JP5128981B2 - Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator - Google Patents

Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator Download PDF

Info

Publication number
JP5128981B2
JP5128981B2 JP2008038868A JP2008038868A JP5128981B2 JP 5128981 B2 JP5128981 B2 JP 5128981B2 JP 2008038868 A JP2008038868 A JP 2008038868A JP 2008038868 A JP2008038868 A JP 2008038868A JP 5128981 B2 JP5128981 B2 JP 5128981B2
Authority
JP
Japan
Prior art keywords
piezoelectric
electrostrictive
film
film thickness
bending
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Expired - Fee Related
Application number
JP2008038868A
Other languages
Japanese (ja)
Other versions
JP2009049359A (en
Inventor
清水  秀樹
信二 白仁田
隆 海老ヶ瀬
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
NGK Insulators Ltd
Original Assignee
NGK Insulators Ltd
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by NGK Insulators Ltd filed Critical NGK Insulators Ltd
Priority to JP2008038868A priority Critical patent/JP5128981B2/en
Publication of JP2009049359A publication Critical patent/JP2009049359A/en
Application granted granted Critical
Publication of JP5128981B2 publication Critical patent/JP5128981B2/en
Expired - Fee Related legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Landscapes

  • General Electrical Machinery Utilizing Piezoelectricity, Electrostriction Or Magnetostriction (AREA)

Description

本発明は、圧電/電歪アクチュエータ及び圧電/電歪アクチュエータの製造方法に関する。 The present invention relates to a piezoelectric / electrostrictive actuator and a method for manufacturing a piezoelectric / electrostrictive actuator .

圧電/電歪アクチュエータは、サブミクロンのオーダーで変位を精密に制御することができるという利点を有する。特に、圧電/電歪磁器組成物の焼結体を圧電/電歪体として用いた圧電/電歪アクチュエータは、変位を精密に制御することができる他にも、電気機械変換効率が高く、発生力が大きく、応答速度が速く、耐久性が高く、消費電力が少ない
という利点も有し、これらの利点を生かして、インクジェットプリンタのヘッド、ディーゼルエンジンのインジェクタ、油圧サーボ弁、VTRのヘッド、圧電セラミックディスプレイの画素等に採用されている。
Piezoelectric / electrostrictive actuators have the advantage that displacement can be precisely controlled on the order of submicrons. In particular, a piezoelectric / electrostrictive actuator using a sintered body of a piezoelectric / electrostrictive porcelain composition as a piezoelectric / electrostrictive body can precisely control displacement, and has high electromechanical conversion efficiency. It has the advantages of high power, fast response speed, high durability, and low power consumption. Taking advantage of these advantages, inkjet printer heads, diesel engine injectors, hydraulic servo valves, VTR heads, piezoelectrics It is used for ceramic display pixels.

このような従来の圧電/電歪アクチュエータの一例について、図30を参照しながら説明する。図30は、インクジェットプリンタのヘッドにアクチュエータとして採用されている従来の圧電/電歪素子8の模式図であり、圧電/電歪素子8の断面図となっている。   An example of such a conventional piezoelectric / electrostrictive actuator will be described with reference to FIG. FIG. 30 is a schematic diagram of a conventional piezoelectric / electrostrictive element 8 employed as an actuator in a head of an ink jet printer, and is a cross-sectional view of the piezoelectric / electrostrictive element 8.

図30に示すように、圧電/電歪素子8は、基体802の薄肉部804の上に、下層電極膜812、下層圧電/電歪体膜816、内層電極膜818、上層圧電/電歪体膜820及び上層電極膜814をこの順序で積層した構造を有している。圧電/電歪素子8では、外層電極膜(下層電極膜812及び上層電極膜814)810と内層電極膜818との間に駆動信号を印加することにより、薄肉部804並びに下層電極膜812、下層圧電/電歪体膜816、内層電極膜818、上層圧電/電歪体膜820及び上層電極膜814の積層体808を屈曲振動させることができる。   As shown in FIG. 30, the piezoelectric / electrostrictive element 8 includes a lower layer electrode film 812, a lower layer piezoelectric / electrostrictive film 816, an inner layer electrode film 818, and an upper layer piezoelectric / electrostrictive body on the thin portion 804 of the base 802. The film 820 and the upper electrode film 814 are stacked in this order. In the piezoelectric / electrostrictive element 8, by applying a drive signal between the outer electrode film (lower electrode film 812 and upper electrode film 814) 810 and the inner electrode film 818, the thin portion 804, lower electrode film 812, lower layer The laminated body 808 of the piezoelectric / electrostrictive film 816, the inner electrode film 818, the upper piezoelectric / electrostrictive film 820, and the upper electrode film 814 can be flexibly vibrated.

特許文献1は、従来の圧電/電歪素子に関する先行技術文献である。特許文献1は、圧電/電歪体膜の膜厚が均一な圧電/電歪素子(図9参照)や圧電/電歪体膜の膜厚が中央部から縁部に向かって連続的に薄くなる圧電/電歪素子(図10参照)を開示している。   Patent Document 1 is a prior art document related to a conventional piezoelectric / electrostrictive element. In Patent Document 1, a piezoelectric / electrostrictive element (see FIG. 9) having a uniform piezoelectric / electrostrictive film thickness or a piezoelectric / electrostrictive film thickness is continuously reduced from the center toward the edge. A piezoelectric / electrostrictive element (see FIG. 10) is disclosed.

特開2006−202990号公報JP 2006-202990 A

ただ、従来の圧電/電歪素子では、変位量が不足する場合があるとともに、変位量を増やすために圧電/電歪体膜の膜厚を全体的に薄くすると、高湿度下では圧電/電歪体膜を挟んで電極膜が対向する作動領域の縁部において絶縁破壊が起こりやすくなるという問題があった。   However, in the conventional piezoelectric / electrostrictive element, the amount of displacement may be insufficient, and in order to increase the amount of displacement, if the film thickness of the piezoelectric / electrostrictive film is made thin as a whole, the piezoelectric / electrostrictive element is under high humidity. There has been a problem that dielectric breakdown is likely to occur at the edge of the working region where the electrode films face each other across the strained body film.

本発明は、この問題を解決するためになされたもので、圧電/電歪アクチュエータにおいて、変位量を増加させることを目的とし、さらには、高湿度下での少なくとも作動領域の縁部、望ましくは作動領域の全体における絶縁破壊を防ぎつつ変位量を増加させることを目的とする。 The present invention has been made to solve this problem, and aims to increase the amount of displacement in a piezoelectric / electrostrictive actuator , and further, at least the edge of an operating region under high humidity, preferably The object is to increase the amount of displacement while preventing dielectric breakdown in the entire operating region.

上記課題を解決するため、請求項1の発明は、厚肉部に囲まれた薄肉部を有する基体と、前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、を備え、前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータであって、前記薄肉部が形成される平面領域を屈曲振動領域として、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と節との間に持つ膜厚分布を有する、圧電/電歪アクチュエータである。 In order to solve the above-mentioned problems, the invention of claim 1 is a laminate in which a base having a thin part surrounded by a thick part, and a piezoelectric / electrostrictive film and an electrode film formed on the base are laminated. A piezoelectric / electrostrictive actuator that bends and vibrates the thin-walled portion and the laminated body, wherein a planar region where the thin-walled portion is formed is a bending vibration region, and passes through an antinode of a bending primary mode. A part or all of the piezoelectric / electrostrictive film is in a bending primary mode along the short direction of the bending vibration region, which is the direction of the straight line when the length of the straight line that cuts the bending vibration region is minimum. This is a piezoelectric / electrostrictive actuator having a film thickness distribution having a portion where the film thickness is thicker than the antinodes between the antinodes and nodes of the bent primary mode.

請求項2の発明は、屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹と前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部との中間点よりも作動領域の縁部寄りにおいて膜厚が最大となる膜厚分布を有する、請求項1に記載の圧電/電歪アクチュエータである。 According to a second aspect of the present invention, a part or all of the piezoelectric / electrostrictive film extends along the short direction of the flexural vibration region with the antinode of the bending primary mode and the piezoelectric / electrostrictive film interposed therebetween. 2. The piezoelectric / electrostrictive actuator according to claim 1, wherein the piezoelectric / electrostrictive actuator has a film thickness distribution in which the film thickness is maximized near an edge of the operating region rather than an intermediate point with an edge of the operating region facing the electrode film.

請求項3の発明は、屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部において膜厚が最大となる膜厚分布を有する、請求項1に記載の圧電/電歪アクチュエータである。 According to a third aspect of the present invention, there is provided an operation region in which a part or all of the piezoelectric / electrostrictive film is opposed to the electrode film across the piezoelectric / electrostrictive film along the short direction of the bending vibration region. 2. The piezoelectric / electrostrictive actuator according to claim 1, wherein the actuator has a film thickness distribution in which the film thickness is maximized at the edge portion.

請求項4の発明は、屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、膜厚の最小値に対する最大値の比が1.01以上3.0以下である膜厚分布を有する、請求項1ないし請求項3のいずれかに記載の圧電/電歪アクチュエータである。 According to a fourth aspect of the present invention, a ratio of the maximum value to the minimum value of the film thickness of a part or all of the piezoelectric / electrostrictive film along the short direction of the bending vibration region is 1.01 or more and 3.0. 4. The piezoelectric / electrostrictive actuator according to claim 1, wherein the piezoelectric / electrostrictive actuator has a film thickness distribution as follows.

請求項5の発明は、厚肉部に囲まれた薄肉部を有する基体と、前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、を備え、前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータであって、前記薄肉部が形成される平面領域を屈曲振動領域として、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部との間に持つ膜厚分布を有する、圧電/電歪アクチュエータである。 The invention of claim 5 comprises a substrate having a thin portion surrounded by a thick portion, and a laminate formed by laminating a piezoelectric / electrostrictive film and an electrode film formed on the substrate, A piezoelectric / electrostrictive actuator that flexurally vibrates the thin-walled portion and the laminated body, wherein a straight line passing through the antinode of the bending primary mode cuts the flexural vibration region, with a planar region where the thin-walled portion is formed as a flexural vibration region A part or all of the piezoelectric / electrostrictive film has a film thickness larger than the antinode of the bending primary mode along the short direction of the bending vibration region which is the direction of the straight line when the length is the minimum. A piezoelectric / electrostrictive actuator having a film thickness distribution having a thickened portion between an antinode of a bent primary mode and an edge of an operation region facing the electrode film across the piezoelectric / electrostrictive film. .

請求項6の発明は、厚肉部に囲まれた薄肉部を有する基体と、前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、を備え、前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータの製造方法であって、(a) 圧電/電歪体ペーストを印刷する工程と、(b) 前記薄肉部が形成される平面領域を屈曲振動領域として、前記工程(a)により得られた圧電/電歪体ペーストの膜を焼成し、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と節との間に持つ膜厚分布を有する前記圧電/電歪体膜を得る工程と、を備え、前記工程(a)において、前記圧電/電歪体膜の膜厚が屈曲1次モードの腹よりも厚くなる部分と印刷時に対向する部分が開口部となっている印刷版を使用する圧電/電歪アクチュエータの製造方法である。
The invention of claim 6 comprises a substrate having a thin portion surrounded by a thick portion, and a laminate formed by laminating a piezoelectric / electrostrictive film and an electrode film formed on the substrate, A method of manufacturing a piezoelectric / electrostrictive actuator for bending and vibrating the thin-walled portion and the laminate, wherein (a) a step of printing a piezoelectric / electrostrictive paste, and (b) a planar region in which the thin-walled portion is formed When the piezoelectric / electrostrictive paste film obtained by the step (a) is baked and the length of the straight line passing the antinode of the bending first mode cuts the bending vibration region is minimized. A film thickness distribution having a portion where the film thickness is thicker than the antinodes of the primary bending mode is between the antinodes and nodes of the primary bending mode along the short direction of the bending vibration region that is the direction of the straight line. Obtaining the piezoelectric / electrostrictive film, and in the step (a), the piezoelectric / electrostrictive film This is a method for manufacturing a piezoelectric / electrostrictive actuator using a printing plate in which a portion where the film thickness is thicker than an antinode of the bending primary mode and a portion facing at the time of printing are openings.

本発明によれば、高湿度下での作動領域の縁部における絶縁破壊を防ぎつつ変位量を増加させることができる。   According to the present invention, the amount of displacement can be increased while preventing dielectric breakdown at the edge of the operating region under high humidity.

請求項2又は請求項3の発明によれば、高湿度下での絶縁破壊をより効果的に防ぎつつ変位量を効果的に増加させることができる。   According to the invention of claim 2 or claim 3, it is possible to effectively increase the amount of displacement while preventing dielectric breakdown under high humidity more effectively.

請求項4の発明によれば、高湿度下での圧電/電歪体膜の全体における絶縁破壊を防ぎつつ変位量を増加させることができる。   According to the fourth aspect of the invention, the amount of displacement can be increased while preventing dielectric breakdown of the entire piezoelectric / electrostrictive film under high humidity.

請求項6の発明によれば、圧電/電歪体膜を容易に形成することができる。   According to the invention of claim 6, the piezoelectric / electrostrictive film can be easily formed.

<圧電/電歪素子の全体構造>
図1及び図2は、本発明の望ましい実施形態に係る圧電/電歪素子1の主要部の模式図であり、図1は、圧電/電歪素子1の平面図、図2は、図1のA-Aの切断線における圧電/電歪素子1の断面図となっている。図1及び図2には、説明の便宜上、後述する屈曲振動領域182の短手方向をX軸方向、長手方向をY軸方向とするXYZ直交座標系が定義されている。
<Overall structure of piezoelectric / electrostrictive element>
1 and 2 are schematic views of the main part of a piezoelectric / electrostrictive element 1 according to a preferred embodiment of the present invention. FIG. 1 is a plan view of the piezoelectric / electrostrictive element 1, and FIG. 2 is a cross-sectional view of the piezoelectric / electrostrictive element 1 taken along a cutting line AA. In FIG. 1 and FIG. 2, for convenience of explanation, an XYZ orthogonal coordinate system is defined in which the lateral direction of a flexural vibration region 182 to be described later is the X-axis direction and the longitudinal direction is the Y-axis direction.

図1及び図2に示す圧電/電歪素子1は、インクジェットプリンタのヘッドに採用されるアクチュエータである。ただし、このことは、インクジェットプリンタのヘッドに採用されるアクチュエータ以外の圧電/電歪素子に本発明を適用することを妨げるものではない。例えば、各種のアクチュエータやセンサに本発明を適用することができる。   A piezoelectric / electrostrictive element 1 shown in FIGS. 1 and 2 is an actuator that is employed in a head of an ink jet printer. However, this does not preclude the application of the present invention to piezoelectric / electrostrictive elements other than the actuators employed in the heads of inkjet printers. For example, the present invention can be applied to various actuators and sensors.

図2に示すように、圧電/電歪素子1は、基体102の薄肉部104の上に、下層電極膜112、下層圧電/電歪体膜116、内層電極膜118、上層圧電/電歪体膜120及び上層電極膜114をこの順序で積層した2層構造を有している。   As shown in FIG. 2, the piezoelectric / electrostrictive element 1 includes a lower electrode film 112, a lower piezoelectric / electrostrictive film 116, an inner electrode film 118, and an upper piezoelectric / electrostrictive body on the thin portion 104 of the substrate 102. It has a two-layer structure in which the film 120 and the upper electrode film 114 are laminated in this order.

なお、図2は、基体102の上に形成された、下層電極膜112、下層圧電/電歪体膜116、内層電極膜118、上層圧電/電歪体膜120及び上層電極膜114を積層した積層体108が1層の内層電極膜118を含む場合を示しているが、積層体108が2層以上の内層電極膜118を含む場合や積層体108が内層電極膜118を含まない場合にも本発明を適用することは可能である。また、図2は、基体102の上に積層体108を直接的に形成する場合を示しているが、不活性層を介して基体102の上に積層体108を間接的に形成してもよい。さらに、複数の圧電/電歪素子1を一定間隔をおいて規則的に配列し、一体化して用いることもできる。   In FIG. 2, the lower electrode film 112, the lower piezoelectric / electrostrictive film 116, the inner electrode film 118, the upper piezoelectric / electrostrictive film 120, and the upper electrode film 114 formed on the substrate 102 are stacked. Although the case where the laminate 108 includes one inner electrode film 118 is shown, the case where the laminate 108 includes two or more inner electrode films 118 or the case where the laminate 108 does not include the inner electrode film 118 is also shown. It is possible to apply the present invention. Further, FIG. 2 shows a case where the laminate 108 is directly formed on the substrate 102, but the laminate 108 may be indirectly formed on the substrate 102 via an inert layer. . Furthermore, a plurality of piezoelectric / electrostrictive elements 1 can be regularly arranged at regular intervals and integrated.

<屈曲振動領域>
圧電/電歪素子1では、外層電極膜(下層電極膜112及び上層電極膜114)110と内層電極膜118との間に駆動信号を印加することにより、薄肉部104及び積層体108を屈曲振動させることができる。以下では、この屈曲振動が励振される領域を「屈曲振動領域」という。図1には、屈曲振動領域182が左下がりの破線ハッチングによって
示されている。
<Bending vibration region>
In the piezoelectric / electrostrictive element 1, by applying a drive signal between the outer electrode film (the lower electrode film 112 and the upper electrode film 114) 110 and the inner electrode film 118, the thin portion 104 and the laminated body 108 are bent and vibrated. Can be made. Hereinafter, a region where the bending vibration is excited is referred to as a “bending vibration region”. In FIG. 1, the bending vibration region 182 is indicated by a broken-line hatching with a lower left corner.

圧電/電歪素子1では、薄肉部104の平面形状すなわち屈曲振動領域182の平面形状は矩形となっている。この場合、図3の平面図に示すように、屈曲振動領域182の縁部184が屈曲1次モードの節となり、屈曲振動領域182の中心186から長手方向両側に伸びる線分188が屈曲1次モードの腹となる。もちろん、屈曲振動領域182の平面形状は矩形に限られるわけではなく、図4の平面図に示す楕円形であってもよいし、図5の平面図に示す六角形であってもよい。屈曲振動領域182の平面形状が図4に示す楕円形や図5に示す六角形である場合も、屈曲振動領域182の縁部184が屈曲1次モードの節となり、屈曲振動領域182の中心186から長手方向両側に伸びる線分188が屈曲1次モードの腹となる。ただし、屈曲振動領域182の平面形状がより複雑なものとなった場合は、必ずしも「線分」が屈曲1次モードの腹となるとは限らないが、屈曲振動領域182の中央部の近傍が屈曲1次モードの腹となる点は同様である。図3〜図5にも、屈曲振動領域182の短手方向をX軸方向、長手方向をY軸方向とするXYZ直交座標系が定義されている。   In the piezoelectric / electrostrictive element 1, the planar shape of the thin portion 104, that is, the planar shape of the bending vibration region 182 is rectangular. In this case, as shown in the plan view of FIG. 3, the edge 184 of the bending vibration region 182 becomes a node of the bending primary mode, and the line segment 188 extending from the center 186 of the bending vibration region 182 to both sides in the longitudinal direction is the bending primary. Become the belly of the mode. Of course, the planar shape of the bending vibration region 182 is not limited to a rectangle, and may be an ellipse shown in the plan view of FIG. 4 or a hexagon shown in the plan view of FIG. Even when the planar shape of the bending vibration region 182 is the ellipse shown in FIG. 4 or the hexagon shown in FIG. 5, the edge 184 of the bending vibration region 182 becomes a node of the bending primary mode, and the center 186 of the bending vibration region 182 is obtained. A line segment 188 extending from both sides to the longitudinal direction becomes the antinode of the bending primary mode. However, when the planar shape of the bending vibration region 182 becomes more complicated, the “line segment” does not necessarily become the antinode of the bending primary mode, but the vicinity of the central portion of the bending vibration region 182 is bent. The point which becomes the belly of primary mode is the same. 3 to 5 also define an XYZ orthogonal coordinate system in which the transverse direction of the bending vibration region 182 is the X-axis direction and the longitudinal direction is the Y-axis direction.

本発明は、細長の2次元形状を有する屈曲振動領域182の短手方向の長さが1000μm以下である場合に好適に適用でき、500μm以下である場合にさらに好適に適用でき、300μm以下である場合に特に好適に適用できる。これは、屈曲振動領域182の短手方向の長さが長くなると、厚肉部106に直接拘束されている薄肉部104は変形しやすくなるのに対して、厚肉部106に直接拘束されていない積層体108の変形しやすさは大きく変化しないので、屈曲振動する薄肉部104及び積層体108の全体としての変形しやすさに占める積層体108の寄与が小さくなり、後述する圧電/電歪体膜116,120の膜厚分布を採用する意義が小さくなる傾向にあるからである。ただし、このことは、屈曲振動領域182の短手方向の長さがこれらより長くなる場合に本発明を全く適用できなくなることを意味しない。また、屈曲振動領域182の短手方向の長さは、30μm以上であることが望ましい。   The present invention can be preferably applied when the length of the bending vibration region 182 having an elongated two-dimensional shape is 1000 μm or less, more preferably when the length is 500 μm or less, and 300 μm or less. It can be particularly suitably applied to the case. This is because when the length of the bending vibration region 182 in the short direction is increased, the thin portion 104 directly restrained by the thick portion 106 is easily deformed, whereas the thin portion 104 is restrained directly by the thick portion 106. Therefore, the thin-walled portion 104 that bends and vibrates and the laminate 108 contributes less to the overall deformability of the laminate 108, and the piezoelectric / electrostrictive to be described later is reduced. This is because the significance of adopting the film thickness distribution of the body films 116 and 120 tends to be small. However, this does not mean that the present invention cannot be applied at all when the length of the bending vibration region 182 in the short direction is longer than these. Further, it is desirable that the length in the short direction of the bending vibration region 182 is 30 μm or more.

屈曲振動領域182の「短手方向」とは、屈曲振動領域182の平面形状が図3に示す矩形である場合は、当該矩形の短辺方向であり、屈曲振動領域182の平面形状が図4に示す楕円形である場合は、当該楕円形の短軸方向であるが、一般的には、図3に示すように、屈曲1次モードの腹の上の点190を通る直線192が屈曲振動領域182を切る長さLが最小となるときの直線192の方向である。もちろん、屈曲振動領域182の平面形状が矩形である場合は、直線192は線分188と垂直をなす。   The “short-side direction” of the bending vibration region 182 is the short side direction of the bending vibration region 182 when the planar shape of the bending vibration region 182 is the rectangle shown in FIG. 3, and the planar shape of the bending vibration region 182 is FIG. 3 is the minor axis direction of the ellipse, but generally, as shown in FIG. 3, a straight line 192 passing through a point 190 on the antinode of the bending first mode is bending vibration. This is the direction of the straight line 192 when the length L that cuts the region 182 is minimized. Of course, when the planar shape of the bending vibration region 182 is a rectangle, the straight line 192 is perpendicular to the line segment 188.

<基体>
基体102は、絶縁材料の焼結体である。絶縁材料しては、酸化カルシウム(CaO)、酸化マグネシウム(MgO)、酸化イットリウム(Y2O3)、酸化イッテルビウム(Yb2O3)及び酸化セリウム(Ce2O3)等の安定化剤を添加した酸化ジルコニウム(ZrO2)、すなわち、安定化酸化ジルコニウム又は部分安定化酸化ジルコニウムを採用することが望ましい。
<Substrate>
The base 102 is a sintered body of an insulating material. Insulating materials include stabilizers such as calcium oxide (CaO), magnesium oxide (MgO), yttrium oxide (Y 2 O 3 ), ytterbium oxide (Yb 2 O 3 ), and cerium oxide (Ce 2 O 3 ). It is desirable to employ added zirconium oxide (ZrO 2 ), that is, stabilized zirconium oxide or partially stabilized zirconium oxide.

基体102は、中央の薄肉部104を周縁の厚肉部106で囲んで支持したキャビティ構造を有している。キャビティ構造を採用し、板厚が薄い薄肉部104を板厚が厚い厚肉部106で支持するようにすれば、基体102の機械的強度を保ちつつ、薄肉部104の板厚を薄くすることができるので、薄肉部104の剛性を低下させることができ、圧電/電歪素子1の変位量を増加させることができる。薄肉部104の板厚は、1μm以上15μm以下であることが望ましい。この範囲を下回ると薄肉部104が損傷しやすくなるからである。また、この範囲を上回ると圧電/電歪素子1の変位量が減少する傾向にあるからである。   The base 102 has a cavity structure in which a central thin portion 104 is surrounded by a peripheral thick portion 106 and supported. By adopting a cavity structure and supporting the thin portion 104 with a small plate thickness by the thick portion 106 with a large plate thickness, the plate thickness of the thin portion 104 can be reduced while maintaining the mechanical strength of the base 102. Therefore, the rigidity of the thin wall portion 104 can be reduced, and the displacement amount of the piezoelectric / electrostrictive element 1 can be increased. The thickness of the thin portion 104 is desirably 1 μm or more and 15 μm or less. This is because if it falls below this range, the thin-walled portion 104 tends to be damaged. Further, if the range is exceeded, the displacement amount of the piezoelectric / electrostrictive element 1 tends to decrease.

<圧電/電歪体膜>
圧電/電歪体膜116,120は、圧電/電歪材料の焼結体である。当該圧電/電歪材料としては、鉛(Pb)系ペロブスカイト化合物を採用することが望ましい。中でも、チタン酸鉛(PbTiO3)とジルコン酸鉛(PbZrO3)との2元系若しくはチタン酸鉛とジルコン酸鉛と第3成分との3元系又はこれらの2元系若しくは3元系に金属酸化物を添加した鉛系ペロブスカイト化合物を採用することが望ましく、チタン酸鉛とジルコン酸鉛とマグネシウム酸ニオブ酸鉛(Pb(Mg1/3Nb2/3)O3)との三元系に酸化ニッケル(NiO)を添加した鉛系ペロブスカイト化合物を採用することが特に望ましい。圧電/電歪体膜116,120は、望ましくは、スクリーン印刷法で成膜を行った後に焼成を行うことにより形成する。もちろん、スクリーン印刷法に代えて、ゾルゲル法等の成膜法を採用してもよい。
<Piezoelectric / electrostrictive film>
The piezoelectric / electrostrictive films 116 and 120 are sintered bodies of piezoelectric / electrostrictive material. As the piezoelectric / electrostrictive material, it is desirable to employ a lead (Pb) -based perovskite compound. Among them, a binary system of lead titanate (PbTiO 3 ) and lead zirconate (PbZrO 3 ), a ternary system of lead titanate, lead zirconate and a third component, or a binary system or ternary system thereof. It is desirable to use lead-based perovskite compounds with addition of metal oxides, a ternary system consisting of lead titanate, lead zirconate and lead magnesium niobate (Pb (Mg 1/3 Nb 2/3 ) O 3 ) It is particularly desirable to employ a lead-based perovskite compound in which nickel oxide (NiO) is added. The piezoelectric / electrostrictive films 116 and 120 are desirably formed by firing after film formation by screen printing. Of course, instead of the screen printing method, a film forming method such as a sol-gel method may be adopted.

圧電/電歪体膜116,120の焼成温度は、1200℃以上1300℃以下であることが望ましい。焼成温度が1200℃より低くなると、圧電/電歪体膜116,120が緻密化しない傾向があり、1300℃以上となると、圧電/電歪体膜116,120の分解が起こりやすくなるからである。   The firing temperature of the piezoelectric / electrostrictive films 116 and 120 is desirably 1200 ° C. or higher and 1300 ° C. or lower. This is because when the firing temperature is lower than 1200 ° C., the piezoelectric / electrostrictive films 116 and 120 tend not to be densified, and when the firing temperature is 1300 ° C. or higher, the piezoelectric / electrostrictive films 116 and 120 are likely to be decomposed. .

圧電/電歪体膜116,120の焼成にあたっては、圧電/電歪体膜116,120の分解を抑制するため、材質が酸化マグネシウム(MgO)や酸化アルミニウム(Al23)の鞘の中で焼成を行うことが望ましく、圧電/電歪体膜116,120と同じ組成を有する粉末を雰囲気調整剤として鞘の中に収容した状態で焼成を行うことがさらに望ましい。 In firing the piezoelectric / electrostrictive films 116, 120, in order to suppress the decomposition of the piezoelectric / electrostrictive films 116, 120, the sheath is made of magnesium oxide (MgO) or aluminum oxide (Al 2 O 3 ). It is desirable to perform the firing in a state where the powder having the same composition as the piezoelectric / electrostrictive films 116 and 120 is contained in the sheath as an atmosphere adjusting agent.

圧電/電歪体膜116,120の膜厚の平均は、2μm以上15μm以下であることが望ましい。膜厚の平均がこの範囲を下回ると、圧電/電歪体膜116,120の絶縁性が低下する傾向にあり、膜厚の平均がこの範囲を上回ると、屈曲変位の変位量が低下する傾向にあるからである。   The average film thickness of the piezoelectric / electrostrictive films 116 and 120 is desirably 2 μm or more and 15 μm or less. When the average film thickness is less than this range, the insulation properties of the piezoelectric / electrostrictive films 116 and 120 tend to decrease. When the average film thickness exceeds this range, the amount of bending displacement tends to decrease. Because it is.

圧電/電歪体膜116,120は、屈曲振動領域182の短手方向に沿って、屈曲1次モードの腹となる屈曲振動領域182の中央部から屈曲1次モードの節となる屈曲振動領域182の縁部に向かって膜厚が連続的に厚くなってゆく膜厚分布を有している。このような膜厚分布を採用すれば、外層電極膜110や内層電極膜118の端部において圧電/電歪体膜116,120の膜厚が厚くなるので、絶縁破壊を防ぐことができるとともに、屈曲1次モードの腹において圧電/電歪体膜116,120の膜厚が薄くなり圧電/電歪体膜116,120の剛性が低下するので、圧電/電歪素子1の変位量を増加させることができる。外層電極膜110や内層電極膜118の端部において圧電/電歪体膜116,120の膜厚を厚くすることが絶縁破壊を防ぐのに有効であるのは、絶縁破壊の起こりやすさは、屈曲1次モードの腹から外層電極膜110や内層電極膜118の端部へ向かって増加する傾向にあるからである。   The piezoelectric / electrostrictive films 116 and 120 are formed in a bending vibration region that becomes a node of the bending primary mode from the central portion of the bending vibration region 182 that becomes the antinode of the bending primary mode along the short direction of the bending vibration region 182. It has a film thickness distribution in which the film thickness continuously increases toward the edge of 182. By adopting such a film thickness distribution, the film thickness of the piezoelectric / electrostrictive films 116 and 120 is increased at the end portions of the outer electrode film 110 and the inner electrode film 118, so that dielectric breakdown can be prevented and Since the film thickness of the piezoelectric / electrostrictive films 116 and 120 is reduced and the rigidity of the piezoelectric / electrostrictive films 116 and 120 is reduced at the antinode of the bending primary mode, the displacement amount of the piezoelectric / electrostrictive element 1 is increased. be able to. Increasing the film thickness of the piezoelectric / electrostrictive films 116 and 120 at the end portions of the outer electrode film 110 and the inner electrode film 118 is effective in preventing dielectric breakdown. This is because there is a tendency to increase from the antinodes of the bent primary mode toward the end portions of the outer electrode film 110 and the inner electrode film 118.

なお、このような効果を得るためには、屈曲振動領域1の短手方向に沿って圧電/電歪体膜116,120の膜厚分布を見た場合に、屈曲振動領域182の中央部よりも膜厚が厚くなる部分を屈曲振動領域182の中央部と縁部との間に持っていれば足りる。したがって、膜厚が「連続的に」厚くなってゆくことは必須ではなく、図6の模式図に示すように、屈曲振動領域282の中央部から屈曲振動領域282の縁部に向かって膜厚が「不連続的に」厚くなってゆくようにしてもよい。図6は、基体202の薄肉部204の上に、下層電極膜212、圧電/電歪体膜216及び上層電極膜214をこの順序で積層した1層構造を有する圧電/電歪素子2の断面図となっている。図6にも、屈曲振動領域282の短手方向をX軸方向、長手方向をY軸方向とするXYZ直交座標系が定義されている。   In order to obtain such an effect, when the film thickness distribution of the piezoelectric / electrostrictive films 116 and 120 is observed along the short direction of the bending vibration region 1, the central portion of the bending vibration region 182 is used. However, it is sufficient to have a portion where the film thickness is increased between the center portion and the edge portion of the bending vibration region 182. Therefore, it is not essential that the film thickness increases “continuously”, and as shown in the schematic diagram of FIG. 6, the film thickness increases from the center of the bending vibration region 282 toward the edge of the bending vibration region 282. May be "discontinuously" thickening. 6 shows a cross section of the piezoelectric / electrostrictive element 2 having a single-layer structure in which a lower electrode film 212, a piezoelectric / electrostrictive film 216, and an upper electrode film 214 are laminated in this order on the thin portion 204 of the base 202. FIG. It is a figure. 6 also defines an XYZ orthogonal coordinate system in which the lateral direction of the bending vibration region 282 is the X-axis direction and the longitudinal direction is the Y-axis direction.

絶縁破壊を効果的に回避するためには、屈曲1次モードの腹と圧電/電歪体膜116,120を挟んで外層電極膜110及び内層電極膜118が対向する作動領域194の縁部との中間点よりも作動領域194の縁部寄りにおいて圧電/電歪体膜116,120の膜厚が最大となるようにすることが望ましい。   In order to effectively avoid the dielectric breakdown, the edge of the working region 194 where the outer layer electrode film 110 and the inner layer electrode film 118 are opposed to each other with the antinode of the bending primary mode sandwiched between the piezoelectric / electrostrictive films 116 and 120 It is desirable that the film thicknesses of the piezoelectric / electrostrictive films 116 and 120 be maximized closer to the edge of the operating region 194 than the intermediate point.

また、絶縁破壊を特に効果的に回避するためには、圧電/電歪体膜116,120を挟んで外層電極膜110及び内層電極膜118が対向する作動領域194の端部において圧電/電歪体膜116,120の膜厚が最大となるようにすることが望ましい。   In order to particularly effectively avoid the dielectric breakdown, the piezoelectric / electrostrictive film is formed at the end of the working region 194 where the outer electrode film 110 and the inner electrode film 118 face each other with the piezoelectric / electrostrictive films 116 and 120 interposed therebetween. It is desirable to maximize the thickness of the body films 116 and 120.

さらに、圧電/電歪体膜116,120の膜厚の最小値に対する最大値の比は1.01以上3.0以下であることが望ましい。この範囲を下回ると、絶縁破壊を回避しつつ変位量を増加させることが困難になる傾向があり、この範囲を上回ると、屈曲振動領域182の中央部の膜厚が薄くなりすぎて屈曲振動領域182の中央部に電界が集中し絶縁破壊が起こりやすくなる傾向があるからである。   Furthermore, the ratio of the maximum value to the minimum value of the film thickness of the piezoelectric / electrostrictive films 116 and 120 is desirably 1.01 or more and 3.0 or less. If it falls below this range, it tends to be difficult to increase the amount of displacement while avoiding dielectric breakdown. If this range is exceeded, the film thickness at the center of the flexural vibration region 182 becomes too thin and the flexural vibration region This is because the electric field concentrates at the center of 182 and dielectric breakdown tends to occur.

圧電/電歪素子1では、内部電極層118によって隔てられた複数の圧電/電歪体膜(下層圧電/電歪体膜116及び上層圧電/電歪体膜120)の全部が、屈曲振動領域182の短手方向に沿って、屈曲振動領域182の中央部から端部に向かって膜厚が連続的に厚くなってゆく膜厚分布を有している。ただし、図7の模式図に示すように、複数の圧電/電歪体膜(下層圧電/電歪体膜316及び上層圧電/電歪体膜320)の一部(図7では、上層圧電/電歪体膜320)のみが、屈曲振動領域382の短手方向に沿って、屈曲振動領域382の中央部から端部に向かって膜厚が連続的に厚くなってゆく膜厚分布を有しているようにしても、絶縁破壊を防ぎつつ変位量を増加させるという効果を得ることはできる。図7は、基体302の薄肉部304の上に、下層電極膜312、下層圧電/電歪体膜316、内層電極膜318、上層圧電/電歪体膜320及び上層電極膜314をこの順序で積層した2層構造を有する圧電/電歪素子3の断面図となっている。図7にも、屈曲振動領域382の短手方向をX軸方向、長手方向をY軸方向とするXYZ直交座標系が
定義されている。なお、複数の圧電/電歪体膜の一部のみが上述の膜厚分布を有するようにする場合、最上層の上層圧電/電歪体膜320が上述の膜厚分布を有するようにすることが望ましい。これは、最上層の上層圧電/電歪体膜320が最も湿度の影響を受けやすいからである。
In the piezoelectric / electrostrictive element 1, all of the plurality of piezoelectric / electrostrictive films (lower piezoelectric / electrostrictive film 116 and upper piezoelectric / electrostrictive film 120) separated by the internal electrode layer 118 are in a flexural vibration region. It has a film thickness distribution in which the film thickness continuously increases from the center to the end of the bending vibration region 182 along the short direction of 182. However, as shown in the schematic diagram of FIG. 7, a part of the plurality of piezoelectric / electrostrictive films (lower piezoelectric / electrostrictive film 316 and upper piezoelectric / electrostrictive film 320) (in FIG. 7, upper piezoelectric / electrostrictive film 320). Only the electrostrictive body film 320) has a film thickness distribution in which the film thickness continuously increases from the center to the end of the bending vibration region 382 along the short direction of the bending vibration region 382. However, it is possible to obtain an effect of increasing the amount of displacement while preventing dielectric breakdown. In FIG. 7, the lower electrode film 312, the lower piezoelectric / electrostrictive film 316, the inner electrode film 318, the upper piezoelectric / electrostrictive film 320 and the upper electrode film 314 are arranged in this order on the thin portion 304 of the substrate 302. 2 is a cross-sectional view of a piezoelectric / electrostrictive element 3 having a laminated two-layer structure. 7 also defines an XYZ orthogonal coordinate system in which the lateral direction of the bending vibration region 382 is the X-axis direction and the longitudinal direction is the Y-axis direction. When only a part of the plurality of piezoelectric / electrostrictive films has the above-mentioned film thickness distribution, the uppermost piezoelectric / electrostrictive film 320 of the uppermost layer should have the above-mentioned film thickness distribution. Is desirable. This is because the uppermost piezoelectric / electrostrictive film 320 of the uppermost layer is most susceptible to humidity.

加えて、圧電/電歪素子1では、作動領域194が屈曲振動領域182の内側に内包されているが、図8の断面図に示すように、作動領域494が屈曲振動領域482の外側にはみ出していてもよい。この場合においては、屈曲振動領域482の短手方向に沿って圧電/電歪体膜416,420の膜厚分布を見た場合に、屈曲振動領域482の中央部よりも膜厚が厚くなる部分を屈曲振動領域482の中央部と作動領域494の端部との間に持っていれば足りる。図8は、基体402の薄肉部404の上に、下層電極膜412、下層圧電/電歪体膜416、内層電極膜418、上層圧電/電歪体膜420及び上層電極膜414をこの順序で積層した2層構造を有する圧電/電歪素子4の断面図となっている。図8にも、屈曲振動領域482の短手方向をX軸方向、長手方向をY軸方向とするXYZ直交座標系が定義されている。   In addition, in the piezoelectric / electrostrictive element 1, the operation region 194 is included inside the bending vibration region 182, but the operation region 494 protrudes outside the bending vibration region 482 as shown in the sectional view of FIG. It may be. In this case, when the film thickness distribution of the piezoelectric / electrostrictive films 416 and 420 is observed along the short direction of the bending vibration region 482, the portion where the film thickness is thicker than the central portion of the bending vibration region 482. Between the center of the bending vibration region 482 and the end of the operation region 494 is sufficient. In FIG. 8, the lower electrode film 412, the lower piezoelectric / electrostrictive film 416, the inner electrode film 418, the upper piezoelectric / electrostrictive film 420, and the upper electrode film 414 are arranged in this order on the thin portion 404 of the substrate 402. 2 is a cross-sectional view of a piezoelectric / electrostrictive element 4 having a laminated two-layer structure. 8 also defines an XYZ orthogonal coordinate system in which the lateral direction of the bending vibration region 482 is the X-axis direction and the longitudinal direction is the Y-axis direction.

<内層電極膜>
内層電極膜118は、白金又は白金を主成分とする合金の焼結体である。もちろん、同時焼成に耐えうるものであれば、内層電極膜118を他の導電材料で構成することも妨げられない。
<Inner electrode film>
The inner electrode film 118 is a sintered body of platinum or an alloy containing platinum as a main component. Of course, as long as it can withstand simultaneous firing, the inner electrode film 118 is not prevented from being made of another conductive material.

内層電極膜118の膜厚は、0.5μm以上3.0μm以下であることが望ましい。この範囲を下回ると同時焼成時に内層電極膜118の断線が起こりやすくなる傾向にあるからである。また、この範囲を上回ると変位量が減少する傾向にあるからである。   The film thickness of the inner electrode film 118 is desirably 0.5 μm or more and 3.0 μm or less. This is because if the thickness falls below this range, the inner electrode film 118 tends to break during simultaneous firing. Further, if the amount exceeds this range, the amount of displacement tends to decrease.

内層電極膜118も、望ましくは、スクリーン印刷法で成膜を行った後に焼成を行うことにより形成する。もちろん、スクリーン印刷法以外の成膜法を採用してもよい。   The inner layer electrode film 118 is also preferably formed by firing after film formation by screen printing. Of course, a film forming method other than the screen printing method may be employed.

<外層電極膜>
外層電極膜112は、望ましくは、酸化チタン(TiO2)を添加した白金(Pt)の焼結体である。もちろん、酸化チタンを添加した白金以外の導電材料を採用してもよい。
<Outer electrode film>
The outer electrode film 112 is desirably a sintered body of platinum (Pt) to which titanium oxide (TiO 2 ) is added. Of course, a conductive material other than platinum to which titanium oxide is added may be used.

外層電極膜114は、望ましくは、金(Au)の焼結体である。もちろん、金以外の導電材料を採用してもよい。   The outer electrode film 114 is preferably a gold (Au) sintered body. Of course, a conductive material other than gold may be employed.

外層電極膜112,114も、望ましくは、スクリーン印刷法で成膜を行った後に焼成を行うことにより形成する。もちろん、スクリーン印刷法以外の成膜法を採用してもよい
The outer electrode films 112 and 114 are also preferably formed by firing after film formation by screen printing. Of course, a film forming method other than the screen printing method may be employed.

<スクリーン印刷法による圧電/電歪体膜の形成>
先述の膜厚分布を有する圧電/電歪体膜116,120を平坦な被成膜面にスクリーン印刷法により成膜するためには、スクリーン印刷を複数回繰り返せばよい。例えば、非中央部が乳剤で塞がれ中央部が開口部となっている第1のスクリーンマスクを用いて、ペースト状にした圧電/電歪体を中央部にスクリーン印刷した後、図9の断面図に示すような、中央部51が乳剤501で塞がれ非中央部52が開口部となっている第2のスクリーンマスク5を用いて、ペースト状にした圧電/電歪体を非中央部52にスクリーン印刷すればよい。このようなスクリーン印刷によれば、第2のスクリーンマスク5の乳剤501が既にスクリーン印刷されている中央部51の圧電/電歪体と接触するので、第2のスクリーンマスク5の印刷面は第1のスクリーンマスクの印刷面より高くなり、中央部51よりも膜厚が厚い圧電/電歪体膜を非中央部52に得ることができる。
<Formation of piezoelectric / electrostrictive film by screen printing method>
In order to form the piezoelectric / electrostrictive films 116 and 120 having the above-described film thickness distribution on a flat film formation surface by a screen printing method, screen printing may be repeated a plurality of times. For example, after a screen-printed piezoelectric / electrostrictive body in the form of a paste is screened on the central portion using a first screen mask in which the non-central portion is covered with an emulsion and the central portion is an opening, As shown in the cross-sectional view, the paste / piezoelectric / electrostrictive body is non-centered using the second screen mask 5 in which the central portion 51 is closed with the emulsion 501 and the non-central portion 52 is an opening. What is necessary is just to screen-print on the part 52. FIG. According to such screen printing, since the emulsion 501 of the second screen mask 5 comes into contact with the piezoelectric / electrostrictive body of the central portion 51 that has already been screen-printed, the printing surface of the second screen mask 5 is the first surface. A piezoelectric / electrostrictive film that is higher than the printing surface of the first screen mask and has a larger film thickness than the central portion 51 can be obtained in the non-central portion 52.

ここで、スクリーン印刷に用いる圧電/電歪体のペーストの粘度を低くすれば、中央部と非中央部との段差がなめらかになり、先述の「連続的に厚くなってゆく」圧電/電歪体膜を得ることができ、粘度を高くすれば、先述の「不連続的に厚くなってゆく」圧電/電歪体膜を得ることができる。   Here, if the viscosity of the paste of the piezoelectric / electrostrictive body used for screen printing is lowered, the level difference between the central part and the non-central part becomes smooth, and the above-mentioned “continuously thickening” piezoelectric / electrostrictive A body film can be obtained, and if the viscosity is increased, the above-mentioned “discontinuously thickening” piezoelectric / electrostrictive film can be obtained.

また、図9の断面図に示すような、中央部51を塞いでいる乳剤501がスクリーンメッシュ505から印刷面に向かって突出しているスクリーンマスク5に代えて、図10の断面図に示すような、中央部61を塞いでいる乳剤601がスクリーンメッシュ605から突出していないスクリーンマスク6を用いることもできる。図10の断面図に示すスクリーンマスク6によれば、開口部となる非中央部62から浸入した圧電/電歪体のペーストが乳剤601により塞がれた中央部61に回り込むことが可能となり、形成される圧電/電歪膜の膜厚の連続性を確保しやすくなる。   Further, as shown in the cross-sectional view of FIG. 9, instead of the screen mask 5 in which the emulsion 501 blocking the central portion 51 protrudes from the screen mesh 505 toward the printing surface, as shown in the cross-sectional view of FIG. Alternatively, the screen mask 6 in which the emulsion 601 blocking the central portion 61 does not protrude from the screen mesh 605 can be used. According to the screen mask 6 shown in the cross-sectional view of FIG. 10, it becomes possible for the paste of piezoelectric / electrostrictive body that has entered from the non-central portion 62 that becomes the opening to wrap around the central portion 61 blocked by the emulsion 601. It becomes easy to ensure the continuity of the film thickness of the formed piezoelectric / electrostrictive film.

なお、中央部のスクリーン印刷及び非中央部のスクリーン印刷をそれぞれ1回づつ行うのではなく、中央部のスクリーン印刷を2回以上繰り返してもよいし、非中央部のスクリーン印刷を2回以上繰り返してもよい。   In addition, screen printing in the central part and screen printing in the non-central part are not performed once each, but screen printing in the central part may be repeated twice or more, or screen printing in the non-central part is repeated twice or more. May be.

この他、中央部のスクリーン印刷を行ってから非中央部のスクリーン印刷を行うのではなく、非中央部のスクリーン印刷を行ってから中央部のスクリーン印刷を行ってもよく、中央部のスクリーン印刷と非中央部のスクリーン印刷とを交互に行ってもよい。後者の場合、中央部のスクリーン印刷を2回以上行ってもよいし、非中央部のスクリーン印刷を2回以上行ってもよい。   In addition, screen printing in the central part may be performed after screen printing in the non-central part, instead of screen printing in the non-central part after screen printing in the central part. And non-center screen printing may be performed alternately. In the latter case, screen printing at the central portion may be performed twice or more, and screen printing at the non-central portion may be performed twice or more.

また、中央部及び非中央部の2領域に分割してスクリーン印刷を行うのではなく、3領域以上に分割してスクリーン印刷を行うことも許される。   Further, instead of dividing the screen into two areas of the central part and the non-central part, screen printing is allowed to be divided into three areas or more.

なお、スクリーンメッシュのないメタルマスクを用いてスクリーン印刷を行う場合、ウレタン樹脂等でできた硬度の低いスキージを用いれば、開口部となる中央部をえぐりとって、先述の膜厚分布を有する圧電/電歪体膜116,120を1回のスクリーン印刷で形成することができる。また、硬度の高いスキージを用いることで、表面が平坦な圧電/電歪体膜を形成することができるため、中央部が凸となっている被成膜面に先述の膜厚分布を有する圧電/電歪体膜116,120を同様に1回のスクリーン印刷で形成することができる。これらの場合において、乳剤を付加したメタルマスクを使用すれば、にじみ等の不具合を抑制することができ、先述の膜厚分布を有する圧電/電歪体膜116,120を安定して形成することができる。   In addition, when screen printing is performed using a metal mask without a screen mesh, if a squeegee with low hardness made of urethane resin or the like is used, the piezoelectric film having the above-described film thickness distribution by passing through the central portion serving as the opening. / The electrostrictive films 116 and 120 can be formed by one screen printing. In addition, since a piezoelectric / electrostrictive film having a flat surface can be formed by using a squeegee with high hardness, a piezoelectric film having the above-described film thickness distribution on the film formation surface having a convex central portion. / The electrostrictive films 116 and 120 can be similarly formed by one screen printing. In these cases, if a metal mask to which an emulsion is added is used, problems such as bleeding can be suppressed, and the piezoelectric / electrostrictive films 116 and 120 having the above-described film thickness distribution can be stably formed. Can do.

この他、メタルマスクを用いてスクリーン印刷を行う場合も、スクリーンマスクを用いてスクリーン印刷を行う場合と同様に、非中央部が塞がれ中央部が開口部となっている第1のメタルマスクを用いて、ペースト状にした圧電/電歪体を中央部にスクリーン印刷した後、中央部が塞がれ非中央部が開口部となっている第2のメタルマスクを用いて、ペースト状にした圧電/電歪体を非中央部にスクリーン印刷することができる。   In addition, when the screen printing is performed using the metal mask, the first metal mask in which the non-central portion is closed and the central portion is an opening, as in the case where the screen printing is performed using the screen mask. After the paste-like piezoelectric / electrostrictive body is screen-printed in the central portion using the second metal mask having the central portion closed and the non-central portion opened, the paste is formed. The piezoelectric / electrostrictive body thus made can be screen-printed on the non-central portion.

図11〜図15は、この第2のメタルマスクとして使用することができるメタルマスク7a〜7eの模式図である。図11〜図15は、メタルマスク7a〜7eの斜視図となっている。   11 to 15 are schematic views of metal masks 7a to 7e that can be used as the second metal mask. 11 to 15 are perspective views of the metal masks 7a to 7e.

メタルマスク7aは、図11に示すように、板厚が略均一な金属板71aに開口部72aを形成した構造を有している。開口部72aは、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する非中央部に形成されている。   As shown in FIG. 11, the metal mask 7a has a structure in which an opening 72a is formed in a metal plate 71a having a substantially uniform plate thickness. The opening 72a is formed in a non-central portion that opposes a portion where the film thickness of the piezoelectric / electrostrictive films 116, 120 is thicker than the bending primary mode antinode during screen printing.

メタルマスク7bは、図12に示すように、非中央部よりも中央部の板厚が薄い金属板71bに開口部72bを形成した構造を有している。開口部72bは、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する非中央部に形成されている。図12の斜視図に示すメタルマスク7bによれば、開口部72bとなる非中央部から浸入した圧電/電歪体のペーストが金属板71bにより塞がれた中央部に回り込むことが可能となり、形成される圧電/電歪膜116,120の膜厚の連続性を確保しやすくなる。   As shown in FIG. 12, the metal mask 7b has a structure in which an opening 72b is formed in a metal plate 71b whose central portion is thinner than the non-central portion. The opening 72b is formed at a non-central portion facing the portion where the film thickness of the piezoelectric / electrostrictive films 116, 120 is thicker than the antinode of the bending primary mode during screen printing. According to the metal mask 7b shown in the perspective view of FIG. 12, it becomes possible for the paste of the piezoelectric / electrostrictive body that has entered from the non-central portion that becomes the opening 72b to wrap around the central portion blocked by the metal plate 71b. It becomes easy to ensure the continuity of the film thickness of the formed piezoelectric / electrostrictive films 116 and 120.

また、金属板71c〜71eの印刷面側に乳剤層73c〜73eを付加したメタルマスク7c〜7eを使用することも望ましい。   It is also desirable to use metal masks 7c to 7e in which emulsion layers 73c to 73e are added to the printing surface side of the metal plates 71c to 71e.

メタルマスク7cは、図13に示すように、板厚が略均一な金属板71cの印刷面側に乳剤層73cを付加するとともに開口部72cを形成した構造を有している。開口部72cは、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する非中央部に形成されている。乳剤層73cは、金属板71cの印刷面側の開口部72cを除く非開口部の全体に付加されている。   As shown in FIG. 13, the metal mask 7c has a structure in which an emulsion layer 73c is added to the printing surface side of the metal plate 71c having a substantially uniform thickness and an opening 72c is formed. The opening 72c is formed in a non-central portion that opposes a portion where the film thickness of the piezoelectric / electrostrictive films 116 and 120 is thicker than the antinode of the bending primary mode during screen printing. The emulsion layer 73c is added to the entire non-opening except for the opening 72c on the printing surface side of the metal plate 71c.

メタルマスク7dは、図14に示すように、非中央部よりも中央部の板厚が薄い金属板71dに乳剤層73dを付加するとともに開口部72dを形成した構造を有している。開口部72dは、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する非中央部に形成されている。乳剤層73dは、金属板71dの印刷面側の開口部72dを除く非開口部の全体に付加されている。   As shown in FIG. 14, the metal mask 7d has a structure in which an emulsion layer 73d is added and an opening 72d is formed on a metal plate 71d whose central portion is thinner than the non-central portion. The opening 72d is formed at a non-central portion facing the portion where the piezoelectric / electrostrictive films 116, 120 are thicker than the antinode of the bending primary mode during screen printing. The emulsion layer 73d is added to the entire non-opening except for the opening 72d on the printing surface side of the metal plate 71d.

メタルマスク7eは、図15に示すように、非中央部よりも中央部の板厚が薄い金属板71eに乳剤層を付加するとともに開口部72eを形成した構造を有している。開口部72eは、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する非中央部に形成されている。乳剤層73eは、金属板71eの印刷面側の開口部72eを除く非開口部の一部を占める中央部のみに付加されている。   As shown in FIG. 15, the metal mask 7e has a structure in which an emulsion layer is added to the metal plate 71e whose central portion is thinner than the non-central portion and an opening 72e is formed. The opening 72e is formed in a non-central portion facing the portion where the film thickness of the piezoelectric / electrostrictive films 116, 120 is thicker than the antinode of the bending primary mode during screen printing. The emulsion layer 73e is added only to the central portion that occupies a part of the non-opening except the opening 72e on the printing surface side of the metal plate 71e.

このように金属板71c〜71eよりも柔らかい乳剤層73c〜73eを印刷面側に付加することにより、硬い金属板71c〜71eが被成膜面と接触せず柔らかい乳剤層73c〜73eが被成膜面に接触するようになるので、メタルマスク7c〜7eと被成膜面との密着性を向上することができる。   Thus, by adding the emulsion layers 73c to 73e softer than the metal plates 71c to 71e to the printing surface side, the hard metal plates 71c to 71e do not come into contact with the film formation surface and the soft emulsion layers 73c to 73e are formed. Since it comes into contact with the film surface, the adhesion between the metal masks 7c to 7e and the film formation surface can be improved.

これらのスクリーンマスク5,6やメタルマスク7a〜7eに代表される、圧電/電歪体膜116,120の膜厚が屈曲1次モードの腹よりも厚くなる部分とスクリーン印刷時に対向する部分が開口部となっている印刷版を使用することにより、圧電/電歪体膜116,120を容易に形成することができる。   A portion where the film thickness of the piezoelectric / electrostrictive films 116 and 120, which is typified by the screen masks 5 and 6 and the metal masks 7a to 7e, is thicker than the antinodes of the bending primary mode, and a portion facing when screen printing is performed. By using a printing plate having an opening, the piezoelectric / electrostrictive films 116 and 120 can be easily formed.

<不要な圧電/電歪体をエッチングにより除去することによる圧電/電歪体膜の形成>
先述の膜厚分布を有する圧電/電歪体膜116,120をゾルゲル法により成膜するためには、中央部が凸となっている被成膜面に圧電/電歪体のゾルゲル溶液を塗布し、不要な圧電/電歪体をエッチングにより除去すればよい。
<Formation of piezoelectric / electrostrictive film by removing unnecessary piezoelectric / electrostrictive body by etching>
In order to form the piezoelectric / electrostrictive films 116 and 120 having the above-described film thickness distribution by the sol-gel method, a piezoelectric / electrostrictive sol-gel solution is applied to the film-forming surface having a convex central portion. Then, an unnecessary piezoelectric / electrostrictive body may be removed by etching.

<実験>
以下では、圧電/電歪体膜116,120の膜厚分布を様々に変更しながら図1及び図2に示す圧電/電歪素子1を作製し、作製した圧電/電歪素子1を評価した結果について図16のフローチャートを参照しながら説明する。
<Experiment>
In the following, while changing the film thickness distribution of the piezoelectric / electrostrictive films 116 and 120, the piezoelectric / electrostrictive element 1 shown in FIGS. 1 and 2 was produced, and the produced piezoelectric / electrostrictive element 1 was evaluated. The results will be described with reference to the flowchart of FIG.

圧電/電歪素子1の作製にあたっては、まず、基体102を作製した(ステップS101)。基体102は、部分安定化酸化ジルコニウムのセラミックグリーンシートを積層したセラミックグリーン積層体を1450℃の温度で焼成することにより作製した。   In producing the piezoelectric / electrostrictive element 1, first, the base 102 was produced (step S101). The substrate 102 was prepared by firing a ceramic green laminate in which ceramic green sheets of partially stabilized zirconium oxide were laminated at a temperature of 1450 ° C.

続いて、基体102の薄肉部104の上に積層体108を形成した(ステップS102〜S109)。   Subsequently, the laminated body 108 was formed on the thin portion 104 of the base body 102 (Steps S102 to S109).

積層体108の形成にあたっては、最初に、白金の粉末及び酸化チタンの粉末を含む下層電極ペーストを薄肉部104の上にスクリーン印刷法で塗布し(ステップS102)、形成された下層電極膜112を1300℃で焼成した(ステップS103)。これにより、基体102と一体化された下層電極膜112の焼結体を得た。   In forming the laminated body 108, first, a lower layer electrode paste containing platinum powder and titanium oxide powder is applied onto the thin wall portion 104 by a screen printing method (step S102), and the formed lower layer electrode film 112 is applied. Firing was performed at 1300 ° C. (step S103). As a result, a sintered body of the lower electrode film 112 integrated with the base body 102 was obtained.

続いて、仮焼された圧電/電歪材料の粉末を含む圧電/電歪体ペースト、白金の粉末を含む内層電極ペースト及び圧電/電歪体ペーストをスクリーン印刷法で順次塗布し(ステップS104〜S106)、形成された下層圧電/電歪体膜116、内層電極膜118、上層圧電/電歪体膜120を1250℃で同時焼成した(ステップS107)。これにより、基体102及び下層電極膜112と一体化された下層圧電/電歪体膜116、内層電極膜118及び上層圧電/電歪体膜120の焼結体を得た。圧電/電歪材料は、20Pb(Mg0.87/3Ni0.13/3Nb2/3)O3−43PbTiO3−37PbZrO3を使用した。 Subsequently, the piezoelectric / electrostrictive paste including the calcined piezoelectric / electrostrictive material powder, the inner layer electrode paste including the platinum powder, and the piezoelectric / electrostrictive paste are sequentially applied by screen printing (steps S104 to S104). S106), the formed lower piezoelectric / electrostrictive film 116, inner electrode film 118, and upper piezoelectric / electrostrictive film 120 were simultaneously fired at 1250 ° C. (step S107). As a result, a sintered body of the lower layer piezoelectric / electrostrictive film 116, the inner layer electrode film 118, and the upper layer piezoelectric / electrostrictive film 120 integrated with the substrate 102 and the lower layer electrode film 112 was obtained. The piezoelectric / electrostrictive material, was used 20Pb (Mg 0.87 / 3 Ni 0.13 / 3 Nb 2/3) O 3 -43PbTiO 3 -37PbZrO 3.

さらに続いて、金粉末を含む上層電極ペーストをスクリーン印刷法で塗布し(ステップS108)、形成された上層電極膜114を800℃で焼成した(ステップS109)。これにより、上層電極膜114の焼結体を得た。   Subsequently, an upper electrode paste containing gold powder was applied by screen printing (step S108), and the formed upper electrode film 114 was baked at 800 ° C. (step S109). Thereby, a sintered body of the upper electrode film 114 was obtained.

積層体108の形成においては、下層電極膜112、下層圧電/電歪体膜116、内層電極膜118、上層圧電/電歪体膜120及び上層電極膜114の平面パターンは、下層電極膜112と上層電極膜114とが電気的に同電位となり、下層電極膜112と内層電極膜116とが下層圧電/電歪体膜116を挟んで対向し、内層電極膜118と上層電極膜114とが上層圧電/電歪体膜120を挟んで対向するものを採用した。また、下層電極膜112、内層電極膜118、上層電極膜114の焼成後の膜厚が、それぞれ、1.0〜2.0μm、1.0〜1.5μm、0.1〜0.4μmとなり、幅(短手方向の長さ)が140μmとなるように、下層電極ペースト、内層電極ペースト、上層電極ペーストの塗布時の膜厚及び幅を調整した。さらに、下層圧電/電歪体膜116、上層圧電/電歪体膜120の焼成後の膜厚の平均が、それぞれ、6.5μm、7.0μmとなるように、圧電/電歪体ペーストの塗布時の膜厚を調整した。   In the formation of the laminated body 108, the planar pattern of the lower electrode film 112, the lower piezoelectric / electrostrictive film 116, the inner electrode film 118, the upper piezoelectric / electrostrictive film 120, and the upper electrode film 114 is the same as that of the lower electrode film 112. The upper electrode film 114 is electrically at the same potential, the lower electrode film 112 and the inner electrode film 116 are opposed to each other with the lower piezoelectric / electrostrictive film 116 interposed therebetween, and the inner electrode film 118 and the upper electrode film 114 are upper layers. A film facing the piezoelectric / electrostrictive film 120 is used. The film thicknesses after firing of the lower electrode film 112, the inner electrode film 118, and the upper electrode film 114 are 1.0 to 2.0 μm, 1.0 to 1.5 μm, and 0.1 to 0.4 μm, respectively. The film thickness and width during application of the lower layer electrode paste, inner layer electrode paste, and upper layer electrode paste were adjusted so that the width (length in the short direction) was 140 μm. Further, the piezoelectric / electrostrictive paste of the piezoelectric / electrostrictive paste is adjusted so that the average film thickness after firing of the lower piezoelectric / electrostrictive film 116 and the upper piezoelectric / electrostrictive film 120 becomes 6.5 μm and 7.0 μm, respectively. The film thickness at the time of application was adjusted.

積層体108の形成後、60℃の温度下で外層電極膜110と内層電極膜118との間に100Vの電圧を印加することにより圧電/電歪素子1の分極処理を行った(ステップS110)。   After the formation of the laminate 108, the piezoelectric / electrostrictive element 1 was subjected to polarization treatment by applying a voltage of 100 V between the outer electrode film 110 and the inner electrode film 118 at a temperature of 60 ° C. (step S110). .

そして、屈曲変位の変位量を測定した。変位量は、内層電極膜118と外層電極膜110との間に30Vの駆動電圧を印加したときの変位量をレーザードップラー変位計で測定したものである。さらに、圧電/電歪素子1に高湿度下で30Vのバイアス電圧を30時間印加し、絶縁破壊の有無を倍率が150倍の光学顕微鏡で調べた。絶縁破壊の有無は、実質的に問題となるような絶縁破壊が起こった圧電/電歪素子1には直径20μm程度の円形の破裂痕が観察されることを考慮して、そのような破裂痕が観察されるか否かにより判断した。   Then, the amount of bending displacement was measured. The displacement amount is obtained by measuring the displacement amount when a driving voltage of 30 V is applied between the inner layer electrode film 118 and the outer layer electrode film 110 with a laser Doppler displacement meter. Further, a bias voltage of 30 V was applied to the piezoelectric / electrostrictive element 1 under high humidity for 30 hours, and the presence or absence of dielectric breakdown was examined with an optical microscope having a magnification of 150 times. The presence / absence of dielectric breakdown is determined in consideration of the fact that a circular rupture mark having a diameter of about 20 μm is observed in the piezoelectric / electrostrictive element 1 in which the dielectric breakdown has caused a substantial problem. Judgment was made based on whether or not was observed.

図17〜図20に示す一覧表中の実施例1〜18は、圧電/電歪体膜116,120の膜厚分布を本発明の範囲内で様々に変更した圧電/電歪素子1について、変位量及び絶縁性の評価結果を示したものであり、図17〜図20に示す一覧表中の比較例1〜2は、圧電/電歪体膜116,120の膜厚分布を本発明の範囲外とした圧電/電歪素子1について、変位量及び絶縁性の評価結果を示したものである。図17〜図20に示す「変位量」は、30個以上の圧電/電歪素子についての平均値となっている。変位量の測定ばらつきは、概ね、±0.001μmである。さらに、「絶縁性」の欄の「○」は圧電/電歪体膜116,120の全体において絶縁破壊が起こらなかったことを意味しており、「×」は圧電/電歪体膜116,120のいずれかの箇所において絶縁破壊が起こったことを意味している。なお、「△」は作動領域194の縁部においては絶縁破壊が起こらなかったことを意味している。   Examples 1 to 18 in the tables shown in FIGS. 17 to 20 are for the piezoelectric / electrostrictive element 1 in which the film thickness distributions of the piezoelectric / electrostrictive films 116 and 120 are variously changed within the scope of the present invention. The displacement amount and the evaluation result of the insulation are shown, and Comparative Examples 1 and 2 in the lists shown in FIGS. 17 to 20 show the film thickness distribution of the piezoelectric / electrostrictive films 116 and 120 of the present invention. The piezoelectric / electrostrictive element 1 outside the range shows the displacement and the evaluation results of the insulation. The “displacement amount” shown in FIGS. 17 to 20 is an average value for 30 or more piezoelectric / electrostrictive elements. The measurement variation of the displacement amount is generally ± 0.001 μm. Further, “◯” in the “insulating” column means that dielectric breakdown did not occur in the entire piezoelectric / electrostrictive film 116, 120, and “x” represents the piezoelectric / electrostrictive film 116, 120. It means that a dielectric breakdown has occurred at any of 120 locations. “Δ” means that dielectric breakdown did not occur at the edge of the operating region 194.

{作動領域の縁部の膜厚について}
図17の実施例1〜7は、作動領域194の縁部Aにおいて下層圧電/電歪体膜116及び上層圧電/電歪体膜120の膜厚が最大となる圧電/電歪素子1について、屈曲振動領域182の中央部Eにおける下層圧電/電歪体膜116及び上層圧電/電歪体膜120の膜厚TEを一定にしたまま作動領域194の縁部Aにおける下層圧電/電歪体膜116及び上層圧電/電歪体膜120の膜厚TAを変化させた場合の変位量及び絶縁性の評価結果を示している。また、図17の比較例1は、実施例1〜7の圧電/電歪素子1の縁部Aにおける膜厚TAを中央部Eにおける膜厚TEよりも薄くした圧電/電歪素子について、変位量及び絶縁性の評価結果を示している。ここで、図17に示す縁部Aにおける膜厚TAは、中央部Eにおける膜厚TEを基準値である「1」とした場合の相対値である。この点は、続いて説明する図18〜図20においても同様である。
{About the film thickness at the edge of the working area}
In Examples 1 to 7 of FIG. 17, the piezoelectric / electrostrictive element 1 in which the film thickness of the lower piezoelectric / electrostrictive film 116 and the upper piezoelectric / electrostrictive film 120 is maximized at the edge A of the operating region 194 is as follows. The lower piezoelectric / electrostrictive film at the edge A of the working region 194 with the film thickness TE of the lower piezoelectric / electrostrictive film 116 and the upper piezoelectric / electrostrictive film 120 at the center E of the bending vibration region 182 being constant. 116 shows the displacement and insulation evaluation results when the film thickness TA of 116 and the upper piezoelectric / electrostrictive film 120 is changed. In Comparative Example 1 of FIG. 17, the piezoelectric / electrostrictive element in which the film thickness TA at the edge A of the piezoelectric / electrostrictive element 1 of Examples 1 to 7 is thinner than the film thickness TE at the center E is displaced. The evaluation result of quantity and insulation is shown. Here, the film thickness TA at the edge A shown in FIG. 17 is a relative value when the film thickness TE at the center E is set to “1” which is a reference value. This also applies to FIGS. 18 to 20 described later.

図17に示すように、中央部Eにおける膜厚TEに対する縁部Aにおける膜厚TAの比である厚み比TA/TEが0.70である比較例1では、変位量が0.328μmであるのに対して、厚み比TA/TEが1.01〜4.00である実施例1〜7(図22参照)では、変位量が0.344〜0.362μmに増加している。特に、厚み比TA/TEが1.01〜3.00である実施例1〜6では、変位量が0.355〜0.362μmに大きく増加し、圧電/電歪体膜116,120の全体における絶縁破壊を防ぐことができている。すなわち、変位量を増加させるためには、厚み比TA/TEを1.01以上とすることが望ましく、1.01〜3.00とすることがさらに望ましく、圧電/電歪体膜116,120の全体における絶縁破壊を防ぐためには、厚み比TA/TEを1.01〜3.00とすることが望ましいといえる。   As shown in FIG. 17, in Comparative Example 1 in which the thickness ratio TA / TE, which is the ratio of the film thickness TA at the edge A to the film thickness TE at the center E, is 0.70, the displacement is 0.328 μm. On the other hand, in Examples 1-7 (refer to Drawing 22) whose thickness ratio TA / TE is 1.01-4.00, the amount of displacement has increased to 0.344-0.362 micrometers. In particular, in Examples 1 to 6 in which the thickness ratio TA / TE is 1.01 to 3.00, the displacement greatly increases to 0.355 to 0.362 μm, and the entire piezoelectric / electrostrictive films 116 and 120 are obtained. Insulation breakdown can be prevented. That is, in order to increase the amount of displacement, the thickness ratio TA / TE is preferably 1.01 or more, more preferably 1.01 to 3.00, and the piezoelectric / electrostrictive films 116 and 120. In order to prevent dielectric breakdown in the whole, it can be said that the thickness ratio TA / TE is preferably set to 1.01 to 3.00.

{屈曲振動領域の中央部の膜厚について}
図18の実施例8〜14は、縁部Aと中央部Eとの中間点Cにおいて上層圧電/電歪体膜120の膜厚が最大となる圧電/電歪素子1について、縁部Aにおける上層圧電/電歪体膜120の膜厚TA及び中央部Eにおける上層圧電/電歪体膜120の膜厚TEを一定にしたまま中間点Cにおける上層圧電/電歪体膜120の膜厚TCを変化させた場合の変位量及び絶縁性の評価結果を示している。実施例8〜14では、下層圧電/電歪体膜116の膜厚は、作動領域194の縁部Aにおいて最大となり、中央部Eにおける下層圧電/電歪体膜116の膜厚を基準値である「1」とした場合、縁部Aにおける下層圧電/電歪体膜116の膜厚は「1.5」となっている。
{About the film thickness at the center of the flexural vibration region}
In Examples 8 to 14 of FIG. 18, the piezoelectric / electrostrictive element 1 in which the film thickness of the upper piezoelectric / electrostrictive film 120 is maximum at the intermediate point C between the edge A and the center E is The film thickness TC of the upper piezoelectric / electrostrictive film 120 at the intermediate point C while keeping the film thickness TA of the upper piezoelectric / electrostrictive film 120 and the film thickness TE of the upper piezoelectric / electrostrictive film 120 at the center E constant. The displacement amount and the evaluation result of the insulating property when changing is shown. In Examples 8 to 14, the film thickness of the lower piezoelectric / electrostrictive film 116 is maximized at the edge A of the operation region 194, and the film thickness of the lower piezoelectric / electrostrictive film 116 at the center E is set to the reference value. In the case of “1”, the film thickness of the lower layer piezoelectric / electrostrictive film 116 at the edge A is “1.5”.

図18に示すように、中央部Eにおける膜厚TEに対する中間点Cにおける膜厚TCの比である厚み比TC/TEが1.01〜3.00である実施例8〜13(図23参照)では、変位量が0.340〜0.352μmと比較例1の0.328μmより増加しており、良好な絶縁性も得られている。ただし、厚み比TC/TEが4.00である実施例14(図23参照)では、変位量が低下する傾向が見られるとともに、縁部A以外における絶縁破壊が起こりやすくなる傾向が見られる。すなわち、変位量及び絶縁性を増加させ圧電/電歪体膜116,120の全体における絶縁破壊を防ぐためには、厚み比TM/TEを1.01〜3.00とすることが望ましいといえる。   As shown in FIG. 18, Examples 8 to 13 in which the thickness ratio TC / TE, which is the ratio of the film thickness TC at the intermediate point C to the film thickness TE in the center E, is 1.01 to 3.00 (see FIG. 23). ), The displacement amount is 0.340 to 0.352 μm, which is larger than 0.328 μm of Comparative Example 1, and good insulation is also obtained. However, in Example 14 (see FIG. 23) in which the thickness ratio TC / TE is 4.00, there is a tendency that the amount of displacement is reduced and a tendency that dielectric breakdown other than the edge A is likely to occur. That is, it can be said that the thickness ratio TM / TE is desirably set to 1.01 to 3.00 in order to increase the amount of displacement and the insulation and prevent the dielectric breakdown of the entire piezoelectric / electrostrictive films 116 and 120.

{膜厚最大点Mの位置について}
図19の実施例3,15,10,16は、中央部Eにおける上層圧電/電歪体膜120の膜厚TEに対する上層圧電/電歪体膜120の膜厚の最大値TMの比である厚み比TM/TEが1.5である圧電/電歪素子1について、上層圧電/電歪体膜120の膜厚が最大となる膜厚最大点Mを縁部Aと中央部Eとの間で移動した場合の変位量及び絶縁性の評価結果を示している。実施例3,15,10,16でも、下層圧電/電歪体膜116の膜厚は、作動領域194の縁部Aにおいて最大となり、中央部Eにおける下層圧電/電歪体膜116の膜厚を基準値である「1」とした場合、縁部Aにおける下層圧電/電歪体膜116の膜厚は「1.5」となっている。
{Regarding the position of the maximum thickness point M}
Examples 3, 15, 10, and 16 in FIG. 19 are ratios of the maximum value TM of the film thickness of the upper piezoelectric / electrostrictive film 120 to the film thickness TE of the upper piezoelectric / electrostrictive film 120 at the center E. For the piezoelectric / electrostrictive element 1 having a thickness ratio TM / TE of 1.5, the film thickness maximum point M at which the film thickness of the upper piezoelectric / electrostrictive film 120 is maximum is between the edge A and the center E. The displacement amount and the insulation evaluation result when moved by the are shown. Also in Examples 3, 15, 10, and 16, the film thickness of the lower layer piezoelectric / electrostrictive film 116 is maximized at the edge A of the operating region 194, and the film thickness of the lower layer piezoelectric / electrostrictive film 116 at the center E. Is the reference value “1”, the film thickness of the lower layer piezoelectric / electrostrictive film 116 at the edge A is “1.5”.

図19に示すように、膜厚最大点Mが縁部Aにある実施例3(図22参照)、膜厚最大点Mが縁部Aと中間点Cとの間の四分点Bにある実施例15(図24参照)、膜厚最大点Mが中間点Cにある実施例10(図23参照)では、変位量が0.345〜0.358μmと比較例1の0.328μmより増加しており、良好な絶縁性も得られている。ただし、膜厚最大点Mが中間点Cと中央部Eとの間の四分点Dにある実施例16(図25参照)では、変位量が低下する傾向が見られるとともに、絶縁性が悪化する傾向が見られる。すなわち、変位量を増加させ絶縁性を確保するためには、中間点Cよりも縁部A寄りが膜厚最大点Mとなるようにすることが望ましい。   As shown in FIG. 19, Example 3 (see FIG. 22) where the film thickness maximum point M is at the edge A, and the film thickness maximum point M is at the quarter point B between the edge A and the intermediate point C. In Example 15 (see FIG. 24) and Example 10 (see FIG. 23) in which the film thickness maximum point M is at the intermediate point C, the displacement amount is 0.345 to 0.358 μm, which is larger than 0.328 μm in Comparative Example 1. Therefore, good insulation is also obtained. However, in Example 16 (see FIG. 25) in which the film thickness maximum point M is at the quarter point D between the intermediate point C and the central portion E, the displacement amount tends to decrease and the insulation properties deteriorate. The tendency to do is seen. That is, in order to increase the amount of displacement and ensure insulation, it is desirable that the edge portion A is closer to the film thickness maximum point M than the intermediate point C.

{屈曲振動領域の中央部の膜厚について}
図20の実施例3,17は、縁部Aにおいて上層圧電/電歪体膜120の膜厚が最大となる圧電/電歪素子1について、縁部Aにおける上層圧電/電歪体膜120の膜厚TAを一定にしたまま中央部Eにおける上層圧電/電歪体膜120の膜厚TEを変化させた場合の変位量及び絶縁性の評価結果を示している。また、図20の実施例18は、実施例17の圧電/電歪素子1の膜厚最大点Mを縁部Aから中間点Cに移動した圧電/電歪素子1について、変位量及び絶縁性の評価結果を示している。さらに、図20の比較例2は、実施例3,17の圧電/電歪素子1の縁部Aにおける上層圧電/電歪体膜120の膜厚TAを中央部Eにおける上層圧電/電歪体膜120の膜厚TEよりも薄くした圧電/電歪素子について、変位量及び絶縁性の評価結果を示している。実施例3,17,18及び比較例2では、下層圧電/電歪体膜116の膜厚は、作動領域194の縁部Aにおいて最大となり、中央部Eにおける下層圧電/電歪体膜116の膜厚を基準値である「1」としたとき、縁部Aにおける下層圧電/電歪体膜116の膜厚は「1.5」となっている。
{About the film thickness at the center of the flexural vibration region}
In Examples 3 and 17 of FIG. 20, the piezoelectric / electrostrictive film 1 having the maximum film thickness of the upper piezoelectric / electrostrictive film 120 at the edge A is obtained from the upper piezoelectric / electrostrictive film 120 at the edge A. The displacement amount and the insulation evaluation results are shown when the film thickness TE of the upper piezoelectric / electrostrictive film 120 at the center E is changed while the film thickness TA is kept constant. Further, in Example 18 of FIG. 20, the displacement amount and the insulating property of the piezoelectric / electrostrictive element 1 in which the film thickness maximum point M of the piezoelectric / electrostrictive element 1 of Example 17 is moved from the edge A to the intermediate point C are shown. The evaluation results are shown. Further, in Comparative Example 2 of FIG. 20, the film thickness TA of the upper piezoelectric / electrostrictive film 120 at the edge A of the piezoelectric / electrostrictive element 1 of Examples 3 and 17 is set to the upper piezoelectric / electrostrictive body at the center E. For the piezoelectric / electrostrictive element made thinner than the film thickness TE of the film 120, the displacement amount and the evaluation results of the insulating properties are shown. In Examples 3, 17, and 18 and Comparative Example 2, the film thickness of the lower layer piezoelectric / electrostrictive film 116 is maximized at the edge A of the operation region 194, and the lower layer piezoelectric / electrostrictive film 116 at the center E. When the film thickness is the reference value “1”, the film thickness of the lower layer piezoelectric / electrostrictive film 116 at the edge A is “1.5”.

図20に示すように、中央部Eにおける膜厚TEに対する縁部Aの膜厚TAの比である厚み比TA/TEが1.50である実施例3(図22参照),1.10である実施例17(図26参照)では、変位量が0.358〜0.359μmと厚み比TA/TEが0.8である比較例2(図27参照)の0.224μmより増加しており、良好な絶縁性も得られている。この点は、膜厚最大点Mを移動した実施例18(図28参照)についても同様である。   As shown in FIG. 20, in Example 3 (see FIG. 22), 1.10 where the thickness ratio TA / TE, which is the ratio of the film thickness TA of the edge A to the film thickness TE in the center E, is 1.50. In Example 17 (see FIG. 26), the displacement amount is 0.358 to 0.359 μm and the thickness ratio TA / TE is increased from 0.224 μm in Comparative Example 2 (see FIG. 27), which is 0.8. Good insulation is also obtained. The same applies to Example 18 (see FIG. 28) in which the maximum film thickness point M is moved.

なお、図22〜図28は、図2に相当する圧電/電歪素子1の模式図である。   22 to 28 are schematic views of the piezoelectric / electrostrictive element 1 corresponding to FIG.

これらの他、図29の圧電/電歪素子1の模式図に示すように、下層圧電/電歪体膜116が、従来の圧電/電歪素子8と同様に、屈曲振動領域182の短手方向に沿って、中央部Eから端部Aに向かって膜厚が連続的に薄くなってゆく膜厚分布を有しており、上層圧電/電歪体膜120が、屈曲振動領域182の短手方向に沿って、中央部Eから端部Aに向かって膜厚が連続的に厚くなってゆく膜厚分布を有し膜厚最大点Mが四分点Bにある場合にも、変位量及び絶縁破壊の防止に関して同程度の効果が得られることが確認されている。   In addition to these, as shown in the schematic diagram of the piezoelectric / electrostrictive element 1 in FIG. 29, the lower layer piezoelectric / electrostrictive film 116 is short in the flexural vibration region 182 as in the conventional piezoelectric / electrostrictive element 8. The film thickness distribution is such that the film thickness continuously decreases from the center E toward the edge A along the direction. Even when the film thickness distribution is such that the film thickness continuously increases from the center E toward the edge A along the hand direction, In addition, it has been confirmed that the same effect can be obtained with respect to prevention of dielectric breakdown.

図21は、内層電極膜108を含まない1層構造を採用し、圧電/電歪体膜の厚み比を様々に変更した圧電/電歪素子について、変位量及び絶縁性の評価結果を示したものであり、図21に示すように、厚み比が0.7である本発明の範囲外の比較例3では、変位量が0.166μmであるのに対して、厚み比が1.01である本発明の範囲内の実施例19では、変位量が0.181μmに増加しており、厚み比が1.1〜4.0である本発明の範囲内の実施例20〜26では、変位量が0.201〜0.210μmにさらに増加している。また、厚み比が1.01以上3.00以下の実施例19〜24では、良好な絶縁性も得られている。すなわち、1層構造の場合でも、変位量を増加させるためには、厚み比を1より大きくすることが望ましく、1.1以上とすることがさらに望ましく、圧電/電歪体膜116,120の全体における絶縁破壊を防ぐためには、厚み比を1.01以上3.0以下とすることが望ましいといえる。   FIG. 21 shows the displacement and insulation evaluation results for piezoelectric / electrostrictive elements that employ a single-layer structure that does not include the inner electrode film 108 and have various thickness ratios of the piezoelectric / electrostrictive film. As shown in FIG. 21, in Comparative Example 3 outside the scope of the present invention where the thickness ratio is 0.7, the displacement amount is 0.166 μm, whereas the thickness ratio is 1.01. In Example 19 within the scope of the present invention, the displacement is increased to 0.181 μm, and in Examples 20 to 26 within the scope of the present invention in which the thickness ratio is 1.1 to 4.0, the displacement The amount is further increased to 0.201-0.210 μm. Moreover, in Examples 19-24 whose thickness ratio is 1.01 or more and 3.00 or less, favorable insulation is also acquired. That is, even in the case of a single layer structure, in order to increase the amount of displacement, the thickness ratio is preferably greater than 1, more preferably 1.1 or more, and the piezoelectric / electrostrictive films 116 and 120 In order to prevent the overall breakdown, it can be said that the thickness ratio is desirably set to 1.01 or more and 3.0 or less.

望ましい実施形態に係る圧電/電歪素子の平面図である。1 is a plan view of a piezoelectric / electrostrictive element according to a preferred embodiment. 望ましい実施形態に係る圧電/電歪素子の断面図である。It is sectional drawing of the piezoelectric / electrostrictive element which concerns on desirable embodiment. 矩形の屈曲振動領域の平面図である。It is a top view of a rectangular bending vibration area | region. 楕円形の屈曲振動領域の平面図である。It is a top view of an elliptical bending vibration area | region. 六角形の屈曲振動領域の平面図である。It is a top view of a hexagonal bending vibration region. 別例に係る圧電/電歪素子の断面図である。It is sectional drawing of the piezoelectric / electrostrictive element which concerns on another example. 別例に係る圧電/電歪素子の断面図である。It is sectional drawing of the piezoelectric / electrostrictive element which concerns on another example. 別例に係る圧電/電歪素子の断面図である。It is sectional drawing of the piezoelectric / electrostrictive element which concerns on another example. スクリーンマスクの断面図である。It is sectional drawing of a screen mask. スクリーンマスクの断面図である。It is sectional drawing of a screen mask. メタルマスクの斜視図である。It is a perspective view of a metal mask. メタルマスクの斜視図である。It is a perspective view of a metal mask. メタルマスクの斜視図である。It is a perspective view of a metal mask. メタルマスクの斜視図である。It is a perspective view of a metal mask. メタルマスクの斜視図である。It is a perspective view of a metal mask. 圧電/電歪素子の製造方法を説明するフローチャートである。It is a flowchart explaining the manufacturing method of a piezoelectric / electrostrictive element. 変位量及び絶縁性の評価結果を示す図である。It is a figure which shows the displacement amount and the evaluation result of insulation. 変位量及び絶縁性の評価結果を示す図である。It is a figure which shows the displacement amount and the evaluation result of insulation. 変位量及び絶縁性の評価結果を示す図である。It is a figure which shows the displacement amount and the evaluation result of insulation. 変位量及び絶縁性の評価結果を示す図である。It is a figure which shows the displacement amount and the evaluation result of insulation. 変位量及び絶縁性の評価結果を示す図である。It is a figure which shows the displacement amount and the evaluation result of insulation. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 圧電/電歪素子の断面図である。It is sectional drawing of a piezoelectric / electrostrictive element. 従来の圧電/電歪素子の断面図である。It is sectional drawing of the conventional piezoelectric / electrostrictive element.

符号の説明Explanation of symbols

1,2,3,4 圧電/電歪素子
112,212,312,412 下層電極膜
116,316,416 下層圧電/電歪体膜
216 圧電/電歪体膜
118,318,418 内層電極膜
120,320,420 上層圧電/電歪体膜
114,214,314,414 上層電極膜
182,282,383,482 屈曲振動領域
194,494 作動領域
1, 2, 3, 4 Piezoelectric / electrostrictive element 112, 212, 312, 412 Lower electrode film 116, 316, 416 Lower piezoelectric / electrostrictive film 216 Piezoelectric / electrostrictive film 118, 318, 418 Inner electrode film 120 , 320, 420 Upper layer piezoelectric / electrostrictive film 114, 214, 314, 414 Upper layer electrode film 182, 282, 383, 482 Bending vibration region 194, 494 Operating region

Claims (6)

厚肉部に囲まれた薄肉部を有する基体と、
前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、
を備え、
前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータであって、
前記薄肉部が形成される平面領域を屈曲振動領域として、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と節との間に持つ膜厚分布を有する、
圧電/電歪アクチュエータ
A substrate having a thin portion surrounded by a thick portion;
A laminate formed by laminating a piezoelectric / electrostrictive film and an electrode film formed on the substrate;
With
A piezoelectric / electrostrictive actuator that flexurally vibrates the thin portion and the laminate,
The plane region where the thin-walled portion is formed is defined as a bending vibration region, and the short side of the bending vibration region which is the direction of the straight line when the straight line passing through the antinode of the bending primary mode is minimum A film thickness distribution in which part or all of the piezoelectric / electrostrictive film along the direction has a portion between the antinodes of the bent primary mode and the nodes where the film thickness is thicker than the antinodes of the bent primary mode. Having
Piezoelectric / electrostrictive actuator .
屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹と前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部との中間点よりも作動領域の縁部寄りにおいて膜厚が最大となる膜厚分布を有する、
請求項1に記載の圧電/電歪アクチュエータ
A working region in which a part or all of the piezoelectric / electrostrictive film is opposed to the electrode film across the piezoelectric / electrostrictive film with the antinode of the bending primary mode sandwiched along the short direction of the bending vibration area. Having a film thickness distribution in which the film thickness is maximized near the edge of the working region rather than an intermediate point with the edge of
The piezoelectric / electrostrictive actuator according to claim 1.
屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部において膜厚が最大となる膜厚分布を有する、
請求項1に記載の圧電/電歪アクチュエータ
Along the lateral direction of the bending vibration region, a part or all of the piezoelectric / electrostrictive film has a film thickness at the edge of the working region where the electrode film is opposed to the piezoelectric / electrostrictive film. Having a maximum film thickness distribution,
The piezoelectric / electrostrictive actuator according to claim 1.
屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、膜厚の最小値に対する最大値の比が1.01以上3.0以下である膜厚分布を有する、
請求項1ないし請求項3のいずれかに記載の圧電/電歪アクチュエータ
A film thickness distribution in which a part or all of the piezoelectric / electrostrictive film has a ratio of a maximum value to a minimum value of 1.01 or more and 3.0 or less along the short direction of the bending vibration region. Have
The piezoelectric / electrostrictive actuator according to any one of claims 1 to 3.
厚肉部に囲まれた薄肉部を有する基体と、
前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、
を備え、
前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータであって、
前記薄肉部が形成される平面領域を屈曲振動領域として、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、前記圧電/電歪体膜の一部又は全部が、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と前記圧電/電歪体膜を挟んで前記電極膜が対向する作動領域の縁部との間に持つ膜厚分布を有する、
圧電/電歪アクチュエータ
A substrate having a thin portion surrounded by a thick portion;
A laminate formed by laminating a piezoelectric / electrostrictive film and an electrode film formed on the substrate;
With
A piezoelectric / electrostrictive actuator that flexurally vibrates the thin portion and the laminate,
The plane region where the thin-walled portion is formed is defined as a bending vibration region, and the short side of the bending vibration region which is the direction of the straight line when the straight line passing through the antinode of the bending primary mode is minimum A part or all of the piezoelectric / electrostrictive film along the direction has a portion where the film thickness is thicker than that of the bent primary mode, and sandwiches the piezoelectric / electrostrictive film with the bent primary mode antinode. And having a film thickness distribution between the electrode film and the edge of the working region facing each other,
Piezoelectric / electrostrictive actuator .
厚肉部に囲まれた薄肉部を有する基体と、
前記基体の上に形成された、圧電/電歪体膜と電極膜とを積層した積層体と、
を備え、
前記薄肉部及び前記積層体を屈曲振動させる圧電/電歪アクチュエータの製造方法であって、
(a) 圧電/電歪体ペーストを印刷する工程と、
(b) 前記薄肉部が形成される平面領域を屈曲振動領域として、前記工程(a)により得られた圧電/電歪体ペーストの膜を焼成し、屈曲1次モードの腹を通る直線が屈曲振動領域を切る長さが最小となるときの当該直線の方向である屈曲振動領域の短手方向に沿って、屈曲1次モードの腹よりも膜厚が厚くなる部分を屈曲1次モードの腹と節との間に持つ膜厚分布を有する前記圧電/電歪体膜を得る工程と、
を備え、
前記工程(a)において、前記圧電/電歪体膜の膜厚が屈曲1次モードの腹よりも厚くなる部分と印刷時に対向する部分が開口部となっている印刷版を使用する圧電/電歪アクチュエータの製造方法。
A substrate having a thin portion surrounded by a thick portion;
A laminate formed by laminating a piezoelectric / electrostrictive film and an electrode film formed on the substrate;
With
A method of manufacturing a piezoelectric / electrostrictive actuator that flexurally vibrates the thin portion and the laminate,
(a) printing a piezoelectric / electrostrictive paste;
(b) Using the planar region where the thin-walled portion is formed as a bending vibration region, the piezoelectric / electrostrictive paste film obtained in the step (a) is baked, and the straight line passing through the antinode of the bending first mode is bent. A portion where the film thickness is thicker than that of the bending primary mode along the short direction of the bending vibration region, which is the direction of the straight line when the length that cuts the vibration region is minimum, is the antinode of the bending primary mode. Obtaining the piezoelectric / electrostrictive film having a thickness distribution between and
With
In the step (a), the piezoelectric / electrostrictive to use printing plate portion thickness of the piezoelectric / electrostrictive film is opposed to the time of printing the thickened portion than the belly of the bending first-order mode is an opening A manufacturing method of a strain actuator .
JP2008038868A 2007-07-25 2008-02-20 Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator Expired - Fee Related JP5128981B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2008038868A JP5128981B2 (en) 2007-07-25 2008-02-20 Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator

Applications Claiming Priority (3)

Application Number Priority Date Filing Date Title
JP2007193242 2007-07-25
JP2007193242 2007-07-25
JP2008038868A JP5128981B2 (en) 2007-07-25 2008-02-20 Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator

Publications (2)

Publication Number Publication Date
JP2009049359A JP2009049359A (en) 2009-03-05
JP5128981B2 true JP5128981B2 (en) 2013-01-23

Family

ID=40501272

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2008038868A Expired - Fee Related JP5128981B2 (en) 2007-07-25 2008-02-20 Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator

Country Status (1)

Country Link
JP (1) JP5128981B2 (en)

Families Citing this family (2)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
CN110798093B (en) * 2019-04-08 2022-08-23 浙江师范大学 Linear piezoelectric precision driving platform
CN116058110A (en) * 2020-07-03 2023-05-02 京瓷株式会社 Piezoelectric element

Family Cites Families (13)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPS6068710A (en) * 1983-09-26 1985-04-19 Toshiba Corp Piezoelectric thin film resonator
JPH0669303B2 (en) * 1988-01-07 1994-08-31 日本電気株式会社 Ultrasonic motor oscillator
JP3521499B2 (en) * 1993-11-26 2004-04-19 日本碍子株式会社 Piezoelectric / electrostrictive film type element
WO1998024130A1 (en) * 1996-11-29 1998-06-04 Ngk Insulators, Ltd. Ceramic element, method of manufacturing ceramic element, display, relay device, and capacitor
JPH11339561A (en) * 1998-05-27 1999-12-10 Ngk Insulators Ltd Ceramic element, manufacture of ceramic element, display device, relay device and capacitor
JP2002271167A (en) * 2001-03-09 2002-09-20 Citizen Watch Co Ltd Piezoelectric device element and its fabricating method
JP2003158443A (en) * 2001-11-22 2003-05-30 Toko Inc Piezoelectric thin film resonator device
JP2004111489A (en) * 2002-09-13 2004-04-08 Murata Mfg Co Ltd Stacked type ceramic capacitor and its manufacturing method
JP4471585B2 (en) * 2003-04-30 2010-06-02 日本碍子株式会社 Film formation method
JP3820589B2 (en) * 2003-09-26 2006-09-13 富士写真フイルム株式会社 Liquid discharge head, manufacturing method thereof, and ink jet recording apparatus
JP2005159402A (en) * 2003-11-20 2005-06-16 Matsushita Electric Ind Co Ltd Acoustic resonator
WO2005104258A1 (en) * 2004-04-27 2005-11-03 Ngk Insulators, Ltd. Elastic body inspection method, inspection device, and dimension prediction program
JP4977946B2 (en) * 2004-06-29 2012-07-18 富士ゼロックス株式会社 Method for manufacturing ink jet recording head

Also Published As

Publication number Publication date
JP2009049359A (en) 2009-03-05

Similar Documents

Publication Publication Date Title
EP0526048B1 (en) Piezoelectric/electrostrictive element having ceramic substrate formed essentially of stabilized zirconia
KR100875315B1 (en) Dielectric element, piezoelectric element, ink jet head and ink jet head manufacturing method
KR100581257B1 (en) Piezoelectric element, ink jet head, angular velocity sensor, manufacturing method thereof, and ink-jet type recording apparatus
JP3120260B2 (en) Piezoelectric / electrostrictive film type element
US7943192B2 (en) Piezoelectric/electrostrictive film type element and manufacturing method thereof
JPH05267742A (en) Piezoelectric/electrostrictive film element
JP2693291B2 (en) Piezoelectric / electrostrictive actuator
EP1911590A1 (en) Actuator device, liquid-jet head, and method of manufacturing actuator device
EP1796183A1 (en) Piezoelectric/electrostriction film type element and production method therefor
US7413292B2 (en) Method of driving piezoelectric ink jet head
JP4782412B2 (en) Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
US7911113B1 (en) Piezoelectric/electrostrictive element and method of manufacturing piezoelectric/electrostrictive element
JP3126212B2 (en) Piezoelectric / electrostrictive film type element
JP2010030129A (en) Liquid ejection head, liquid ejection device and piezoelectric element
JP5128981B2 (en) Piezoelectric / electrostrictive actuator and method for manufacturing piezoelectric / electrostrictive actuator
JP4812244B2 (en) Print head
JP3009945B2 (en) Piezoelectric / electrostrictive film type element
JP5295945B2 (en) Piezoelectric / electrostrictive element
JP5260900B2 (en) Liquid discharge head
JP4782413B2 (en) Piezoelectric / electrostrictive body, piezoelectric / electrostrictive laminate, and piezoelectric / electrostrictive film type actuator
JP3272004B2 (en) Piezoelectric / electrostrictive film type element
JP2003008096A (en) Piezoelectric/electrostrictive film element
JP5686170B2 (en) Liquid ejecting head and liquid ejecting apparatus
JP6065926B2 (en) Piezoelectric element
JP5934540B2 (en) Piezoelectric / electrostrictive actuator and manufacturing method thereof

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20091119

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20120809

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120828

A521 Request for written amendment filed

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20121001

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121023

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121101

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5128981

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

LAPS Cancellation because of no payment of annual fees