film thickness of the thin film from the interval between the reflected lights.

反射光によって、膜厚を求めるのであるから、試料を破
壊しない。非破壊検査である。また、反射は各接合面で
起るので、複数の薄膜の厚さを一挙に求める事ができる
。さらに、測定に要する時間が短くて済み、極めて経済
性が高い方法である。
Since the film thickness is determined using reflected light, the sample is not destroyed. This is a non-destructive test. Furthermore, since reflection occurs at each bonding surface, the thicknesses of multiple thin films can be determined at once. Furthermore, the time required for measurement is short, making it an extremely economical method.

第1図は本発明の測定装置の概略構成図である。FIG. 1 is a schematic diagram of the measuring device of the present invention.

XYZステージ5の上に、エピタキシャル成長簿膜を有
する試料ウェハ2を戴置する。
A sample wafer 2 having an epitaxially grown film is placed on the XYZ stage 5.

試料ウェハ2の表面に対して、斜めに、極めて細い光線
を入射させるようにレーザ発振器6を設ける。
A laser oscillator 6 is provided so as to make an extremely narrow beam of light obliquely incident on the surface of the sample wafer 2.

入射光1が、試料ウェハ2によって斜めに反射される。Incident light 1 is reflected obliquely by sample wafer 2 .

これを受光するために光検知器4を設ける。A photodetector 4 is provided to receive this light.

コンピュータ7は、光検知器4の出力を受け、これをデ
ジタル値に変換してから解析し、薄膜の厚さを求める。
The computer 7 receives the output from the photodetector 4, converts it into a digital value, and analyzes it to determine the thickness of the thin film.

その結果は、デイスプレィ8に表示され、プリンタ9に
出力される。
The results are displayed on the display 8 and output to the printer 9.

コンピュータ7は、xyzステージ5をxyz方向に移
動させて、ウエノ・の異なる点の膜厚を測定できるよう
になっている。
The computer 7 can move the xyz stage 5 in the xyz directions and measure the film thickness at different points on the film.

レーザ発振器6の位置は、固定であってもよいが、コン
ピュータ7の指令によって変動させる事ができるように
してもよい。
The position of the laser oscillator 6 may be fixed, or may be changed according to instructions from the computer 7.

(2)作 用 第2図によって測定原理を説明する。(2) Production The measurement principle will be explained with reference to FIG.

入射光10が、試料ウェハの表面に当たる。エピクキシ
ャル薄膜が、上からLII、IIIとあり、それぞれの
厚みがdl、d2、d3、屈折率がnl、n2、n3テ
あるとする。
Incident light 10 impinges on the surface of the sample wafer. It is assumed that the epiaxial thin films are labeled LII and III from the top, and have thicknesses of dl, d2, and d3, and refractive indices of nl, n2, and n3, respectively.

入射光AOは、まず■層の表面pの点Poで反射され反
射光11となる。
The incident light AO is first reflected at a point Po on the surface p of the layer (2) and becomes reflected light 11.

1層と入射光10のなす角を0とする。反射光11と1
層のなす角もOである。
Let the angle between the first layer and the incident light 10 be 0. Reflected light 11 and 1
The angle formed by the layers is also O.

1層の中に入った光は屈折して、■、■層の境界面qの
91点に至る。91点で一部の光が反射されこれが1層
の表面の21点で出てゆく。これを反射光12 という
The light that enters one layer is refracted and reaches 91 points on the interface q between the layers 1 and 2. Some light is reflected at 91 points and exits at 21 points on the surface of one layer. This is called reflected light 12.

91点でさらに■層に入った光は、■、■層の境界面r
のR1点に至る。ここで、一部の光が反射される。これ
は境界面qで屈折しくQ2点)、表面rの22点から出
てゆく。これを反射光13という。
The light that further enters the ■ layer at the 91st point is the boundary surface r between the ■ and ■ layers.
reaches the R1 point. Here, some light is reflected. This is refracted at the boundary surface q (point Q2) and exits from point 22 on the surface r. This is called reflected light 13.

R1点で屈折した光は、■層とそれより下の層又は基板
との境界面Sの8点で反射でれる。反射光は、R2点、
93点、R3点を経て外部に出る。これを反射光14と
いう。
The light refracted at point R1 is reflected at eight points on the boundary surface S between the (1) layer and the layer or substrate below it. The reflected light is at point R2,
Exit through point 93 and point R3. This is called reflected light 14.

反射光11.42.13.14は平行光である。その間
隔は極めて狭いものである。しかし、入射光10が十分
に細ければ、これらの反射光は弁別する事ができる。
The reflected lights 11, 42, 13, and 14 are parallel lights. The distance between them is extremely narrow. However, if the incident light 10 is sufficiently narrow, these reflected lights can be distinguished.

光検知器4が一次元に並んだ多数の独立な受光素子であ
るとすれば、これら反射光の間隔W1、W2、W3を求
める事ができる。このままでは、細分割した受光素子の
一単位は、薄膜の厚さより小さくなければならない。
If the photodetector 4 is a large number of independent light-receiving elements arranged one-dimensionally, the intervals W1, W2, and W3 between these reflected lights can be determined. As it stands, one unit of the subdivided light receiving element must be smaller than the thickness of the thin film.

これは実際には難しい事であるから、凹(実は凸)レン
ズ系で平行光の間隔を拡大してから、−次元受光素子に
入射させればよい。
Since this is difficult in practice, it is best to use a concave (actually convex) lens system to expand the distance between the parallel beams and then make them incident on the -dimensional light receiving element.

平行反射光の間隔は、その光が反射された膜の膜厚や屈
折率、それと入射角θによって決まる。
The interval between the parallel reflected lights is determined by the thickness and refractive index of the film on which the light is reflected, and the incident angle θ.

屈折率が分っているから、膜厚が、反射光の間隔から分
る。
Since the refractive index is known, the film thickness can be determined from the interval of reflected light.

たとえば、11と12の間隔W1は次のように求められ
る。
For example, the interval W1 between 11 and 12 is determined as follows.

1層での屈折角をΦ1とする。Let the refraction angle in one layer be Φ1.

cose  =  nI CO3Φ1 OPI 2 d cotΦ□ P(IP1s1nθ という式が成立つ。ここで入射角、屈折角は通常の定義
とは異なっており、光線と面のなす角としている。これ
らの式から、 となる。nl、θ、Wlが分るのでdlが求められる、
という事になる。同様に12と13の間隔W2はとなる
。W3は、 である。i番目の層と、(i−1)の層の境界、及び(
i+1 )番目の層とi番目の層の境界で反射される光
の間隔Wiは、一般に、 によって与えられる。
The formula cose = nI CO3Φ1 OPI 2 d cotΦ□ P(IP1s1nθ holds true. Here, the angle of incidence and the angle of refraction are different from the usual definitions, and are defined as the angle between the ray and the surface. From these formulas, Since nl, θ, and Wl are known, dl can be found.
That's what it means. Similarly, the interval W2 between 12 and 13 is as follows. W3 is. The boundary between the i-th layer and the (i-1) layer, and (
The distance Wi of the light reflected at the boundary between the i+1 )th layer and the ith layer is generally given by.

反射光の間隔W1、W2、・・・が、光検知器4によっ
て得られる。各層の屈折率nl、n2、・・・は予め分
がっている。ペテロ接合であるから、油接率が違い、そ
れぞれの層の屈折率が分かっているわけである。
The distances W1, W2, . . . between the reflected lights are obtained by the photodetector 4. The refractive index nl, n2, . . . of each layer is known in advance. Since it is a Peter junction, the oil tangibility is different and the refractive index of each layer is known.

Oは予め設定した入射角であり、既知である。これらの
関係から、膜厚d1、d2、・・・が−挙に求められる
O is a preset angle of incidence and is known. From these relationships, the film thicknesses d1, d2, . . . can be determined.

この方法は、境界で1回反射する光のみを、多重反射し
た光から区別しなければならない。これが可能であるた
め、反射光を屈折光に比べて小さくした方がよい。
This method must distinguish only the light that is reflected once at the boundary from the light that is reflected multiple times. Since this is possible, it is better to make the reflected light smaller than the refracted light.

反射光の比率を減するには、θを90°に近付けて、垂
直入射に近くした方がよい。しかし、そうすると、光線
の間隔が減少してくるので、測定しにくくなる。
In order to reduce the ratio of reflected light, it is better to bring θ closer to 90° and closer to normal incidence. However, this reduces the distance between the light beams, making measurement difficult.

間隔Wを拡げるには、θを00に近付ける方が良い。し
かし、こうすると、反射光が強くなる。特に表面での反
射が大きくなる。また、多重反射光の強度が、深層から
の1回反射光と同じ程度の大きさになる可能性がある。
In order to widen the interval W, it is better to bring θ closer to 00. However, this will make the reflected light stronger. In particular, reflection on the surface increases. Furthermore, the intensity of the multiple reflected light may be about the same as that of the single reflected light from the deep layer.

こういう事を考慮して、入射角θを適当に決定する。Taking these things into consideration, the incident angle θ is appropriately determined.

(→実施例 分子線エピタキシャル成長法(MBE法)によって、G
aAs基板の上に、0.3ttm厚さ+7) A7Ga
As膜と、1.0μm厚さのGaAs膜とを成長させた
。10μm というのは設計厚さである。
(→Example: By molecular beam epitaxial growth method (MBE method), G
0.3ttm thickness +7) A7Ga on aAs substrate
An As film and a 1.0 μm thick GaAs film were grown. 10 μm is the designed thickness.

そして、GaAs膜の膜厚を、本発明の方法と、CC1
12F2ヲ用いた反応性イオンエツチング・顕微鏡法と
によって測定した。測定点はウェハの直径上に5龍ずつ
取った。その結果を第3図に示す。
Then, the thickness of the GaAs film was changed using the method of the present invention and CC1.
It was measured by reactive ion etching and microscopy using 12F2. Five measurement points were taken on the diameter of the wafer. The results are shown in FIG.

黒丸が本発明による測定結果であり、山角がエツチング
・顕微鏡法によるものである。
The black circles are the measurement results according to the present invention, and the ridges are the results obtained by etching and microscopy.

同じウェハについて、本発明で測定した後、エツチング
・顕微鏡法で、同じ直径について測定した。
The same wafer was measured using the present invention and then the same diameter was measured using etching microscopy.

膜厚は約1μmであるが、中央部分では、1.1μmに
近く、周辺では1.05μm程度になっている。いずれ
の方法によっても、膜厚測定の結果は、はぼ同一である
。両方法の結果が一致するので、本発明の方法が有効で
あることが分る。
The film thickness is about 1 μm, but it is close to 1.1 μm at the center and about 1.05 μm at the periphery. No matter which method is used, the results of film thickness measurement are almost the same. Since the results of both methods match, it can be seen that the method of the present invention is effective.

(り)効 果 エピタキシャル成長法によって作られた、ペテロ接合を
有する半導体薄膜結晶の膜厚測定法として、本発明は次
のような長所がある。
(i) Effects The present invention has the following advantages as a method for measuring the thickness of a semiconductor thin film crystal having a petrojunction made by epitaxial growth.

(1)非破壊検査である。半導体ウェハをエツチングし
たり襞間したりする必要がない。製品となるべきウェハ
の検査に使う事ができる。
(1) It is a non-destructive inspection. There is no need to etch or crease the semiconductor wafer. It can be used to inspect wafers that will become products.

(2)表面層だけでなく、2層目、3層目、・・・など
の厚みを測定する事ができる。
(2) It is possible to measure not only the thickness of the surface layer but also the second layer, third layer, etc.

(3)選択エツチングなどと違い、結晶薄膜で光を通す
ものでありさえすればよい。対象となる結晶について制
限が少ない。
(3) Unlike selective etching, it only needs to be a thin crystal film that allows light to pass through. There are few restrictions on target crystals.

(4)簡便に測定できる。光学的手段により測定し、可
動部を操作するという事がないので簡便である。
(4) Easy to measure. It is convenient because it is measured by optical means and there is no need to operate moving parts.

(5)高電子移動度トランジスタ(HEMT) 用ウェ
ハナト、薄膜多層エピタキシャルウェハの構造の評価な
どに応用すると効果的である。
(5) It is effective when applied to evaluation of structures of high electron mobility transistor (HEMT) wafers, thin film multilayer epitaxial wafers, etc.

【図面の簡単な説明】[Brief explanation of the drawing]

第1図は本発明のヘテロ薄膜多層構造の膜厚測定方法の
概略構成図。 第2図は薄膜の境界面に於て光が反射される様子を示す
光線図。 第3図はGaAs基板の上ニAlGaAsとGaAs 
(7)薄膜全成長させたものについて、本発明の方法と
従来のエツチング顕微鏡法でGaAs薄膜の膜厚測定し
た結果を示すグラフ。 1・・・・・・入射光 2・・・・・・試料ウェハ 3・・・・・・反射光 4・・・・・・光検知器 5・・・・・・xyzステージ 6・・・・・・レーザ発振器 7・・・・・・コンピュータ 8・・・・・・デイスプレィ 9・・・・・・プリンタ
FIG. 1 is a schematic diagram of the method for measuring the thickness of a hetero thin film multilayer structure according to the present invention. FIG. 2 is a ray diagram showing how light is reflected at the boundary surface of a thin film. Figure 3 shows AlGaAs and GaAs on a GaAs substrate.
(7) A graph showing the results of measuring the thickness of a GaAs thin film using the method of the present invention and the conventional etching microscopy method for a fully grown thin film. 1...Incoming light 2...Sample wafer 3...Reflected light 4...Photodetector 5...xyz stage 6... ... Laser oscillator 7 ... Computer 8 ... Display 9 ... Printer

Claims (1)

【特許請求の範囲】[Claims] 半導体基板の上にひとつ以上の単結晶薄膜をエピタキシ
ャル成長させひとつ以上のヘテロ接合を有する試料ウェ
ハ2に、斜め方向に細い光線を当て、試料の最上層と各
薄膜のヘテロ接合面から反射されてくる複数の反射光を
光検知器4で検出して反射光の間隔を求め、薄膜の屈折
率と間隔の値とから各薄膜の膜厚を求める事を特徴とす
るヘテロ薄膜多層構造の半導体多層薄膜の膜厚測定法。
A thin beam of light is applied in an oblique direction to a sample wafer 2, which has one or more single crystal thin films epitaxially grown on a semiconductor substrate and has one or more heterojunctions, and is reflected from the top layer of the sample and the heterojunction surface of each thin film. A semiconductor multilayer thin film having a hetero thin film multilayer structure, characterized in that a plurality of reflected lights are detected by a photodetector 4 to determine the interval between the reflected lights, and the film thickness of each thin film is determined from the refractive index of the thin film and the value of the interval. Film thickness measurement method.
JP32643288A 1988-12-23 1988-12-23 Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure Pending JPH02170008A (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP32643288A JPH02170008A (en) 1988-12-23 1988-12-23 Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP32643288A JPH02170008A (en) 1988-12-23 1988-12-23 Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure

Publications (1)

Publication Number Publication Date
JPH02170008A true JPH02170008A (en) 1990-06-29

Family

ID=18187738

Family Applications (1)

Application Number Title Priority Date Filing Date
JP32643288A Pending JPH02170008A (en) 1988-12-23 1988-12-23 Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure

Country Status (1)

Country Link
JP (1) JPH02170008A (en)

Cited By (10)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289265A (en) * 1991-04-11 1994-02-22 Sumitomo Electric Industries, Ltd. Method and apparatus for measuring a coating state
JP2002022417A (en) * 2000-07-13 2002-01-23 Disco Abrasive Syst Ltd Thickness measuring device
KR20020086760A (en) * 2001-05-10 2002-11-20 동부전자 주식회사 Reference wafer for calibration and method for calibrating a apparatus for thickness measurement using it
US6912056B2 (en) * 2003-08-18 2005-06-28 Samsung Electronics Co., Ltd. Apparatus and method for measuring each thickness of a multilayer stacked on a substrate
JP2007093357A (en) * 2005-09-28 2007-04-12 Hitachi High-Technologies Corp Method and apparatus for measuring interval
JP2009107069A (en) * 2007-10-30 2009-05-21 Disco Abrasive Syst Ltd Grinder
JP2009170694A (en) * 2008-01-17 2009-07-30 Disco Abrasive Syst Ltd Thickness measuring device and grinding device provided with the same
JP2014500952A (en) * 2010-11-12 2014-01-16 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Measuring device and method for measuring layer thickness and defects in a wafer stack
JP2014048216A (en) * 2012-09-03 2014-03-17 Pulstec Industrial Co Ltd Thickness measurement instrument and thickness measurement method of light-transmissive object
CN108168484A (en) * 2016-12-07 2018-06-15 上海新昇半导体科技有限公司 Measuring method

Cited By (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US5289265A (en) * 1991-04-11 1994-02-22 Sumitomo Electric Industries, Ltd. Method and apparatus for measuring a coating state
JP2002022417A (en) * 2000-07-13 2002-01-23 Disco Abrasive Syst Ltd Thickness measuring device
KR20020086760A (en) * 2001-05-10 2002-11-20 동부전자 주식회사 Reference wafer for calibration and method for calibrating a apparatus for thickness measurement using it
US6912056B2 (en) * 2003-08-18 2005-06-28 Samsung Electronics Co., Ltd. Apparatus and method for measuring each thickness of a multilayer stacked on a substrate
JP2007093357A (en) * 2005-09-28 2007-04-12 Hitachi High-Technologies Corp Method and apparatus for measuring interval
JP2009107069A (en) * 2007-10-30 2009-05-21 Disco Abrasive Syst Ltd Grinder
JP2009170694A (en) * 2008-01-17 2009-07-30 Disco Abrasive Syst Ltd Thickness measuring device and grinding device provided with the same
JP2014500952A (en) * 2010-11-12 2014-01-16 エーファウ・グループ・エー・タルナー・ゲーエムベーハー Measuring device and method for measuring layer thickness and defects in a wafer stack
US10008424B2 (en) 2010-11-12 2018-06-26 Ev Group E. Thallner Gmbh Measuring device and method for measuring layer thicknesses and defects in a wafer stack
US10109538B2 (en) 2010-11-12 2018-10-23 EV Group E.Thallner GmbH Measuring device and method for measuring layer thicknesses and defects in a wafer stack
JP2014048216A (en) * 2012-09-03 2014-03-17 Pulstec Industrial Co Ltd Thickness measurement instrument and thickness measurement method of light-transmissive object
CN108168484A (en) * 2016-12-07 2018-06-15 上海新昇半导体科技有限公司 Measuring method

Similar Documents

Publication Publication Date Title
US6373978B1 (en) Three-dimensional shape measuring apparatus
US6424418B2 (en) Surface plasmon resonance sensor apparatus using surface emitting laser
US5227861A (en) Apparatus for and method of evaluating multilayer thin film
US20050201660A1 (en) Apparatus for single nanoparticle detection
JPH02170008A (en) Measuring method for film thickness of semiconductor multilayered thin film of heterojunction thin film multilayered structure
US4711997A (en) Optical interconnection of devices on chips
US10928329B2 (en) Method and system for optically detecting and characterizing defects in semiconductors
EP0632494A2 (en) Method for evaluating epitaxial layers and test pattern for process evaluation
US9587930B2 (en) Method and assembly for determining the thickness of a layer in a sample stack
US5472505A (en) Apparatus for monitoring films during MOCVD
Goldberg et al. Near-field optical studies of semiconductor heterostructures and laser diodes
US9500582B2 (en) Method for detecting buried layers
Peiris et al. Wavelength dependence of the indices of refraction of molecular beam epitaxy-grown ZnMgSe and ZnCdSe thin films measured by two complementary techniques
US5508805A (en) Interferometer, optical scanning type tunneling microscope and optical probe
Tarof et al. Epitaxial layer thickness measurements by reflection spectroscopy
TWI641799B (en) Method and assembly for determining the thickness of layers in a sample stack
US6525820B1 (en) Rayleigh scattering optical flux monitor
US20240068956A1 (en) System for optical inspection of a substrate using same or different wavelengths
Paraire et al. Direct measurement of substrate refractive indices and determination of layer indices in slab-guiding structures
EP3347696A1 (en) Light guide device, measurement system, and method for producing a light guide device
JPH0625740B2 (en) Method for detecting defects in thin film layer of crystal substrate
US4128338A (en) Modified optical transmission technique for characterizing epitaxial layers
KR0138863B1 (en) Apparatus for monitoring the film by mocvd
JPH08193813A (en) Monitoring device for film by chemical deposition of metallic organic matter
Mittal Mid-infrared integrated photonic devices for biosensing