JP5130725B2 - Transparent conductive laminate - Google Patents

Transparent conductive laminate Download PDF

Info

Publication number
JP5130725B2
JP5130725B2 JP2007016069A JP2007016069A JP5130725B2 JP 5130725 B2 JP5130725 B2 JP 5130725B2 JP 2007016069 A JP2007016069 A JP 2007016069A JP 2007016069 A JP2007016069 A JP 2007016069A JP 5130725 B2 JP5130725 B2 JP 5130725B2
Authority
JP
Japan
Prior art keywords
transparent conductive
refractive index
conductive laminate
film
substrate
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2007016069A
Other languages
Japanese (ja)
Other versions
JP2008181838A (en
Inventor
裕 小林
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Toppan Inc
Original Assignee
Toppan Inc
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Toppan Inc filed Critical Toppan Inc
Priority to JP2007016069A priority Critical patent/JP5130725B2/en
Publication of JP2008181838A publication Critical patent/JP2008181838A/en
Application granted granted Critical
Publication of JP5130725B2 publication Critical patent/JP5130725B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • Non-Insulated Conductors (AREA)
  • Optical Filters (AREA)
  • Laminated Bodies (AREA)
  • Physical Vapour Deposition (AREA)

Description

本発明は透明導電性積層体に関し、詳しくは、屈折率の異なる薄膜を積層することにより、透過色を補正する機能を有する透明導電性積層体に関する。   The present invention relates to a transparent conductive laminate, and more particularly to a transparent conductive laminate having a function of correcting a transmitted color by laminating thin films having different refractive indexes.

最表面に透明導電膜が形成された3層以上の薄膜を積層した反射防止積層体の例は特許文献1に挙げられるような各層の屈折率が限定されたもの、特許文献2のようにタッチパネル用途で透明導電膜を25nm以下に限定した反射防止積層体が知られている。さらには、特許文献3のように各層の材料および膜厚が限定された積層体も知られている。   An example of an antireflection laminate in which three or more thin films with a transparent conductive film formed on the outermost surface are laminated is one in which the refractive index of each layer is limited as described in Patent Document 1, and a touch panel as in Patent Document 2 There is known an antireflection laminate in which the transparent conductive film is limited to 25 nm or less for use. Furthermore, a laminate in which the material and film thickness of each layer is limited as in Patent Document 3 is also known.

以下に上記先行技術文献を示す。
WO00/63924 特開平11−53114号公報 特許第2509215号公報
The above prior art documents are shown below.
WO00 / 63924 JP-A-11-53114 Japanese Patent No. 2509215

透明電極として最も一般的に用いられている酸化インジウム錫(ITO)は、一般的なガラスやプラスチック基材に比べ、屈折率の高い、高屈折率材料に分類されることから、単純に基板上にITOを形成すると、透過率が低下(反射率が増大)してしまう。そこで、基板とITO膜の間に複数の高屈折率材料、低屈折率材料を適当な膜厚に形成することにより、その透過率を増大させる(反射率を低減させる)ことが可能である。   Indium tin oxide (ITO), which is most commonly used as a transparent electrode, is classified as a high-refractive index material with a higher refractive index than general glass and plastic substrates. If ITO is formed on the substrate, the transmittance is lowered (the reflectance is increased). Therefore, by forming a plurality of high-refractive index materials and low-refractive index materials at appropriate thicknesses between the substrate and the ITO film, it is possible to increase the transmittance (reduce the reflectivity).

しかるに、一般に可視光域の透過率を増大させようとした場合、最も視感度の高い、波長550nm付近の透過率を増大させるような、光学膜構成を採用するが、ITOにはその特性上、450nm以下の短波長域に吸収があるため、透過色としては黄色くなってしまう問題があった。   However, in general, when trying to increase the transmittance in the visible light region, an optical film configuration that increases the transmittance near the wavelength of 550 nm, which has the highest visibility, is adopted. Since there is absorption in a short wavelength region of 450 nm or less, there is a problem that the transmitted color becomes yellow.

本発明では、上記の事情に鑑みてなされたものであって、その目的とするところは、透過色に黄色味の無い、ニュートラルな色味を有する透明導電性積層体を供給することにある。   The present invention has been made in view of the above circumstances, and an object of the present invention is to provide a transparent conductive laminate having a neutral color with no yellowish transmission color.

課題を解決するための手段として、
請求項1に記載の発明は、透明な基板の一方の面に基板の屈折率と比較して高屈折率材料、低屈折率材料をこの順番で積層し、最外層に透明導電膜を形成した、透明導電性基板において、その透過光をD65光源2°視野のL*a*b*表色系で表した時のb*が2以下であり、前記高屈折材料の屈折率が2.0以上2.4以下であることを特徴とする、透明導電性積層体である。
As a means to solve the problem,
In the first aspect of the present invention, a high refractive index material and a low refractive index material are laminated in this order on one surface of a transparent substrate in comparison with the refractive index of the substrate, and a transparent conductive film is formed on the outermost layer. in the transparent conductive substrate state, and are b * 2 less when expressed the transmitted light in D65 light source 2 ° field of view of the L * a * b * color system, the refractive index of the high refractive material 2. It is a transparent conductive laminated body characterized by being 0 or more and 2.4 or less .

請求項に記載の発明は、請求項に記載の透明導電性積層体において、表面抵抗値が20Ω/□から150Ω/□の範囲であることを特徴とする、透明導電性積層体である。
The invention according to claim 2 is the transparent conductive laminate according to claim 1 , wherein the surface resistance value is in the range of 20Ω / □ to 150Ω / □. .

請求項に記載の発明は、請求項1または2に記載の透明導電性積層体において、1層目の高屈折率材料の光学膜厚がnd<λ/8(400nm<λ<800nm)であることを特徴とする、透明導電性積層体である。
The invention according to claim 3 is the transparent conductive laminate according to claim 1 or 2 , wherein the optical film thickness of the first high refractive index material is nd <λ / 8 (400 nm <λ <800 nm). It is a transparent conductive laminated body characterized by being.

請求項に記載の発明は、請求項1からの何れかに記載の透明導電性積層体において、基板がプラスチックであることを特徴とする、透明導電性積層体である。
The invention according to claim 4 is the transparent conductive laminate according to any one of claims 1 to 3 , wherein the substrate is plastic.

請求項に記載の発明は、請求項に記載の透明導電性積層体において、透明導電膜をパターニング工程後の積層体の水蒸気透過率が40℃90%Rh.の条件において、0.5g/m・day以下であることを特徴とする、透明導電性積層体である。
The invention according to claim 5 is the transparent conductive laminate according to claim 4 , wherein the water vapor permeability of the laminate after the patterning step of the transparent conductive film is 40 ° C. and 90% Rh. In this condition, the transparent conductive laminate is 0.5 g / m 2 · day or less.

請求項に記載の発明は、請求項1からの何れかに記載の透明導電性積層体を用いた表示装置である。 The invention according to claim 6 is a display device using the transparent conductive laminate according to any one of claims 1 to 5 .

透明な基板の一方の面に基板の屈折率と比較して高屈折率材料、低屈折率材料をこの順番で積層し、最外層に透明導電膜を形成した、透明導電性基板において、その透過光をL*a*b*表色系で表した時のb*を2以下となるような膜構成にすることにより、視覚的に黄色味のないニュートラルな色味を有する透明導電性積層体となる。   A transparent conductive substrate in which a high refractive index material and a low refractive index material are laminated in this order on one surface of a transparent substrate in this order, and a transparent conductive film is formed on the outermost layer. A transparent conductive laminate having a neutral color with no visual yellowness by forming a film structure in which b * is 2 or less when light is expressed in the L * a * b * color system. It becomes.

さらに、b*を1以下になるような膜構成にすることにより、成膜面内の屈折率や膜厚の若干のバラツキによる色相変化によっても黄色味を視覚される恐れが少なくなる効果がある。   Furthermore, by using a film configuration in which b * is 1 or less, there is an effect of reducing the possibility of yellowness being observed even when the hue changes due to slight variations in the refractive index and film thickness within the film formation surface. .

一般に透明導電膜が低抵抗になればなるほど、膜厚が厚くなることから、黄色味が顕著となる。デジタル式タッチパネルで用いられる抵抗値よりも低く、例えば無機EL用基板に用いられるような150Ω/□以下の透明導電膜を形成する場合、高屈折率、低屈折率の少なくとも2層を透明導電膜と基板の間に形成することにより、黄色味を抑えることが可能となる。   In general, the lower the resistance of the transparent conductive film, the thicker the film thickness, and the more yellow the color becomes. When forming a transparent conductive film lower than the resistance value used in a digital touch panel, for example, 150 Ω / □ or less as used for an inorganic EL substrate, at least two layers having a high refractive index and a low refractive index are formed. It becomes possible to suppress yellowishness by forming between and.

通常反射防止機能を付与する場合、波長550nm付近の反射率を低減させる(透過率を高める)ため、1層目の高屈折率材料の光学膜厚はnd>λ/8(400nm<λ<800nm)とするが、nd<λ/8とすることにより、短波長域における透過率を高め、結果的に黄色味を抑える効果がある。また、膜厚を薄くすることにより製造コストを下げる効果もある。   In general, when the antireflection function is provided, the optical film thickness of the first high refractive index material is nd> λ / 8 (400 nm <λ <800 nm) in order to reduce the reflectance near the wavelength of 550 nm (increase the transmittance). However, by setting nd <λ / 8, there is an effect of increasing the transmittance in a short wavelength region and consequently suppressing yellowness. In addition, the manufacturing cost can be reduced by reducing the film thickness.

基板をプラスチックのようなフレキシブルな材料にすることにより、衝撃により破損することのない電極基板となる。また、薄膜を形成する際、ロールトゥロール方式により連続的に大量に量産が可能となり、生産コストを抑えることが可能となる。   When the substrate is made of a flexible material such as plastic, an electrode substrate that is not damaged by an impact is obtained. Further, when forming a thin film, mass production can be continuously performed in large quantities by the roll-to-roll method, and production cost can be suppressed.

プラスチック基板は通常、水蒸気等のガス遮蔽性に乏しく、特にエレクトロニクスデバイス材料の劣化を引き起こすが、基板上の高屈折率材料および/あるいは低屈折率材料にバリア性能を有する薄膜を用い、透明導電膜層のエッチング工程後の積層体の水蒸気透過率を40℃90%Rh.の条件において、0.5g/m2・day以下とすることにより、エレクトロニクスデバイス材料の劣化を抑制し、デバイス寿命を延ばすことが可能となる。 Plastic substrates usually have poor gas barrier properties such as water vapor and cause deterioration of electronic device materials. However, a transparent conductive film is formed by using a thin film having barrier performance for a high refractive index material and / or a low refractive index material on the substrate. The water vapor permeability of the laminate after the layer etching step is 40 ° C. and 90% Rh. In the condition of 0.5 g / m 2 · day or less, deterioration of the electronic device material can be suppressed and the device life can be extended.

本発明の透明導電性積層体を表示装置に用いることにより、色再現性の良好な表示が可
能となる。
By using the transparent conductive laminate of the present invention for a display device, display with good color reproducibility becomes possible.

以下本発明を実施するための最良の形態を図面を用いながら説明する。   The best mode for carrying out the present invention will be described below with reference to the drawings.

図1の概略図は、透明基板(2)の一方の面に、基板の屈折率と比較して高屈折率材料(3)、低屈折率材料(4)をこの順番で積層し、最外層に透明導電膜(5)を形成した透明導電性積層体(2)である。   In the schematic diagram of FIG. 1, a high refractive index material (3) and a low refractive index material (4) are laminated in this order on one surface of a transparent substrate (2) in comparison with the refractive index of the substrate. A transparent conductive laminate (2) having a transparent conductive film (5) formed thereon.

本発明で用いる透明基板(2)にはガラスやプラスチックフィルムが用いられる。プラスチックフィルムとしては成膜工程および後工程において十分な強度があり、表面の平滑性が良好であれば、特に限定されないが、例えば、ポリエチレンテレフタレートフィルム、ポリブチレンテレフタレートフィルム、ポリエチレンナフタレートフィルム、ポリカーボネートフィルム、ポリエーテルスルホンフィルム、ポリスルホンフィルム、ポリアリレートフィルム、環状ポリオレフィンフィルム、ポリイミド等が挙げられる。特に表示装置前面板に適用する場合は、透明性と耐熱性に優れたポリカーボネートやポリエーテルサルホンが好適に用いられる。その厚さは部材の薄型化と基材の可撓性とを考慮し、10〜200μm程度のものが用いられる。これら基材の表面に周知の種々の添加剤や安定剤、例えば帯電防止剤、紫外線防止剤、可塑剤、滑剤、易接着剤などが使用されてもよい。またバリア層との密着性を改善するため、前処理としてコロナ処理、低温プラズマ処理、イオンボンバード処理、薬品処理などを施してもよい。   Glass or plastic film is used for the transparent substrate (2) used in the present invention. The plastic film is not particularly limited as long as it has sufficient strength in the film-forming process and the post-process and has good surface smoothness. For example, polyethylene terephthalate film, polybutylene terephthalate film, polyethylene naphthalate film, polycarbonate film , Polyethersulfone film, polysulfone film, polyarylate film, cyclic polyolefin film, polyimide and the like. In particular, when applied to a display device front plate, polycarbonate and polyethersulfone having excellent transparency and heat resistance are preferably used. The thickness is about 10 to 200 μm in consideration of the thinning of the member and the flexibility of the base material. Various known additives and stabilizers such as an antistatic agent, an anti-ultraviolet agent, a plasticizer, a lubricant, and an easy-adhesive agent may be used on the surface of these substrates. In order to improve the adhesion to the barrier layer, corona treatment, low-temperature plasma treatment, ion bombardment treatment, chemical treatment, or the like may be performed as pretreatment.

高屈折率材料(3)、低屈折率材料(4)は、有機材料でも無機材料であっても屈折率の関係を満足するものであれば特に限定されないが、セラミック薄膜としては、酸化物、硫化物、フッ化物、窒化物などの材料が使用可能である。上記無機化合物からなる薄膜は、その材料により屈折率が異なり、その屈折率の異なるセラミック薄膜を特定の膜厚で複数層積層することにより、光学特性を調整することが可能となる。   The high-refractive index material (3) and the low-refractive index material (4) are not particularly limited as long as they satisfy the relationship of the refractive index regardless of whether they are organic materials or inorganic materials. Materials such as sulfides, fluorides and nitrides can be used. The thin film made of the inorganic compound has a different refractive index depending on the material, and the optical characteristics can be adjusted by laminating a plurality of ceramic thin films having different refractive indexes with a specific film thickness.

屈折率の低い材料としては、酸化マグネシウム(1.6)、二酸化珪素(1.5)、フッ化マグネシウム(1.4)、フッ化カルシウム(1.3〜1.4)、フッ化セリウム(1.6)、フッ化アルミニウム(1.3)などが挙げられる。また、屈折率の高い材料としては、二酸化チタン(2.4)、二酸化ジルコニウム(2.0)、硫化亜鉛(2.3)、酸化タンタル(2.1)、酸化亜鉛(2.1)、酸化インジウム(2.0)が挙げられる。但し、上記括弧内の数値は屈折率を表す。   Materials having a low refractive index include magnesium oxide (1.6), silicon dioxide (1.5), magnesium fluoride (1.4), calcium fluoride (1.3 to 1.4), cerium fluoride ( 1.6), aluminum fluoride (1.3), and the like. Moreover, as a material with a high refractive index, titanium dioxide (2.4), zirconium dioxide (2.0), zinc sulfide (2.3), tantalum oxide (2.1), zinc oxide (2.1), Indium oxide (2.0) is mentioned. However, the numerical value in the parenthesis represents the refractive index.

本発明における高屈折率材料や低屈折率材料の製造方法としては、膜厚の制御が可能であればいかなる成膜方法でも良く、なかでも薄膜の生成には乾式法が優れている。これには真空蒸着法、スパッタリング等の物理的気相析出法やCVD法のような化学的気相析出法を用いることができる。   As a method for producing a high refractive index material and a low refractive index material in the present invention, any film forming method may be used as long as the film thickness can be controlled, and among these, a dry method is excellent for producing a thin film. For this, a vacuum vapor deposition method, a physical vapor deposition method such as sputtering, or a chemical vapor deposition method such as a CVD method can be used.

透明導電膜(5)は、酸化インジウム、酸化亜鉛、酸化スズのいずれか、または、それらの2種類もしくは3種類の混合酸化物、さらには、その他添加物が加えられた物等が挙げられるが、目的・用途により種々の材料が使用でき、特に限定されるものではない。   Examples of the transparent conductive film (5) include indium oxide, zinc oxide, and tin oxide, or two or three kinds of mixed oxides thereof, and those added with other additives. Various materials can be used depending on the purpose and application, and are not particularly limited.

バリア性能を有する材料としては、珪素やアルミニウムの酸化物、窒化物等、高屈折率材料としては酸化インジウム等が挙げられるが、特に限定されるものではない。   Examples of the material having barrier performance include silicon and aluminum oxides and nitrides, and examples of the high refractive index material include indium oxide, but are not particularly limited.

エッチング工程としては、フォトリソを用いた方法が一般的である。パターン現像、エッチング工程でアルカリや酸の溶液を用いることから、バリア性能を有する薄膜は、それらに対する耐性が十分でなければならない。   As an etching process, a method using photolithography is common. Since an alkali or acid solution is used in the pattern development and etching processes, the thin film having the barrier performance must have sufficient resistance to them.

次に、本発明を具体的な実施例を挙げて詳細に説明する。   Next, the present invention will be described in detail with specific examples.

<実施例1>
ポリエチレンナフタレート基板上に、真空成膜により、酸化チタン42nm、酸化ケイ素19nmをこの順序で積層し、その上に酸化インジウムスズ(ITO)を115nm積層し、透明導電性積層体を作製した。なお、それぞれの膜厚は光学膜厚ndである。
<Example 1>
On a polyethylene naphthalate substrate, 42 nm of titanium oxide and 19 nm of silicon oxide were laminated in this order by vacuum film formation, and 115 nm of indium tin oxide (ITO) was laminated thereon to produce a transparent conductive laminate. Each film thickness is an optical film thickness nd.

作製した透明導電性積層体の表面抵抗値は95Ω/□、透過光はD65光源2°視野でb*=0.2となり、透過色のニュートラルな透明導電性積層体が得られた。また、電極パターニング後に水蒸気透過率を測定したところ、0.1g/m2・dayだった。この透明導電性積層体を無機EL基板として用いたところ、色再現性の良好な表示体となり、デバイスを60℃90%Rh.の条件で1000時間耐久性試験を行ったところ、劣化が認められなかった。
<実施例2>
透過光がD65光源2°視野でb*=0.3のポリカーボネート基材上に真空成膜により、酸化チタン42nm、酸化ケイ素19nmをこの順序で積層し、その上に酸化インジウムスズ(ITO)を115nm積層し、透明導電性積層体を作製した。なお、それぞれの膜厚は光学膜厚ndである。
The produced transparent conductive laminate had a surface resistance value of 95Ω / □, and transmitted light was b * = 0.2 in a 2 ° field of view of a D65 light source. Thus, a transparent transparent conductive laminate having a transparent color was obtained. Moreover, when the water vapor transmission rate was measured after electrode patterning, it was 0.1 g / m 2 · day. When this transparent conductive laminate was used as an inorganic EL substrate, a display with good color reproducibility was obtained, and the device was heated to 60 ° C. and 90% Rh. When the durability test was conducted for 1000 hours under the above conditions, no deterioration was observed.
<Example 2>
Titanium oxide 42nm and silicon oxide 19nm are laminated in this order by vacuum film formation on a polycarbonate substrate of b * = 0.3 with 2 ° field of view of D65 light source, and indium tin oxide (ITO) is laminated on it in this order. A transparent conductive laminate was produced by laminating 115 nm. Each film thickness is an optical film thickness nd.

作製した透明導電性積層体の表面抵抗値は95Ω/□、透過光はD65光源2°視野でb*=−0.9となり、透過色のニュートラルな透明導電性積層体が得られた。この透明導電性積層体を電子ペーパー用の基板として用いたところ、色再現性の良好な表示体となった。
<比較例1>
図2に示されるように、ポリカーボネート基板上に真空成膜により、酸化インジウムスズ(ITO)を115nm成膜した。なお、膜厚は光学膜厚ndである。
The produced transparent conductive laminate had a surface resistance value of 95Ω / □, and the transmitted light was b * = − 0.9 in a 2 ° field of view of the D65 light source, and a transparent transparent conductive laminate having a neutral transmission color was obtained. When this transparent conductive laminate was used as a substrate for electronic paper, a display body with good color reproducibility was obtained.
<Comparative Example 1>
As shown in FIG. 2, an indium tin oxide (ITO) film having a thickness of 115 nm was formed on a polycarbonate substrate by vacuum film formation. The film thickness is the optical film thickness nd.

作製した透明導電性積層体の表面抵抗値は95Ω/□、透過光はD65光源2°視野でb*=3.1となり、透過色に茶から黄色味が感じられた。
<比較例2>
ポリカーボネート基板上に真空成膜により、酸化チタン110nm(nd>λ/8,400nm<λ<800nm)、酸化ケイ素19nmをこの順序で積層し、その上に酸化インジウムスズ(ITO)を115nm積層した。なお、それぞれの膜厚は光学膜厚ndである。
The surface resistance value of the produced transparent conductive laminate was 95Ω / □, the transmitted light was b * = 3.1 in a 2 ° field of view of the D65 light source, and the transmitted color was felt yellow from brown.
<Comparative example 2>
By vacuum film formation on a polycarbonate substrate, titanium oxide 110 nm (nd> λ / 8, 400 nm <λ <800 nm) and silicon oxide 19 nm were stacked in this order, and indium tin oxide (ITO) was stacked 115 nm thereon. Each film thickness is an optical film thickness nd.

作製した透明導電性積層体の表面抵抗値は95Ω/□、視感反射率Yは3.3で、低反射を実現できたが、透過光はD65光源2°視野でb*=12となり、透過色に茶から黄色味が強く感じられた。   The produced transparent conductive laminate had a surface resistance value of 95Ω / □, a luminous reflectance Y of 3.3, and low reflection was realized, but the transmitted light was b * = 12 in the D65 light source 2 ° field of view, The yellow color from tea was strongly felt in the transmitted color.

本発明に係る透明な基材の片面に高屈折率材料、低屈折率材料、透明導電膜を順次積層させた透明導電性積層体の断面図である。It is sectional drawing of the transparent conductive laminated body which laminated | stacked the high refractive index material, the low refractive index material, and the transparent conductive film in order on one side of the transparent base material which concerns on this invention. 比較例として、透明な基材の片面に透明導電膜を形成させた透明導電性積層体の断面図である。As a comparative example, it is sectional drawing of the transparent conductive laminated body in which the transparent conductive film was formed in the single side | surface of a transparent base material.

符号の説明Explanation of symbols

1…透明導電性積層体
2…透明基材
3…高屈折率材料層
4…低屈折率材料層
5…透明導電膜層
DESCRIPTION OF SYMBOLS 1 ... Transparent conductive laminated body 2 ... Transparent base material 3 ... High refractive index material layer 4 ... Low refractive index material layer 5 ... Transparent conductive film layer

Claims (6)

透明な基板の一方の面に基板の屈折率と比較して高屈折率材料、低屈折率材料をこの順番で積層し、最外層に透明導電膜を形成した、透明導電性基板において、その透過光をD65光源2°視野のL*a*b*表色系で表した時のb*が2以下であり、前記高屈折材料の屈折率が2.0以上2.4以下であることを特徴とする、透明導電性積層体。 A transparent conductive substrate in which a high refractive index material and a low refractive index material are laminated in this order on one surface of a transparent substrate in this order, and a transparent conductive film is formed on the outermost layer. Ri der b * 2 less when expressed light D65 light source 2 ° field of view of the L * a * b * color system, the refractive index of the high refractive material is 2.0 to 2.4 A transparent conductive laminate characterized by the above. 請求項1に記載の透明導電性積層体において、表面抵抗値が20Ω/□から150Ω/□の範囲であることを特徴とする、透明導電性積層体。   The transparent conductive laminate according to claim 1, wherein the surface resistance value is in a range of 20 Ω / □ to 150 Ω / □. 請求項1または2に記載の透明導電性積層体において、1層目の高屈折率材料の光学膜厚がnd<λ/8(400nm<λ<800nm)であることを特徴とする、透明導電性積層体。   3. The transparent conductive laminate according to claim 1, wherein the optical film thickness of the first high refractive index material is nd <λ / 8 (400 nm <λ <800 nm). Laminate. 請求項1から3の何れかに記載の透明導電性積層体において、基板がプラスチックであることを特徴とする、透明導電性積層体。   4. The transparent conductive laminate according to claim 1, wherein the substrate is a plastic. 請求項4に記載の透明導電性積層体において、透明導電膜をパターニング工程後の積層体の水蒸気透過率が40℃90%Rh.の条件において、0.5g/m・day以下であることを特徴とする、透明導電性積層体。 The transparent conductive laminate according to claim 4, wherein the water vapor permeability of the laminate after the patterning step of the transparent conductive film is 40 ° C. and 90% Rh. The transparent conductive laminate is 0.5 g / m 2 · day or less under the above conditions. 請求項1から5の何れかに記載の透明導電性積層体を用いた表示装置。
A display device using the transparent conductive laminate according to claim 1.
JP2007016069A 2007-01-26 2007-01-26 Transparent conductive laminate Expired - Fee Related JP5130725B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2007016069A JP5130725B2 (en) 2007-01-26 2007-01-26 Transparent conductive laminate

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2007016069A JP5130725B2 (en) 2007-01-26 2007-01-26 Transparent conductive laminate

Publications (2)

Publication Number Publication Date
JP2008181838A JP2008181838A (en) 2008-08-07
JP5130725B2 true JP5130725B2 (en) 2013-01-30

Family

ID=39725559

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2007016069A Expired - Fee Related JP5130725B2 (en) 2007-01-26 2007-01-26 Transparent conductive laminate

Country Status (1)

Country Link
JP (1) JP5130725B2 (en)

Families Citing this family (12)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN101713834B (en) * 2008-10-07 2011-12-14 甘国工 High-transparency conducting film system
JP5245893B2 (en) * 2009-02-13 2013-07-24 凸版印刷株式会社 Multilayer film and method for producing the same
JP5245892B2 (en) * 2009-02-13 2013-07-24 凸版印刷株式会社 Laminated film and method for producing the same
WO2010140269A1 (en) * 2009-06-03 2010-12-09 東洋紡績株式会社 Transparent conductive laminated film
JP2011017795A (en) * 2009-07-07 2011-01-27 Innovation & Infinity Global Corp Optical film structure
WO2011048663A1 (en) * 2009-10-20 2011-04-28 東洋紡績株式会社 Transparent conductive film roll and method of manufacturing same
WO2011068388A2 (en) * 2009-12-03 2011-06-09 (주)Lg화학 Barrier film and an electronic device comprising the same
JP4858650B2 (en) * 2010-03-02 2012-01-18 ソニー株式会社 Optical body, window material, joinery and solar shading device
KR20110125370A (en) * 2010-05-13 2011-11-21 주식회사 엘지화학 Multilayer structured transparent electrically conductive film and method of manufacturing the same
US8920912B2 (en) 2010-05-13 2014-12-30 Lg Chem, Ltd. Multilayer structured transparent electrically-conductive film and method of manufacturing the same
JP5999601B2 (en) 2012-02-23 2016-09-28 東レフィルム加工株式会社 Fluorine resin film
JP6391563B2 (en) 2013-03-25 2018-09-19 東レフィルム加工株式会社 Heat ray shielding fluororesin film

Family Cites Families (3)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JP3626624B2 (en) * 1999-04-19 2005-03-09 帝人株式会社 Transparent conductive laminate and transparent tablet
JP2003080624A (en) * 2001-09-07 2003-03-19 Nof Corp Transparent conducting material and touch panel
JP2004152727A (en) * 2002-11-01 2004-05-27 Toyo Metallizing Co Ltd Transparent conductive film

Also Published As

Publication number Publication date
JP2008181838A (en) 2008-08-07

Similar Documents

Publication Publication Date Title
JP5130725B2 (en) Transparent conductive laminate
JP5549216B2 (en) Transparent conductive laminate, method for producing the same, and touch panel
US20130095308A1 (en) Transparent conductive film having excellent visibility and method of manufacturing the same
JP5245893B2 (en) Multilayer film and method for producing the same
TWI486973B (en) Transparent conductive multilayered film, producing method of the same, and touch panel containing the same
US20120057237A1 (en) Electrode film and coordinate detecting apparatus
JP5245892B2 (en) Laminated film and method for producing the same
US20130087374A1 (en) Conductive film with high transmittance having a number of anti reflection coatings, touch panel using the same and manufacturing method thereof
JP5617276B2 (en) Transparent conductive laminate and method for producing the same
JP2010069675A (en) Functional film, method of manufacturing the same, laminate, and electronic device
JP4349794B2 (en) Method for producing conductive transparent substrate with multilayer antireflection film
CN102214498A (en) Transparent conductive laminated body with visible adjustment layers
JP6292225B2 (en) Transparent conductor
TWI473720B (en) Double-sided transparent conductive film with excellent visibility and method of manufacturing the same
JP6319302B2 (en) Transparent conductor and method for producing the same
JP2006337672A (en) Antireflection film
TWI582469B (en) Transparent conductive optical sheet having high invisibility of pattern
JP4894279B2 (en) Transparent conductive laminate
KR101565855B1 (en) Transparent conductive optical sheet having high invisibility of pattern
JP2008210613A (en) Transparent conductive laminate and display device using it
WO2015087895A1 (en) Transparent conductive body
JP2005294084A (en) Transparent conductive film
WO2014080742A1 (en) Optical member with transparent conductive layer
JP4807503B2 (en) Transparent conductive laminate
KR101708298B1 (en) Integrated functional condictive pet film with low shrink oligomer free

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091222

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20101220

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120321

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120424

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120614

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120717

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120913

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121009

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121022

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151116

Year of fee payment: 3

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5130725

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

R250 Receipt of annual fees

Free format text: JAPANESE INTERMEDIATE CODE: R250

LAPS Cancellation because of no payment of annual fees