JP5124975B2 - Negative electrode material for lithium ion secondary battery and method for producing the same - Google Patents

Negative electrode material for lithium ion secondary battery and method for producing the same Download PDF

Info

Publication number
JP5124975B2
JP5124975B2 JP2006119759A JP2006119759A JP5124975B2 JP 5124975 B2 JP5124975 B2 JP 5124975B2 JP 2006119759 A JP2006119759 A JP 2006119759A JP 2006119759 A JP2006119759 A JP 2006119759A JP 5124975 B2 JP5124975 B2 JP 5124975B2
Authority
JP
Japan
Prior art keywords
lithium ion
negative electrode
ion secondary
secondary battery
electrode material
Prior art date
Legal status (The legal status is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the status listed.)
Active
Application number
JP2006119759A
Other languages
Japanese (ja)
Other versions
JP2007294196A (en
Inventor
純一 安丸
浩次郎 天能
直樹 的場
真吾 朝田
Current Assignee (The listed assignees may be inaccurate. Google has not performed a legal analysis and makes no representation or warranty as to the accuracy of the list.)
Mitsubishi Chemical Corp
Original Assignee
Mitsubishi Chemical Corp
Priority date (The priority date is an assumption and is not a legal conclusion. Google has not performed a legal analysis and makes no representation as to the accuracy of the date listed.)
Filing date
Publication date
Application filed by Mitsubishi Chemical Corp filed Critical Mitsubishi Chemical Corp
Priority to JP2006119759A priority Critical patent/JP5124975B2/en
Publication of JP2007294196A publication Critical patent/JP2007294196A/en
Application granted granted Critical
Publication of JP5124975B2 publication Critical patent/JP5124975B2/en
Active legal-status Critical Current
Anticipated expiration legal-status Critical

Links

Images

Classifications

    • YGENERAL TAGGING OF NEW TECHNOLOGICAL DEVELOPMENTS; GENERAL TAGGING OF CROSS-SECTIONAL TECHNOLOGIES SPANNING OVER SEVERAL SECTIONS OF THE IPC; TECHNICAL SUBJECTS COVERED BY FORMER USPC CROSS-REFERENCE ART COLLECTIONS [XRACs] AND DIGESTS
    • Y02TECHNOLOGIES OR APPLICATIONS FOR MITIGATION OR ADAPTATION AGAINST CLIMATE CHANGE
    • Y02EREDUCTION OF GREENHOUSE GAS [GHG] EMISSIONS, RELATED TO ENERGY GENERATION, TRANSMISSION OR DISTRIBUTION
    • Y02E60/00Enabling technologies; Technologies with a potential or indirect contribution to GHG emissions mitigation
    • Y02E60/10Energy storage using batteries

Description

本発明は、サイクル特性に優れたリチウムイオン二次電池を実現するリチウムイオン二次電池用負極材料およびその製造方法に関するものである。   The present invention relates to a negative electrode material for a lithium ion secondary battery that realizes a lithium ion secondary battery having excellent cycle characteristics and a method for producing the same.

リチウムイオン二次電池は、ニッケル水素電池等の他の二次電池に比較して、単位体積あたりの容量が優れている。この優れた特徴から、携帯電話、ノート型パソコンといった携帯機器等の電源用途に使用されている。リチウムイオン二次電池は、正極、正極に対向する負極、正極と負極との間に配置するセパレータ、および電解液を主な内部構成とし、集電板と集電板表面を被覆する黒鉛粒子層を構成にする負極を備えたリチウムイオン二次電池が主として実用化されている。このような電池において充放電が繰り返されると、黒鉛がリチウムの吸蔵および放出を繰り返し、これに伴って、リチウムイオン二次電池のサイクル特性の悪化原因となる黒鉛の膨張および収縮が繰り返される。   Lithium ion secondary batteries have a higher capacity per unit volume than other secondary batteries such as nickel metal hydride batteries. Because of this excellent feature, it is used for power supply in portable devices such as mobile phones and notebook computers. The lithium ion secondary battery is composed of a positive electrode, a negative electrode facing the positive electrode, a separator disposed between the positive electrode and the negative electrode, and an electrolyte solution, and a graphite particle layer covering the current collector plate and the current collector plate surface. Lithium ion secondary batteries equipped with a negative electrode comprising the above are mainly put into practical use. When charging and discharging are repeated in such a battery, graphite repeatedly occludes and releases lithium, and accordingly, the graphite expands and contracts, which causes deterioration of the cycle characteristics of the lithium ion secondary battery.

ところで、上述の如く黒鉛を使用したリチウムイオン二次電池が実用化されているが、市場からはリチウムイオン二次電池の高容量化が求められている。この要望に対応するべく、黒鉛よりも大容量のシリコンやスズ等の高容量負極材料を使用したリチウムイオン二次電池の実用化が求められている。充電時において、黒鉛は、1.1倍程度に膨張する。一方で、高容量負極材料は、黒鉛よりも大幅に膨張する(例えば、シリコンは4倍程度に膨張し、スズは3倍程度に膨張する)。この充電時における高容量負極材料の膨張は、放電時の収縮を伴い、膨張および収縮の繰り返しが高容量負極材料の崩壊を引き起こし易く、各負極材料間の導電性を低下させるといわれている。そのため、このような高容量負極材料を使用したリチウムイオン二次電池には、優れたサイクル特性の担保が難しい問題がある。   Incidentally, as described above, lithium ion secondary batteries using graphite have been put into practical use. However, the market demands a higher capacity of lithium ion secondary batteries. In order to meet this demand, there is a demand for practical application of a lithium ion secondary battery using a high capacity negative electrode material such as silicon or tin having a capacity larger than that of graphite. At the time of charging, graphite expands to about 1.1 times. On the other hand, the high-capacity negative electrode material expands significantly more than graphite (for example, silicon expands about 4 times and tin expands about 3 times). The expansion of the high-capacity negative electrode material during charging is accompanied by contraction during discharge, and repeated expansion and contraction are likely to cause collapse of the high-capacity negative electrode material, and are said to reduce the conductivity between the negative electrode materials. Therefore, the lithium ion secondary battery using such a high capacity negative electrode material has a problem that it is difficult to ensure excellent cycle characteristics.

高容量負極材料を使用したリチウムイオン二次電池の実用化のためには、膨張・収縮に伴う負極材料の崩壊を抑制してサイクル特性を向上させる必要があり、この崩壊を抑制するための開発が進められている。   In order to commercialize lithium-ion secondary batteries that use high-capacity negative electrode materials, it is necessary to improve the cycle characteristics by suppressing the collapse of the negative electrode material that accompanies expansion and contraction. Is underway.

例えば、特許文献1には、炭素で被覆されたケイ素酸化合物と金属の複合粒子を負極材料に使用することが開示されている。この負極材料に使用される粒子は、炭素が被覆されているので、粒子崩壊が抑制されていると特許文献1に開示されている。   For example, Patent Document 1 discloses using composite particles of a silicon acid compound and a metal coated with carbon as a negative electrode material. Since the particles used in this negative electrode material are coated with carbon, it is disclosed in Patent Document 1 that particle collapse is suppressed.

他方で、特許文献2には、負極材料として、炭素質材料で被覆された繊維状黒鉛質材料とケイ素等の高容量部材の複合化粒子が開示されている。この複合化粒子は、外表皮となっている炭素質材料と複合粒子が密着して、これらの間に空隙が存在していないものの、複合粒子内に空隙を有し、この空隙が複合粒子の膨張を緩和することを期待できる。しかし、この複合粒子を負極材料として実用するためには、膨張が更に緩和されていることが望まれる。   On the other hand, Patent Document 2 discloses composite particles of a fibrous graphite material coated with a carbonaceous material and a high capacity member such as silicon as a negative electrode material. The composite particles are in close contact with the carbonaceous material that forms the outer skin, and there are no voids between them, but there are voids in the composite particles, and these voids are It can be expected to mitigate expansion. However, in order to put this composite particle into practical use as a negative electrode material, it is desired that the expansion is further relaxed.

また、特許文献3には、ケイ素、ケイ素合金又は酸化ケイ素微粒子(構成ケイ素等)と有機ケイ素化合物又は有機ケイ素混合物の焼結体粒子を負極材料に使用することが開示されている。この焼結体粒子は、更に炭素蒸着外表皮が形成される。このような外表皮が形成された焼結体粒子には、外表皮と焼結体粒子の間に空隙が存在することがないものの、膨張緩和を期待できる空隙が焼結体粒子内に存在する。しかし、特許文献2に開示されている複合粒子と同様、外表皮を有する焼結体粒子全体の膨張抑制を一層向上させることが望まれる。また、特許文献3に開示されている粒子は、構成ケイ素等を使用するものであって、スズ等の他の高容量材料を使用して製造されるものではない。更に、焼結体であるが故、空隙量を調整するためには、原料、温度、時間等の様々な製造条件を高度に制御しなければならない。
特開2005−294079号公報 特開2005−310760号公報 特開2005−310759号公報
Patent Document 3 discloses the use of sintered particles of silicon, a silicon alloy or silicon oxide fine particles (such as constituent silicon) and an organic silicon compound or an organic silicon mixture as a negative electrode material. The sintered particles further form a carbon-deposited outer skin. In the sintered body particles formed with such an outer skin, there are no voids between the outer skin and the sintered body particles, but there are voids that can be expected to relax in the sintered body particles. . However, like the composite particles disclosed in Patent Document 2, it is desired to further improve the expansion suppression of the entire sintered particles having the outer skin. Moreover, the particle | grains currently disclosed by patent document 3 use a constituent silicon etc., and are not manufactured using other high capacity | capacitance materials, such as tin. Furthermore, since it is a sintered body, various production conditions such as raw materials, temperature, and time must be highly controlled in order to adjust the void amount.
JP 2005-294079 A JP 2005-310760 A JP 2005-310759 A

本発明は、上記事情に鑑み、優れたサイクル特性を実現できるリチウムイオン二次電池用負極材料、およびこの負極材料の製造方法の提供を目的とする。   An object of this invention is to provide the negative electrode material for lithium ion secondary batteries which can implement | achieve the outstanding cycling characteristics in view of the said situation, and the manufacturing method of this negative electrode material.

本発明は、リチウムイオン二次電池用負極材料であって、外表皮と、該外表皮に内包された中空部と、該中空部内に配置する第一リチウムイオン吸蔵部材を有する内包部材を備えることを特徴とする。この発明において、リチウムイオン二次電池の大容量化のためには、前記外表皮が第二リチウムイオン吸蔵部材を有することが好適である。また、負極材料の電気抵抗を低減するには、前記内包部材が導電材を有していることが好適である。   The present invention is a negative electrode material for a lithium ion secondary battery, comprising an outer skin, a hollow part enclosed in the outer skin, and an inclusion member having a first lithium ion storage member disposed in the hollow part. It is characterized by. In the present invention, in order to increase the capacity of the lithium ion secondary battery, it is preferable that the outer skin has a second lithium ion storage member. In order to reduce the electric resistance of the negative electrode material, it is preferable that the inclusion member has a conductive material.

前記第一リチウムイオン吸蔵部材および第二リチウムイオン吸蔵部材のリチウムイオン吸蔵時において、前記第一リチウムイオン吸蔵部材よりも前記第二リチウムイオン吸蔵部材が低膨張率であることが好適である。この場合、低膨張率の第二リチウムイオン吸蔵部材が第一リチウムイオン吸蔵部材の外界側に配置しているので、第一リチウムイオン吸蔵部材の膨張が第二リチウムイオン吸蔵部材により抑制されて、リチウムイオン二次電池のサイクル特性を向上させる。   When the first lithium ion storage member and the second lithium ion storage member store lithium ions, it is preferable that the second lithium ion storage member has a lower expansion coefficient than the first lithium ion storage member. In this case, since the second lithium ion storage member having a low expansion rate is disposed on the outside of the first lithium ion storage member, expansion of the first lithium ion storage member is suppressed by the second lithium ion storage member, Improve cycle characteristics of lithium ion secondary batteries.

前記第一リチウムイオン吸蔵部材の充電容量は、前記第二リチウムイオン吸蔵部材の充電容量よりも大容量であると良い。ここで、充電容量の大小は、正極にリチウム金属を使用し、かつ、負極材料の種類のみが異なる二種類のリチウムイオン二次電池(一方が第一リチウムイオン吸蔵部材を負極材料とし、他方が第二リチウムイオン吸蔵部材を負極材料とする)を作製し、各リチウムイオン二次電池を同条件で充電後、同条件で放電し、各電池の放電結果を対比し、放電量の大小関係から定めることができる。この充電容量の大小を定めるに当たっての充電条件および放電条件は、例えば、次の通りである。充電条件は、電極面積に対する電流密度を0.37mA/cmの定電流値にして、正極と負極の電位差が0Vになるまで行い、続けて、0Vの定電位で電流値が0.06mA/cmに下がるまで行う。一方、放電条件は、0.37mA/cmで1Vまで放電する。 The charge capacity of the first lithium ion storage member may be larger than the charge capacity of the second lithium ion storage member. Here, the size of the charge capacity is two types of lithium ion secondary batteries that use lithium metal for the positive electrode and differ only in the type of the negative electrode material (one is the first lithium ion storage member as the negative electrode material and the other is 2nd lithium ion storage member is used as negative electrode material), each lithium ion secondary battery is charged under the same conditions, then discharged under the same conditions, and the discharge results of each battery are compared, Can be determined. The charging conditions and discharging conditions for determining the size of the charging capacity are, for example, as follows. The charging conditions were such that the current density with respect to the electrode area was set to a constant current value of 0.37 mA / cm 2 until the potential difference between the positive electrode and the negative electrode was 0 V, and then the current value was 0.06 mA / cm at a constant potential of 0 V. do down to cm 2. On the other hand, the discharge conditions are 0.37 mA / cm 2 and discharge to 1V.

前記第一リチウムイオン吸蔵部材は、Si、Sn等のリチウムと合金化可能な金属であると良い。   The first lithium ion storage member may be a metal that can be alloyed with lithium, such as Si or Sn.

また、本発明は、前記リチウムイオン二次電池用負極材料を備えたリチウムイオン二次電池用負極、およびこの負極を備えたリチウムイオン二次電池である。   Moreover, this invention is a lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries provided with the said negative electrode material for lithium ion secondary batteries, and this negative electrode.

また、本発明は、外表皮と、該外表皮に内包された中空部と、該中空部内に配置する第一リチウムイオン吸蔵部材を有する内包部材を備える前記リチウムイオン二次電池用負極材料の製造方法であって、加熱により気化する気化性部材と第一リチウムイオン吸蔵部材が混合された核材を調製する核材調製工程と、前記核材の表面に被覆膜を形成する被覆工程と、前記被覆膜を形成した核材を加熱して前記気化性部材を気化させる加熱工程を有することを特徴とする。   In addition, the present invention provides the negative electrode material for a lithium ion secondary battery comprising an outer skin, a hollow portion enclosed in the outer skin, and an inner member having a first lithium ion storage member disposed in the hollow portion. A method for preparing a core material in which a vaporizable member that vaporizes by heating and a first lithium ion storage member are mixed; a coating step for forming a coating film on a surface of the core material; It has the heating process which heats the core material in which the said coating film was formed, and vaporizes the said vaporizable member.

前記核材調製工程において、導電材を混合して前記核材を調製することが好適である。
前記被覆工程において、第二リチウムイオン吸蔵部材を有する被覆膜を形成しても良い。また、前記加熱工程において、加熱により被覆膜を外表皮に変化させ、該外表皮内に第二リチウムイオン吸蔵部材を生成させても良い。
In the core material preparation step, it is preferable to prepare the core material by mixing conductive materials.
In the coating step, a coating film having a second lithium ion storage member may be formed. In the heating step, the coating film may be changed to an outer skin by heating, and a second lithium ion storage member may be generated in the outer skin.

前記リチウムイオン二次電池用負極材料の製造方法では、リチウムイオン吸蔵時において、前記第一リチウムイオン吸蔵部材よりも前記第二リチウムイオン吸蔵部材が低膨張率であっても良く、また、前記第一リチウムイオン吸蔵部材の充電容量が前記第二リチウムイオン吸蔵部材の充電容量よりも大容量であっても良い。   In the method for producing a negative electrode material for a lithium ion secondary battery, the second lithium ion occlusion member may have a lower expansion coefficient than the first lithium ion occlusion member during lithium ion occlusion. The charge capacity of one lithium ion storage member may be larger than the charge capacity of the second lithium ion storage member.

前記リチウムイオン二次電池用負極材料の製造方法において、第一リチウムイオン吸蔵部材は、リチウムと合金化可能な金属であると良い。   In the method for producing a negative electrode material for a lithium ion secondary battery, the first lithium ion storage member may be a metal that can be alloyed with lithium.

また、本発明は、前記リチウムイオン二次電池用負極材料の製造方法を使用する工程を備えるリチウムイオン二次電池用負極の製造方法、およびこの製造方法を使用する工程を備えるリチウムイオン二次電池の製造方法である。   The present invention also provides a method for producing a negative electrode for a lithium ion secondary battery comprising a step of using the method for producing a negative electrode material for a lithium ion secondary battery, and a lithium ion secondary battery comprising a step of using this production method. It is a manufacturing method.

本発明のリチウムイオン二次電池用負極材料によれば、外表皮に内包された中空部内に内包部材が配置し、リチウム吸蔵に伴う内包部材の膨張を受け入れる空隙が外表皮と内包部材の間に存在するので、負極材料自体の膨張が抑制され、その結果、優れたサイクル特性のリチウムイオン二次電池を実現することができる。   According to the negative electrode material for a lithium ion secondary battery of the present invention, the inner member is arranged in the hollow portion enclosed in the outer skin, and the gap for receiving the expansion of the inner member accompanying the occlusion of lithium is between the outer skin and the inner member. Therefore, the expansion of the negative electrode material itself is suppressed, and as a result, a lithium ion secondary battery having excellent cycle characteristics can be realized.

また、本発明のリチウムイオン二次電池用負極材料の製造方法によれば、気化性部材と第一リチウム吸蔵部材の量を任意に設定して、加熱のみで外表皮内に中空部を形成することができるので、外表皮内の空隙量を自在且つ簡易に設定できる。   Moreover, according to the manufacturing method of the negative electrode material for lithium ion secondary batteries of this invention, the quantity of a vaporizable member and a 1st lithium storage member is set arbitrarily, and a hollow part is formed in an outer skin only by heating. Therefore, the amount of voids in the outer skin can be set freely and easily.

本発明に係るリチウムイオン二次電池用負極材料、およびこの負極材料の製造方法を実施形態に基づき、以下に説明する。   A negative electrode material for a lithium ion secondary battery according to the present invention and a method for producing the negative electrode material will be described below based on the embodiments.

先ず、本実施形態に係るリチウムイオン二次電池用負極材料を、図を参照しつつ説明する。図1は、本実施形態に係るリチウムイオン二次電池用負極材料を説明するための断面模式図である。図示の負極材料AMは、外表皮SSと、外表皮SSに内包された中空部IEと、中空部IE内に配置する内包部材IMを構成にしている。   First, the negative electrode material for a lithium ion secondary battery according to this embodiment will be described with reference to the drawings. FIG. 1 is a schematic cross-sectional view for explaining a negative electrode material for a lithium ion secondary battery according to this embodiment. The illustrated negative electrode material AM includes an outer skin SS, a hollow portion IE included in the outer skin SS, and an inner member IM disposed in the hollow portion IE.

負極材料AMの平均粒径が小さいほど、負極材料AMの比表面積が大きくなって、リチウムイオン二次電池の初回の放電量を初回の充電量で除して算出される初期効率が低下する傾向があるため、負極材料AMの平均粒径は、5μm以上であると良く、好ましくは7μm以上、更に好ましくは10μm以上である。一方で、平均粒径の上限は、リチウムイオン二次電池の負極における負極材料層の厚みに応じて適宜設定されるべきであり、特に限定するべきものではないが、100μm以下であると良い。負極材料層の厚みを一般的な60μmにする場合、集電板表面に均一に負極材料を設けるためには、平均粒径が50μm以下であると良く、好ましくは40μm以下である。   The smaller the average particle size of the negative electrode material AM, the larger the specific surface area of the negative electrode material AM, and the initial efficiency calculated by dividing the initial discharge amount of the lithium ion secondary battery by the initial charge amount tends to decrease. Therefore, the average particle diameter of the negative electrode material AM is preferably 5 μm or more, preferably 7 μm or more, and more preferably 10 μm or more. On the other hand, the upper limit of the average particle diameter should be appropriately set according to the thickness of the negative electrode material layer in the negative electrode of the lithium ion secondary battery, and should not be particularly limited, but is preferably 100 μm or less. When the thickness of the negative electrode material layer is generally 60 μm, the average particle size is preferably 50 μm or less, and preferably 40 μm or less in order to uniformly provide the negative electrode material on the current collector plate surface.

ここで、「平均粒径」とは、水に分散させた試料を、レーザ回折式粒度分布測定装置を用いて求められるメジアン径をいい、例えば、株式会社島津製作所製の「SALD−2000」を使用して測定できる。この平均粒径の意味は、本発明における全ての平均粒径に当てはまる。   Here, the “average particle diameter” means a median diameter obtained by using a laser diffraction particle size distribution measuring device for a sample dispersed in water. For example, “SALD-2000” manufactured by Shimadzu Corporation is used. Can be measured using. The meaning of this average particle diameter applies to all average particle diameters in the present invention.

以下に、負極材料AMの説明を構成毎に説明する。
内包部材IMは、複数の第一リチウムイオン吸蔵部材IAと複数の導電材ICを構成としている。これら構成部材は、粒状乃至は粒状凝集体として中空部IE内に配置し、中空部IEは、内包部材IMの膨張を受け入れることができるので、負極材料AM全体の膨張を抑制する。なお、本実施形態においては、第一リチウムイオン吸蔵部材IAと導電材ICのみが内包部材IMの構成となっているが、本発明においては、これら第一リチウムイオン吸蔵部材と導電材以外の部材を内包部材の構成にとることも許容される。
Below, description of negative electrode material AM is demonstrated for every structure.
The inclusion member IM includes a plurality of first lithium ion storage members IA and a plurality of conductive materials IC. These constituent members are arranged in the hollow portion IE as a granular or granular aggregate, and the hollow portion IE can accept the expansion of the inclusion member IM, thereby suppressing the expansion of the entire negative electrode material AM. In the present embodiment, only the first lithium ion storage member IA and the conductive material IC have the configuration of the inclusion member IM. However, in the present invention, members other than the first lithium ion storage member and the conductive material are used. It is allowed to adopt the configuration of the enclosing member.

内包部材IMの構成である第一リチウムイオン吸蔵部材IAは、リチウムイオン二次電池用負極材料に使用することができる部材であれば特に限定されるものではない。従って、第一リチウムイオン吸蔵部材IAは、リチウムイオン吸蔵能を有する黒鉛、コークス、ハードカーボン等の炭素材料;および、Al、Pb、Zn、Sn、Bi、In、Mg、Ga、Cd、Ag、Si、B、Au、Pt、Pd、Sb、Ge、およびNiから選択される一種又は二種以上を含み、黒鉛よりも単位重量あたりの充電容量(以下、「単位重量あたりの充電容量」を「単位容量」という)が大きい金属、合金、酸化物、窒化物、または炭化物等の高容量材料;等から選択されていると良い。炭素材料が選択されている場合、黒鉛が選択されていると良い。一方、高容量材料が選択されている場合、単位容量の観点から、SiまたはSnを有する金属または酸化物が選択されていると良い。なお、炭素材料と高容量材料が任意に選択され、組み合わされていても良い。   The 1st lithium ion occlusion member IA which is the structure of the inclusion member IM will not be specifically limited if it is a member which can be used for the negative electrode material for lithium ion secondary batteries. Therefore, the first lithium ion storage member IA includes a carbon material such as graphite, coke, and hard carbon having lithium ion storage ability; and Al, Pb, Zn, Sn, Bi, In, Mg, Ga, Cd, Ag, One type or two or more types selected from Si, B, Au, Pt, Pd, Sb, Ge, and Ni are included, and the charge capacity per unit weight (hereinafter referred to as “charge capacity per unit weight”) is higher than that of graphite. A high capacity material such as a metal, an alloy, an oxide, a nitride, or a carbide having a large unit capacity) may be selected. When a carbon material is selected, graphite is preferably selected. On the other hand, when a high-capacity material is selected, from the viewpoint of unit capacity, a metal or oxide containing Si or Sn is preferably selected. A carbon material and a high-capacity material may be arbitrarily selected and combined.

第一リチウムイオン吸蔵部材の選定は、目的とする負極材料の特性に応じて任意に行われる。そのため、目的が負極材料の高容量化であれば、後記の第二リチウムイオン吸蔵部材よりも単位容量が大きな材料を第一リチウムイオン吸蔵部材IAに選択していると良い。この場合、第二リチウムイオン吸蔵部材よりも高膨張率であっても、第一リチウムイオン吸蔵部材IAの膨張が中空部IEで緩和される。第二リチウムイオン吸蔵部材よりも高容量かつ高膨張率の第一リチウムイオン吸蔵部材IAとしては、第二リチウムイオン吸蔵部材に黒鉛等の炭素材料が選択されている場合、上記の高容量材料を例示することができる。   The selection of the first lithium ion storage member is arbitrarily performed according to the characteristics of the target negative electrode material. Therefore, if the purpose is to increase the capacity of the negative electrode material, a material having a larger unit capacity than the second lithium ion storage member described later may be selected as the first lithium ion storage member IA. In this case, even if the expansion coefficient is higher than that of the second lithium ion storage member, the expansion of the first lithium ion storage member IA is alleviated by the hollow portion IE. As the first lithium ion storage member IA having a higher capacity and a higher expansion coefficient than the second lithium ion storage member, when a carbon material such as graphite is selected for the second lithium ion storage member, the above high capacity material is used. It can be illustrated.

第一リチウムイオン吸蔵部材IAの平均粒径は、負極材料AMの平均粒径に応じて設定される。そのため、この平均粒径は、特に限定されるべきものではないが、通常、0.05〜5μm、好ましくは0.1〜3μm、更に好ましくは0.5〜2μmである。   The average particle diameter of the first lithium ion storage member IA is set according to the average particle diameter of the negative electrode material AM. Therefore, the average particle diameter is not particularly limited, but is usually 0.05 to 5 μm, preferably 0.1 to 3 μm, and more preferably 0.5 to 2 μm.

他の内包部材IMの構成である導電材ICは、負極材料AM自体の電気抵抗値を低減し、リチウムイオン二次電池のサイクル特性を向上させる。そして、導電材ICは、第一リチウムイオン吸蔵部材IAよりも高い電気伝導率の材料から選定される。例えば、第一リチウムイオン吸蔵部材IAが金属Siである場合、カーボンブラック、繊維状炭素、非晶質炭素、黒鉛等の導電性炭素材料;および銅等の金属から選択されていると良い。また、この導電材ICは、第一リチウムイオン吸蔵部材IAよりも高い電気伝導率である限り、リチウムイオン吸蔵能を有するものであっても良い。   The conductive material IC which is the configuration of the other inclusion member IM reduces the electrical resistance value of the negative electrode material AM itself, and improves the cycle characteristics of the lithium ion secondary battery. The conductive material IC is selected from materials having higher electrical conductivity than the first lithium ion storage member IA. For example, when the first lithium ion storage member IA is metal Si, it may be selected from conductive carbon materials such as carbon black, fibrous carbon, amorphous carbon, and graphite; and metals such as copper. The conductive material IC may have a lithium ion storage capability as long as it has a higher electrical conductivity than the first lithium ion storage member IA.

導電材ICの平均粒径は、第一リチウムイオン吸蔵部材IAと同じく、負極材料AMの平均粒径に応じて設定される。   The average particle diameter of the conductive material IC is set according to the average particle diameter of the negative electrode material AM, as with the first lithium ion storage member IA.

本実施形態の第一リチウムイオン吸蔵部材IAおよび導電材ICは、上記の通りである。中空部IEにおける内包部材IMの充填率は、低充填率であるほど負極材料AMの膨張を抑制できる一方で、高充填率であるほど負極材料AMの大容量化を行うことができる。従って、中空部IE内の充填率は、負極材料AMの膨張の大小で影響するリチウムイオン二次電池のサイクル特性、および所望のリチウムイオン二次電池容量の観点から適宜設定される。通常、10〜90%であると良く、好ましくは20〜80%、より好ましくは30〜70%である。   The first lithium ion storage member IA and the conductive material IC of the present embodiment are as described above. The filling rate of the inclusion member IM in the hollow portion IE can suppress the expansion of the negative electrode material AM as the filling rate is lower, while the capacity of the negative electrode material AM can be increased as the filling rate is higher. Therefore, the filling rate in the hollow portion IE is appropriately set from the viewpoints of the cycle characteristics of the lithium ion secondary battery that are affected by the magnitude of expansion of the negative electrode material AM and the desired lithium ion secondary battery capacity. Usually, it is good to be 10 to 90%, preferably 20 to 80%, more preferably 30 to 70%.

外表皮SSは、負極材料AM内部の中空部IEを設けるための構成である。本実施形態における外表皮SSは、多孔質膜となっており、負極材料AMの高容量化のため、リチウムイオン吸蔵能を有する不図示の第二リチウムイオン吸蔵部材を備えている。第二リチウムイオン吸蔵部材は、リチウムイオン吸蔵能を有している限り特に限定されるものではない。従って、第一リチウムイオン吸蔵部材IAと同じ材料を第二リチウムイオン吸蔵部材に選択することもできる。   The outer skin SS is configured to provide a hollow portion IE inside the negative electrode material AM. The outer skin SS in the present embodiment is a porous film, and includes a second lithium ion storage member (not shown) having a lithium ion storage capability in order to increase the capacity of the negative electrode material AM. The second lithium ion storage member is not particularly limited as long as it has a lithium ion storage capability. Therefore, the same material as the first lithium ion storage member IA can be selected as the second lithium ion storage member.

上記の通り、リチウムイオン吸蔵能を有する材料から第二リチウムイオン吸蔵部材を選定できるが、第一リチウムイオン吸蔵部材IAよりも第二リチウムイオン吸蔵部材が低膨張率であると、負極材料AM自体が一層低膨張率となるので、好適である。このような低膨張率の負極材料AMを実現する場合、第一リチウムイオン吸蔵部材IAにSi金属等の高容量材料が選定されているとき、例えば、黒鉛や加熱により炭化した石油または石炭ピッチを例示することができる。   As described above, the second lithium ion storage member can be selected from materials having lithium ion storage capability, but when the second lithium ion storage member has a lower expansion coefficient than the first lithium ion storage member IA, the negative electrode material AM itself. Is preferable because it has a lower expansion coefficient. When realizing such a low-expansion negative electrode material AM, when a high-capacity material such as Si metal is selected for the first lithium ion storage member IA, for example, graphite or petroleum carbon or coal pitch carbonized by heating is used. It can be illustrated.

本実施形態の負極材料AMは、上記の通りである。上記の通り、第一リチウムイオン吸蔵部材IAと第二リチウムイオン吸蔵部材を任意に選定可能であるので、例えば、リチウムイオン吸蔵部材中における黒鉛量を増加させることで、黒鉛のみで構成された負極材料を使用したリチウムイオン二次電池と同等の起電力を発揮するリチウムイオン二次電池を実現することも可能である。   The negative electrode material AM of the present embodiment is as described above. As described above, the first lithium ion storage member IA and the second lithium ion storage member can be arbitrarily selected. For example, by increasing the amount of graphite in the lithium ion storage member, the negative electrode composed only of graphite It is also possible to realize a lithium ion secondary battery that exhibits an electromotive force equivalent to that of a lithium ion secondary battery using the material.

次に上述した本実施形態の負極材料AMの製造方法について詳述する。本実施形態における負極材料AMの製造方法は、加熱により気化する気化性部材と第一リチウムイオン吸蔵部材が混合された核材粒子を調製する核材調製工程と、この核材粒子の表面に被覆膜を形成する被覆工程と、被覆膜を形成した核材粒子を加熱して被覆膜内の気化性部材を気化させる加熱工程を順次経る方法である。図2は、本実施形態における負極材料の製造方法を説明するための図であり、図2(a)は、核材調製工程で調製された核材粒子NPを表す図であり、図2(b)は、被覆工程で被覆膜OSが形成された核材粒子NPを表す図であり、図2(c)は、加熱工程を経て製造された負極材料AMを表す図である。以下、工程毎に説明する。   Next, the manufacturing method of the negative electrode material AM of this embodiment mentioned above is explained in full detail. The manufacturing method of the negative electrode material AM in this embodiment includes a core material preparation step of preparing a core material particle in which a vaporizable member that vaporizes by heating and a first lithium ion storage member are mixed, and a surface of the core material particle. In this method, a coating process for forming a coating film and a heating process for heating the core material particles on which the coating film is formed to vaporize the vaporizable member in the coating film are sequentially performed. FIG. 2 is a diagram for explaining a method for producing a negative electrode material in the present embodiment, and FIG. 2 (a) is a diagram showing the core material particles NP prepared in the core material preparation step, and FIG. FIG. 2B is a diagram illustrating the core material particle NP on which the coating film OS is formed in the coating process, and FIG. 2C is a diagram illustrating the negative electrode material AM manufactured through the heating process. Hereinafter, it demonstrates for every process.

先ず、核材粒子調製工程について説明する。この工程では、加熱により気化する気化性部材GM、第一リチウムイオン吸蔵部材IA、および導電材ICを混合して、核材粒子NPを調製する。   First, the core material particle preparation step will be described. In this step, the core material particle NP is prepared by mixing the vaporizable member GM that is vaporized by heating, the first lithium ion storage member IA, and the conductive material IC.

気化性部材GMは、加熱により分解や揮発等する熱分解性の樹脂から選択されていると良く、例えば、ポリスチレンやポリエチレンが挙げられる。また、第一リチウムイオン吸蔵部材IAおよび導電材ICは、上述した各材料から任意に選定される。   The vaporizable member GM is preferably selected from thermally decomposable resins that decompose or volatilize by heating, and examples thereof include polystyrene and polyethylene. Further, the first lithium ion storage member IA and the conductive material IC are arbitrarily selected from the materials described above.

核材粒子NPの調製では、目的とする負極材料AMの容量等の特性に応じた任意量の気化性部材GM、第一リチウムイオン吸蔵部材IA、および導電材ICを混合一体化する。この一体化が可能であれば、混合手法は特に限定されるものではない。例えば、(a)熱溶融した気化性部材GMに第一リチウムイオン吸蔵部材IAおよび導電材ICを混合した後、冷却固化する手法、(b)気化性部材GMが溶解したN‐メチルピロリドン等の溶剤に第一リチウムイオン吸蔵部材IAおよび導電材ICを混合した後、溶剤を蒸発させて固化する手法、を混合手法として挙げることができる。   In the preparation of the core material particles NP, an arbitrary amount of the vaporizable member GM, the first lithium ion storage member IA, and the conductive material IC are mixed and integrated according to characteristics such as the capacity of the target negative electrode material AM. If this integration is possible, the mixing method is not particularly limited. For example, (a) a method in which the first lithium ion storage member IA and the conductive material IC are mixed with the thermally meltable vaporizable member GM, and then cooled and solidified; (b) N-methylpyrrolidone in which the vaporizable member GM is dissolved, etc. A method of mixing the first lithium ion occlusion member IA and the conductive material IC in a solvent and then evaporating the solvent to solidify can be cited as a mixing method.

上記混合によって一体化させた核材を粉砕することにより、所望の平均粒径の図2(a)に示す核材粒子NPが調製される。   By pulverizing the core material integrated by the above mixing, the core material particles NP shown in FIG. 2A having a desired average particle diameter are prepared.

次の被覆工程では、図2(b)に示す如く、核材粒子NPの外表面全体に被覆膜OSを形成する。被覆膜OSは、不図示の第二リチウムイオン吸蔵部材の他、核材粒子NPとの接着性を高めるため、バインダーを含有する。   In the next coating step, as shown in FIG. 2B, the coating film OS is formed on the entire outer surface of the core material particle NP. The coating film OS contains a binder in order to enhance the adhesion with the core material particles NP in addition to the second lithium ion storage member (not shown).

被覆膜OSを形成させるとき、核材粒子NPの表面に被覆膜OSを形成容易とするには、液状物を被覆膜材料として使用することが好適である。このとき、第二リチウムイオン吸蔵部材および/または加熱により第二リチウムイオン吸蔵部材に変化する部材を被覆膜の一材料として使用する。第二リチウムイオン吸蔵部材は、上記の通り黒鉛等のリチウムイオン吸蔵能を有する部材であれば、特に限定されるものではない。他方で、加熱によりリチウムイオン吸蔵部材に変化する部材としては、石炭ピッチ、石油ピッチを例示することができる。   When forming the coating film OS, in order to easily form the coating film OS on the surface of the core material particle NP, it is preferable to use a liquid material as the coating film material. At this time, the second lithium ion storage member and / or the member that changes to the second lithium ion storage member by heating is used as one material of the coating film. The second lithium ion storage member is not particularly limited as long as it is a member having lithium ion storage capability such as graphite as described above. On the other hand, coal pitch and petroleum pitch can be illustrated as a member which changes to a lithium ion occlusion member by heating.

また、使用するバインダーとしては、次の加熱工程での加熱で炭化するカルボキシメチルセルロース等の公知の有機バインダーを使用すると良い。なお、バインダーとしての機能を発揮する限り、石炭ピッチや石油ピッチ等、加熱によりリチウムイオン吸蔵部材に変化する部材をバインダーとして使用することも許容される。   Moreover, as a binder to be used, it is good to use well-known organic binders, such as carboxymethylcellulose which carbonizes by the heating at the next heating process. In addition, as long as the function as a binder is exhibited, the use of a member that changes to a lithium ion storage member by heating, such as coal pitch or petroleum pitch, is allowed.

被覆膜材料において、第二リチウムイオン吸蔵部材および/または加熱によりリチウムイオン吸蔵部材に変化する部材と、バインダーとの比率は、被覆膜OSの形成を行う目的から適宜設定される。通常、第二リチウムイオン吸蔵部材および/または加熱によりリチウムイオン吸蔵部材に変化する部材:バインダー=1:0.001〜0.1(重量比率)であると良く、好ましくは1:0.002〜0.08、より好ましくは1:0.005〜0.05である。   In the coating film material, the ratio between the second lithium ion storage member and / or the member that changes to the lithium ion storage member by heating and the binder is appropriately set for the purpose of forming the coating film OS. Usually, the second lithium ion occlusion member and / or the member that changes to the lithium ion occlusion member by heating: Binder = 1: 0.001-0.1 (weight ratio), preferably 1: 0.002- It is 0.08, More preferably, it is 1: 0.005-0.05.

次の加熱工程では、図2(c)に示す如く、被覆膜OSに内包されている気化性部材GMを気化減少させて、中空部IEを形成する。このときの加熱温度は、気化性部材GMの熱分解や揮発する温度以上に設定され、好ましくは、被覆膜OSに使用されているバインダーが炭化する温度に設定される。例えば石油ピッチ、石炭ピッチ、またはカルボキシメチルセルロースをバインダーに使用している場合、800℃程度の温度でバインダーの炭化を行うことが可能である。なお、本加熱工程では、リチウムイオン吸蔵部材の酸化を防止するため、窒素等の不活性ガス中で加熱を行う。   In the next heating step, as shown in FIG. 2 (c), the vaporizing member GM contained in the coating film OS is vaporized and reduced to form the hollow portion IE. The heating temperature at this time is set to be equal to or higher than the temperature at which the vaporizable member GM is thermally decomposed and volatilized, and is preferably set to a temperature at which the binder used in the coating film OS is carbonized. For example, when petroleum pitch, coal pitch, or carboxymethyl cellulose is used as the binder, the binder can be carbonized at a temperature of about 800 ° C. In this heating step, heating is performed in an inert gas such as nitrogen in order to prevent oxidation of the lithium ion storage member.

なお、本加熱工程における加熱では、気化性部材GMと同様、被覆膜OSの成分の一部も熱分解や揮発により気化する。そのため、被覆膜OSが多孔質膜に変化し、気化性部材GMの気化物が被覆膜OSを通じて核材粒子NP外に流出する。更に、継続して加熱すると、被覆膜OS中のバインダーが炭化して外表皮SSに変化する。その結果、本実施形態の負極材料AMが得られる。   Note that, in the heating in the main heating step, a part of the components of the coating film OS is vaporized by thermal decomposition or volatilization, like the vaporizable member GM. Therefore, the coating film OS changes to a porous film, and the vaporized material of the vaporizable member GM flows out of the core material particles NP through the coating film OS. Further, when the heating is continued, the binder in the coating film OS is carbonized and changed to the outer skin SS. As a result, the negative electrode material AM of the present embodiment is obtained.

次に、リチウムイオン二次電池用負極について説明する。本実施形態の負極は、本実施形態の負極材料AMが使用される。負極は、公知の方法により製造できる。例えば、集電板の表面に、本実施形態の負極材料AMとバインダーを分散させたスラリーを塗布し、次に乾燥することにより製造できる。集電板としては、一般的に銅箔が使用される。また、バインダーは、ポリテトラフルオロエチレン、ポリフッ化ビニリデン、フッ化ビニリデン/ヘキサフルオロプロピレン共重合体、テトラフルオロエチレン/ヘキサフルオロプロピレン/フッ化ビニリデン共重合体等のフッ素系高分子化合物や、カルボキシメチルセルロース、スチレン−ブタジエンゴム、アクリロニトリル−ブタジエンゴム等が使用される。このバインダーは、通常、溶剤に溶解して使用される。   Next, the negative electrode for a lithium ion secondary battery will be described. The negative electrode material AM of this embodiment is used for the negative electrode of this embodiment. The negative electrode can be produced by a known method. For example, it can be manufactured by applying a slurry in which the negative electrode material AM of the present embodiment and a binder are dispersed to the surface of the current collector plate, and then drying. As the current collector plate, a copper foil is generally used. The binder may be a fluorine-based polymer compound such as polytetrafluoroethylene, polyvinylidene fluoride, vinylidene fluoride / hexafluoropropylene copolymer, tetrafluoroethylene / hexafluoropropylene / vinylidene fluoride copolymer, or carboxymethyl cellulose. Styrene-butadiene rubber, acrylonitrile-butadiene rubber, etc. are used. This binder is usually used after being dissolved in a solvent.

次に、リチウムイオン二次電池について説明する。本実施形態のリチウムイオン二次電池は、負極の他、正極、電解液およびセパレータを主要構成としており、負極に上記本実施形態の負極を使用している。正極材料を例示すれば、LiCoOやLiNiO、LiNi1-yCoy2、LiMnO2、LiMn24、LiFeO2などが挙げられる。また、正極のバインダーとしては、ポリフッ化ビニリデンやポリ四フッ化エチレンなどを採用できる。また、導電材として、カーボンブラックなどを混合しても良い。電解液としては、例えば、エチレンカーボネートなどの有機溶媒や、該有機溶媒とジメチルカーボネート、ジエチルカーボネート、1,2−ジメトキシエタン、ジエトキシメタン、エトキシメトキシエタンなどの低沸点溶媒との混合溶媒に、LiPF6やLiBF4、LiClO4、LiCF3SO3、LiAsF6などの電解液溶質(電解質塩)を溶解した溶液が用いられる。セパレータとしては、例えば、ポリエチレンやポリプロピレンなどのポリオレフィンを主成分とした不織布、クロス、微孔フィルム等が用いられる。 Next, a lithium ion secondary battery will be described. The lithium ion secondary battery according to the present embodiment mainly includes a positive electrode, an electrolytic solution, and a separator in addition to the negative electrode, and the negative electrode according to the present embodiment is used as the negative electrode. To exemplify the positive electrode material, LiCoO 2 and LiNiO 2, LiNi 1-y Co y O 2, LiMnO 2, LiMn 2 O 4, etc. LiFeO 2 and the like. Moreover, as a binder of a positive electrode, polyvinylidene fluoride, polytetrafluoroethylene, etc. are employable. Further, carbon black or the like may be mixed as a conductive material. As the electrolytic solution, for example, an organic solvent such as ethylene carbonate, or a mixed solvent of the organic solvent and a low boiling point solvent such as dimethyl carbonate, diethyl carbonate, 1,2-dimethoxyethane, diethoxymethane, ethoxymethoxyethane, A solution in which an electrolyte solution solute (electrolyte salt) such as LiPF 6 , LiBF 4 , LiClO 4 , LiCF 3 SO 3 , or LiAsF 6 is dissolved is used. As the separator, for example, a nonwoven fabric, a cloth, a microporous film, or the like whose main component is a polyolefin such as polyethylene or polypropylene is used.

以下に実施例を挙げて本発明をより具体的に説明するが、本発明は、下記実施例によって限定されるものではなく、前・後記の趣旨に適合しうる範囲で適宜変更して実施することも可能であり、それらはいずれも本発明の技術的範囲に包含される。   The present invention will be described more specifically with reference to the following examples. However, the present invention is not limited to the following examples, and may be appropriately modified and implemented within a range that can meet the purpose described above and below. All of which are within the scope of the present invention.

(実施例1)
以下の、核材粒子の調製、被覆膜の形成、加熱処理の手順により、実施例1の負極材料を作製した。
Example 1
The negative electrode material of Example 1 was produced by the following procedures of preparation of core material particles, formation of a coating film, and heat treatment.

(核材粒子の調製)
平均粒径が1μmの金属Siを第一リチウムイオン吸蔵部材、平均粒径が3μmの鱗片状黒鉛を導電材、微粉末ポリスチレンを気化性部材にして、次の通り核材粒子を調製した。先ず、20gの第一リチウムイオン吸蔵部材、20gの導電材、および10gの気化性部材を混合し、この混合物にN‐メチルピロリドン(NMP)を50g添加して気化性部材を溶解し、スラリーを得た。スラリーからNMPを蒸発させて固化後、粉砕して、平均粒径が20μmの核材粒子を調製した。
(Preparation of nuclear material particles)
Core material particles were prepared as follows using metal Si having an average particle diameter of 1 μm as a first lithium ion occlusion member, flaky graphite having an average particle diameter of 3 μm as a conductive material, and fine powder polystyrene as a vaporizable member. First, 20 g of a first lithium ion occlusion member, 20 g of a conductive material, and 10 g of a vaporizable member are mixed, and 50 g of N-methylpyrrolidone (NMP) is added to the mixture to dissolve the vaporizable member. Obtained. NMP was evaporated from the slurry, solidified, and then pulverized to prepare core material particles having an average particle size of 20 μm.

(被覆膜の形成)
平均粒径が3μmの鱗片状黒鉛を第二リチウムイオン吸蔵部材、カルボキシメチルセルロース(CMC)をバインダーにして、次の通り被覆膜を形成した。50gの核材粒子、および10gの第二リチウムイオン吸蔵部材を混合した後、3000rpmで攪拌しながら2質量%バインダー水溶液を10g添加し、次に水を蒸発させて、核材粒子の表面に被覆膜を形成した。
(Formation of coating film)
A coating film was formed as follows using flaky graphite having an average particle size of 3 μm as a second lithium ion storage member and carboxymethylcellulose (CMC) as a binder. After mixing 50 g of the core material particles and 10 g of the second lithium ion storage member, 10 g of a 2% by weight binder aqueous solution was added while stirring at 3000 rpm, and then water was evaporated to cover the surface of the core material particles. A covering film was formed.

(加熱処理)
被覆膜を形成した核材粒子を窒素気流中、800℃で2時間熱処理し、核材粒子における気化性部材を気化させて外表皮の内側に中空部を形成することで、平均粒径が27μmの実施例1の負極材料を得た。
(Heat treatment)
The core material particles on which the coating film is formed are heat-treated at 800 ° C. for 2 hours in a nitrogen stream, and the vaporizing member in the core material particles is vaporized to form a hollow portion inside the outer skin, so that the average particle size is A negative electrode material of Example 1 having a thickness of 27 μm was obtained.

(実施例2)
以下に述べる事項以外は、実施例1の負極材料の製法と同様にして、平均粒径が27μmの実施例2の負極材料Bを作製した。
(Example 2)
Except for the matters described below, a negative electrode material B of Example 2 having an average particle size of 27 μm was produced in the same manner as in the production method of the negative electrode material of Example 1.

(核材粒子の調製)
気化性部材にCMCを10g使用し、NMPに変えて水を20g使用して核材粒子を調製した。
(被覆膜の形成)
2質量%CMC水溶液に変えて、コールタールピッチを5質量%含有するNMPを10g使用して被覆膜を形成した。
(Preparation of nuclear material particles)
Core material particles were prepared using 10 g of CMC as a vaporizing member, and using 20 g of water instead of NMP.
(Formation of coating film)
Instead of the 2% by mass CMC aqueous solution, 10 g of NMP containing 5% by mass of coal tar pitch was used to form a coating film.

(実施例3)
以下に述べる事項以外は、実施例1の負極材料の製法と同様にして、平均粒径が28μmの実施例3の負極材料を作製した。
(Example 3)
A negative electrode material of Example 3 having an average particle size of 28 μm was produced in the same manner as in the production method of the negative electrode material of Example 1, except for the matters described below.

(核材粒子の調製)
気化性部材にCMCを10g使用し、NMPに変えて水を20g使用して核材粒子を調製した。
(外表皮の被覆)
第二リチウムイオン吸蔵部材である黒鉛に変えてコールタールピッチを15g使用し、2質量%CMC水溶液に変えてNMPを10g使用して被覆膜を形成した。
(Preparation of nuclear material particles)
Core material particles were prepared using 10 g of CMC as a vaporizing member, and using 20 g of water instead of NMP.
(Coating of outer skin)
15 g of coal tar pitch was used instead of graphite as the second lithium ion storage member, and 10 g of NMP was used instead of 2 mass% CMC aqueous solution to form a coating film.

(比較例1)
平均粒径が25μmの鱗片状黒鉛30gに平均粒径1μmの金属Siを混合して、これを比較例1の負極材料とした。
(Comparative Example 1)
30 g of scaly graphite having an average particle size of 25 μm was mixed with metal Si having an average particle size of 1 μm, and this was used as the negative electrode material of Comparative Example 1.

(比較例2)
平均粒径1μmの金属Si20g、コールタールピッチ50g、およびNMP20gを混合し、窒素気流中、800℃で2時間熱処理した。その後、平均粒径25μmに粉砕して、比較例2の負極材料とした。
(Comparative Example 2)
20 g of metal Si having an average particle diameter of 1 μm, 50 g of coal tar pitch, and 20 g of NMP were mixed and heat-treated at 800 ° C. for 2 hours in a nitrogen stream. Then, it grind | pulverized to the average particle diameter of 25 micrometers, and was set as the negative electrode material of the comparative example 2.

上記実施例および比較例の負極材料を使用して、リチウムイオン二次電池を作製した。この電池の負荷特性、およびサイクル特性の評価を行った。電池の作製方法、および電池の評価方法は、以下の通りである。   Lithium ion secondary batteries were fabricated using the negative electrode materials of the above examples and comparative examples. The load characteristics and cycle characteristics of this battery were evaluated. A battery manufacturing method and a battery evaluation method are as follows.

(リチウムイオン二次電池の作製)
(1)負極の作製
100質量部の実施例ないしは比較例の負極材料、50質量部のバインダー水溶液(2.0質量%カルボキシメチルセルロース水溶液)、および20質量部の5.0質量%スチレンブタジエンゴム水溶液を混合し、これに30質量部の水を加えてスラリー状にした。得られたスラリーを厚さ18μmの銅箔上に塗布し、乾燥機(100℃)で10分間乾燥した。乾燥後、直径1.6cmの円形に打ち抜いたのち、銅箔を除く塗布量を測定すると18mgであった。この膜をローラープレス機で、銅箔上に塗布した塗布物の密度が1.40g/ccとなるようにプレスし、リチウムイオン二次電池用の負極を作製した。
(Production of lithium ion secondary battery)
(1) Production of Negative Electrode 100 parts by mass of Example or Comparative Example negative electrode material, 50 parts by mass of binder aqueous solution (2.0% by mass carboxymethylcellulose aqueous solution), and 20 parts by mass of 5.0% by mass styrene butadiene rubber aqueous solution. And 30 parts by mass of water were added to form a slurry. The obtained slurry was applied onto a copper foil having a thickness of 18 μm and dried for 10 minutes with a dryer (100 ° C.). After drying, it was punched out into a circle with a diameter of 1.6 cm, and the coating amount excluding the copper foil was 18 mg. This film was pressed with a roller press so that the density of the coating applied on the copper foil was 1.40 g / cc, and a negative electrode for a lithium ion secondary battery was produced.

(2)リチウムイオン二次電池の作製
リチウムイオン二次電池用の正極としては、低温充電特性および負荷特性を算出するためのリチウムイオン二次電池用にはリチウム箔を用い、サイクル特性を算出するためのリチウムイオン二次電池用にはLiCoO2を活物質とする電極を用いた。LiCoO2を活物質とする電極は、次のようにして作製した。LiCoO290質量部に対して、バインダーとしてポリフッ化ビニリデン5質量部、導電材としてカーボンブラック5質量部を夫々混合し、これにNMP200質量部を加えてスラリーを作製した。得られたスラリーを厚さ30μmのアルミ箔上に塗布し、乾燥機(100℃)で20分間乾燥した。乾燥後の膜を直径1.6cmの円形に打ち抜いた後、アルミ箔を除く塗布量を測定すると45mgであった。この膜をローラープレス機で、アルミ箔上に塗布した塗布物の密度が2.8g/ccとなるようにプレスしてリチウムイオン二次電池用の正極を作製した。
(2) Production of lithium ion secondary battery As a positive electrode for a lithium ion secondary battery, a lithium foil is used for a lithium ion secondary battery for calculating low temperature charge characteristics and load characteristics, and cycle characteristics are calculated. Therefore, an electrode using LiCoO 2 as an active material was used for the lithium ion secondary battery. An electrode using LiCoO 2 as an active material was produced as follows. To 90 parts by mass of LiCoO 2, 5 parts by mass of polyvinylidene fluoride as a binder and 5 parts by mass of carbon black as a conductive material were mixed, and 200 parts by mass of NMP were added thereto to prepare a slurry. The obtained slurry was applied onto an aluminum foil having a thickness of 30 μm and dried with a dryer (100 ° C.) for 20 minutes. After the dried film was punched out into a circle having a diameter of 1.6 cm, the coating amount excluding the aluminum foil was measured to be 45 mg. This film was pressed with a roller press so that the density of the coating applied on the aluminum foil was 2.8 g / cc to produce a positive electrode for a lithium ion secondary battery.

(3)リチウムイオン二次電池の組み立て
上記正極と負極とを、セパレータを介して対向させて、ステンレス製セルに組み込み、リチウムイオン二次電池(コイン型)を作製した。電池の組み立てはアルゴンガス雰囲気下で行ない、電解液としては、1MのLiPF6/(エチレンカーボネート+ジメチルカーボネート)0.05mLを、セパレータとしてはCelgard社製の「セルガード#3501(商品名)」を用いた。電解液は、エチレンカーボネートとジメチルカーボネートを容積比1:1で混合した溶媒に、LiPF6を1Mの濃度になるように溶解したものである(三菱化学社製、商品名「ソルライト」)。
(3) Assembly of lithium ion secondary battery The positive electrode and the negative electrode were opposed to each other through a separator and incorporated in a stainless steel cell to produce a lithium ion secondary battery (coin type). The battery is assembled in an argon gas atmosphere. As the electrolyte, 0.05 mL of 1M LiPF 6 / (ethylene carbonate + dimethyl carbonate) is used, and “Celguard # 3501 (trade name)” manufactured by Celgard is used as the separator. Using. The electrolytic solution is obtained by dissolving LiPF 6 to a concentration of 1M in a solvent in which ethylene carbonate and dimethyl carbonate are mixed at a volume ratio of 1: 1 (trade name “Sollite”, manufactured by Mitsubishi Chemical Corporation).

(負荷特性の評価)
電池の充電を、電極面積に対する電流密度が0.37mA/cm(0.1C)の定電流値で、正極と負極の電位差が0Vになるまで行い、続けて、0Vの定電位で電流値が0.06mA/cmに下がるまで行った。充電後、0.37mA/cm(0.1C)で1Vまで放電した放電容量と、9.2mA/cm(2.5C)で1Vまで放電した放電容量とから、次式により算出した。
負荷特性(%)=100×((9.2mA/cm2で放電した放電容量)/(0.37mA/cm2で放電した放電容量))
(Evaluation of load characteristics)
The battery is charged at a constant current value of 0.37 mA / cm 2 (0.1 C) with respect to the electrode area until the potential difference between the positive electrode and the negative electrode becomes 0 V, and then the current value at a constant potential of 0 V. Until 0.06 mA / cm 2 was reduced. From the discharge capacity discharged to 1 V at 0.37 mA / cm 2 (0.1 C) and the discharge capacity discharged to 1 V at 9.2 mA / cm 2 (2.5 C) after charging, the following formula was used.
Load characteristics (%) = 100 × ((discharge capacity was discharged at 9.2mA / cm 2) / (discharge capacity was discharged at 0.37mA / cm 2))

(サイクル特性の評価)
電池の充電を、電流値6.4mAで4.2Vまで行った後、続けて、4.2Vの定電圧で電流値が0.2mAになるまで行なった。次に、放電を、電流値6.4mAで3.0Vになるまで行なった。この充電と放電とを所定回数繰り返し、次式によりサイクル特性を算出した。
nサイクル目のサイクル特性(%)=100×((nサイクル目の放電容量)/(1サイクル目の放電容量))
(Evaluation of cycle characteristics)
The battery was charged to 4.2 V at a current value of 6.4 mA, and then continuously until the current value reached 0.2 mA at a constant voltage of 4.2 V. Next, discharging was performed at a current value of 6.4 mA until 3.0 V was reached. This charging and discharging were repeated a predetermined number of times, and the cycle characteristics were calculated by the following formula.
Cycle characteristics (%) of the nth cycle = 100 × ((discharge capacity of the nth cycle) / (discharge capacity of the first cycle))

表1に、負荷特性およびサイクル特性の評価結果を表1に示す。   Table 1 shows the evaluation results of load characteristics and cycle characteristics.

Figure 0005124975
Figure 0005124975

表1の実施例および比較例を対比すると、リチウムイオン二次電池のサイクル特性は、比較例よりも実施例の負極材料を使用している方が明らかに優れていることを確認することができる。   Comparing the examples and comparative examples in Table 1, it can be confirmed that the cycle characteristics of the lithium ion secondary battery are clearly superior to those using the negative electrode materials of the examples than the comparative examples. .

本発明の実施形態に係るリチウムイオン二次電池用負極材料を説明するための断面模式図である。It is a cross-sectional schematic diagram for demonstrating the negative electrode material for lithium ion secondary batteries which concerns on embodiment of this invention. 本発明の実施形態に係るリチウムイオン二次電池用負極材料の製造方法を説明するための図である。It is a figure for demonstrating the manufacturing method of the negative electrode material for lithium ion secondary batteries which concerns on embodiment of this invention.

符号の説明Explanation of symbols

AM 負極材料
IE 中空部
IM 内包部材
IA 第一リチウムイオン吸蔵部材
IC 導電材
SS 外表皮
GM 気化性部材
NP 核材粒子
OS 被覆膜
AM negative electrode material IE hollow part IM inclusion member IA first lithium ion occlusion member IC conductive material SS outer skin GM vaporizable member NP core material particle OS coating film

Claims (14)

外表皮と、該外表皮に内包された中空部と、該中空部内に配置する粒状の第一リチウムイオン吸蔵部材及び導電材を有する内包部材を備え、
前記外表皮が第二リチウムイオン吸蔵部材として黒鉛を有し、
前記第一リチウムイオン吸蔵部材がリチウムと合金化可能な金属を有し、
前記中空部における内包部材の充填率が10〜90%であることを特徴とするリチウムイオン二次電池用負極材料。
An outer skin, a hollow portion encapsulated in the outer skin, and an encapsulating member having a granular first lithium ion storage member and a conductive material disposed in the hollow portion,
The outer skin has graphite as a second lithium ion storage member,
The first lithium ion storage member has a metal that can be alloyed with lithium,
A negative electrode material for a lithium ion secondary battery, wherein the filling rate of the inclusion member in the hollow portion is 10 to 90%.
前記第一リチウムイオン吸蔵部材および第二リチウムイオン吸蔵部材のリチウムイオン吸蔵時において、前記第一リチウムイオン吸蔵部材よりも前記第二リチウムイオン吸蔵部材が低膨張率である請求項1に記載のリチウムイオン二次電池用負極材料。   2. The lithium according to claim 1, wherein when the first lithium ion storage member and the second lithium ion storage member store lithium ions, the second lithium ion storage member has a lower expansion coefficient than the first lithium ion storage member. Negative electrode material for ion secondary battery. 前記第一リチウムイオン吸蔵部材の充電容量が前記第二リチウムイオン吸蔵部材の充電容量よりも大容量である請求項1または2に記載のリチウムイオン二次電池用負極材料。   The negative electrode material for a lithium ion secondary battery according to claim 1 or 2, wherein a charge capacity of the first lithium ion storage member is larger than a charge capacity of the second lithium ion storage member. 前記外表皮が第二リチウムイオン吸蔵部材として黒鉛を有する多孔質膜である請求項1〜3のいずれかに記載のリチウムイオン二次電池用負極材料。 The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 3, wherein the outer skin is a porous film having graphite as a second lithium ion storage member. 前記導電材は、粒状、粒状凝集体、繊維状、鱗片状よりなる群から選択される少なくとも一種である請求項1〜4のいずれかに記載のリチウムイオン二次電池用負極材料。The negative electrode material for a lithium ion secondary battery according to any one of claims 1 to 4, wherein the conductive material is at least one selected from the group consisting of particles, granular aggregates, fibers, and scales. 請求項1〜のいずれかに記載のリチウムイオン二次電池用負極材料を備えたリチウムイオン二次電池用負極。 The negative electrode for lithium ion secondary batteries provided with the negative electrode material for lithium ion secondary batteries in any one of Claims 1-5 . 請求項に記載のリチウムイオン二次電池用負極を備えたリチウムイオン二次電池。 The lithium ion secondary battery provided with the negative electrode for lithium ion secondary batteries of Claim 6 . 請求項1〜のいずれか1項に記載のリチウムイオン二次電池用負極材料の製造方法であって、
加熱により気化する気化性部材、リチウムと合金化可能な金属を有する粒状の第一リチウムイオン吸蔵部材及び導電材が混合された核材を調製する核材調製工程と、
前記核材の表面に、第二リチウムイオン吸蔵部材として黒鉛を有する被覆膜を形成する被覆工程と、
前記被覆膜を形成した核材を加熱して前記気化性部材を気化させる加熱工程を有することを特徴とするリチウムイオン二次電池用負極材料の製造方法。
It is a manufacturing method of the negative electrode material for lithium ion secondary batteries of any one of Claims 1-5 ,
A core material preparation step of preparing a core material mixed with a vaporizable member that is vaporized by heating, a granular first lithium ion storage member having a metal that can be alloyed with lithium, and a conductive material;
A coating step of forming a coating film having graphite as the second lithium ion storage member on the surface of the core material;
A method for producing a negative electrode material for a lithium ion secondary battery, comprising a heating step of heating the core material on which the coating film is formed to vaporize the vaporizable member.
前記加熱工程において、加熱により被覆膜を外表皮に変化させ、該外表皮内に第二リチウムイオン吸蔵部材を生成させる請求項に記載のリチウムイオン二次電池用負極材料の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to claim 8 , wherein in the heating step, the coating film is changed to an outer skin by heating, and a second lithium ion storage member is generated in the outer skin. 前記第一リチウムイオン吸蔵部材および第二リチウムイオン吸蔵部材のリチウムイオン吸蔵時において、前記第一リチウムイオン吸蔵部材よりも前記第二リチウムイオン吸蔵部材が低膨張率である請求項またはに記載のリチウムイオン二次電池用負極材料の製造方法。 During lithium ion occlusion of the first lithium ion occluding member and the second lithium ion occluding member, wherein the than the first lithium ion occluding member second lithium ion absorbing member according to claim 8 or 9 which is a low expansion Manufacturing method of negative electrode material for lithium ion secondary battery. 前記第一リチウムイオン吸蔵部材の充電容量が前記第二リチウムイオン吸蔵部材の充電容量よりも大容量である請求項10のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 8 to 10 , wherein a charge capacity of the first lithium ion storage member is larger than a charge capacity of the second lithium ion storage member. 前記加熱工程によって、前記被覆膜が多孔質被覆膜となる請求項11のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法。 The method for producing a negative electrode material for a lithium ion secondary battery according to any one of claims 8 to 11 , wherein the coating film becomes a porous coating film by the heating step. 請求項12のいずれかに記載のリチウムイオン二次電池用負極材料の製造方法を使用する工程を備えるリチウムイオン二次電池用負極の製造方法。 Any process method for producing a negative electrode for a lithium ion secondary battery comprising a the use of a manufacturing method of a lithium ion secondary battery negative electrode material according to claim 8-12. 請求項13に記載のリチウムイオン二次電池用負極の製造方法を使用する工程を備えるリチウムイオン二次電池の製造方法。 The manufacturing method of a lithium ion secondary battery provided with the process of using the manufacturing method of the negative electrode for lithium ion secondary batteries of Claim 13 .
JP2006119759A 2006-04-24 2006-04-24 Negative electrode material for lithium ion secondary battery and method for producing the same Active JP5124975B2 (en)

Priority Applications (1)

Application Number Priority Date Filing Date Title
JP2006119759A JP5124975B2 (en) 2006-04-24 2006-04-24 Negative electrode material for lithium ion secondary battery and method for producing the same

Applications Claiming Priority (1)

Application Number Priority Date Filing Date Title
JP2006119759A JP5124975B2 (en) 2006-04-24 2006-04-24 Negative electrode material for lithium ion secondary battery and method for producing the same

Publications (2)

Publication Number Publication Date
JP2007294196A JP2007294196A (en) 2007-11-08
JP5124975B2 true JP5124975B2 (en) 2013-01-23

Family

ID=38764614

Family Applications (1)

Application Number Title Priority Date Filing Date
JP2006119759A Active JP5124975B2 (en) 2006-04-24 2006-04-24 Negative electrode material for lithium ion secondary battery and method for producing the same

Country Status (1)

Country Link
JP (1) JP5124975B2 (en)

Families Citing this family (21)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
KR100981909B1 (en) 2008-04-15 2010-09-13 애경유화 주식회사 Negative active material for lithium secondary battery, method of preparing same, and lithium secondary battery comprising same
US8057900B2 (en) * 2008-06-20 2011-11-15 Toyota Motor Engineering & Manufacturing North America, Inc. Material with core-shell structure
US20160111715A9 (en) * 2008-06-20 2016-04-21 Toyota Motor Engineering & Manufacturing North America, Inc. Electrode material with core-shell structure
JP4922457B2 (en) 2008-12-26 2012-04-25 積水化学工業株式会社 Method for producing carbon particles for electrodes
JP5369031B2 (en) * 2009-08-11 2013-12-18 積水化学工業株式会社 Carbon material, electrode material, and negative electrode material for lithium ion secondary battery
JP5759307B2 (en) * 2010-08-24 2015-08-05 積水化学工業株式会社 Carbon particle for electrode, negative electrode material for lithium ion secondary battery, and method for producing carbon particle for electrode
JP5773242B2 (en) * 2011-02-09 2015-09-02 日本電気株式会社 Anode material for secondary battery and method for producing the same
DE102012202968A1 (en) * 2012-02-28 2013-08-29 Sgl Carbon Se Process for the preparation of coated active materials and their use for batteries
JP2013182706A (en) * 2012-02-29 2013-09-12 Sumitomo Bakelite Co Ltd Precursor for negative electrode, manufacturing method of precursor for negative electrode, production method of material for negative electrode, electrode and lithium ion secondary battery
JP5941437B2 (en) * 2012-06-29 2016-06-29 Jfeケミカル株式会社 Composite particles for negative electrode of lithium ion secondary battery and method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
US10374221B2 (en) * 2012-08-24 2019-08-06 Sila Nanotechnologies, Inc. Scaffolding matrix with internal nanoparticles
KR101951323B1 (en) * 2012-09-24 2019-02-22 삼성전자주식회사 Composite anode active material, anode and lithium battery comprising the material, and preparation method thereof
CN104981925A (en) * 2013-01-29 2015-10-14 三洋电机株式会社 Negative electrode active material for nonaqueous electrolyte secondary batteries, negative electrode for nonaqueous electrolyte secondary batteries using said negative electrode active material, and nonaqueous electrolyte secondary battery using said negative electrode
JP6414545B2 (en) 2013-02-28 2018-10-31 三洋電機株式会社 Nonaqueous electrolyte secondary battery
WO2016031082A1 (en) * 2014-08-29 2016-03-03 Nec Corporation Anode material for lithium ion battery
JP6294570B2 (en) * 2015-06-26 2018-03-14 松本油脂製薬株式会社 Slurry composition for negative electrode of non-aqueous electrolyte secondary battery and use thereof
JP6840476B2 (en) * 2015-07-16 2021-03-10 株式会社半導体エネルギー研究所 How to make a power storage device
US11749797B2 (en) 2016-12-15 2023-09-05 Honda Motor Co., Ltd. Nanostructural designs for electrode materials of fluoride ion batteries
US11581582B2 (en) 2015-08-04 2023-02-14 Honda Motor Co., Ltd. Liquid-type room-temperature fluoride ion batteries
EP3555940B1 (en) * 2016-12-15 2023-08-30 Honda Motor Co., Ltd. Composite electrode materials for fluoride-ion electrochemical cells
JP7129998B2 (en) * 2017-02-07 2022-09-02 ワッカー ケミー アクチエンゲゼルシャフト Core-shell composite particles for lithium-ion batteries

Family Cites Families (7)

* Cited by examiner, † Cited by third party
Publication number Priority date Publication date Assignee Title
JPH1045483A (en) * 1996-08-01 1998-02-17 Mitsubishi Chem Corp Porous carbon compact and its production
JP2002093416A (en) * 2000-09-11 2002-03-29 Canon Inc Negative electrode material for lithium secondary battery, negative electrode and secondary battery using the same
JP2002334697A (en) * 2001-05-08 2002-11-22 Hitachi Maxell Ltd Non-aqueous secondary battery
JP3987853B2 (en) * 2002-02-07 2007-10-10 日立マクセル株式会社 Electrode material and method for producing the same, non-aqueous secondary battery and method for producing the same
JP4809617B2 (en) * 2004-03-22 2011-11-09 Jfeケミカル株式会社 Negative electrode material for lithium ion secondary battery, method for producing the same, negative electrode for lithium ion secondary battery, and lithium ion secondary battery
JP2006216374A (en) * 2005-02-03 2006-08-17 Sony Corp Negative electrode material and battery using it
JP5158460B2 (en) * 2005-02-21 2013-03-06 日本カーボン株式会社 Silicon-added graphite negative electrode material for lithium ion secondary battery and production method

Also Published As

Publication number Publication date
JP2007294196A (en) 2007-11-08

Similar Documents

Publication Publication Date Title
JP5124975B2 (en) Negative electrode material for lithium ion secondary battery and method for producing the same
JP6203497B2 (en) Positive electrode active material for lithium secondary battery and lithium secondary battery including the same
JP4868556B2 (en) Lithium secondary battery
KR101982682B1 (en) Lithium secondary battery
JP5374851B2 (en) Negative electrode for lithium ion secondary battery and lithium ion secondary battery
JP3262704B2 (en) Carbon electrode for non-aqueous secondary battery, method for producing the same, and non-aqueous secondary battery using the same
JP6112858B2 (en) Nonaqueous electrolyte secondary battery
WO2012014998A1 (en) Lithium secondary battery
JP4474184B2 (en) Method for producing active material for lithium secondary battery and method for producing lithium secondary battery
JP2009266795A (en) Negative electrode active material for lithium secondary battery, and lithium secondary battery containing same
JP5448555B2 (en) Negative electrode for lithium ion secondary battery, lithium ion secondary battery using the same, slurry for preparing negative electrode for lithium ion secondary battery, and method for producing negative electrode for lithium ion secondary battery
JP2006100244A (en) Negative electrode active material particle for lithium secondary battery, negative electrode and manufacturing method thereof
JP2003303585A (en) Battery
JP2007234336A (en) Lithium secondary battery
JP2004319469A (en) Negative electrode active substance and nonaqueous electrolyte secondary cell
KR20120069535A (en) Negative electrode active material for lithium secondary battery and negative electrode for lithium secondary battery
JP2009514166A (en) Secondary battery electrode active material
JP6329888B2 (en) Anode material for secondary battery and secondary battery using the same
WO2014069117A1 (en) Anode active material for non-aqueous secondary battery and non-aqueous secondary battery
JP5566825B2 (en) Lithium secondary battery
JP2012529747A (en) Thin film alloy electrode
JP3992529B2 (en) Nonaqueous electrolyte secondary battery
JP2012094405A (en) Active material for nonaqueous electrolyte secondary battery, positive electrode plate for nonaqueous electrolyte secondary battery, nonaqueous electrolyte secondary battery and battery pack
JP5863631B2 (en) Method for producing non-aqueous electrolyte secondary battery
JP6063705B2 (en) Nonaqueous electrolyte secondary battery

Legal Events

Date Code Title Description
A621 Written request for application examination

Free format text: JAPANESE INTERMEDIATE CODE: A621

Effective date: 20090417

A977 Report on retrieval

Free format text: JAPANESE INTERMEDIATE CODE: A971007

Effective date: 20111216

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120110

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120312

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120410

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120608

A131 Notification of reasons for refusal

Free format text: JAPANESE INTERMEDIATE CODE: A131

Effective date: 20120703

A711 Notification of change in applicant

Free format text: JAPANESE INTERMEDIATE CODE: A711

Effective date: 20120706

A521 Written amendment

Free format text: JAPANESE INTERMEDIATE CODE: A523

Effective date: 20120830

TRDD Decision of grant or rejection written
A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

Effective date: 20121002

A01 Written decision to grant a patent or to grant a registration (utility model)

Free format text: JAPANESE INTERMEDIATE CODE: A01

A61 First payment of annual fees (during grant procedure)

Free format text: JAPANESE INTERMEDIATE CODE: A61

Effective date: 20121015

R150 Certificate of patent or registration of utility model

Free format text: JAPANESE INTERMEDIATE CODE: R150

Ref document number: 5124975

Country of ref document: JP

Free format text: JAPANESE INTERMEDIATE CODE: R150

FPAY Renewal fee payment (event date is renewal date of database)

Free format text: PAYMENT UNTIL: 20151109

Year of fee payment: 3

S111 Request for change of ownership or part of ownership

Free format text: JAPANESE INTERMEDIATE CODE: R313111

R350 Written notification of registration of transfer

Free format text: JAPANESE INTERMEDIATE CODE: R350