JP5134626B2 - 容器および密閉部材のガス透過度測定方法 - Google Patents

容器および密閉部材のガス透過度測定方法 Download PDF

Info

Publication number
JP5134626B2
JP5134626B2 JP2009527910A JP2009527910A JP5134626B2 JP 5134626 B2 JP5134626 B2 JP 5134626B2 JP 2009527910 A JP2009527910 A JP 2009527910A JP 2009527910 A JP2009527910 A JP 2009527910A JP 5134626 B2 JP5134626 B2 JP 5134626B2
Authority
JP
Japan
Prior art keywords
gas
sample gas
container
concentration
wall thickness
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2009527910A
Other languages
English (en)
Other versions
JP2010503848A (ja
Inventor
ピオンビーニ,アレッサンドロ
ルチェッシ,マウロ
Original Assignee
エクストラソリューション エス.アール.エル.
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by エクストラソリューション エス.アール.エル. filed Critical エクストラソリューション エス.アール.エル.
Publication of JP2010503848A publication Critical patent/JP2010503848A/ja
Application granted granted Critical
Publication of JP5134626B2 publication Critical patent/JP5134626B2/ja
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • GPHYSICS
    • G01MEASURING; TESTING
    • G01NINVESTIGATING OR ANALYSING MATERIALS BY DETERMINING THEIR CHEMICAL OR PHYSICAL PROPERTIES
    • G01N15/00Investigating characteristics of particles; Investigating permeability, pore-volume, or surface-area of porous materials
    • G01N15/08Investigating permeability, pore-volume, or surface area of porous materials
    • G01N15/082Investigating permeability by forcing a fluid through a sample
    • G01N15/0826Investigating permeability by forcing a fluid through a sample and measuring fluid flow rate, i.e. permeation rate or pressure change

Description

本発明は様々な形状の瓶類やバッグ類あるいは膜体類およびキャップ等の密閉要素のガス透過度を測定する方法に関する。
食品および薬剤を包装する包装産業では良く知られているように、内容物の品質保持のために包装容器に対する酸素並びに他のガスの透過性を抑制することが必要である。
容器の酸素透過度測定システムは米国特許願2005076705に記載されている。この出願では2つの異なる場合での理想気体の法則に従って、容器内浸透ガスの量変動を特殊センサで測定する方法が解説されている。解説されている計算式は容器内の経時的ガス量変動を求めるために経時的に積分される。2つのガス量測定を実行する前に、長時間に亘り過渡相の終了を待つ必要が生じ、処理経費が高くなる。
別な通常方法では分析対象の容器は試験チャンバに入れられる。試験チャンバでは容器は、キャリアガス(通常は窒素)を容器内外に通過させる吸気ダクトと吐出ダクトの部分以外は適当に密閉され、絶縁されている。試験チャンバ内では、容器の外に、純粋サンプルガス(通常は酸素または二酸化炭素)あるいはキャリアガスとサンプルガスとの混合ガスが送られる。同時にサンプルガスは容器壁を通過して容器内に浸透することができる。容器内を循環するキャリアガスは容器内の圧力を試験チャンバ内の圧力(通常は大気圧)と同一に維持し、圧力差の発生を防止して容器の崩壊を回避させ、同時にその濃度を検出するために浸透ガスを検出装置に送る。
容器から流出するキャリアガスはセンサ装置(通常は電気化学セルあるいは赤外線検出器)に到達する。センサ装置は測定を開始するとキャリアガス流内の浸透ガスの変動比を検出する。試験チャンバ内のサンプルガス流と容器内のキャリアガス流の両方を一定に保つことでセンサ装置は安定状態にまで収束するチャートに従って作動する。すなわち、浸透ガスの測定濃度は経時的に一定であるという状態に保たれる。収束すると測定値は容器内に浸透するガス流を表す。すなわち容器の透過度に比例する値を表す。
同一方法がコルク類並びにキャップ類等である容器用の低透過性密閉要素の透過度測定に利用できる。容器は試験チャンバ内に前述同様に配置され、密閉要素で密閉される。容器壁にはキャリアガス流のための吸気通路と吐出通路(通常はエポキシ樹脂で密閉)が人工的に設けられる。
このシステムの問題点は収束状態に至るまでの待機時間の長さである。場合によっては非常に長く、例えばコルクの場合には何週間もかかり、結果として処理費用が嵩む。
従って、本発明の目的は従来の方法よりも大幅に時間が短縮された容器または密閉要素のガス透過度測定方法を提供する。
さらに、さほど高感度で高価である必要がないセンサを利用した容器のガス透過度測定方法も提供する。
当該課題の解決は、外面、壁厚および内面を有した容器またが密閉要素のガス透過度測定のための本発明にかかる方法によって達成される。この壁厚内においてサンプルガスの開始濃度(初期濃度)が設定される。
この測定方法は、
容器または密閉要素を通るサンプルガスの透過度を測定する方法であって、
前記容器または密閉要素は、外面と、壁厚と、内面とを有しており、当該壁厚内は前記サンプルガスの開始濃度(初期濃度)に設定されており、
当該方法が、
予め定められた一定の濃度で、他のガスに混合されたサンプルガスの流れに前記外面を接触させるステップと、
予め定められた一定の濃度のキャリアガスの流れに前記内面を接触させるステップと、
実際に浸透し且つキャリアガスにより運ばれるところのサンプルガスを測定する前記キャリアガスを前記内面に接触させるステップと、
測定される浸透ガス値の安定状態を待って、当該安定状態における測定値を、前記サンプルガスに対する前記容器または密閉要素の透過度とみなすステップと、を含んでなる測定方法において、
前記外面に接触する前記サンプルガスの濃度と、前記壁厚内の前記サンプルガスの開始濃度(初期濃度)との差が、前記壁厚内の前記サンプルガスの開始濃度(初期濃度)と、前記内面に接触する前記サンプルガスの予定濃度との差にほぼ等しくなるように、前記外面に接触する前記サンプルガスの濃度が選択され、
前記壁厚内の前記サンプルガスの開始濃度(初期濃度)は、溶解度係数がほぼ1であると想定して計算されることを特徴とする。
換言すると、材料内のサンプルガスの溶解度係数を約1と想定することで、容器の壁厚内でサンプルガスの開始濃度(初期濃度)がXであり、容器内でサンプルガスの開始濃度(初期濃度)がXであれば、本発明によれば容器から排出されたサンプルガスの濃度は2(X−X)となる。よって収束後の外面と内面の間の壁厚内のサンプルガス濃度の特徴は実質的に直線状に減少し、平均値は壁厚の中央線で降下し、開始値Xとなる。従ってサンプルガスの移動は、外面線と中央線の間および中央線と内面線の間の半壁厚に配分され、移動時間と収束時間を大幅に短縮する。
有利なことに、サンプルガスが全く存在しない場合に内面が純粋キャリアガスと接触すると、外面が接触するサンプルガスの測定された固定濃度は実質的に壁厚内の開始サンプルガス濃度の2倍として選択される。
特に、容器の酸素透過度を測定するとき、絶縁試験チャンバ内に存在する酸素比は40%から44%、特に42%にセットされる。この場合には開始条件で分析される要素の全断面のガス比は20%から22%、特に実質的に21%(空気中の酸素濃度)にセットされる。容器材料内の酸素溶解度係数を約1とすると、都合よく考えられるならこの状態になる。実際には、材料内の酸素濃度は、通常は常に1よりも大幅に小さい溶解度係数に反応するこの値に比例する。約1とされた溶解度係数の選択は計算の容易化のみを目的に実行される。
本発明によれば、開始状態でのサンプルガスの濃度は外面と内面の間の中央面での固定値に維持される。特に酸素がサンプルガスである場合には、中央面での固定値は20%から22%、特に実質的に21%に設定される。
従来方法によるガス透過度測定試験を実施する装置の概略図。 その外面が空気と接触する壁厚部を有した分析対象の容器の壁断面部を浸透する浸透過渡相の図。 本発明の方法に従ったガス透過度測定試験を実施する装置の概略図。 本発明の方法に従ってガス浸透段階中に分析される容器の概略断面の図。 本発明と従来技術による容器の断面を通過して経時的に浸透するガス流の詳細比較チャート図。
以下の説明および図面では溶解度が約1である材料内のサンプルガスに関して解説されている。実際には材料内のサンプルガスの溶解度は常に1よりも大幅に小さい。しかしながら実際の溶解度を知る必要はない。なぜなら本発明の方法の利点は不変だからである。
図1で示すシステムは瓶類やバッグ類等の容器や膜体やキャップ類等である密封要素の酸素透過度を測定する方法を実行する。従来技術では例えば、紙、プラスチック、コルク材料、等々である透過度測定対象の材料で製造されている容器2が絶縁性試験チャンバ1内に設置される。
試験チャンバ1は空気ダクト10に接続され、ガス流量レギュレータ3に接続される。レギュレータ3は透過度試験中にチャンバ1内にガス(本例の場合には空気)の定流を供給する。一方、ダクト11はキャリアガスとしてダクト11内を通流する酸素とは異なるガス(特に窒素(N))または水素あるいはヘリウムまたはそれらの混合ガスを供給する。
ガス流量レギュレータ5を通流するキャリアガスはダクト11とチャンバ1との間に配置されたダクト8を通過して容器2に到達する。ダクト11とダクト8との間にはバルブ12が配置され、チャンバ1とバイパス13との間のガス流の切り替えを行うように設計されており、キャリアガスのためにバルブ12’を通過して吐出ダクト14にまで延びている。バイパス13は、検査対象材料の浸透性ではなく、例えば不充分な純度または装置の漏出現象を知るためにキャリアガス内の既存酸素の痕跡を判断するのに必要な“ゼロ”調整機能を有する。この調整はキャリアガスの供給のみで実行されるが、そうでなければキャリアガスはチャンバ1と接触する。
キャリアガス(特にN)は、容器2に浸透する(小矢印)測定対象ガス(特にO)と混合する。その後に吐出ダクト14を通って測定センサ9(特に電気化学セルまたは赤外線検出器)に到達する。
壁厚(t)である容器2の壁の浸透過渡相は図2で示されている。ここには外面23が空気(試験チャンバ内に存在)(21%酸素を含む混合物)と接触し、内面がキャリアガス(無酸素)のみと接触する分析対象容器の壁の断面が図示されている。
試験チャンバ内に設置される前に容器は空気に“浸され”ており、溶解度係数を約1として計算した場合には、壁厚(t)は全体的に破線25で示される21%の酸素の安定状態である。さもなければ酸素濃度は容器材料内の酸素溶解度係数によって変動する。
試験チャンバに入れられて試験が開始されると外側ガス流あるいは容器内への混合物の浸透および内部キャリアガス流の影響で壁厚(t)部分は外面23に接触する21%酸素の存在と内面24に接触する無酸素により決定される酸素濃度の相違によって影響を受ける。時間が経つにつれ壁厚(t)は次第に均衡状態となる。外面23は既に外界状態と均衡状態であるため、酸素が内面24方向に移動するとき壁厚(t)の各断面部分は内面24に適用されている均衡状態となるべく酸素を放出するであろう。この過渡相現象は図2の湾曲部分26’と26”に従って矢印21の方向に展開する。すなわち開始時にキャリアガスは最も内側の部分に存在する酸素を押し出し、キャリアガスはその後に徐々に最も外側の部分の酸素も押し出す。湾曲部分26’と26”は、固定傾斜度を有した直線27で示されるガス定流の安定状態を達成するまでの変動酸素流の過渡相を示す。この時点でのみ図1で示すセンサ9は容器を透過する酸素流を安定状態で測定できる。
上述したように安定状態の達成に必要な待機時間は非常に長くなる可能性がある。さらに、小容器の場合には、酸素透過量が少ないので、高感度で高価なセンサを利用し、測定は容易ではない。
本発明の測定方法に従うとチャンバ1内では容器2からの窒素および酸素(この場合、図4で示すように酸素比率は42%)の循環が発生する。同時に容器2に侵入するダクト8によって窒素が導入される。
通常では試験終了時に前述の理由によってゼロ設定が実行される。これは開放タップおよび閉鎖タップとして作用する操作バルブ12と12’によって実行される。このようにすれば、キャリアガスを、その中に存在する可能な限りの酸素の不純物と共に、センサ9の方向に流すことが可能である。実際の測定には前述のバイパスが適した方法でセットされ、ダクト13を絶縁し、容器2内でガス循環を開始させる。
図4はそのような操作を解説しており、窒素と酸素の混合ガスと接触する外面15と、窒素と接触する内面16とを有した容器2の断面状態を図示する。本発明による測定の開始時に、図1(矢印B)で示すように、ダクト14によってセンサ9はキャリアガス(特に窒素)で運搬される多量の酸素流を検出するであろう。しかしこの酸素流は早々に減少する。この多量ガス流はガス抜き現象による。すなわち容器2に元々存在する酸素の除去による。
図5は本発明に従って早々に減少するガス流部分22と従来現象とを同時に示す。ガス流は減少するが、過渡相は経時的に不安定なガス流と共に存在する。実際に容器の本当の酸素透過度を測定するには、ガス流が一定になるまで、待たなければならない。
図5では、ガス流が一定になるのに必要な、本発明と従来技術における時間T1とT2とがそれぞれ図示されている。図4にて均衡湾曲部分19、19’および19”で図示するように、容器の様々な部位がどのように均衡状態を達成するかが経時的に図示されている。特に開始状態においては容器の全断面は水平破線18で示すように21%のガス濃度を含むであろう。よって容器外面で断面が42%の比の酸素と接触し、内面表面は無酸素状態であると直ちに、固定傾斜度を有する直線19で示され、図4のT1後に到達される最終均衡状態に至るまで断面は湾曲部分19’と19”に従う均衡状態を経時的に達成するであろう。
言い換えると21%破線の外側にある壁厚対応部分は絶縁試験チャンバ1の外側環境により適用される42%均衡状態に到達するために酸素を受領するであろう。壁厚の内側対応部分16は容器に適用される0%の限界状態に至るために酸素を放出するであろう。そして、対称軸17は、サンプルガスの比率が常に21%に保たれる容器2の壁厚内において定義される。
従って、これら2つの壁厚対応部分(t/2)はそれぞれ独立的に自身の均衡に向かう。実際に、絶縁試験チャンバ1に適用される42%の酸素比率は試験開始前に全壁厚内に存在する実際の酸素比率の2倍である。これは、絶縁試験チャンバ1内で一定である酸素比率と試験開始時の壁厚(t)内の酸素比率との間の計算上の相違が、試験開始時の断面に存在する酸素比率と容器内に存在する酸素比率(0%)との間の計算上の相違と等しいことを意味する。従って、図4で示すような対称軸17を中心とする対称形態が創出され、断面の2部分は独立して同時的に均衡する。従来から一般的に知られているように湾曲部19で示されるガス流の安定状態の達成に所要する時間は、断面壁厚の2乗に依存するため、半分の断面壁厚で均衡が達成されるので、収束時間は1/4に短縮される。
試験開始前に全断面におけるガス比の2倍に絶縁試験チャンバ1内のサンプルガスの割合をセットすることで、分析対象材料の対称軸を考えるだけで酸素や窒素とは異なるガスによって非限定的に同一試験が実施できる。当然ながら容器の断面に最初から存在する酸素とは異なるサンプルガスの量は知られていなければならず、例えば容器をそのガスの環境内に所定時間入れて容器を準備しなければならない。
図3は、本発明の実施に利用され、透過度測定対象の容器2への吸気口並びにチャンバ1への吸気口としての機能を有し、容器2の周囲に提供されたキャリアガス(特に窒素)のための吸気ダクトを含む本発明の装置の1実施例を図示する。容器2に至るこのダクトは管体11と8を含む。容器2から外出するダクトは管体6と7を含む。このようなダクトは供給ガスとしてキャリアガス流200をそれら管体に配分するために共通ガス源を有している。吸気ダクト10は酸素のごときサンプルガス流のために提供されている。サンプルガスはチャンバ1のキャリアガスと混合されるようにダクト7内に送られる。ガス流量レギュレータがそれぞれの各吸気ダクト5、4、3のために提供される。
特定の実施例を解説した前述の内容は本発明を概念的に完全に説明しており、現在の知識を活用することで、本発明の範囲内でそれら細部に種々な改良を施し、及び/又は様々な利用形態を採用することができる。それら改良や別利用形態は本発明の特定実施例の均等物である。それら異なる機能を実現する手段並びに材料は本発明の技術分野から逸脱せずに異なる特徴と有することができる。本明細書で使用されている技術用語は本発明の解説のためのものであり、本発明の限定は意図されていない。

Claims (6)

  1. 容器または密閉要素を通るサンプルガスの透過度を測定する方法であって、
    前記容器または密閉要素は、外面と、壁厚と、内面とを有しており、当該壁厚内は前記サンプルガスの開始濃度に設定されており、
    当該方法が、
    予め定められた一定の濃度で、他のガスに混合されたサンプルガスの流れに前記外面を接触させるステップと、
    予め定められた一定の濃度のキャリアガスの流れに前記内面を接触させるステップと、
    実際に浸透し且つキャリアガスにより運ばれるところのサンプルガスを測定する前記キャリアガスを前記内面に接触させるステップと、
    測定される浸透ガス値の安定状態を待って、当該安定状態における測定値を、前記サンプルガスに対する前記容器または密閉要素の透過度とみなすステップと、を含んでなる測定方法において、
    前記外面に接触する前記サンプルガスの濃度と、前記壁厚内の前記サンプルガスの開始濃度との差が、前記壁厚内の前記サンプルガスの開始濃度と、前記内面に接触する前記サンプルガスの予定濃度との差にほぼ等しくなるように、前記外面に接触する前記サンプルガスの濃度が選択され、
    前記壁厚内の前記サンプルガスの開始濃度は、溶解度係数がほぼ1であると想定して計算されることを特徴とする方法。
  2. 前記内面は、ほぼ純粋で前記サンプルガスを含有しない、前記サンプルガスとは異なるキャリアガスに接触し、前記外面が接触する前記サンプルガスの濃度は、前記壁厚内におけるサンプルガスの開始濃度のほぼ2倍となるように選択されることを特徴とする請求項1に記載の方法。
  3. 酸素に対する前記容器の透過度を測定する時に、絶縁試験チャンバ内に存在する酸素の比率を40%から44%、特に42%に設定することを特徴とする請求項1に記載の方法。
  4. 開始状態で分析されるべき前記密閉要素の断面全体のガス比を20%から22%、特にほぼ21%に設定することを特徴とする請求項3に記載の方法。
  5. 開始状態のサンプルガスの濃度は、前記外面と前記内面との間の中央平面において、一定値に保たれることを特徴とする請求項1に記載の方法。
  6. サンプルガスが酸素である場合に、前記中央平面での前記一定値を20%から22%、特には、ほぼ21%に設定することを特徴とする請求項1に記載の方法。
JP2009527910A 2006-09-12 2007-09-10 容器および密閉部材のガス透過度測定方法 Expired - Fee Related JP5134626B2 (ja)

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
IT000106A ITPI20060106A1 (it) 2006-09-12 2006-09-12 Metodo per la misurazione di permeabilita' ai gas di contenitori ed elementi di tenuta in genere.
ITPI2006A000106 2006-09-12
PCT/IB2007/002595 WO2008032170A2 (en) 2006-09-12 2007-09-10 Method for measuring the gas permeability of containers and sealing members in general

Publications (2)

Publication Number Publication Date
JP2010503848A JP2010503848A (ja) 2010-02-04
JP5134626B2 true JP5134626B2 (ja) 2013-01-30

Family

ID=38984090

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2009527910A Expired - Fee Related JP5134626B2 (ja) 2006-09-12 2007-09-10 容器および密閉部材のガス透過度測定方法

Country Status (7)

Country Link
US (1) US8015857B2 (ja)
EP (1) EP2069756B1 (ja)
JP (1) JP5134626B2 (ja)
AT (1) ATE518129T1 (ja)
IT (1) ITPI20060106A1 (ja)
RU (1) RU2451284C2 (ja)
WO (1) WO2008032170A2 (ja)

Families Citing this family (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
ITPI20060108A1 (it) * 2006-09-19 2008-03-20 Extrasolution S R L Metodo e dispositivo per misurare la permeabilita' di gas attraverso film sottile o pareti di contenitori
US8647876B2 (en) * 2010-03-31 2014-02-11 Fujifilm Corporation Oxygen permeability measuring apparatus and method, and defect inspection apparatus and method
CN110514366B (zh) * 2019-08-22 2021-03-05 东北大学 一种小样本条件下管道微弱泄漏检测方法

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
US3590634A (en) * 1969-05-05 1971-07-06 Stanford Research Inst Instrument for determining permeation rates through a membrane
US3618361A (en) * 1970-03-02 1971-11-09 Dohrmann Instr Co Method and apparatus for determining gas permeability of film
SU1748494A1 (ru) * 1984-03-23 2005-12-20 В.В. Обухов Способ испытания на газопроницаемость тепловой изоляции из жестких пенополиуретанов и устройство для его осуществления
JPH08210964A (ja) * 1994-12-09 1996-08-20 Ube Ind Ltd 芳香族ポリイミドフィルム中の非凝縮性気体の拡散係数の推算方法
US5513515A (en) * 1995-05-15 1996-05-07 Modern Controls, Inc. Method for measuring permeability of a material
US6136607A (en) * 1995-11-02 2000-10-24 Bayer Corporation Multi-analyte reference solutions with stable pO2 in zero headspace containers
US6598463B2 (en) * 2001-05-02 2003-07-29 Du Pont Method for determining gas accumulation rates
DE10124225B4 (de) * 2001-05-18 2006-03-02 Tetra Laval Holdings & Finance S.A. Verfahren und Vorrichtung zum Bestimmen der Permeation einer Barriereschicht
CN1615431A (zh) 2002-01-18 2005-05-11 迪夫特克公司 测定气态物质经过薄膜的渗透的方法和装置
JP3776893B2 (ja) * 2003-03-31 2006-05-17 三菱重工業株式会社 バリヤ膜被覆プラスチック部材のバリヤ性評価方法
JP4596928B2 (ja) * 2004-01-21 2010-12-15 大陽日酸株式会社 フィルム材料のガス透過度測定装置及びガス透過度測定方法
JP2006308394A (ja) * 2005-04-27 2006-11-09 Mitsubishi Heavy Industries Food & Packaging Machinery Co Ltd 気体透過度計測方法,気体透過度測定用パージ装置,及び気体透過度計測システム
GB0903110D0 (en) * 2009-02-24 2009-04-08 Halliburton Energy Serv Inc Methods and apparatus for determining the permeability and diffusivity of a porous solid

Also Published As

Publication number Publication date
WO2008032170A3 (en) 2008-05-22
WO2008032170A2 (en) 2008-03-20
RU2009113112A (ru) 2010-10-20
US8015857B2 (en) 2011-09-13
RU2451284C2 (ru) 2012-05-20
ATE518129T1 (de) 2011-08-15
ITPI20060106A1 (it) 2008-03-13
EP2069756B1 (en) 2011-07-27
EP2069756A2 (en) 2009-06-17
US20090282900A1 (en) 2009-11-19
JP2010503848A (ja) 2010-02-04

Similar Documents

Publication Publication Date Title
US20090320564A1 (en) Method and Device for Measuring the Gas Permeability Through Films and Walls of Containers
JP6878425B2 (ja) 酸素を用いたリーク検知
JP2010190751A (ja) フィルム材料のガス透過度測定装置及びガス透過度測定方法
JP6281915B2 (ja) ガス透過度測定装置
WO2017159481A1 (ja) 被検査容器の漏洩検査方法、及び漏洩検査装置
JP5134626B2 (ja) 容器および密閉部材のガス透過度測定方法
TW201636611A (zh) 在開放容器飲料中量測碳酸化位準的方法
EP3588056B1 (en) Device for evaluating gas barrier properties and method for evaluating gas barrier properties
US8383046B1 (en) Analyzer apparatus for measuring dissolved volatile substances and method
CN114993917A (zh) 一种连续测试变吸力下非饱和土体气体渗透系数的装置和方法
US3533272A (en) Preparation of gas mixtures
CN219758022U (zh) 一种固体检测材料的氢气渗透性测试装置
JP5734109B2 (ja) 測定装置および測定方法
JP2003322583A (ja) リーク検査方法及び被検査物、並びに、ガス透過特性測定方法及び被測定物
JP2006308394A (ja) 気体透過度計測方法,気体透過度測定用パージ装置,及び気体透過度計測システム
CN110975536A (zh) 一种多通道汽化检测平台及其应用
CN213600659U (zh) 一种气体测定仪器校准装置及其气体缓冲罐
JPH0251043A (ja) 隔体の気体透過試験方法
JP2016223924A (ja) ガス透過測定方法とガス透過測定装置
JP5733265B2 (ja) ガス充填装置、ガスタンク検査装置及びガスタンク検査方法
JPH0384440A (ja) 微量酸素測定方法及びその装置
CN112147282A (zh) 一种浓度传感器标定装置及标定方法
JP2017509877A (ja) 統合ブロックマニホールドを利用した頑丈な対象分析物の透過試験器
US20220260540A1 (en) Measurement method and measurement device using gas sensor
JPH08254523A (ja) 試料の酸素透過性を測定するための測定装置および方法

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20100830

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20110822

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121015

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121109

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees